]> CyberLeo.Net >> Repos - FreeBSD/releng/10.0.git/blob - sys/vm/vm_phys.c
- Copy stable/10 (r259064) to releng/10.0 as part of the
[FreeBSD/releng/10.0.git] / sys / vm / vm_phys.c
1 /*-
2  * Copyright (c) 2002-2006 Rice University
3  * Copyright (c) 2007 Alan L. Cox <alc@cs.rice.edu>
4  * All rights reserved.
5  *
6  * This software was developed for the FreeBSD Project by Alan L. Cox,
7  * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21  * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT
22  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
23  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
24  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
25  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
26  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
28  * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31
32 /*
33  *      Physical memory system implementation
34  *
35  * Any external functions defined by this module are only to be used by the
36  * virtual memory system.
37  */
38
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41
42 #include "opt_ddb.h"
43 #include "opt_vm.h"
44
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/lock.h>
48 #include <sys/kernel.h>
49 #include <sys/malloc.h>
50 #include <sys/mutex.h>
51 #if MAXMEMDOM > 1
52 #include <sys/proc.h>
53 #endif
54 #include <sys/queue.h>
55 #include <sys/sbuf.h>
56 #include <sys/sysctl.h>
57 #include <sys/vmmeter.h>
58
59 #include <ddb/ddb.h>
60
61 #include <vm/vm.h>
62 #include <vm/vm_param.h>
63 #include <vm/vm_kern.h>
64 #include <vm/vm_object.h>
65 #include <vm/vm_page.h>
66 #include <vm/vm_phys.h>
67
68 _Static_assert(sizeof(long) * NBBY >= VM_PHYSSEG_MAX,
69     "Too many physsegs.");
70
71 struct mem_affinity *mem_affinity;
72
73 int vm_ndomains = 1;
74
75 struct vm_phys_seg vm_phys_segs[VM_PHYSSEG_MAX];
76 int vm_phys_nsegs;
77
78 #define VM_PHYS_FICTITIOUS_NSEGS        8
79 static struct vm_phys_fictitious_seg {
80         vm_paddr_t      start;
81         vm_paddr_t      end;
82         vm_page_t       first_page;
83 } vm_phys_fictitious_segs[VM_PHYS_FICTITIOUS_NSEGS];
84 static struct mtx vm_phys_fictitious_reg_mtx;
85 MALLOC_DEFINE(M_FICT_PAGES, "vm_fictitious", "Fictitious VM pages");
86
87 static struct vm_freelist
88     vm_phys_free_queues[MAXMEMDOM][VM_NFREELIST][VM_NFREEPOOL][VM_NFREEORDER];
89
90 static int vm_nfreelists = VM_FREELIST_DEFAULT + 1;
91
92 static int cnt_prezero;
93 SYSCTL_INT(_vm_stats_misc, OID_AUTO, cnt_prezero, CTLFLAG_RD,
94     &cnt_prezero, 0, "The number of physical pages prezeroed at idle time");
95
96 static int sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS);
97 SYSCTL_OID(_vm, OID_AUTO, phys_free, CTLTYPE_STRING | CTLFLAG_RD,
98     NULL, 0, sysctl_vm_phys_free, "A", "Phys Free Info");
99
100 static int sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS);
101 SYSCTL_OID(_vm, OID_AUTO, phys_segs, CTLTYPE_STRING | CTLFLAG_RD,
102     NULL, 0, sysctl_vm_phys_segs, "A", "Phys Seg Info");
103
104 SYSCTL_INT(_vm, OID_AUTO, ndomains, CTLFLAG_RD,
105     &vm_ndomains, 0, "Number of physical memory domains available.");
106
107 static vm_page_t vm_phys_alloc_domain_pages(int domain, int flind, int pool,
108     int order);
109 static void _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind,
110     int domain);
111 static void vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind);
112 static int vm_phys_paddr_to_segind(vm_paddr_t pa);
113 static void vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl,
114     int order);
115
116 static __inline int
117 vm_rr_selectdomain(void)
118 {
119 #if MAXMEMDOM > 1
120         struct thread *td;
121
122         td = curthread;
123
124         td->td_dom_rr_idx++;
125         td->td_dom_rr_idx %= vm_ndomains;
126         return (td->td_dom_rr_idx);
127 #else
128         return (0);
129 #endif
130 }
131
132 boolean_t
133 vm_phys_domain_intersects(long mask, vm_paddr_t low, vm_paddr_t high)
134 {
135         struct vm_phys_seg *s;
136         int idx;
137
138         while ((idx = ffsl(mask)) != 0) {
139                 idx--;  /* ffsl counts from 1 */
140                 mask &= ~(1UL << idx);
141                 s = &vm_phys_segs[idx];
142                 if (low < s->end && high > s->start)
143                         return (TRUE);
144         }
145         return (FALSE);
146 }
147
148 /*
149  * Outputs the state of the physical memory allocator, specifically,
150  * the amount of physical memory in each free list.
151  */
152 static int
153 sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS)
154 {
155         struct sbuf sbuf;
156         struct vm_freelist *fl;
157         int dom, error, flind, oind, pind;
158
159         error = sysctl_wire_old_buffer(req, 0);
160         if (error != 0)
161                 return (error);
162         sbuf_new_for_sysctl(&sbuf, NULL, 128 * vm_ndomains, req);
163         for (dom = 0; dom < vm_ndomains; dom++) {
164                 sbuf_printf(&sbuf,"\nDOMAIN %d:\n", dom);
165                 for (flind = 0; flind < vm_nfreelists; flind++) {
166                         sbuf_printf(&sbuf, "\nFREE LIST %d:\n"
167                             "\n  ORDER (SIZE)  |  NUMBER"
168                             "\n              ", flind);
169                         for (pind = 0; pind < VM_NFREEPOOL; pind++)
170                                 sbuf_printf(&sbuf, "  |  POOL %d", pind);
171                         sbuf_printf(&sbuf, "\n--            ");
172                         for (pind = 0; pind < VM_NFREEPOOL; pind++)
173                                 sbuf_printf(&sbuf, "-- --      ");
174                         sbuf_printf(&sbuf, "--\n");
175                         for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
176                                 sbuf_printf(&sbuf, "  %2d (%6dK)", oind,
177                                     1 << (PAGE_SHIFT - 10 + oind));
178                                 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
179                                 fl = vm_phys_free_queues[dom][flind][pind];
180                                         sbuf_printf(&sbuf, "  |  %6d",
181                                             fl[oind].lcnt);
182                                 }
183                                 sbuf_printf(&sbuf, "\n");
184                         }
185                 }
186         }
187         error = sbuf_finish(&sbuf);
188         sbuf_delete(&sbuf);
189         return (error);
190 }
191
192 /*
193  * Outputs the set of physical memory segments.
194  */
195 static int
196 sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS)
197 {
198         struct sbuf sbuf;
199         struct vm_phys_seg *seg;
200         int error, segind;
201
202         error = sysctl_wire_old_buffer(req, 0);
203         if (error != 0)
204                 return (error);
205         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
206         for (segind = 0; segind < vm_phys_nsegs; segind++) {
207                 sbuf_printf(&sbuf, "\nSEGMENT %d:\n\n", segind);
208                 seg = &vm_phys_segs[segind];
209                 sbuf_printf(&sbuf, "start:     %#jx\n",
210                     (uintmax_t)seg->start);
211                 sbuf_printf(&sbuf, "end:       %#jx\n",
212                     (uintmax_t)seg->end);
213                 sbuf_printf(&sbuf, "domain:    %d\n", seg->domain);
214                 sbuf_printf(&sbuf, "free list: %p\n", seg->free_queues);
215         }
216         error = sbuf_finish(&sbuf);
217         sbuf_delete(&sbuf);
218         return (error);
219 }
220
221 static void
222 vm_freelist_add(struct vm_freelist *fl, vm_page_t m, int order, int tail)
223 {
224
225         m->order = order;
226         if (tail)
227                 TAILQ_INSERT_TAIL(&fl[order].pl, m, plinks.q);
228         else
229                 TAILQ_INSERT_HEAD(&fl[order].pl, m, plinks.q);
230         fl[order].lcnt++;
231 }
232
233 static void
234 vm_freelist_rem(struct vm_freelist *fl, vm_page_t m, int order)
235 {
236
237         TAILQ_REMOVE(&fl[order].pl, m, plinks.q);
238         fl[order].lcnt--;
239         m->order = VM_NFREEORDER;
240 }
241
242 /*
243  * Create a physical memory segment.
244  */
245 static void
246 _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind, int domain)
247 {
248         struct vm_phys_seg *seg;
249 #ifdef VM_PHYSSEG_SPARSE
250         long pages;
251         int segind;
252
253         pages = 0;
254         for (segind = 0; segind < vm_phys_nsegs; segind++) {
255                 seg = &vm_phys_segs[segind];
256                 pages += atop(seg->end - seg->start);
257         }
258 #endif
259         KASSERT(vm_phys_nsegs < VM_PHYSSEG_MAX,
260             ("vm_phys_create_seg: increase VM_PHYSSEG_MAX"));
261         KASSERT(domain < vm_ndomains,
262             ("vm_phys_create_seg: invalid domain provided"));
263         seg = &vm_phys_segs[vm_phys_nsegs++];
264         seg->start = start;
265         seg->end = end;
266         seg->domain = domain;
267 #ifdef VM_PHYSSEG_SPARSE
268         seg->first_page = &vm_page_array[pages];
269 #else
270         seg->first_page = PHYS_TO_VM_PAGE(start);
271 #endif
272         seg->free_queues = &vm_phys_free_queues[domain][flind];
273 }
274
275 static void
276 vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind)
277 {
278         int i;
279
280         if (mem_affinity == NULL) {
281                 _vm_phys_create_seg(start, end, flind, 0);
282                 return;
283         }
284
285         for (i = 0;; i++) {
286                 if (mem_affinity[i].end == 0)
287                         panic("Reached end of affinity info");
288                 if (mem_affinity[i].end <= start)
289                         continue;
290                 if (mem_affinity[i].start > start)
291                         panic("No affinity info for start %jx",
292                             (uintmax_t)start);
293                 if (mem_affinity[i].end >= end) {
294                         _vm_phys_create_seg(start, end, flind,
295                             mem_affinity[i].domain);
296                         break;
297                 }
298                 _vm_phys_create_seg(start, mem_affinity[i].end, flind,
299                     mem_affinity[i].domain);
300                 start = mem_affinity[i].end;
301         }
302 }
303
304 /*
305  * Initialize the physical memory allocator.
306  */
307 void
308 vm_phys_init(void)
309 {
310         struct vm_freelist *fl;
311         int dom, flind, i, oind, pind;
312
313         for (i = 0; phys_avail[i + 1] != 0; i += 2) {
314 #ifdef  VM_FREELIST_ISADMA
315                 if (phys_avail[i] < 16777216) {
316                         if (phys_avail[i + 1] > 16777216) {
317                                 vm_phys_create_seg(phys_avail[i], 16777216,
318                                     VM_FREELIST_ISADMA);
319                                 vm_phys_create_seg(16777216, phys_avail[i + 1],
320                                     VM_FREELIST_DEFAULT);
321                         } else {
322                                 vm_phys_create_seg(phys_avail[i],
323                                     phys_avail[i + 1], VM_FREELIST_ISADMA);
324                         }
325                         if (VM_FREELIST_ISADMA >= vm_nfreelists)
326                                 vm_nfreelists = VM_FREELIST_ISADMA + 1;
327                 } else
328 #endif
329 #ifdef  VM_FREELIST_HIGHMEM
330                 if (phys_avail[i + 1] > VM_HIGHMEM_ADDRESS) {
331                         if (phys_avail[i] < VM_HIGHMEM_ADDRESS) {
332                                 vm_phys_create_seg(phys_avail[i],
333                                     VM_HIGHMEM_ADDRESS, VM_FREELIST_DEFAULT);
334                                 vm_phys_create_seg(VM_HIGHMEM_ADDRESS,
335                                     phys_avail[i + 1], VM_FREELIST_HIGHMEM);
336                         } else {
337                                 vm_phys_create_seg(phys_avail[i],
338                                     phys_avail[i + 1], VM_FREELIST_HIGHMEM);
339                         }
340                         if (VM_FREELIST_HIGHMEM >= vm_nfreelists)
341                                 vm_nfreelists = VM_FREELIST_HIGHMEM + 1;
342                 } else
343 #endif
344                 vm_phys_create_seg(phys_avail[i], phys_avail[i + 1],
345                     VM_FREELIST_DEFAULT);
346         }
347         for (dom = 0; dom < vm_ndomains; dom++) {
348                 for (flind = 0; flind < vm_nfreelists; flind++) {
349                         for (pind = 0; pind < VM_NFREEPOOL; pind++) {
350                                 fl = vm_phys_free_queues[dom][flind][pind];
351                                 for (oind = 0; oind < VM_NFREEORDER; oind++)
352                                         TAILQ_INIT(&fl[oind].pl);
353                         }
354                 }
355         }
356         mtx_init(&vm_phys_fictitious_reg_mtx, "vmfctr", NULL, MTX_DEF);
357 }
358
359 /*
360  * Split a contiguous, power of two-sized set of physical pages.
361  */
362 static __inline void
363 vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl, int order)
364 {
365         vm_page_t m_buddy;
366
367         while (oind > order) {
368                 oind--;
369                 m_buddy = &m[1 << oind];
370                 KASSERT(m_buddy->order == VM_NFREEORDER,
371                     ("vm_phys_split_pages: page %p has unexpected order %d",
372                     m_buddy, m_buddy->order));
373                 vm_freelist_add(fl, m_buddy, oind, 0);
374         }
375 }
376
377 /*
378  * Initialize a physical page and add it to the free lists.
379  */
380 void
381 vm_phys_add_page(vm_paddr_t pa)
382 {
383         vm_page_t m;
384         struct vm_domain *vmd;
385
386         cnt.v_page_count++;
387         m = vm_phys_paddr_to_vm_page(pa);
388         m->phys_addr = pa;
389         m->queue = PQ_NONE;
390         m->segind = vm_phys_paddr_to_segind(pa);
391         vmd = vm_phys_domain(m);
392         vmd->vmd_page_count++;
393         vmd->vmd_segs |= 1UL << m->segind;
394         m->flags = PG_FREE;
395         KASSERT(m->order == VM_NFREEORDER,
396             ("vm_phys_add_page: page %p has unexpected order %d",
397             m, m->order));
398         m->pool = VM_FREEPOOL_DEFAULT;
399         pmap_page_init(m);
400         mtx_lock(&vm_page_queue_free_mtx);
401         vm_phys_freecnt_adj(m, 1);
402         vm_phys_free_pages(m, 0);
403         mtx_unlock(&vm_page_queue_free_mtx);
404 }
405
406 /*
407  * Allocate a contiguous, power of two-sized set of physical pages
408  * from the free lists.
409  *
410  * The free page queues must be locked.
411  */
412 vm_page_t
413 vm_phys_alloc_pages(int pool, int order)
414 {
415         vm_page_t m;
416         int dom, domain, flind;
417
418         KASSERT(pool < VM_NFREEPOOL,
419             ("vm_phys_alloc_pages: pool %d is out of range", pool));
420         KASSERT(order < VM_NFREEORDER,
421             ("vm_phys_alloc_pages: order %d is out of range", order));
422
423         for (dom = 0; dom < vm_ndomains; dom++) {
424                 domain = vm_rr_selectdomain();
425                 for (flind = 0; flind < vm_nfreelists; flind++) {
426                         m = vm_phys_alloc_domain_pages(domain, flind, pool,
427                             order);
428                         if (m != NULL)
429                                 return (m);
430                 }
431         }
432         return (NULL);
433 }
434
435 /*
436  * Find and dequeue a free page on the given free list, with the 
437  * specified pool and order
438  */
439 vm_page_t
440 vm_phys_alloc_freelist_pages(int flind, int pool, int order)
441 {
442         vm_page_t m;
443         int dom, domain;
444
445         KASSERT(flind < VM_NFREELIST,
446             ("vm_phys_alloc_freelist_pages: freelist %d is out of range", flind));
447         KASSERT(pool < VM_NFREEPOOL,
448             ("vm_phys_alloc_freelist_pages: pool %d is out of range", pool));
449         KASSERT(order < VM_NFREEORDER,
450             ("vm_phys_alloc_freelist_pages: order %d is out of range", order));
451
452         for (dom = 0; dom < vm_ndomains; dom++) {
453                 domain = vm_rr_selectdomain();
454                 m = vm_phys_alloc_domain_pages(domain, flind, pool, order);
455                 if (m != NULL)
456                         return (m);
457         }
458         return (NULL);
459 }
460
461 static vm_page_t
462 vm_phys_alloc_domain_pages(int domain, int flind, int pool, int order)
463 {       
464         struct vm_freelist *fl;
465         struct vm_freelist *alt;
466         int oind, pind;
467         vm_page_t m;
468
469         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
470         fl = &vm_phys_free_queues[domain][flind][pool][0];
471         for (oind = order; oind < VM_NFREEORDER; oind++) {
472                 m = TAILQ_FIRST(&fl[oind].pl);
473                 if (m != NULL) {
474                         vm_freelist_rem(fl, m, oind);
475                         vm_phys_split_pages(m, oind, fl, order);
476                         return (m);
477                 }
478         }
479
480         /*
481          * The given pool was empty.  Find the largest
482          * contiguous, power-of-two-sized set of pages in any
483          * pool.  Transfer these pages to the given pool, and
484          * use them to satisfy the allocation.
485          */
486         for (oind = VM_NFREEORDER - 1; oind >= order; oind--) {
487                 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
488                         alt = &vm_phys_free_queues[domain][flind][pind][0];
489                         m = TAILQ_FIRST(&alt[oind].pl);
490                         if (m != NULL) {
491                                 vm_freelist_rem(alt, m, oind);
492                                 vm_phys_set_pool(pool, m, oind);
493                                 vm_phys_split_pages(m, oind, fl, order);
494                                 return (m);
495                         }
496                 }
497         }
498         return (NULL);
499 }
500
501 /*
502  * Find the vm_page corresponding to the given physical address.
503  */
504 vm_page_t
505 vm_phys_paddr_to_vm_page(vm_paddr_t pa)
506 {
507         struct vm_phys_seg *seg;
508         int segind;
509
510         for (segind = 0; segind < vm_phys_nsegs; segind++) {
511                 seg = &vm_phys_segs[segind];
512                 if (pa >= seg->start && pa < seg->end)
513                         return (&seg->first_page[atop(pa - seg->start)]);
514         }
515         return (NULL);
516 }
517
518 vm_page_t
519 vm_phys_fictitious_to_vm_page(vm_paddr_t pa)
520 {
521         struct vm_phys_fictitious_seg *seg;
522         vm_page_t m;
523         int segind;
524
525         m = NULL;
526         for (segind = 0; segind < VM_PHYS_FICTITIOUS_NSEGS; segind++) {
527                 seg = &vm_phys_fictitious_segs[segind];
528                 if (pa >= seg->start && pa < seg->end) {
529                         m = &seg->first_page[atop(pa - seg->start)];
530                         KASSERT((m->flags & PG_FICTITIOUS) != 0,
531                             ("%p not fictitious", m));
532                         break;
533                 }
534         }
535         return (m);
536 }
537
538 int
539 vm_phys_fictitious_reg_range(vm_paddr_t start, vm_paddr_t end,
540     vm_memattr_t memattr)
541 {
542         struct vm_phys_fictitious_seg *seg;
543         vm_page_t fp;
544         long i, page_count;
545         int segind;
546 #ifdef VM_PHYSSEG_DENSE
547         long pi;
548         boolean_t malloced;
549 #endif
550
551         page_count = (end - start) / PAGE_SIZE;
552
553 #ifdef VM_PHYSSEG_DENSE
554         pi = atop(start);
555         if (pi >= first_page && atop(end) < vm_page_array_size) {
556                 fp = &vm_page_array[pi - first_page];
557                 malloced = FALSE;
558         } else
559 #endif
560         {
561                 fp = malloc(page_count * sizeof(struct vm_page), M_FICT_PAGES,
562                     M_WAITOK | M_ZERO);
563 #ifdef VM_PHYSSEG_DENSE
564                 malloced = TRUE;
565 #endif
566         }
567         for (i = 0; i < page_count; i++) {
568                 vm_page_initfake(&fp[i], start + PAGE_SIZE * i, memattr);
569                 fp[i].oflags &= ~VPO_UNMANAGED;
570                 fp[i].busy_lock = VPB_UNBUSIED;
571         }
572         mtx_lock(&vm_phys_fictitious_reg_mtx);
573         for (segind = 0; segind < VM_PHYS_FICTITIOUS_NSEGS; segind++) {
574                 seg = &vm_phys_fictitious_segs[segind];
575                 if (seg->start == 0 && seg->end == 0) {
576                         seg->start = start;
577                         seg->end = end;
578                         seg->first_page = fp;
579                         mtx_unlock(&vm_phys_fictitious_reg_mtx);
580                         return (0);
581                 }
582         }
583         mtx_unlock(&vm_phys_fictitious_reg_mtx);
584 #ifdef VM_PHYSSEG_DENSE
585         if (malloced)
586 #endif
587                 free(fp, M_FICT_PAGES);
588         return (EBUSY);
589 }
590
591 void
592 vm_phys_fictitious_unreg_range(vm_paddr_t start, vm_paddr_t end)
593 {
594         struct vm_phys_fictitious_seg *seg;
595         vm_page_t fp;
596         int segind;
597 #ifdef VM_PHYSSEG_DENSE
598         long pi;
599 #endif
600
601 #ifdef VM_PHYSSEG_DENSE
602         pi = atop(start);
603 #endif
604
605         mtx_lock(&vm_phys_fictitious_reg_mtx);
606         for (segind = 0; segind < VM_PHYS_FICTITIOUS_NSEGS; segind++) {
607                 seg = &vm_phys_fictitious_segs[segind];
608                 if (seg->start == start && seg->end == end) {
609                         seg->start = seg->end = 0;
610                         fp = seg->first_page;
611                         seg->first_page = NULL;
612                         mtx_unlock(&vm_phys_fictitious_reg_mtx);
613 #ifdef VM_PHYSSEG_DENSE
614                         if (pi < first_page || atop(end) >= vm_page_array_size)
615 #endif
616                                 free(fp, M_FICT_PAGES);
617                         return;
618                 }
619         }
620         mtx_unlock(&vm_phys_fictitious_reg_mtx);
621         KASSERT(0, ("Unregistering not registered fictitious range"));
622 }
623
624 /*
625  * Find the segment containing the given physical address.
626  */
627 static int
628 vm_phys_paddr_to_segind(vm_paddr_t pa)
629 {
630         struct vm_phys_seg *seg;
631         int segind;
632
633         for (segind = 0; segind < vm_phys_nsegs; segind++) {
634                 seg = &vm_phys_segs[segind];
635                 if (pa >= seg->start && pa < seg->end)
636                         return (segind);
637         }
638         panic("vm_phys_paddr_to_segind: paddr %#jx is not in any segment" ,
639             (uintmax_t)pa);
640 }
641
642 /*
643  * Free a contiguous, power of two-sized set of physical pages.
644  *
645  * The free page queues must be locked.
646  */
647 void
648 vm_phys_free_pages(vm_page_t m, int order)
649 {
650         struct vm_freelist *fl;
651         struct vm_phys_seg *seg;
652         vm_paddr_t pa;
653         vm_page_t m_buddy;
654
655         KASSERT(m->order == VM_NFREEORDER,
656             ("vm_phys_free_pages: page %p has unexpected order %d",
657             m, m->order));
658         KASSERT(m->pool < VM_NFREEPOOL,
659             ("vm_phys_free_pages: page %p has unexpected pool %d",
660             m, m->pool));
661         KASSERT(order < VM_NFREEORDER,
662             ("vm_phys_free_pages: order %d is out of range", order));
663         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
664         seg = &vm_phys_segs[m->segind];
665         if (order < VM_NFREEORDER - 1) {
666                 pa = VM_PAGE_TO_PHYS(m);
667                 do {
668                         pa ^= ((vm_paddr_t)1 << (PAGE_SHIFT + order));
669                         if (pa < seg->start || pa >= seg->end)
670                                 break;
671                         m_buddy = &seg->first_page[atop(pa - seg->start)];
672                         if (m_buddy->order != order)
673                                 break;
674                         fl = (*seg->free_queues)[m_buddy->pool];
675                         vm_freelist_rem(fl, m_buddy, order);
676                         if (m_buddy->pool != m->pool)
677                                 vm_phys_set_pool(m->pool, m_buddy, order);
678                         order++;
679                         pa &= ~(((vm_paddr_t)1 << (PAGE_SHIFT + order)) - 1);
680                         m = &seg->first_page[atop(pa - seg->start)];
681                 } while (order < VM_NFREEORDER - 1);
682         }
683         fl = (*seg->free_queues)[m->pool];
684         vm_freelist_add(fl, m, order, 1);
685 }
686
687 /*
688  * Free a contiguous, arbitrarily sized set of physical pages.
689  *
690  * The free page queues must be locked.
691  */
692 void
693 vm_phys_free_contig(vm_page_t m, u_long npages)
694 {
695         u_int n;
696         int order;
697
698         /*
699          * Avoid unnecessary coalescing by freeing the pages in the largest
700          * possible power-of-two-sized subsets.
701          */
702         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
703         for (;; npages -= n) {
704                 /*
705                  * Unsigned "min" is used here so that "order" is assigned
706                  * "VM_NFREEORDER - 1" when "m"'s physical address is zero
707                  * or the low-order bits of its physical address are zero
708                  * because the size of a physical address exceeds the size of
709                  * a long.
710                  */
711                 order = min(ffsl(VM_PAGE_TO_PHYS(m) >> PAGE_SHIFT) - 1,
712                     VM_NFREEORDER - 1);
713                 n = 1 << order;
714                 if (npages < n)
715                         break;
716                 vm_phys_free_pages(m, order);
717                 m += n;
718         }
719         /* The residual "npages" is less than "1 << (VM_NFREEORDER - 1)". */
720         for (; npages > 0; npages -= n) {
721                 order = flsl(npages) - 1;
722                 n = 1 << order;
723                 vm_phys_free_pages(m, order);
724                 m += n;
725         }
726 }
727
728 /*
729  * Set the pool for a contiguous, power of two-sized set of physical pages. 
730  */
731 void
732 vm_phys_set_pool(int pool, vm_page_t m, int order)
733 {
734         vm_page_t m_tmp;
735
736         for (m_tmp = m; m_tmp < &m[1 << order]; m_tmp++)
737                 m_tmp->pool = pool;
738 }
739
740 /*
741  * Search for the given physical page "m" in the free lists.  If the search
742  * succeeds, remove "m" from the free lists and return TRUE.  Otherwise, return
743  * FALSE, indicating that "m" is not in the free lists.
744  *
745  * The free page queues must be locked.
746  */
747 boolean_t
748 vm_phys_unfree_page(vm_page_t m)
749 {
750         struct vm_freelist *fl;
751         struct vm_phys_seg *seg;
752         vm_paddr_t pa, pa_half;
753         vm_page_t m_set, m_tmp;
754         int order;
755
756         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
757
758         /*
759          * First, find the contiguous, power of two-sized set of free
760          * physical pages containing the given physical page "m" and
761          * assign it to "m_set".
762          */
763         seg = &vm_phys_segs[m->segind];
764         for (m_set = m, order = 0; m_set->order == VM_NFREEORDER &&
765             order < VM_NFREEORDER - 1; ) {
766                 order++;
767                 pa = m->phys_addr & (~(vm_paddr_t)0 << (PAGE_SHIFT + order));
768                 if (pa >= seg->start)
769                         m_set = &seg->first_page[atop(pa - seg->start)];
770                 else
771                         return (FALSE);
772         }
773         if (m_set->order < order)
774                 return (FALSE);
775         if (m_set->order == VM_NFREEORDER)
776                 return (FALSE);
777         KASSERT(m_set->order < VM_NFREEORDER,
778             ("vm_phys_unfree_page: page %p has unexpected order %d",
779             m_set, m_set->order));
780
781         /*
782          * Next, remove "m_set" from the free lists.  Finally, extract
783          * "m" from "m_set" using an iterative algorithm: While "m_set"
784          * is larger than a page, shrink "m_set" by returning the half
785          * of "m_set" that does not contain "m" to the free lists.
786          */
787         fl = (*seg->free_queues)[m_set->pool];
788         order = m_set->order;
789         vm_freelist_rem(fl, m_set, order);
790         while (order > 0) {
791                 order--;
792                 pa_half = m_set->phys_addr ^ (1 << (PAGE_SHIFT + order));
793                 if (m->phys_addr < pa_half)
794                         m_tmp = &seg->first_page[atop(pa_half - seg->start)];
795                 else {
796                         m_tmp = m_set;
797                         m_set = &seg->first_page[atop(pa_half - seg->start)];
798                 }
799                 vm_freelist_add(fl, m_tmp, order, 0);
800         }
801         KASSERT(m_set == m, ("vm_phys_unfree_page: fatal inconsistency"));
802         return (TRUE);
803 }
804
805 /*
806  * Try to zero one physical page.  Used by an idle priority thread.
807  */
808 boolean_t
809 vm_phys_zero_pages_idle(void)
810 {
811         static struct vm_freelist *fl;
812         static int flind, oind, pind;
813         vm_page_t m, m_tmp;
814         int domain;
815
816         domain = vm_rr_selectdomain();
817         fl = vm_phys_free_queues[domain][0][0];
818         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
819         for (;;) {
820                 TAILQ_FOREACH_REVERSE(m, &fl[oind].pl, pglist, plinks.q) {
821                         for (m_tmp = m; m_tmp < &m[1 << oind]; m_tmp++) {
822                                 if ((m_tmp->flags & (PG_CACHED | PG_ZERO)) == 0) {
823                                         vm_phys_unfree_page(m_tmp);
824                                         vm_phys_freecnt_adj(m, -1);
825                                         mtx_unlock(&vm_page_queue_free_mtx);
826                                         pmap_zero_page_idle(m_tmp);
827                                         m_tmp->flags |= PG_ZERO;
828                                         mtx_lock(&vm_page_queue_free_mtx);
829                                         vm_phys_freecnt_adj(m, 1);
830                                         vm_phys_free_pages(m_tmp, 0);
831                                         vm_page_zero_count++;
832                                         cnt_prezero++;
833                                         return (TRUE);
834                                 }
835                         }
836                 }
837                 oind++;
838                 if (oind == VM_NFREEORDER) {
839                         oind = 0;
840                         pind++;
841                         if (pind == VM_NFREEPOOL) {
842                                 pind = 0;
843                                 flind++;
844                                 if (flind == vm_nfreelists)
845                                         flind = 0;
846                         }
847                         fl = vm_phys_free_queues[domain][flind][pind];
848                 }
849         }
850 }
851
852 /*
853  * Allocate a contiguous set of physical pages of the given size
854  * "npages" from the free lists.  All of the physical pages must be at
855  * or above the given physical address "low" and below the given
856  * physical address "high".  The given value "alignment" determines the
857  * alignment of the first physical page in the set.  If the given value
858  * "boundary" is non-zero, then the set of physical pages cannot cross
859  * any physical address boundary that is a multiple of that value.  Both
860  * "alignment" and "boundary" must be a power of two.
861  */
862 vm_page_t
863 vm_phys_alloc_contig(u_long npages, vm_paddr_t low, vm_paddr_t high,
864     u_long alignment, vm_paddr_t boundary)
865 {
866         struct vm_freelist *fl;
867         struct vm_phys_seg *seg;
868         vm_paddr_t pa, pa_last, size;
869         vm_page_t m, m_ret;
870         u_long npages_end;
871         int dom, domain, flind, oind, order, pind;
872
873         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
874         size = npages << PAGE_SHIFT;
875         KASSERT(size != 0,
876             ("vm_phys_alloc_contig: size must not be 0"));
877         KASSERT((alignment & (alignment - 1)) == 0,
878             ("vm_phys_alloc_contig: alignment must be a power of 2"));
879         KASSERT((boundary & (boundary - 1)) == 0,
880             ("vm_phys_alloc_contig: boundary must be a power of 2"));
881         /* Compute the queue that is the best fit for npages. */
882         for (order = 0; (1 << order) < npages; order++);
883         dom = 0;
884 restartdom:
885         domain = vm_rr_selectdomain();
886         for (flind = 0; flind < vm_nfreelists; flind++) {
887                 for (oind = min(order, VM_NFREEORDER - 1); oind < VM_NFREEORDER; oind++) {
888                         for (pind = 0; pind < VM_NFREEPOOL; pind++) {
889                                 fl = &vm_phys_free_queues[domain][flind][pind][0];
890                                 TAILQ_FOREACH(m_ret, &fl[oind].pl, plinks.q) {
891                                         /*
892                                          * A free list may contain physical pages
893                                          * from one or more segments.
894                                          */
895                                         seg = &vm_phys_segs[m_ret->segind];
896                                         if (seg->start > high ||
897                                             low >= seg->end)
898                                                 continue;
899
900                                         /*
901                                          * Is the size of this allocation request
902                                          * larger than the largest block size?
903                                          */
904                                         if (order >= VM_NFREEORDER) {
905                                                 /*
906                                                  * Determine if a sufficient number
907                                                  * of subsequent blocks to satisfy
908                                                  * the allocation request are free.
909                                                  */
910                                                 pa = VM_PAGE_TO_PHYS(m_ret);
911                                                 pa_last = pa + size;
912                                                 for (;;) {
913                                                         pa += 1 << (PAGE_SHIFT + VM_NFREEORDER - 1);
914                                                         if (pa >= pa_last)
915                                                                 break;
916                                                         if (pa < seg->start ||
917                                                             pa >= seg->end)
918                                                                 break;
919                                                         m = &seg->first_page[atop(pa - seg->start)];
920                                                         if (m->order != VM_NFREEORDER - 1)
921                                                                 break;
922                                                 }
923                                                 /* If not, continue to the next block. */
924                                                 if (pa < pa_last)
925                                                         continue;
926                                         }
927
928                                         /*
929                                          * Determine if the blocks are within the given range,
930                                          * satisfy the given alignment, and do not cross the
931                                          * given boundary.
932                                          */
933                                         pa = VM_PAGE_TO_PHYS(m_ret);
934                                         if (pa >= low &&
935                                             pa + size <= high &&
936                                             (pa & (alignment - 1)) == 0 &&
937                                             ((pa ^ (pa + size - 1)) & ~(boundary - 1)) == 0)
938                                                 goto done;
939                                 }
940                         }
941                 }
942         }
943         if (++dom < vm_ndomains)
944                 goto restartdom;
945         return (NULL);
946 done:
947         for (m = m_ret; m < &m_ret[npages]; m = &m[1 << oind]) {
948                 fl = (*seg->free_queues)[m->pool];
949                 vm_freelist_rem(fl, m, m->order);
950         }
951         if (m_ret->pool != VM_FREEPOOL_DEFAULT)
952                 vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m_ret, oind);
953         fl = (*seg->free_queues)[m_ret->pool];
954         vm_phys_split_pages(m_ret, oind, fl, order);
955         /* Return excess pages to the free lists. */
956         npages_end = roundup2(npages, 1 << imin(oind, order));
957         if (npages < npages_end)
958                 vm_phys_free_contig(&m_ret[npages], npages_end - npages);
959         return (m_ret);
960 }
961
962 #ifdef DDB
963 /*
964  * Show the number of physical pages in each of the free lists.
965  */
966 DB_SHOW_COMMAND(freepages, db_show_freepages)
967 {
968         struct vm_freelist *fl;
969         int flind, oind, pind, dom;
970
971         for (dom = 0; dom < vm_ndomains; dom++) {
972                 db_printf("DOMAIN: %d\n", dom);
973                 for (flind = 0; flind < vm_nfreelists; flind++) {
974                         db_printf("FREE LIST %d:\n"
975                             "\n  ORDER (SIZE)  |  NUMBER"
976                             "\n              ", flind);
977                         for (pind = 0; pind < VM_NFREEPOOL; pind++)
978                                 db_printf("  |  POOL %d", pind);
979                         db_printf("\n--            ");
980                         for (pind = 0; pind < VM_NFREEPOOL; pind++)
981                                 db_printf("-- --      ");
982                         db_printf("--\n");
983                         for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
984                                 db_printf("  %2.2d (%6.6dK)", oind,
985                                     1 << (PAGE_SHIFT - 10 + oind));
986                                 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
987                                 fl = vm_phys_free_queues[dom][flind][pind];
988                                         db_printf("  |  %6.6d", fl[oind].lcnt);
989                                 }
990                                 db_printf("\n");
991                         }
992                         db_printf("\n");
993                 }
994                 db_printf("\n");
995         }
996 }
997 #endif