]> CyberLeo.Net >> Repos - FreeBSD/releng/10.0.git/blob - sys/vm/vm_radix.c
- Copy stable/10 (r259064) to releng/10.0 as part of the
[FreeBSD/releng/10.0.git] / sys / vm / vm_radix.c
1 /*
2  * Copyright (c) 2013 EMC Corp.
3  * Copyright (c) 2011 Jeffrey Roberson <jeff@freebsd.org>
4  * Copyright (c) 2008 Mayur Shardul <mayur.shardul@gmail.com>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  */
29
30 /*
31  * Path-compressed radix trie implementation.
32  * The following code is not generalized into a general purpose library
33  * because there are way too many parameters embedded that should really
34  * be decided by the library consumers.  At the same time, consumers
35  * of this code must achieve highest possible performance.
36  *
37  * The implementation takes into account the following rationale:
38  * - Size of the nodes should be as small as possible but still big enough
39  *   to avoid a large maximum depth for the trie.  This is a balance
40  *   between the necessity to not wire too much physical memory for the nodes
41  *   and the necessity to avoid too much cache pollution during the trie
42  *   operations.
43  * - There is not a huge bias toward the number of lookup operations over
44  *   the number of insert and remove operations.  This basically implies
45  *   that optimizations supposedly helping one operation but hurting the
46  *   other might be carefully evaluated.
47  * - On average not many nodes are expected to be fully populated, hence
48  *   level compression may just complicate things.
49  */
50
51 #include <sys/cdefs.h>
52 __FBSDID("$FreeBSD$");
53
54 #include "opt_ddb.h"
55
56 #include <sys/param.h>
57 #include <sys/systm.h>
58 #include <sys/kernel.h>
59 #include <sys/vmmeter.h>
60
61 #include <vm/uma.h>
62 #include <vm/vm.h>
63 #include <vm/vm_param.h>
64 #include <vm/vm_page.h>
65 #include <vm/vm_radix.h>
66
67 #ifdef DDB
68 #include <ddb/ddb.h>
69 #endif
70
71 /*
72  * These widths should allow the pointers to a node's children to fit within
73  * a single cache line.  The extra levels from a narrow width should not be
74  * a problem thanks to path compression.
75  */
76 #ifdef __LP64__
77 #define VM_RADIX_WIDTH  4
78 #else
79 #define VM_RADIX_WIDTH  3
80 #endif
81
82 #define VM_RADIX_COUNT  (1 << VM_RADIX_WIDTH)
83 #define VM_RADIX_MASK   (VM_RADIX_COUNT - 1)
84 #define VM_RADIX_LIMIT                                                  \
85         (howmany((sizeof(vm_pindex_t) * NBBY), VM_RADIX_WIDTH) - 1)
86
87 /* Flag bits stored in node pointers. */
88 #define VM_RADIX_ISLEAF 0x1
89 #define VM_RADIX_FLAGS  0x1
90 #define VM_RADIX_PAD    VM_RADIX_FLAGS
91
92 /* Returns one unit associated with specified level. */
93 #define VM_RADIX_UNITLEVEL(lev)                                         \
94         ((vm_pindex_t)1 << ((lev) * VM_RADIX_WIDTH))
95
96 struct vm_radix_node {
97         vm_pindex_t      rn_owner;                      /* Owner of record. */
98         uint16_t         rn_count;                      /* Valid children. */
99         uint16_t         rn_clev;                       /* Current level. */
100         void            *rn_child[VM_RADIX_COUNT];      /* Child nodes. */
101 };
102
103 static uma_zone_t vm_radix_node_zone;
104
105 /*
106  * Allocate a radix node.
107  */
108 static __inline struct vm_radix_node *
109 vm_radix_node_get(vm_pindex_t owner, uint16_t count, uint16_t clevel)
110 {
111         struct vm_radix_node *rnode;
112
113         rnode = uma_zalloc(vm_radix_node_zone, M_NOWAIT | M_ZERO);
114         if (rnode == NULL)
115                 return (NULL);
116         rnode->rn_owner = owner;
117         rnode->rn_count = count;
118         rnode->rn_clev = clevel;
119         return (rnode);
120 }
121
122 /*
123  * Free radix node.
124  */
125 static __inline void
126 vm_radix_node_put(struct vm_radix_node *rnode)
127 {
128
129         uma_zfree(vm_radix_node_zone, rnode);
130 }
131
132 /*
133  * Return the position in the array for a given level.
134  */
135 static __inline int
136 vm_radix_slot(vm_pindex_t index, uint16_t level)
137 {
138
139         return ((index >> (level * VM_RADIX_WIDTH)) & VM_RADIX_MASK);
140 }
141
142 /* Trims the key after the specified level. */
143 static __inline vm_pindex_t
144 vm_radix_trimkey(vm_pindex_t index, uint16_t level)
145 {
146         vm_pindex_t ret;
147
148         ret = index;
149         if (level > 0) {
150                 ret >>= level * VM_RADIX_WIDTH;
151                 ret <<= level * VM_RADIX_WIDTH;
152         }
153         return (ret);
154 }
155
156 /*
157  * Get the root node for a radix tree.
158  */
159 static __inline struct vm_radix_node *
160 vm_radix_getroot(struct vm_radix *rtree)
161 {
162
163         return ((struct vm_radix_node *)rtree->rt_root);
164 }
165
166 /*
167  * Set the root node for a radix tree.
168  */
169 static __inline void
170 vm_radix_setroot(struct vm_radix *rtree, struct vm_radix_node *rnode)
171 {
172
173         rtree->rt_root = (uintptr_t)rnode;
174 }
175
176 /*
177  * Returns TRUE if the specified radix node is a leaf and FALSE otherwise.
178  */
179 static __inline boolean_t
180 vm_radix_isleaf(struct vm_radix_node *rnode)
181 {
182
183         return (((uintptr_t)rnode & VM_RADIX_ISLEAF) != 0);
184 }
185
186 /*
187  * Returns the associated page extracted from rnode.
188  */
189 static __inline vm_page_t
190 vm_radix_topage(struct vm_radix_node *rnode)
191 {
192
193         return ((vm_page_t)((uintptr_t)rnode & ~VM_RADIX_FLAGS));
194 }
195
196 /*
197  * Adds the page as a child of the provided node.
198  */
199 static __inline void
200 vm_radix_addpage(struct vm_radix_node *rnode, vm_pindex_t index, uint16_t clev,
201     vm_page_t page)
202 {
203         int slot;
204
205         slot = vm_radix_slot(index, clev);
206         rnode->rn_child[slot] = (void *)((uintptr_t)page | VM_RADIX_ISLEAF);
207 }
208
209 /*
210  * Returns the slot where two keys differ.
211  * It cannot accept 2 equal keys.
212  */
213 static __inline uint16_t
214 vm_radix_keydiff(vm_pindex_t index1, vm_pindex_t index2)
215 {
216         uint16_t clev;
217
218         KASSERT(index1 != index2, ("%s: passing the same key value %jx",
219             __func__, (uintmax_t)index1));
220
221         index1 ^= index2;
222         for (clev = VM_RADIX_LIMIT;; clev--)
223                 if (vm_radix_slot(index1, clev) != 0)
224                         return (clev);
225 }
226
227 /*
228  * Returns TRUE if it can be determined that key does not belong to the
229  * specified rnode.  Otherwise, returns FALSE.
230  */
231 static __inline boolean_t
232 vm_radix_keybarr(struct vm_radix_node *rnode, vm_pindex_t idx)
233 {
234
235         if (rnode->rn_clev < VM_RADIX_LIMIT) {
236                 idx = vm_radix_trimkey(idx, rnode->rn_clev + 1);
237                 return (idx != rnode->rn_owner);
238         }
239         return (FALSE);
240 }
241
242 /*
243  * Internal helper for vm_radix_reclaim_allnodes().
244  * This function is recursive.
245  */
246 static void
247 vm_radix_reclaim_allnodes_int(struct vm_radix_node *rnode)
248 {
249         int slot;
250
251         KASSERT(rnode->rn_count <= VM_RADIX_COUNT,
252             ("vm_radix_reclaim_allnodes_int: bad count in rnode %p", rnode));
253         for (slot = 0; rnode->rn_count != 0; slot++) {
254                 if (rnode->rn_child[slot] == NULL)
255                         continue;
256                 if (!vm_radix_isleaf(rnode->rn_child[slot]))
257                         vm_radix_reclaim_allnodes_int(rnode->rn_child[slot]);
258                 rnode->rn_child[slot] = NULL;
259                 rnode->rn_count--;
260         }
261         vm_radix_node_put(rnode);
262 }
263
264 #ifdef INVARIANTS
265 /*
266  * Radix node zone destructor.
267  */
268 static void
269 vm_radix_node_zone_dtor(void *mem, int size __unused, void *arg __unused)
270 {
271         struct vm_radix_node *rnode;
272         int slot;
273
274         rnode = mem;
275         KASSERT(rnode->rn_count == 0,
276             ("vm_radix_node_put: rnode %p has %d children", rnode,
277             rnode->rn_count));
278         for (slot = 0; slot < VM_RADIX_COUNT; slot++)
279                 KASSERT(rnode->rn_child[slot] == NULL,
280                     ("vm_radix_node_put: rnode %p has a child", rnode));
281 }
282 #endif
283
284 #ifndef UMA_MD_SMALL_ALLOC
285 /*
286  * Reserve the KVA necessary to satisfy the node allocation.
287  * This is mandatory in architectures not supporting direct
288  * mapping as they will need otherwise to carve into the kernel maps for
289  * every node allocation, resulting into deadlocks for consumers already
290  * working with kernel maps.
291  */
292 static void
293 vm_radix_reserve_kva(void *arg __unused)
294 {
295
296         /*
297          * Calculate the number of reserved nodes, discounting the pages that
298          * are needed to store them.
299          */
300         if (!uma_zone_reserve_kva(vm_radix_node_zone,
301             ((vm_paddr_t)cnt.v_page_count * PAGE_SIZE) / (PAGE_SIZE +
302             sizeof(struct vm_radix_node))))
303                 panic("%s: unable to reserve KVA", __func__);
304 }
305 SYSINIT(vm_radix_reserve_kva, SI_SUB_KMEM, SI_ORDER_SECOND,
306     vm_radix_reserve_kva, NULL);
307 #endif
308
309 /*
310  * Initialize the UMA slab zone.
311  * Until vm_radix_prealloc() is called, the zone will be served by the
312  * UMA boot-time pre-allocated pool of pages.
313  */
314 void
315 vm_radix_init(void)
316 {
317
318         vm_radix_node_zone = uma_zcreate("RADIX NODE",
319             sizeof(struct vm_radix_node), NULL,
320 #ifdef INVARIANTS
321             vm_radix_node_zone_dtor,
322 #else
323             NULL,
324 #endif
325             NULL, NULL, VM_RADIX_PAD, UMA_ZONE_VM);
326 }
327
328 /*
329  * Inserts the key-value pair into the trie.
330  * Panics if the key already exists.
331  */
332 int
333 vm_radix_insert(struct vm_radix *rtree, vm_page_t page)
334 {
335         vm_pindex_t index, newind;
336         void **parentp;
337         struct vm_radix_node *rnode, *tmp;
338         vm_page_t m;
339         int slot;
340         uint16_t clev;
341
342         index = page->pindex;
343
344 restart:
345
346         /*
347          * The owner of record for root is not really important because it
348          * will never be used.
349          */
350         rnode = vm_radix_getroot(rtree);
351         if (rnode == NULL) {
352                 rtree->rt_root = (uintptr_t)page | VM_RADIX_ISLEAF;
353                 return (0);
354         }
355         parentp = (void **)&rtree->rt_root;
356         for (;;) {
357                 if (vm_radix_isleaf(rnode)) {
358                         m = vm_radix_topage(rnode);
359                         if (m->pindex == index)
360                                 panic("%s: key %jx is already present",
361                                     __func__, (uintmax_t)index);
362                         clev = vm_radix_keydiff(m->pindex, index);
363
364                         /*
365                          * During node allocation the trie that is being
366                          * walked can be modified because of recursing radix
367                          * trie operations.
368                          * If this is the case, the recursing functions signal
369                          * such situation and the insert operation must
370                          * start from scratch again.
371                          * The freed radix node will then be in the UMA
372                          * caches very likely to avoid the same situation
373                          * to happen.
374                          */
375                         rtree->rt_flags |= RT_INSERT_INPROG;
376                         tmp = vm_radix_node_get(vm_radix_trimkey(index,
377                             clev + 1), 2, clev);
378                         rtree->rt_flags &= ~RT_INSERT_INPROG;
379                         if (tmp == NULL) {
380                                 rtree->rt_flags &= ~RT_TRIE_MODIFIED;
381                                 return (ENOMEM);
382                         }
383                         if ((rtree->rt_flags & RT_TRIE_MODIFIED) != 0) {
384                                 rtree->rt_flags &= ~RT_TRIE_MODIFIED;
385                                 tmp->rn_count = 0;
386                                 vm_radix_node_put(tmp);
387                                 goto restart;
388                         }
389                         *parentp = tmp;
390                         vm_radix_addpage(tmp, index, clev, page);
391                         vm_radix_addpage(tmp, m->pindex, clev, m);
392                         return (0);
393                 } else if (vm_radix_keybarr(rnode, index))
394                         break;
395                 slot = vm_radix_slot(index, rnode->rn_clev);
396                 if (rnode->rn_child[slot] == NULL) {
397                         rnode->rn_count++;
398                         vm_radix_addpage(rnode, index, rnode->rn_clev, page);
399                         return (0);
400                 }
401                 parentp = &rnode->rn_child[slot];
402                 rnode = rnode->rn_child[slot];
403         }
404
405         /*
406          * A new node is needed because the right insertion level is reached.
407          * Setup the new intermediate node and add the 2 children: the
408          * new object and the older edge.
409          */
410         newind = rnode->rn_owner;
411         clev = vm_radix_keydiff(newind, index);
412
413         /* See the comments above. */
414         rtree->rt_flags |= RT_INSERT_INPROG;
415         tmp = vm_radix_node_get(vm_radix_trimkey(index, clev + 1), 2, clev);
416         rtree->rt_flags &= ~RT_INSERT_INPROG;
417         if (tmp == NULL) {
418                 rtree->rt_flags &= ~RT_TRIE_MODIFIED;
419                 return (ENOMEM);
420         }
421         if ((rtree->rt_flags & RT_TRIE_MODIFIED) != 0) {
422                 rtree->rt_flags &= ~RT_TRIE_MODIFIED;
423                 tmp->rn_count = 0;
424                 vm_radix_node_put(tmp);
425                 goto restart;
426         }
427         *parentp = tmp;
428         vm_radix_addpage(tmp, index, clev, page);
429         slot = vm_radix_slot(newind, clev);
430         tmp->rn_child[slot] = rnode;
431         return (0);
432 }
433
434 /*
435  * Returns TRUE if the specified radix tree contains a single leaf and FALSE
436  * otherwise.
437  */
438 boolean_t
439 vm_radix_is_singleton(struct vm_radix *rtree)
440 {
441         struct vm_radix_node *rnode;
442
443         rnode = vm_radix_getroot(rtree);
444         if (rnode == NULL)
445                 return (FALSE);
446         return (vm_radix_isleaf(rnode));
447 }
448
449 /*
450  * Returns the value stored at the index.  If the index is not present,
451  * NULL is returned.
452  */
453 vm_page_t
454 vm_radix_lookup(struct vm_radix *rtree, vm_pindex_t index)
455 {
456         struct vm_radix_node *rnode;
457         vm_page_t m;
458         int slot;
459
460         rnode = vm_radix_getroot(rtree);
461         while (rnode != NULL) {
462                 if (vm_radix_isleaf(rnode)) {
463                         m = vm_radix_topage(rnode);
464                         if (m->pindex == index)
465                                 return (m);
466                         else
467                                 break;
468                 } else if (vm_radix_keybarr(rnode, index))
469                         break;
470                 slot = vm_radix_slot(index, rnode->rn_clev);
471                 rnode = rnode->rn_child[slot];
472         }
473         return (NULL);
474 }
475
476 /*
477  * Look up the nearest entry at a position bigger than or equal to index.
478  */
479 vm_page_t
480 vm_radix_lookup_ge(struct vm_radix *rtree, vm_pindex_t index)
481 {
482         struct vm_radix_node *stack[VM_RADIX_LIMIT];
483         vm_pindex_t inc;
484         vm_page_t m;
485         struct vm_radix_node *child, *rnode;
486 #ifdef INVARIANTS
487         int loops = 0;
488 #endif
489         int slot, tos;
490
491         rnode = vm_radix_getroot(rtree);
492         if (rnode == NULL)
493                 return (NULL);
494         else if (vm_radix_isleaf(rnode)) {
495                 m = vm_radix_topage(rnode);
496                 if (m->pindex >= index)
497                         return (m);
498                 else
499                         return (NULL);
500         }
501         tos = 0;
502         for (;;) {
503                 /*
504                  * If the keys differ before the current bisection node,
505                  * then the search key might rollback to the earliest
506                  * available bisection node or to the smallest key
507                  * in the current node (if the owner is bigger than the
508                  * search key).
509                  */
510                 if (vm_radix_keybarr(rnode, index)) {
511                         if (index > rnode->rn_owner) {
512 ascend:
513                                 KASSERT(++loops < 1000,
514                                     ("vm_radix_lookup_ge: too many loops"));
515
516                                 /*
517                                  * Pop nodes from the stack until either the
518                                  * stack is empty or a node that could have a
519                                  * matching descendant is found.
520                                  */
521                                 do {
522                                         if (tos == 0)
523                                                 return (NULL);
524                                         rnode = stack[--tos];
525                                 } while (vm_radix_slot(index,
526                                     rnode->rn_clev) == (VM_RADIX_COUNT - 1));
527
528                                 /*
529                                  * The following computation cannot overflow
530                                  * because index's slot at the current level
531                                  * is less than VM_RADIX_COUNT - 1.
532                                  */
533                                 index = vm_radix_trimkey(index,
534                                     rnode->rn_clev);
535                                 index += VM_RADIX_UNITLEVEL(rnode->rn_clev);
536                         } else
537                                 index = rnode->rn_owner;
538                         KASSERT(!vm_radix_keybarr(rnode, index),
539                             ("vm_radix_lookup_ge: keybarr failed"));
540                 }
541                 slot = vm_radix_slot(index, rnode->rn_clev);
542                 child = rnode->rn_child[slot];
543                 if (vm_radix_isleaf(child)) {
544                         m = vm_radix_topage(child);
545                         if (m->pindex >= index)
546                                 return (m);
547                 } else if (child != NULL)
548                         goto descend;
549
550                 /*
551                  * Look for an available edge or page within the current
552                  * bisection node.
553                  */
554                 if (slot < (VM_RADIX_COUNT - 1)) {
555                         inc = VM_RADIX_UNITLEVEL(rnode->rn_clev);
556                         index = vm_radix_trimkey(index, rnode->rn_clev);
557                         do {
558                                 index += inc;
559                                 slot++;
560                                 child = rnode->rn_child[slot];
561                                 if (vm_radix_isleaf(child)) {
562                                         m = vm_radix_topage(child);
563                                         if (m->pindex >= index)
564                                                 return (m);
565                                 } else if (child != NULL)
566                                         goto descend;
567                         } while (slot < (VM_RADIX_COUNT - 1));
568                 }
569                 KASSERT(child == NULL || vm_radix_isleaf(child),
570                     ("vm_radix_lookup_ge: child is radix node"));
571
572                 /*
573                  * If a page or edge bigger than the search slot is not found
574                  * in the current node, ascend to the next higher-level node.
575                  */
576                 goto ascend;
577 descend:
578                 KASSERT(rnode->rn_clev > 0,
579                     ("vm_radix_lookup_ge: pushing leaf's parent"));
580                 KASSERT(tos < VM_RADIX_LIMIT,
581                     ("vm_radix_lookup_ge: stack overflow"));
582                 stack[tos++] = rnode;
583                 rnode = child;
584         }
585 }
586
587 /*
588  * Look up the nearest entry at a position less than or equal to index.
589  */
590 vm_page_t
591 vm_radix_lookup_le(struct vm_radix *rtree, vm_pindex_t index)
592 {
593         struct vm_radix_node *stack[VM_RADIX_LIMIT];
594         vm_pindex_t inc;
595         vm_page_t m;
596         struct vm_radix_node *child, *rnode;
597 #ifdef INVARIANTS
598         int loops = 0;
599 #endif
600         int slot, tos;
601
602         rnode = vm_radix_getroot(rtree);
603         if (rnode == NULL)
604                 return (NULL);
605         else if (vm_radix_isleaf(rnode)) {
606                 m = vm_radix_topage(rnode);
607                 if (m->pindex <= index)
608                         return (m);
609                 else
610                         return (NULL);
611         }
612         tos = 0;
613         for (;;) {
614                 /*
615                  * If the keys differ before the current bisection node,
616                  * then the search key might rollback to the earliest
617                  * available bisection node or to the largest key
618                  * in the current node (if the owner is smaller than the
619                  * search key).
620                  */
621                 if (vm_radix_keybarr(rnode, index)) {
622                         if (index > rnode->rn_owner) {
623                                 index = rnode->rn_owner + VM_RADIX_COUNT *
624                                     VM_RADIX_UNITLEVEL(rnode->rn_clev);
625                         } else {
626 ascend:
627                                 KASSERT(++loops < 1000,
628                                     ("vm_radix_lookup_le: too many loops"));
629
630                                 /*
631                                  * Pop nodes from the stack until either the
632                                  * stack is empty or a node that could have a
633                                  * matching descendant is found.
634                                  */
635                                 do {
636                                         if (tos == 0)
637                                                 return (NULL);
638                                         rnode = stack[--tos];
639                                 } while (vm_radix_slot(index,
640                                     rnode->rn_clev) == 0);
641
642                                 /*
643                                  * The following computation cannot overflow
644                                  * because index's slot at the current level
645                                  * is greater than 0.
646                                  */
647                                 index = vm_radix_trimkey(index,
648                                     rnode->rn_clev);
649                         }
650                         index--;
651                         KASSERT(!vm_radix_keybarr(rnode, index),
652                             ("vm_radix_lookup_le: keybarr failed"));
653                 }
654                 slot = vm_radix_slot(index, rnode->rn_clev);
655                 child = rnode->rn_child[slot];
656                 if (vm_radix_isleaf(child)) {
657                         m = vm_radix_topage(child);
658                         if (m->pindex <= index)
659                                 return (m);
660                 } else if (child != NULL)
661                         goto descend;
662
663                 /*
664                  * Look for an available edge or page within the current
665                  * bisection node.
666                  */
667                 if (slot > 0) {
668                         inc = VM_RADIX_UNITLEVEL(rnode->rn_clev);
669                         index |= inc - 1;
670                         do {
671                                 index -= inc;
672                                 slot--;
673                                 child = rnode->rn_child[slot];
674                                 if (vm_radix_isleaf(child)) {
675                                         m = vm_radix_topage(child);
676                                         if (m->pindex <= index)
677                                                 return (m);
678                                 } else if (child != NULL)
679                                         goto descend;
680                         } while (slot > 0);
681                 }
682                 KASSERT(child == NULL || vm_radix_isleaf(child),
683                     ("vm_radix_lookup_le: child is radix node"));
684
685                 /*
686                  * If a page or edge smaller than the search slot is not found
687                  * in the current node, ascend to the next higher-level node.
688                  */
689                 goto ascend;
690 descend:
691                 KASSERT(rnode->rn_clev > 0,
692                     ("vm_radix_lookup_le: pushing leaf's parent"));
693                 KASSERT(tos < VM_RADIX_LIMIT,
694                     ("vm_radix_lookup_le: stack overflow"));
695                 stack[tos++] = rnode;
696                 rnode = child;
697         }
698 }
699
700 /*
701  * Remove the specified index from the tree.
702  * Panics if the key is not present.
703  */
704 void
705 vm_radix_remove(struct vm_radix *rtree, vm_pindex_t index)
706 {
707         struct vm_radix_node *rnode, *parent;
708         vm_page_t m;
709         int i, slot;
710
711         /*
712          * Detect if a page is going to be removed from a trie which is
713          * already undergoing another trie operation.
714          * Right now this is only possible for vm_radix_remove() recursing
715          * into vm_radix_insert().
716          * If this is the case, the caller must be notified about this
717          * situation.  It will also takecare to update the RT_TRIE_MODIFIED
718          * accordingly.
719          * The RT_TRIE_MODIFIED bit is set here because the remove operation
720          * will always succeed.
721          */
722         if ((rtree->rt_flags & RT_INSERT_INPROG) != 0)
723                 rtree->rt_flags |= RT_TRIE_MODIFIED;
724
725         rnode = vm_radix_getroot(rtree);
726         if (vm_radix_isleaf(rnode)) {
727                 m = vm_radix_topage(rnode);
728                 if (m->pindex != index)
729                         panic("%s: invalid key found", __func__);
730                 vm_radix_setroot(rtree, NULL);
731                 return;
732         }
733         parent = NULL;
734         for (;;) {
735                 if (rnode == NULL)
736                         panic("vm_radix_remove: impossible to locate the key");
737                 slot = vm_radix_slot(index, rnode->rn_clev);
738                 if (vm_radix_isleaf(rnode->rn_child[slot])) {
739                         m = vm_radix_topage(rnode->rn_child[slot]);
740                         if (m->pindex != index)
741                                 panic("%s: invalid key found", __func__);
742                         rnode->rn_child[slot] = NULL;
743                         rnode->rn_count--;
744                         if (rnode->rn_count > 1)
745                                 break;
746                         for (i = 0; i < VM_RADIX_COUNT; i++)
747                                 if (rnode->rn_child[i] != NULL)
748                                         break;
749                         KASSERT(i != VM_RADIX_COUNT,
750                             ("%s: invalid node configuration", __func__));
751                         if (parent == NULL)
752                                 vm_radix_setroot(rtree, rnode->rn_child[i]);
753                         else {
754                                 slot = vm_radix_slot(index, parent->rn_clev);
755                                 KASSERT(parent->rn_child[slot] == rnode,
756                                     ("%s: invalid child value", __func__));
757                                 parent->rn_child[slot] = rnode->rn_child[i];
758                         }
759                         rnode->rn_count--;
760                         rnode->rn_child[i] = NULL;
761                         vm_radix_node_put(rnode);
762                         break;
763                 }
764                 parent = rnode;
765                 rnode = rnode->rn_child[slot];
766         }
767 }
768
769 /*
770  * Remove and free all the nodes from the radix tree.
771  * This function is recursive but there is a tight control on it as the
772  * maximum depth of the tree is fixed.
773  */
774 void
775 vm_radix_reclaim_allnodes(struct vm_radix *rtree)
776 {
777         struct vm_radix_node *root;
778
779         KASSERT((rtree->rt_flags & RT_INSERT_INPROG) == 0,
780             ("vm_radix_reclaim_allnodes: unexpected trie recursion"));
781
782         root = vm_radix_getroot(rtree);
783         if (root == NULL)
784                 return;
785         vm_radix_setroot(rtree, NULL);
786         if (!vm_radix_isleaf(root))
787                 vm_radix_reclaim_allnodes_int(root);
788 }
789
790 /*
791  * Replace an existing page into the trie with another one.
792  * Panics if the replacing page is not present or if the new page has an
793  * invalid key.
794  */
795 vm_page_t
796 vm_radix_replace(struct vm_radix *rtree, vm_page_t newpage, vm_pindex_t index)
797 {
798         struct vm_radix_node *rnode;
799         vm_page_t m;
800         int slot;
801
802         KASSERT(newpage->pindex == index, ("%s: newpage index invalid",
803             __func__));
804
805         rnode = vm_radix_getroot(rtree);
806         if (rnode == NULL)
807                 panic("%s: replacing page on an empty trie", __func__);
808         if (vm_radix_isleaf(rnode)) {
809                 m = vm_radix_topage(rnode);
810                 if (m->pindex != index)
811                         panic("%s: original replacing root key not found",
812                             __func__);
813                 rtree->rt_root = (uintptr_t)newpage | VM_RADIX_ISLEAF;
814                 return (m);
815         }
816         for (;;) {
817                 slot = vm_radix_slot(index, rnode->rn_clev);
818                 if (vm_radix_isleaf(rnode->rn_child[slot])) {
819                         m = vm_radix_topage(rnode->rn_child[slot]);
820                         if (m->pindex == index) {
821                                 rnode->rn_child[slot] =
822                                     (void *)((uintptr_t)newpage |
823                                     VM_RADIX_ISLEAF);
824                                 return (m);
825                         } else
826                                 break;
827                 } else if (rnode->rn_child[slot] == NULL ||
828                     vm_radix_keybarr(rnode->rn_child[slot], index))
829                         break;
830                 rnode = rnode->rn_child[slot];
831         }
832         panic("%s: original replacing page not found", __func__);
833 }
834
835 #ifdef DDB
836 /*
837  * Show details about the given radix node.
838  */
839 DB_SHOW_COMMAND(radixnode, db_show_radixnode)
840 {
841         struct vm_radix_node *rnode;
842         int i;
843
844         if (!have_addr)
845                 return;
846         rnode = (struct vm_radix_node *)addr;
847         db_printf("radixnode %p, owner %jx, children count %u, level %u:\n",
848             (void *)rnode, (uintmax_t)rnode->rn_owner, rnode->rn_count,
849             rnode->rn_clev);
850         for (i = 0; i < VM_RADIX_COUNT; i++)
851                 if (rnode->rn_child[i] != NULL)
852                         db_printf("slot: %d, val: %p, page: %p, clev: %d\n",
853                             i, (void *)rnode->rn_child[i],
854                             vm_radix_isleaf(rnode->rn_child[i]) ?
855                             vm_radix_topage(rnode->rn_child[i]) : NULL,
856                             rnode->rn_clev);
857 }
858 #endif /* DDB */