]> CyberLeo.Net >> Repos - FreeBSD/releng/10.0.git/blob - usr.sbin/nscd/nscd.c
- Copy stable/10 (r259064) to releng/10.0 as part of the
[FreeBSD/releng/10.0.git] / usr.sbin / nscd / nscd.c
1 /*-
2  * Copyright (c) 2005 Michael Bushkov <bushman@rsu.ru>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in thereg
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  */
27
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30
31 #include <sys/param.h>
32 #include <sys/event.h>
33 #include <sys/socket.h>
34 #include <sys/stat.h>
35 #include <sys/time.h>
36 #include <sys/un.h>
37
38 #include <assert.h>
39 #include <err.h>
40 #include <errno.h>
41 #include <fcntl.h>
42 #include <libutil.h>
43 #include <pthread.h>
44 #include <signal.h>
45 #include <stdio.h>
46 #include <stdlib.h>
47 #include <string.h>
48 #include <unistd.h>
49
50 #include "agents/passwd.h"
51 #include "agents/group.h"
52 #include "agents/services.h"
53 #include "cachelib.h"
54 #include "config.h"
55 #include "debug.h"
56 #include "log.h"
57 #include "nscdcli.h"
58 #include "parser.h"
59 #include "query.h"
60 #include "singletons.h"
61
62 #ifndef CONFIG_PATH
63 #define CONFIG_PATH "/etc/nscd.conf"
64 #endif
65 #define DEFAULT_CONFIG_PATH     "nscd.conf"
66
67 #define MAX_SOCKET_IO_SIZE      4096
68
69 struct processing_thread_args {
70         cache   the_cache;
71         struct configuration    *the_configuration;
72         struct runtime_env              *the_runtime_env;
73 };
74
75 static void accept_connection(struct kevent *, struct runtime_env *,
76         struct configuration *);
77 static void destroy_cache_(cache);
78 static void destroy_runtime_env(struct runtime_env *);
79 static cache init_cache_(struct configuration *);
80 static struct runtime_env *init_runtime_env(struct configuration *);
81 static void processing_loop(cache, struct runtime_env *,
82         struct configuration *);
83 static void process_socket_event(struct kevent *, struct runtime_env *,
84         struct configuration *);
85 static void process_timer_event(struct kevent *, struct runtime_env *,
86         struct configuration *);
87 static void *processing_thread(void *);
88 static void usage(void);
89
90 void get_time_func(struct timeval *);
91
92 static void
93 usage(void)
94 {
95         fprintf(stderr,
96             "usage: nscd [-dnst] [-i cachename] [-I cachename]\n");
97         exit(1);
98 }
99
100 static cache
101 init_cache_(struct configuration *config)
102 {
103         struct cache_params params;
104         cache retval;
105
106         struct configuration_entry *config_entry;
107         size_t  size, i;
108         int res;
109
110         TRACE_IN(init_cache_);
111
112         memset(&params, 0, sizeof(struct cache_params));
113         params.get_time_func = get_time_func;
114         retval = init_cache(&params);
115
116         size = configuration_get_entries_size(config);
117         for (i = 0; i < size; ++i) {
118                 config_entry = configuration_get_entry(config, i);
119                 /*
120                  * We should register common entries now - multipart entries
121                  * would be registered automatically during the queries.
122                  */
123                 res = register_cache_entry(retval, (struct cache_entry_params *)
124                         &config_entry->positive_cache_params);
125                 config_entry->positive_cache_entry = find_cache_entry(retval,
126                         config_entry->positive_cache_params.cep.entry_name);
127                 assert(config_entry->positive_cache_entry !=
128                         INVALID_CACHE_ENTRY);
129
130                 res = register_cache_entry(retval, (struct cache_entry_params *)
131                         &config_entry->negative_cache_params);
132                 config_entry->negative_cache_entry = find_cache_entry(retval,
133                         config_entry->negative_cache_params.cep.entry_name);
134                 assert(config_entry->negative_cache_entry !=
135                         INVALID_CACHE_ENTRY);
136         }
137
138         LOG_MSG_2("cache", "cache was successfully initialized");
139         TRACE_OUT(init_cache_);
140         return (retval);
141 }
142
143 static void
144 destroy_cache_(cache the_cache)
145 {
146         TRACE_IN(destroy_cache_);
147         destroy_cache(the_cache);
148         TRACE_OUT(destroy_cache_);
149 }
150
151 /*
152  * Socket and kqueues are prepared here. We have one global queue for both
153  * socket and timers events.
154  */
155 static struct runtime_env *
156 init_runtime_env(struct configuration *config)
157 {
158         int serv_addr_len;
159         struct sockaddr_un serv_addr;
160
161         struct kevent eventlist;
162         struct timespec timeout;
163
164         struct runtime_env *retval;
165
166         TRACE_IN(init_runtime_env);
167         retval = calloc(1, sizeof(*retval));
168         assert(retval != NULL);
169
170         retval->sockfd = socket(PF_LOCAL, SOCK_STREAM, 0);
171
172         if (config->force_unlink == 1)
173                 unlink(config->socket_path);
174
175         memset(&serv_addr, 0, sizeof(struct sockaddr_un));
176         serv_addr.sun_family = PF_LOCAL;
177         strlcpy(serv_addr.sun_path, config->socket_path,
178                 sizeof(serv_addr.sun_path));
179         serv_addr_len = sizeof(serv_addr.sun_family) +
180                 strlen(serv_addr.sun_path) + 1;
181
182         if (bind(retval->sockfd, (struct sockaddr *)&serv_addr,
183                 serv_addr_len) == -1) {
184                 close(retval->sockfd);
185                 free(retval);
186
187                 LOG_ERR_2("runtime environment", "can't bind socket to path: "
188                         "%s", config->socket_path);
189                 TRACE_OUT(init_runtime_env);
190                 return (NULL);
191         }
192         LOG_MSG_2("runtime environment", "using socket %s",
193                 config->socket_path);
194
195         /*
196          * Here we're marking socket as non-blocking and setting its backlog
197          * to the maximum value
198          */
199         chmod(config->socket_path, config->socket_mode);
200         listen(retval->sockfd, -1);
201         fcntl(retval->sockfd, F_SETFL, O_NONBLOCK);
202
203         retval->queue = kqueue();
204         assert(retval->queue != -1);
205
206         EV_SET(&eventlist, retval->sockfd, EVFILT_READ, EV_ADD | EV_ONESHOT,
207                 0, 0, 0);
208         memset(&timeout, 0, sizeof(struct timespec));
209         kevent(retval->queue, &eventlist, 1, NULL, 0, &timeout);
210
211         LOG_MSG_2("runtime environment", "successfully initialized");
212         TRACE_OUT(init_runtime_env);
213         return (retval);
214 }
215
216 static void
217 destroy_runtime_env(struct runtime_env *env)
218 {
219         TRACE_IN(destroy_runtime_env);
220         close(env->queue);
221         close(env->sockfd);
222         free(env);
223         TRACE_OUT(destroy_runtime_env);
224 }
225
226 static void
227 accept_connection(struct kevent *event_data, struct runtime_env *env,
228         struct configuration *config)
229 {
230         struct kevent   eventlist[2];
231         struct timespec timeout;
232         struct query_state      *qstate;
233
234         int     fd;
235         int     res;
236
237         uid_t   euid;
238         gid_t   egid;
239
240         TRACE_IN(accept_connection);
241         fd = accept(event_data->ident, NULL, NULL);
242         if (fd == -1) {
243                 LOG_ERR_2("accept_connection", "error %d during accept()",
244                     errno);
245                 TRACE_OUT(accept_connection);
246                 return;
247         }
248
249         if (getpeereid(fd, &euid, &egid) != 0) {
250                 LOG_ERR_2("accept_connection", "error %d during getpeereid()",
251                         errno);
252                 TRACE_OUT(accept_connection);
253                 return;
254         }
255
256         qstate = init_query_state(fd, sizeof(int), euid, egid);
257         if (qstate == NULL) {
258                 LOG_ERR_2("accept_connection", "can't init query_state");
259                 TRACE_OUT(accept_connection);
260                 return;
261         }
262
263         memset(&timeout, 0, sizeof(struct timespec));
264         EV_SET(&eventlist[0], fd, EVFILT_TIMER, EV_ADD | EV_ONESHOT,
265                 0, qstate->timeout.tv_sec * 1000, qstate);
266         EV_SET(&eventlist[1], fd, EVFILT_READ, EV_ADD | EV_ONESHOT,
267                 NOTE_LOWAT, qstate->kevent_watermark, qstate);
268         res = kevent(env->queue, eventlist, 2, NULL, 0, &timeout);
269         if (res < 0)
270                 LOG_ERR_2("accept_connection", "kevent error");
271
272         TRACE_OUT(accept_connection);
273 }
274
275 static void
276 process_socket_event(struct kevent *event_data, struct runtime_env *env,
277         struct configuration *config)
278 {
279         struct kevent   eventlist[2];
280         struct timeval  query_timeout;
281         struct timespec kevent_timeout;
282         int     nevents;
283         int     eof_res, res;
284         ssize_t io_res;
285         struct query_state *qstate;
286
287         TRACE_IN(process_socket_event);
288         eof_res = event_data->flags & EV_EOF ? 1 : 0;
289         res = 0;
290
291         memset(&kevent_timeout, 0, sizeof(struct timespec));
292         EV_SET(&eventlist[0], event_data->ident, EVFILT_TIMER, EV_DELETE,
293                 0, 0, NULL);
294         nevents = kevent(env->queue, eventlist, 1, NULL, 0, &kevent_timeout);
295         if (nevents == -1) {
296                 if (errno == ENOENT) {
297                         /* the timer is already handling this event */
298                         TRACE_OUT(process_socket_event);
299                         return;
300                 } else {
301                         /* some other error happened */
302                         LOG_ERR_2("process_socket_event", "kevent error, errno"
303                                 " is %d", errno);
304                         TRACE_OUT(process_socket_event);
305                         return;
306                 }
307         }
308         qstate = (struct query_state *)event_data->udata;
309
310         /*
311          * If the buffer that is to be send/received is too large,
312          * we send it implicitly, by using query_io_buffer_read and
313          * query_io_buffer_write functions in the query_state. These functions
314          * use the temporary buffer, which is later send/received in parts.
315          * The code below implements buffer splitting/mergind for send/receive
316          * operations. It also does the actual socket IO operations.
317          */
318         if (((qstate->use_alternate_io == 0) &&
319                 (qstate->kevent_watermark <= (size_t)event_data->data)) ||
320                 ((qstate->use_alternate_io != 0) &&
321                 (qstate->io_buffer_watermark <= (size_t)event_data->data))) {
322                 if (qstate->use_alternate_io != 0) {
323                         switch (qstate->io_buffer_filter) {
324                         case EVFILT_READ:
325                                 io_res = query_socket_read(qstate,
326                                         qstate->io_buffer_p,
327                                         qstate->io_buffer_watermark);
328                                 if (io_res < 0) {
329                                         qstate->use_alternate_io = 0;
330                                         qstate->process_func = NULL;
331                                 } else {
332                                         qstate->io_buffer_p += io_res;
333                                         if (qstate->io_buffer_p ==
334                                                 qstate->io_buffer +
335                                                 qstate->io_buffer_size) {
336                                                 qstate->io_buffer_p =
337                                                     qstate->io_buffer;
338                                                 qstate->use_alternate_io = 0;
339                                         }
340                                 }
341                         break;
342                         default:
343                         break;
344                         }
345                 }
346
347                 if (qstate->use_alternate_io == 0) {
348                         do {
349                                 res = qstate->process_func(qstate);
350                         } while ((qstate->kevent_watermark == 0) &&
351                                         (qstate->process_func != NULL) &&
352                                         (res == 0));
353
354                         if (res != 0)
355                                 qstate->process_func = NULL;
356                 }
357
358                 if ((qstate->use_alternate_io != 0) &&
359                         (qstate->io_buffer_filter == EVFILT_WRITE)) {
360                         io_res = query_socket_write(qstate, qstate->io_buffer_p,
361                                 qstate->io_buffer_watermark);
362                         if (io_res < 0) {
363                                 qstate->use_alternate_io = 0;
364                                 qstate->process_func = NULL;
365                         } else
366                                 qstate->io_buffer_p += io_res;
367                 }
368         } else {
369                 /* assuming that socket was closed */
370                 qstate->process_func = NULL;
371                 qstate->use_alternate_io = 0;
372         }
373
374         if (((qstate->process_func == NULL) &&
375                 (qstate->use_alternate_io == 0)) ||
376                 (eof_res != 0) || (res != 0)) {
377                 destroy_query_state(qstate);
378                 close(event_data->ident);
379                 TRACE_OUT(process_socket_event);
380                 return;
381         }
382
383         /* updating the query_state lifetime variable */
384         get_time_func(&query_timeout);
385         query_timeout.tv_usec = 0;
386         query_timeout.tv_sec -= qstate->creation_time.tv_sec;
387         if (query_timeout.tv_sec > qstate->timeout.tv_sec)
388                 query_timeout.tv_sec = 0;
389         else
390                 query_timeout.tv_sec = qstate->timeout.tv_sec -
391                         query_timeout.tv_sec;
392
393         if ((qstate->use_alternate_io != 0) && (qstate->io_buffer_p ==
394                 qstate->io_buffer + qstate->io_buffer_size))
395                 qstate->use_alternate_io = 0;
396
397         if (qstate->use_alternate_io == 0) {
398                 /*
399                  * If we must send/receive the large block of data,
400                  * we should prepare the query_state's io_XXX fields.
401                  * We should also substitute its write_func and read_func
402                  * with the query_io_buffer_write and query_io_buffer_read,
403                  * which will allow us to implicitly send/receive this large
404                  * buffer later (in the subsequent calls to the
405                  * process_socket_event).
406                  */
407                 if (qstate->kevent_watermark > MAX_SOCKET_IO_SIZE) {
408                         if (qstate->io_buffer != NULL)
409                                 free(qstate->io_buffer);
410
411                         qstate->io_buffer = calloc(1,
412                                 qstate->kevent_watermark);
413                         assert(qstate->io_buffer != NULL);
414
415                         qstate->io_buffer_p = qstate->io_buffer;
416                         qstate->io_buffer_size = qstate->kevent_watermark;
417                         qstate->io_buffer_filter = qstate->kevent_filter;
418
419                         qstate->write_func = query_io_buffer_write;
420                         qstate->read_func = query_io_buffer_read;
421
422                         if (qstate->kevent_filter == EVFILT_READ)
423                                 qstate->use_alternate_io = 1;
424
425                         qstate->io_buffer_watermark = MAX_SOCKET_IO_SIZE;
426                         EV_SET(&eventlist[1], event_data->ident,
427                                 qstate->kevent_filter, EV_ADD | EV_ONESHOT,
428                                 NOTE_LOWAT, MAX_SOCKET_IO_SIZE, qstate);
429                 } else {
430                         EV_SET(&eventlist[1], event_data->ident,
431                                 qstate->kevent_filter, EV_ADD | EV_ONESHOT,
432                                 NOTE_LOWAT, qstate->kevent_watermark, qstate);
433                 }
434         } else {
435                 if (qstate->io_buffer + qstate->io_buffer_size -
436                         qstate->io_buffer_p <
437                         MAX_SOCKET_IO_SIZE) {
438                         qstate->io_buffer_watermark = qstate->io_buffer +
439                                 qstate->io_buffer_size - qstate->io_buffer_p;
440                         EV_SET(&eventlist[1], event_data->ident,
441                                 qstate->io_buffer_filter,
442                                 EV_ADD | EV_ONESHOT, NOTE_LOWAT,
443                                 qstate->io_buffer_watermark,
444                                 qstate);
445                 } else {
446                         qstate->io_buffer_watermark = MAX_SOCKET_IO_SIZE;
447                         EV_SET(&eventlist[1], event_data->ident,
448                                 qstate->io_buffer_filter, EV_ADD | EV_ONESHOT,
449                                 NOTE_LOWAT, MAX_SOCKET_IO_SIZE, qstate);
450                 }
451         }
452         EV_SET(&eventlist[0], event_data->ident, EVFILT_TIMER,
453                 EV_ADD | EV_ONESHOT, 0, query_timeout.tv_sec * 1000, qstate);
454         kevent(env->queue, eventlist, 2, NULL, 0, &kevent_timeout);
455
456         TRACE_OUT(process_socket_event);
457 }
458
459 /*
460  * This routine is called if timer event has been signaled in the kqueue. It
461  * just closes the socket and destroys the query_state.
462  */
463 static void
464 process_timer_event(struct kevent *event_data, struct runtime_env *env,
465         struct configuration *config)
466 {
467         struct query_state      *qstate;
468
469         TRACE_IN(process_timer_event);
470         qstate = (struct query_state *)event_data->udata;
471         destroy_query_state(qstate);
472         close(event_data->ident);
473         TRACE_OUT(process_timer_event);
474 }
475
476 /*
477  * Processing loop is the basic processing routine, that forms a body of each
478  * procssing thread
479  */
480 static void
481 processing_loop(cache the_cache, struct runtime_env *env,
482         struct configuration *config)
483 {
484         struct timespec timeout;
485         const int eventlist_size = 1;
486         struct kevent eventlist[eventlist_size];
487         int nevents, i;
488
489         TRACE_MSG("=> processing_loop");
490         memset(&timeout, 0, sizeof(struct timespec));
491         memset(&eventlist, 0, sizeof(struct kevent) * eventlist_size);
492
493         for (;;) {
494                 nevents = kevent(env->queue, NULL, 0, eventlist,
495                         eventlist_size, NULL);
496                 /*
497                  * we can only receive 1 event on success
498                  */
499                 if (nevents == 1) {
500                         struct kevent *event_data;
501                         event_data = &eventlist[0];
502
503                         if ((int)event_data->ident == env->sockfd) {
504                                 for (i = 0; i < event_data->data; ++i)
505                                     accept_connection(event_data, env, config);
506
507                                 EV_SET(eventlist, s_runtime_env->sockfd,
508                                     EVFILT_READ, EV_ADD | EV_ONESHOT,
509                                     0, 0, 0);
510                                 memset(&timeout, 0,
511                                     sizeof(struct timespec));
512                                 kevent(s_runtime_env->queue, eventlist,
513                                     1, NULL, 0, &timeout);
514
515                         } else {
516                                 switch (event_data->filter) {
517                                 case EVFILT_READ:
518                                 case EVFILT_WRITE:
519                                         process_socket_event(event_data,
520                                                 env, config);
521                                         break;
522                                 case EVFILT_TIMER:
523                                         process_timer_event(event_data,
524                                                 env, config);
525                                         break;
526                                 default:
527                                         break;
528                                 }
529                         }
530                 } else {
531                         /* this branch shouldn't be currently executed */
532                 }
533         }
534
535         TRACE_MSG("<= processing_loop");
536 }
537
538 /*
539  * Wrapper above the processing loop function. It sets the thread signal mask
540  * to avoid SIGPIPE signals (which can happen if the client works incorrectly).
541  */
542 static void *
543 processing_thread(void *data)
544 {
545         struct processing_thread_args   *args;
546         sigset_t new;
547
548         TRACE_MSG("=> processing_thread");
549         args = (struct processing_thread_args *)data;
550
551         sigemptyset(&new);
552         sigaddset(&new, SIGPIPE);
553         if (pthread_sigmask(SIG_BLOCK, &new, NULL) != 0)
554                 LOG_ERR_1("processing thread",
555                         "thread can't block the SIGPIPE signal");
556
557         processing_loop(args->the_cache, args->the_runtime_env,
558                 args->the_configuration);
559         free(args);
560         TRACE_MSG("<= processing_thread");
561
562         return (NULL);
563 }
564
565 void
566 get_time_func(struct timeval *time)
567 {
568         struct timespec res;
569         memset(&res, 0, sizeof(struct timespec));
570         clock_gettime(CLOCK_MONOTONIC, &res);
571
572         time->tv_sec = res.tv_sec;
573         time->tv_usec = 0;
574 }
575
576 /*
577  * The idea of _nss_cache_cycle_prevention_function is that nsdispatch
578  * will search for this symbol in the executable. This symbol is the
579  * attribute of the caching daemon. So, if it exists, nsdispatch won't try
580  * to connect to the caching daemon and will just ignore the 'cache'
581  * source in the nsswitch.conf. This method helps to avoid cycles and
582  * organize self-performing requests.
583  *
584  * (not actually a function; it used to be, but it doesn't make any
585  * difference, as long as it has external linkage)
586  */
587 void *_nss_cache_cycle_prevention_function;
588
589 int
590 main(int argc, char *argv[])
591 {
592         struct processing_thread_args *thread_args;
593         pthread_t *threads;
594
595         struct pidfh *pidfile;
596         pid_t pid;
597
598         char const *config_file;
599         char const *error_str;
600         int error_line;
601         int i, res;
602
603         int trace_mode_enabled;
604         int force_single_threaded;
605         int do_not_daemonize;
606         int clear_user_cache_entries, clear_all_cache_entries;
607         char *user_config_entry_name, *global_config_entry_name;
608         int show_statistics;
609         int daemon_mode, interactive_mode;
610
611
612         /* by default all debug messages are omitted */
613         TRACE_OFF();
614
615         /* parsing command line arguments */
616         trace_mode_enabled = 0;
617         force_single_threaded = 0;
618         do_not_daemonize = 0;
619         clear_user_cache_entries = 0;
620         clear_all_cache_entries = 0;
621         show_statistics = 0;
622         user_config_entry_name = NULL;
623         global_config_entry_name = NULL;
624         while ((res = getopt(argc, argv, "nstdi:I:")) != -1) {
625                 switch (res) {
626                 case 'n':
627                         do_not_daemonize = 1;
628                         break;
629                 case 's':
630                         force_single_threaded = 1;
631                         break;
632                 case 't':
633                         trace_mode_enabled = 1;
634                         break;
635                 case 'i':
636                         clear_user_cache_entries = 1;
637                         if (optarg != NULL)
638                                 if (strcmp(optarg, "all") != 0)
639                                         user_config_entry_name = strdup(optarg);
640                         break;
641                 case 'I':
642                         clear_all_cache_entries = 1;
643                         if (optarg != NULL)
644                                 if (strcmp(optarg, "all") != 0)
645                                         global_config_entry_name =
646                                                 strdup(optarg);
647                         break;
648                 case 'd':
649                         show_statistics = 1;
650                         break;
651                 case '?':
652                 default:
653                         usage();
654                         /* NOT REACHED */
655                 }
656         }
657
658         daemon_mode = do_not_daemonize | force_single_threaded |
659                 trace_mode_enabled;
660         interactive_mode = clear_user_cache_entries | clear_all_cache_entries |
661                 show_statistics;
662
663         if ((daemon_mode != 0) && (interactive_mode != 0)) {
664                 LOG_ERR_1("main", "daemon mode and interactive_mode arguments "
665                         "can't be used together");
666                 usage();
667         }
668
669         if (interactive_mode != 0) {
670                 FILE *pidfin = fopen(DEFAULT_PIDFILE_PATH, "r");
671                 char pidbuf[256];
672
673                 struct nscd_connection_params connection_params;
674                 nscd_connection connection;
675
676                 int result;
677
678                 if (pidfin == NULL)
679                         errx(EXIT_FAILURE, "There is no daemon running.");
680
681                 memset(pidbuf, 0, sizeof(pidbuf));
682                 fread(pidbuf, sizeof(pidbuf) - 1, 1, pidfin);
683                 fclose(pidfin);
684
685                 if (ferror(pidfin) != 0)
686                         errx(EXIT_FAILURE, "Can't read from pidfile.");
687
688                 if (sscanf(pidbuf, "%d", &pid) != 1)
689                         errx(EXIT_FAILURE, "Invalid pidfile.");
690                 LOG_MSG_1("main", "daemon PID is %d", pid);
691
692
693                 memset(&connection_params, 0,
694                         sizeof(struct nscd_connection_params));
695                 connection_params.socket_path = DEFAULT_SOCKET_PATH;
696                 connection = open_nscd_connection__(&connection_params);
697                 if (connection == INVALID_NSCD_CONNECTION)
698                         errx(EXIT_FAILURE, "Can't connect to the daemon.");
699
700                 if (clear_user_cache_entries != 0) {
701                         result = nscd_transform__(connection,
702                                 user_config_entry_name, TT_USER);
703                         if (result != 0)
704                                 LOG_MSG_1("main",
705                                         "user cache transformation failed");
706                         else
707                                 LOG_MSG_1("main",
708                                         "user cache_transformation "
709                                         "succeeded");
710                 }
711
712                 if (clear_all_cache_entries != 0) {
713                         if (geteuid() != 0)
714                                 errx(EXIT_FAILURE, "Only root can initiate "
715                                         "global cache transformation.");
716
717                         result = nscd_transform__(connection,
718                                 global_config_entry_name, TT_ALL);
719                         if (result != 0)
720                                 LOG_MSG_1("main",
721                                         "global cache transformation "
722                                         "failed");
723                         else
724                                 LOG_MSG_1("main",
725                                         "global cache transformation "
726                                         "succeeded");
727                 }
728
729                 close_nscd_connection__(connection);
730
731                 free(user_config_entry_name);
732                 free(global_config_entry_name);
733                 return (EXIT_SUCCESS);
734         }
735
736         pidfile = pidfile_open(DEFAULT_PIDFILE_PATH, 0644, &pid);
737         if (pidfile == NULL) {
738                 if (errno == EEXIST)
739                         errx(EXIT_FAILURE, "Daemon already running, pid: %d.",
740                                 pid);
741                 warn("Cannot open or create pidfile");
742         }
743
744         if (trace_mode_enabled == 1)
745                 TRACE_ON();
746
747         /* blocking the main thread from receiving SIGPIPE signal */
748         sigblock(sigmask(SIGPIPE));
749
750         /* daemonization */
751         if (do_not_daemonize == 0) {
752                 res = daemon(0, trace_mode_enabled == 0 ? 0 : 1);
753                 if (res != 0) {
754                         LOG_ERR_1("main", "can't daemonize myself: %s",
755                                 strerror(errno));
756                         pidfile_remove(pidfile);
757                         goto fin;
758                 } else
759                         LOG_MSG_1("main", "successfully daemonized");
760         }
761
762         pidfile_write(pidfile);
763
764         s_agent_table = init_agent_table();
765         register_agent(s_agent_table, init_passwd_agent());
766         register_agent(s_agent_table, init_passwd_mp_agent());
767         register_agent(s_agent_table, init_group_agent());
768         register_agent(s_agent_table, init_group_mp_agent());
769         register_agent(s_agent_table, init_services_agent());
770         register_agent(s_agent_table, init_services_mp_agent());
771         LOG_MSG_1("main", "request agents registered successfully");
772
773         /*
774          * Hosts agent can't work properly until we have access to the
775          * appropriate dtab structures, which are used in nsdispatch
776          * calls
777          *
778          register_agent(s_agent_table, init_hosts_agent());
779         */
780
781         /* configuration initialization */
782         s_configuration = init_configuration();
783         fill_configuration_defaults(s_configuration);
784
785         error_str = NULL;
786         error_line = 0;
787         config_file = CONFIG_PATH;
788
789         res = parse_config_file(s_configuration, config_file, &error_str,
790                 &error_line);
791         if ((res != 0) && (error_str == NULL)) {
792                 config_file = DEFAULT_CONFIG_PATH;
793                 res = parse_config_file(s_configuration, config_file,
794                         &error_str, &error_line);
795         }
796
797         if (res != 0) {
798                 if (error_str != NULL) {
799                 LOG_ERR_1("main", "error in configuration file(%s, %d): %s\n",
800                         config_file, error_line, error_str);
801                 } else {
802                 LOG_ERR_1("main", "no configuration file found "
803                         "- was looking for %s and %s",
804                         CONFIG_PATH, DEFAULT_CONFIG_PATH);
805                 }
806                 destroy_configuration(s_configuration);
807                 return (-1);
808         }
809
810         if (force_single_threaded == 1)
811                 s_configuration->threads_num = 1;
812
813         /* cache initialization */
814         s_cache = init_cache_(s_configuration);
815         if (s_cache == NULL) {
816                 LOG_ERR_1("main", "can't initialize the cache");
817                 destroy_configuration(s_configuration);
818                 return (-1);
819         }
820
821         /* runtime environment initialization */
822         s_runtime_env = init_runtime_env(s_configuration);
823         if (s_runtime_env == NULL) {
824                 LOG_ERR_1("main", "can't initialize the runtime environment");
825                 destroy_configuration(s_configuration);
826                 destroy_cache_(s_cache);
827                 return (-1);
828         }
829
830         if (s_configuration->threads_num > 1) {
831                 threads = calloc(1, sizeof(*threads) *
832                         s_configuration->threads_num);
833                 for (i = 0; i < s_configuration->threads_num; ++i) {
834                         thread_args = malloc(
835                                 sizeof(*thread_args));
836                         thread_args->the_cache = s_cache;
837                         thread_args->the_runtime_env = s_runtime_env;
838                         thread_args->the_configuration = s_configuration;
839
840                         LOG_MSG_1("main", "thread #%d was successfully created",
841                                 i);
842                         pthread_create(&threads[i], NULL, processing_thread,
843                                 thread_args);
844
845                         thread_args = NULL;
846                 }
847
848                 for (i = 0; i < s_configuration->threads_num; ++i)
849                         pthread_join(threads[i], NULL);
850         } else {
851                 LOG_MSG_1("main", "working in single-threaded mode");
852                 processing_loop(s_cache, s_runtime_env, s_configuration);
853         }
854
855 fin:
856         /* runtime environment destruction */
857         destroy_runtime_env(s_runtime_env);
858
859         /* cache destruction */
860         destroy_cache_(s_cache);
861
862         /* configuration destruction */
863         destroy_configuration(s_configuration);
864
865         /* agents table destruction */
866         destroy_agent_table(s_agent_table);
867
868         pidfile_remove(pidfile);
869         return (EXIT_SUCCESS);
870 }