]> CyberLeo.Net >> Repos - FreeBSD/releng/10.1.git/blob - sys/cddl/contrib/opensolaris/uts/common/fs/zfs/vdev.c
Update base system file(1) to 5.22 to address multiple denial of
[FreeBSD/releng/10.1.git] / sys / cddl / contrib / opensolaris / uts / common / fs / zfs / vdev.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
26  * Copyright 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved.
27  */
28
29 #include <sys/zfs_context.h>
30 #include <sys/fm/fs/zfs.h>
31 #include <sys/spa.h>
32 #include <sys/spa_impl.h>
33 #include <sys/dmu.h>
34 #include <sys/dmu_tx.h>
35 #include <sys/vdev_impl.h>
36 #include <sys/uberblock_impl.h>
37 #include <sys/metaslab.h>
38 #include <sys/metaslab_impl.h>
39 #include <sys/space_map.h>
40 #include <sys/space_reftree.h>
41 #include <sys/zio.h>
42 #include <sys/zap.h>
43 #include <sys/fs/zfs.h>
44 #include <sys/arc.h>
45 #include <sys/zil.h>
46 #include <sys/dsl_scan.h>
47 #include <sys/trim_map.h>
48
49 SYSCTL_DECL(_vfs_zfs);
50 SYSCTL_NODE(_vfs_zfs, OID_AUTO, vdev, CTLFLAG_RW, 0, "ZFS VDEV");
51
52 /*
53  * Virtual device management.
54  */
55
56 /*
57  * The limit for ZFS to automatically increase a top-level vdev's ashift
58  * from logical ashift to physical ashift.
59  *
60  * Example: one or more 512B emulation child vdevs
61  *          child->vdev_ashift = 9 (512 bytes)
62  *          child->vdev_physical_ashift = 12 (4096 bytes)
63  *          zfs_max_auto_ashift = 11 (2048 bytes)
64  *          zfs_min_auto_ashift = 9 (512 bytes)
65  *
66  * On pool creation or the addition of a new top-level vdev, ZFS will
67  * increase the ashift of the top-level vdev to 2048 as limited by
68  * zfs_max_auto_ashift.
69  *
70  * Example: one or more 512B emulation child vdevs
71  *          child->vdev_ashift = 9 (512 bytes)
72  *          child->vdev_physical_ashift = 12 (4096 bytes)
73  *          zfs_max_auto_ashift = 13 (8192 bytes)
74  *          zfs_min_auto_ashift = 9 (512 bytes)
75  *
76  * On pool creation or the addition of a new top-level vdev, ZFS will
77  * increase the ashift of the top-level vdev to 4096 to match the
78  * max vdev_physical_ashift.
79  *
80  * Example: one or more 512B emulation child vdevs
81  *          child->vdev_ashift = 9 (512 bytes)
82  *          child->vdev_physical_ashift = 9 (512 bytes)
83  *          zfs_max_auto_ashift = 13 (8192 bytes)
84  *          zfs_min_auto_ashift = 12 (4096 bytes)
85  *
86  * On pool creation or the addition of a new top-level vdev, ZFS will
87  * increase the ashift of the top-level vdev to 4096 to match the
88  * zfs_min_auto_ashift.
89  */
90 static uint64_t zfs_max_auto_ashift = SPA_MAXASHIFT;
91 static uint64_t zfs_min_auto_ashift = SPA_MINASHIFT;
92
93 static int
94 sysctl_vfs_zfs_max_auto_ashift(SYSCTL_HANDLER_ARGS)
95 {
96         uint64_t val;
97         int err;
98
99         val = zfs_max_auto_ashift;
100         err = sysctl_handle_64(oidp, &val, 0, req);
101         if (err != 0 || req->newptr == NULL)
102                 return (err);
103
104         if (val > SPA_MAXASHIFT || val < zfs_min_auto_ashift)
105                 return (EINVAL);
106
107         zfs_max_auto_ashift = val;
108
109         return (0);
110 }
111 SYSCTL_PROC(_vfs_zfs, OID_AUTO, max_auto_ashift,
112     CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
113     sysctl_vfs_zfs_max_auto_ashift, "QU",
114     "Max ashift used when optimising for logical -> physical sectors size on "
115     "new top-level vdevs.");
116
117 static int
118 sysctl_vfs_zfs_min_auto_ashift(SYSCTL_HANDLER_ARGS)
119 {
120         uint64_t val;
121         int err;
122
123         val = zfs_min_auto_ashift;
124         err = sysctl_handle_64(oidp, &val, 0, req);
125         if (err != 0 || req->newptr == NULL)
126                 return (err);
127
128         if (val < SPA_MINASHIFT || val > zfs_max_auto_ashift)
129                 return (EINVAL);
130
131         zfs_min_auto_ashift = val;
132
133         return (0);
134 }
135 SYSCTL_PROC(_vfs_zfs, OID_AUTO, min_auto_ashift,
136     CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
137     sysctl_vfs_zfs_min_auto_ashift, "QU",
138     "Min ashift used when creating new top-level vdevs.");
139
140 static vdev_ops_t *vdev_ops_table[] = {
141         &vdev_root_ops,
142         &vdev_raidz_ops,
143         &vdev_mirror_ops,
144         &vdev_replacing_ops,
145         &vdev_spare_ops,
146 #ifdef _KERNEL
147         &vdev_geom_ops,
148 #else
149         &vdev_disk_ops,
150 #endif
151         &vdev_file_ops,
152         &vdev_missing_ops,
153         &vdev_hole_ops,
154         NULL
155 };
156
157
158 /*
159  * Given a vdev type, return the appropriate ops vector.
160  */
161 static vdev_ops_t *
162 vdev_getops(const char *type)
163 {
164         vdev_ops_t *ops, **opspp;
165
166         for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
167                 if (strcmp(ops->vdev_op_type, type) == 0)
168                         break;
169
170         return (ops);
171 }
172
173 /*
174  * Default asize function: return the MAX of psize with the asize of
175  * all children.  This is what's used by anything other than RAID-Z.
176  */
177 uint64_t
178 vdev_default_asize(vdev_t *vd, uint64_t psize)
179 {
180         uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
181         uint64_t csize;
182
183         for (int c = 0; c < vd->vdev_children; c++) {
184                 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
185                 asize = MAX(asize, csize);
186         }
187
188         return (asize);
189 }
190
191 /*
192  * Get the minimum allocatable size. We define the allocatable size as
193  * the vdev's asize rounded to the nearest metaslab. This allows us to
194  * replace or attach devices which don't have the same physical size but
195  * can still satisfy the same number of allocations.
196  */
197 uint64_t
198 vdev_get_min_asize(vdev_t *vd)
199 {
200         vdev_t *pvd = vd->vdev_parent;
201
202         /*
203          * If our parent is NULL (inactive spare or cache) or is the root,
204          * just return our own asize.
205          */
206         if (pvd == NULL)
207                 return (vd->vdev_asize);
208
209         /*
210          * The top-level vdev just returns the allocatable size rounded
211          * to the nearest metaslab.
212          */
213         if (vd == vd->vdev_top)
214                 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
215
216         /*
217          * The allocatable space for a raidz vdev is N * sizeof(smallest child),
218          * so each child must provide at least 1/Nth of its asize.
219          */
220         if (pvd->vdev_ops == &vdev_raidz_ops)
221                 return (pvd->vdev_min_asize / pvd->vdev_children);
222
223         return (pvd->vdev_min_asize);
224 }
225
226 void
227 vdev_set_min_asize(vdev_t *vd)
228 {
229         vd->vdev_min_asize = vdev_get_min_asize(vd);
230
231         for (int c = 0; c < vd->vdev_children; c++)
232                 vdev_set_min_asize(vd->vdev_child[c]);
233 }
234
235 vdev_t *
236 vdev_lookup_top(spa_t *spa, uint64_t vdev)
237 {
238         vdev_t *rvd = spa->spa_root_vdev;
239
240         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
241
242         if (vdev < rvd->vdev_children) {
243                 ASSERT(rvd->vdev_child[vdev] != NULL);
244                 return (rvd->vdev_child[vdev]);
245         }
246
247         return (NULL);
248 }
249
250 vdev_t *
251 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
252 {
253         vdev_t *mvd;
254
255         if (vd->vdev_guid == guid)
256                 return (vd);
257
258         for (int c = 0; c < vd->vdev_children; c++)
259                 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
260                     NULL)
261                         return (mvd);
262
263         return (NULL);
264 }
265
266 void
267 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
268 {
269         size_t oldsize, newsize;
270         uint64_t id = cvd->vdev_id;
271         vdev_t **newchild;
272
273         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
274         ASSERT(cvd->vdev_parent == NULL);
275
276         cvd->vdev_parent = pvd;
277
278         if (pvd == NULL)
279                 return;
280
281         ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
282
283         oldsize = pvd->vdev_children * sizeof (vdev_t *);
284         pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
285         newsize = pvd->vdev_children * sizeof (vdev_t *);
286
287         newchild = kmem_zalloc(newsize, KM_SLEEP);
288         if (pvd->vdev_child != NULL) {
289                 bcopy(pvd->vdev_child, newchild, oldsize);
290                 kmem_free(pvd->vdev_child, oldsize);
291         }
292
293         pvd->vdev_child = newchild;
294         pvd->vdev_child[id] = cvd;
295
296         cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
297         ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
298
299         /*
300          * Walk up all ancestors to update guid sum.
301          */
302         for (; pvd != NULL; pvd = pvd->vdev_parent)
303                 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
304 }
305
306 void
307 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
308 {
309         int c;
310         uint_t id = cvd->vdev_id;
311
312         ASSERT(cvd->vdev_parent == pvd);
313
314         if (pvd == NULL)
315                 return;
316
317         ASSERT(id < pvd->vdev_children);
318         ASSERT(pvd->vdev_child[id] == cvd);
319
320         pvd->vdev_child[id] = NULL;
321         cvd->vdev_parent = NULL;
322
323         for (c = 0; c < pvd->vdev_children; c++)
324                 if (pvd->vdev_child[c])
325                         break;
326
327         if (c == pvd->vdev_children) {
328                 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
329                 pvd->vdev_child = NULL;
330                 pvd->vdev_children = 0;
331         }
332
333         /*
334          * Walk up all ancestors to update guid sum.
335          */
336         for (; pvd != NULL; pvd = pvd->vdev_parent)
337                 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
338 }
339
340 /*
341  * Remove any holes in the child array.
342  */
343 void
344 vdev_compact_children(vdev_t *pvd)
345 {
346         vdev_t **newchild, *cvd;
347         int oldc = pvd->vdev_children;
348         int newc;
349
350         ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
351
352         for (int c = newc = 0; c < oldc; c++)
353                 if (pvd->vdev_child[c])
354                         newc++;
355
356         newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
357
358         for (int c = newc = 0; c < oldc; c++) {
359                 if ((cvd = pvd->vdev_child[c]) != NULL) {
360                         newchild[newc] = cvd;
361                         cvd->vdev_id = newc++;
362                 }
363         }
364
365         kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
366         pvd->vdev_child = newchild;
367         pvd->vdev_children = newc;
368 }
369
370 /*
371  * Allocate and minimally initialize a vdev_t.
372  */
373 vdev_t *
374 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
375 {
376         vdev_t *vd;
377
378         vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
379
380         if (spa->spa_root_vdev == NULL) {
381                 ASSERT(ops == &vdev_root_ops);
382                 spa->spa_root_vdev = vd;
383                 spa->spa_load_guid = spa_generate_guid(NULL);
384         }
385
386         if (guid == 0 && ops != &vdev_hole_ops) {
387                 if (spa->spa_root_vdev == vd) {
388                         /*
389                          * The root vdev's guid will also be the pool guid,
390                          * which must be unique among all pools.
391                          */
392                         guid = spa_generate_guid(NULL);
393                 } else {
394                         /*
395                          * Any other vdev's guid must be unique within the pool.
396                          */
397                         guid = spa_generate_guid(spa);
398                 }
399                 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
400         }
401
402         vd->vdev_spa = spa;
403         vd->vdev_id = id;
404         vd->vdev_guid = guid;
405         vd->vdev_guid_sum = guid;
406         vd->vdev_ops = ops;
407         vd->vdev_state = VDEV_STATE_CLOSED;
408         vd->vdev_ishole = (ops == &vdev_hole_ops);
409
410         mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
411         mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
412         mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
413         for (int t = 0; t < DTL_TYPES; t++) {
414                 vd->vdev_dtl[t] = range_tree_create(NULL, NULL,
415                     &vd->vdev_dtl_lock);
416         }
417         txg_list_create(&vd->vdev_ms_list,
418             offsetof(struct metaslab, ms_txg_node));
419         txg_list_create(&vd->vdev_dtl_list,
420             offsetof(struct vdev, vdev_dtl_node));
421         vd->vdev_stat.vs_timestamp = gethrtime();
422         vdev_queue_init(vd);
423         vdev_cache_init(vd);
424
425         return (vd);
426 }
427
428 /*
429  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
430  * creating a new vdev or loading an existing one - the behavior is slightly
431  * different for each case.
432  */
433 int
434 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
435     int alloctype)
436 {
437         vdev_ops_t *ops;
438         char *type;
439         uint64_t guid = 0, islog, nparity;
440         vdev_t *vd;
441
442         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
443
444         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
445                 return (SET_ERROR(EINVAL));
446
447         if ((ops = vdev_getops(type)) == NULL)
448                 return (SET_ERROR(EINVAL));
449
450         /*
451          * If this is a load, get the vdev guid from the nvlist.
452          * Otherwise, vdev_alloc_common() will generate one for us.
453          */
454         if (alloctype == VDEV_ALLOC_LOAD) {
455                 uint64_t label_id;
456
457                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
458                     label_id != id)
459                         return (SET_ERROR(EINVAL));
460
461                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
462                         return (SET_ERROR(EINVAL));
463         } else if (alloctype == VDEV_ALLOC_SPARE) {
464                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
465                         return (SET_ERROR(EINVAL));
466         } else if (alloctype == VDEV_ALLOC_L2CACHE) {
467                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
468                         return (SET_ERROR(EINVAL));
469         } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
470                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
471                         return (SET_ERROR(EINVAL));
472         }
473
474         /*
475          * The first allocated vdev must be of type 'root'.
476          */
477         if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
478                 return (SET_ERROR(EINVAL));
479
480         /*
481          * Determine whether we're a log vdev.
482          */
483         islog = 0;
484         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
485         if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
486                 return (SET_ERROR(ENOTSUP));
487
488         if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
489                 return (SET_ERROR(ENOTSUP));
490
491         /*
492          * Set the nparity property for RAID-Z vdevs.
493          */
494         nparity = -1ULL;
495         if (ops == &vdev_raidz_ops) {
496                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
497                     &nparity) == 0) {
498                         if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
499                                 return (SET_ERROR(EINVAL));
500                         /*
501                          * Previous versions could only support 1 or 2 parity
502                          * device.
503                          */
504                         if (nparity > 1 &&
505                             spa_version(spa) < SPA_VERSION_RAIDZ2)
506                                 return (SET_ERROR(ENOTSUP));
507                         if (nparity > 2 &&
508                             spa_version(spa) < SPA_VERSION_RAIDZ3)
509                                 return (SET_ERROR(ENOTSUP));
510                 } else {
511                         /*
512                          * We require the parity to be specified for SPAs that
513                          * support multiple parity levels.
514                          */
515                         if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
516                                 return (SET_ERROR(EINVAL));
517                         /*
518                          * Otherwise, we default to 1 parity device for RAID-Z.
519                          */
520                         nparity = 1;
521                 }
522         } else {
523                 nparity = 0;
524         }
525         ASSERT(nparity != -1ULL);
526
527         vd = vdev_alloc_common(spa, id, guid, ops);
528
529         vd->vdev_islog = islog;
530         vd->vdev_nparity = nparity;
531
532         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
533                 vd->vdev_path = spa_strdup(vd->vdev_path);
534         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
535                 vd->vdev_devid = spa_strdup(vd->vdev_devid);
536         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
537             &vd->vdev_physpath) == 0)
538                 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
539         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
540                 vd->vdev_fru = spa_strdup(vd->vdev_fru);
541
542         /*
543          * Set the whole_disk property.  If it's not specified, leave the value
544          * as -1.
545          */
546         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
547             &vd->vdev_wholedisk) != 0)
548                 vd->vdev_wholedisk = -1ULL;
549
550         /*
551          * Look for the 'not present' flag.  This will only be set if the device
552          * was not present at the time of import.
553          */
554         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
555             &vd->vdev_not_present);
556
557         /*
558          * Get the alignment requirement.
559          */
560         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
561
562         /*
563          * Retrieve the vdev creation time.
564          */
565         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
566             &vd->vdev_crtxg);
567
568         /*
569          * If we're a top-level vdev, try to load the allocation parameters.
570          */
571         if (parent && !parent->vdev_parent &&
572             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
573                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
574                     &vd->vdev_ms_array);
575                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
576                     &vd->vdev_ms_shift);
577                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
578                     &vd->vdev_asize);
579                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
580                     &vd->vdev_removing);
581         }
582
583         if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
584                 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
585                     alloctype == VDEV_ALLOC_ADD ||
586                     alloctype == VDEV_ALLOC_SPLIT ||
587                     alloctype == VDEV_ALLOC_ROOTPOOL);
588                 vd->vdev_mg = metaslab_group_create(islog ?
589                     spa_log_class(spa) : spa_normal_class(spa), vd);
590         }
591
592         /*
593          * If we're a leaf vdev, try to load the DTL object and other state.
594          */
595         if (vd->vdev_ops->vdev_op_leaf &&
596             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
597             alloctype == VDEV_ALLOC_ROOTPOOL)) {
598                 if (alloctype == VDEV_ALLOC_LOAD) {
599                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
600                             &vd->vdev_dtl_object);
601                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
602                             &vd->vdev_unspare);
603                 }
604
605                 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
606                         uint64_t spare = 0;
607
608                         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
609                             &spare) == 0 && spare)
610                                 spa_spare_add(vd);
611                 }
612
613                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
614                     &vd->vdev_offline);
615
616                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
617                     &vd->vdev_resilver_txg);
618
619                 /*
620                  * When importing a pool, we want to ignore the persistent fault
621                  * state, as the diagnosis made on another system may not be
622                  * valid in the current context.  Local vdevs will
623                  * remain in the faulted state.
624                  */
625                 if (spa_load_state(spa) == SPA_LOAD_OPEN) {
626                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
627                             &vd->vdev_faulted);
628                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
629                             &vd->vdev_degraded);
630                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
631                             &vd->vdev_removed);
632
633                         if (vd->vdev_faulted || vd->vdev_degraded) {
634                                 char *aux;
635
636                                 vd->vdev_label_aux =
637                                     VDEV_AUX_ERR_EXCEEDED;
638                                 if (nvlist_lookup_string(nv,
639                                     ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
640                                     strcmp(aux, "external") == 0)
641                                         vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
642                         }
643                 }
644         }
645
646         /*
647          * Add ourselves to the parent's list of children.
648          */
649         vdev_add_child(parent, vd);
650
651         *vdp = vd;
652
653         return (0);
654 }
655
656 void
657 vdev_free(vdev_t *vd)
658 {
659         spa_t *spa = vd->vdev_spa;
660
661         /*
662          * vdev_free() implies closing the vdev first.  This is simpler than
663          * trying to ensure complicated semantics for all callers.
664          */
665         vdev_close(vd);
666
667         ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
668         ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
669
670         /*
671          * Free all children.
672          */
673         for (int c = 0; c < vd->vdev_children; c++)
674                 vdev_free(vd->vdev_child[c]);
675
676         ASSERT(vd->vdev_child == NULL);
677         ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
678
679         /*
680          * Discard allocation state.
681          */
682         if (vd->vdev_mg != NULL) {
683                 vdev_metaslab_fini(vd);
684                 metaslab_group_destroy(vd->vdev_mg);
685         }
686
687         ASSERT0(vd->vdev_stat.vs_space);
688         ASSERT0(vd->vdev_stat.vs_dspace);
689         ASSERT0(vd->vdev_stat.vs_alloc);
690
691         /*
692          * Remove this vdev from its parent's child list.
693          */
694         vdev_remove_child(vd->vdev_parent, vd);
695
696         ASSERT(vd->vdev_parent == NULL);
697
698         /*
699          * Clean up vdev structure.
700          */
701         vdev_queue_fini(vd);
702         vdev_cache_fini(vd);
703
704         if (vd->vdev_path)
705                 spa_strfree(vd->vdev_path);
706         if (vd->vdev_devid)
707                 spa_strfree(vd->vdev_devid);
708         if (vd->vdev_physpath)
709                 spa_strfree(vd->vdev_physpath);
710         if (vd->vdev_fru)
711                 spa_strfree(vd->vdev_fru);
712
713         if (vd->vdev_isspare)
714                 spa_spare_remove(vd);
715         if (vd->vdev_isl2cache)
716                 spa_l2cache_remove(vd);
717
718         txg_list_destroy(&vd->vdev_ms_list);
719         txg_list_destroy(&vd->vdev_dtl_list);
720
721         mutex_enter(&vd->vdev_dtl_lock);
722         space_map_close(vd->vdev_dtl_sm);
723         for (int t = 0; t < DTL_TYPES; t++) {
724                 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
725                 range_tree_destroy(vd->vdev_dtl[t]);
726         }
727         mutex_exit(&vd->vdev_dtl_lock);
728
729         mutex_destroy(&vd->vdev_dtl_lock);
730         mutex_destroy(&vd->vdev_stat_lock);
731         mutex_destroy(&vd->vdev_probe_lock);
732
733         if (vd == spa->spa_root_vdev)
734                 spa->spa_root_vdev = NULL;
735
736         kmem_free(vd, sizeof (vdev_t));
737 }
738
739 /*
740  * Transfer top-level vdev state from svd to tvd.
741  */
742 static void
743 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
744 {
745         spa_t *spa = svd->vdev_spa;
746         metaslab_t *msp;
747         vdev_t *vd;
748         int t;
749
750         ASSERT(tvd == tvd->vdev_top);
751
752         tvd->vdev_ms_array = svd->vdev_ms_array;
753         tvd->vdev_ms_shift = svd->vdev_ms_shift;
754         tvd->vdev_ms_count = svd->vdev_ms_count;
755
756         svd->vdev_ms_array = 0;
757         svd->vdev_ms_shift = 0;
758         svd->vdev_ms_count = 0;
759
760         if (tvd->vdev_mg)
761                 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
762         tvd->vdev_mg = svd->vdev_mg;
763         tvd->vdev_ms = svd->vdev_ms;
764
765         svd->vdev_mg = NULL;
766         svd->vdev_ms = NULL;
767
768         if (tvd->vdev_mg != NULL)
769                 tvd->vdev_mg->mg_vd = tvd;
770
771         tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
772         tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
773         tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
774
775         svd->vdev_stat.vs_alloc = 0;
776         svd->vdev_stat.vs_space = 0;
777         svd->vdev_stat.vs_dspace = 0;
778
779         for (t = 0; t < TXG_SIZE; t++) {
780                 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
781                         (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
782                 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
783                         (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
784                 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
785                         (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
786         }
787
788         if (list_link_active(&svd->vdev_config_dirty_node)) {
789                 vdev_config_clean(svd);
790                 vdev_config_dirty(tvd);
791         }
792
793         if (list_link_active(&svd->vdev_state_dirty_node)) {
794                 vdev_state_clean(svd);
795                 vdev_state_dirty(tvd);
796         }
797
798         tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
799         svd->vdev_deflate_ratio = 0;
800
801         tvd->vdev_islog = svd->vdev_islog;
802         svd->vdev_islog = 0;
803 }
804
805 static void
806 vdev_top_update(vdev_t *tvd, vdev_t *vd)
807 {
808         if (vd == NULL)
809                 return;
810
811         vd->vdev_top = tvd;
812
813         for (int c = 0; c < vd->vdev_children; c++)
814                 vdev_top_update(tvd, vd->vdev_child[c]);
815 }
816
817 /*
818  * Add a mirror/replacing vdev above an existing vdev.
819  */
820 vdev_t *
821 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
822 {
823         spa_t *spa = cvd->vdev_spa;
824         vdev_t *pvd = cvd->vdev_parent;
825         vdev_t *mvd;
826
827         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
828
829         mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
830
831         mvd->vdev_asize = cvd->vdev_asize;
832         mvd->vdev_min_asize = cvd->vdev_min_asize;
833         mvd->vdev_max_asize = cvd->vdev_max_asize;
834         mvd->vdev_ashift = cvd->vdev_ashift;
835         mvd->vdev_logical_ashift = cvd->vdev_logical_ashift;
836         mvd->vdev_physical_ashift = cvd->vdev_physical_ashift;
837         mvd->vdev_state = cvd->vdev_state;
838         mvd->vdev_crtxg = cvd->vdev_crtxg;
839
840         vdev_remove_child(pvd, cvd);
841         vdev_add_child(pvd, mvd);
842         cvd->vdev_id = mvd->vdev_children;
843         vdev_add_child(mvd, cvd);
844         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
845
846         if (mvd == mvd->vdev_top)
847                 vdev_top_transfer(cvd, mvd);
848
849         return (mvd);
850 }
851
852 /*
853  * Remove a 1-way mirror/replacing vdev from the tree.
854  */
855 void
856 vdev_remove_parent(vdev_t *cvd)
857 {
858         vdev_t *mvd = cvd->vdev_parent;
859         vdev_t *pvd = mvd->vdev_parent;
860
861         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
862
863         ASSERT(mvd->vdev_children == 1);
864         ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
865             mvd->vdev_ops == &vdev_replacing_ops ||
866             mvd->vdev_ops == &vdev_spare_ops);
867         cvd->vdev_ashift = mvd->vdev_ashift;
868         cvd->vdev_logical_ashift = mvd->vdev_logical_ashift;
869         cvd->vdev_physical_ashift = mvd->vdev_physical_ashift;
870
871         vdev_remove_child(mvd, cvd);
872         vdev_remove_child(pvd, mvd);
873
874         /*
875          * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
876          * Otherwise, we could have detached an offline device, and when we
877          * go to import the pool we'll think we have two top-level vdevs,
878          * instead of a different version of the same top-level vdev.
879          */
880         if (mvd->vdev_top == mvd) {
881                 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
882                 cvd->vdev_orig_guid = cvd->vdev_guid;
883                 cvd->vdev_guid += guid_delta;
884                 cvd->vdev_guid_sum += guid_delta;
885         }
886         cvd->vdev_id = mvd->vdev_id;
887         vdev_add_child(pvd, cvd);
888         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
889
890         if (cvd == cvd->vdev_top)
891                 vdev_top_transfer(mvd, cvd);
892
893         ASSERT(mvd->vdev_children == 0);
894         vdev_free(mvd);
895 }
896
897 int
898 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
899 {
900         spa_t *spa = vd->vdev_spa;
901         objset_t *mos = spa->spa_meta_objset;
902         uint64_t m;
903         uint64_t oldc = vd->vdev_ms_count;
904         uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
905         metaslab_t **mspp;
906         int error;
907
908         ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
909
910         /*
911          * This vdev is not being allocated from yet or is a hole.
912          */
913         if (vd->vdev_ms_shift == 0)
914                 return (0);
915
916         ASSERT(!vd->vdev_ishole);
917
918         /*
919          * Compute the raidz-deflation ratio.  Note, we hard-code
920          * in 128k (1 << 17) because it is the current "typical" blocksize.
921          * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change,
922          * or we will inconsistently account for existing bp's.
923          */
924         vd->vdev_deflate_ratio = (1 << 17) /
925             (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
926
927         ASSERT(oldc <= newc);
928
929         mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
930
931         if (oldc != 0) {
932                 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
933                 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
934         }
935
936         vd->vdev_ms = mspp;
937         vd->vdev_ms_count = newc;
938
939         for (m = oldc; m < newc; m++) {
940                 uint64_t object = 0;
941
942                 if (txg == 0) {
943                         error = dmu_read(mos, vd->vdev_ms_array,
944                             m * sizeof (uint64_t), sizeof (uint64_t), &object,
945                             DMU_READ_PREFETCH);
946                         if (error)
947                                 return (error);
948                 }
949                 vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, m, object, txg);
950         }
951
952         if (txg == 0)
953                 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
954
955         /*
956          * If the vdev is being removed we don't activate
957          * the metaslabs since we want to ensure that no new
958          * allocations are performed on this device.
959          */
960         if (oldc == 0 && !vd->vdev_removing)
961                 metaslab_group_activate(vd->vdev_mg);
962
963         if (txg == 0)
964                 spa_config_exit(spa, SCL_ALLOC, FTAG);
965
966         return (0);
967 }
968
969 void
970 vdev_metaslab_fini(vdev_t *vd)
971 {
972         uint64_t m;
973         uint64_t count = vd->vdev_ms_count;
974
975         if (vd->vdev_ms != NULL) {
976                 metaslab_group_passivate(vd->vdev_mg);
977                 for (m = 0; m < count; m++) {
978                         metaslab_t *msp = vd->vdev_ms[m];
979
980                         if (msp != NULL)
981                                 metaslab_fini(msp);
982                 }
983                 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
984                 vd->vdev_ms = NULL;
985         }
986 }
987
988 typedef struct vdev_probe_stats {
989         boolean_t       vps_readable;
990         boolean_t       vps_writeable;
991         int             vps_flags;
992 } vdev_probe_stats_t;
993
994 static void
995 vdev_probe_done(zio_t *zio)
996 {
997         spa_t *spa = zio->io_spa;
998         vdev_t *vd = zio->io_vd;
999         vdev_probe_stats_t *vps = zio->io_private;
1000
1001         ASSERT(vd->vdev_probe_zio != NULL);
1002
1003         if (zio->io_type == ZIO_TYPE_READ) {
1004                 if (zio->io_error == 0)
1005                         vps->vps_readable = 1;
1006                 if (zio->io_error == 0 && spa_writeable(spa)) {
1007                         zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
1008                             zio->io_offset, zio->io_size, zio->io_data,
1009                             ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1010                             ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1011                 } else {
1012                         zio_buf_free(zio->io_data, zio->io_size);
1013                 }
1014         } else if (zio->io_type == ZIO_TYPE_WRITE) {
1015                 if (zio->io_error == 0)
1016                         vps->vps_writeable = 1;
1017                 zio_buf_free(zio->io_data, zio->io_size);
1018         } else if (zio->io_type == ZIO_TYPE_NULL) {
1019                 zio_t *pio;
1020
1021                 vd->vdev_cant_read |= !vps->vps_readable;
1022                 vd->vdev_cant_write |= !vps->vps_writeable;
1023
1024                 if (vdev_readable(vd) &&
1025                     (vdev_writeable(vd) || !spa_writeable(spa))) {
1026                         zio->io_error = 0;
1027                 } else {
1028                         ASSERT(zio->io_error != 0);
1029                         zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1030                             spa, vd, NULL, 0, 0);
1031                         zio->io_error = SET_ERROR(ENXIO);
1032                 }
1033
1034                 mutex_enter(&vd->vdev_probe_lock);
1035                 ASSERT(vd->vdev_probe_zio == zio);
1036                 vd->vdev_probe_zio = NULL;
1037                 mutex_exit(&vd->vdev_probe_lock);
1038
1039                 while ((pio = zio_walk_parents(zio)) != NULL)
1040                         if (!vdev_accessible(vd, pio))
1041                                 pio->io_error = SET_ERROR(ENXIO);
1042
1043                 kmem_free(vps, sizeof (*vps));
1044         }
1045 }
1046
1047 /*
1048  * Determine whether this device is accessible.
1049  *
1050  * Read and write to several known locations: the pad regions of each
1051  * vdev label but the first, which we leave alone in case it contains
1052  * a VTOC.
1053  */
1054 zio_t *
1055 vdev_probe(vdev_t *vd, zio_t *zio)
1056 {
1057         spa_t *spa = vd->vdev_spa;
1058         vdev_probe_stats_t *vps = NULL;
1059         zio_t *pio;
1060
1061         ASSERT(vd->vdev_ops->vdev_op_leaf);
1062
1063         /*
1064          * Don't probe the probe.
1065          */
1066         if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1067                 return (NULL);
1068
1069         /*
1070          * To prevent 'probe storms' when a device fails, we create
1071          * just one probe i/o at a time.  All zios that want to probe
1072          * this vdev will become parents of the probe io.
1073          */
1074         mutex_enter(&vd->vdev_probe_lock);
1075
1076         if ((pio = vd->vdev_probe_zio) == NULL) {
1077                 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1078
1079                 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1080                     ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1081                     ZIO_FLAG_TRYHARD;
1082
1083                 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1084                         /*
1085                          * vdev_cant_read and vdev_cant_write can only
1086                          * transition from TRUE to FALSE when we have the
1087                          * SCL_ZIO lock as writer; otherwise they can only
1088                          * transition from FALSE to TRUE.  This ensures that
1089                          * any zio looking at these values can assume that
1090                          * failures persist for the life of the I/O.  That's
1091                          * important because when a device has intermittent
1092                          * connectivity problems, we want to ensure that
1093                          * they're ascribed to the device (ENXIO) and not
1094                          * the zio (EIO).
1095                          *
1096                          * Since we hold SCL_ZIO as writer here, clear both
1097                          * values so the probe can reevaluate from first
1098                          * principles.
1099                          */
1100                         vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1101                         vd->vdev_cant_read = B_FALSE;
1102                         vd->vdev_cant_write = B_FALSE;
1103                 }
1104
1105                 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1106                     vdev_probe_done, vps,
1107                     vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1108
1109                 /*
1110                  * We can't change the vdev state in this context, so we
1111                  * kick off an async task to do it on our behalf.
1112                  */
1113                 if (zio != NULL) {
1114                         vd->vdev_probe_wanted = B_TRUE;
1115                         spa_async_request(spa, SPA_ASYNC_PROBE);
1116                 }
1117         }
1118
1119         if (zio != NULL)
1120                 zio_add_child(zio, pio);
1121
1122         mutex_exit(&vd->vdev_probe_lock);
1123
1124         if (vps == NULL) {
1125                 ASSERT(zio != NULL);
1126                 return (NULL);
1127         }
1128
1129         for (int l = 1; l < VDEV_LABELS; l++) {
1130                 zio_nowait(zio_read_phys(pio, vd,
1131                     vdev_label_offset(vd->vdev_psize, l,
1132                     offsetof(vdev_label_t, vl_pad2)),
1133                     VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1134                     ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1135                     ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1136         }
1137
1138         if (zio == NULL)
1139                 return (pio);
1140
1141         zio_nowait(pio);
1142         return (NULL);
1143 }
1144
1145 static void
1146 vdev_open_child(void *arg)
1147 {
1148         vdev_t *vd = arg;
1149
1150         vd->vdev_open_thread = curthread;
1151         vd->vdev_open_error = vdev_open(vd);
1152         vd->vdev_open_thread = NULL;
1153 }
1154
1155 boolean_t
1156 vdev_uses_zvols(vdev_t *vd)
1157 {
1158         if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1159             strlen(ZVOL_DIR)) == 0)
1160                 return (B_TRUE);
1161         for (int c = 0; c < vd->vdev_children; c++)
1162                 if (vdev_uses_zvols(vd->vdev_child[c]))
1163                         return (B_TRUE);
1164         return (B_FALSE);
1165 }
1166
1167 void
1168 vdev_open_children(vdev_t *vd)
1169 {
1170         taskq_t *tq;
1171         int children = vd->vdev_children;
1172
1173         /*
1174          * in order to handle pools on top of zvols, do the opens
1175          * in a single thread so that the same thread holds the
1176          * spa_namespace_lock
1177          */
1178         if (B_TRUE || vdev_uses_zvols(vd)) {
1179                 for (int c = 0; c < children; c++)
1180                         vd->vdev_child[c]->vdev_open_error =
1181                             vdev_open(vd->vdev_child[c]);
1182                 return;
1183         }
1184         tq = taskq_create("vdev_open", children, minclsyspri,
1185             children, children, TASKQ_PREPOPULATE);
1186
1187         for (int c = 0; c < children; c++)
1188                 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1189                     TQ_SLEEP) != 0);
1190
1191         taskq_destroy(tq);
1192 }
1193
1194 /*
1195  * Prepare a virtual device for access.
1196  */
1197 int
1198 vdev_open(vdev_t *vd)
1199 {
1200         spa_t *spa = vd->vdev_spa;
1201         int error;
1202         uint64_t osize = 0;
1203         uint64_t max_osize = 0;
1204         uint64_t asize, max_asize, psize;
1205         uint64_t logical_ashift = 0;
1206         uint64_t physical_ashift = 0;
1207
1208         ASSERT(vd->vdev_open_thread == curthread ||
1209             spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1210         ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1211             vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1212             vd->vdev_state == VDEV_STATE_OFFLINE);
1213
1214         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1215         vd->vdev_cant_read = B_FALSE;
1216         vd->vdev_cant_write = B_FALSE;
1217         vd->vdev_notrim = B_FALSE;
1218         vd->vdev_min_asize = vdev_get_min_asize(vd);
1219
1220         /*
1221          * If this vdev is not removed, check its fault status.  If it's
1222          * faulted, bail out of the open.
1223          */
1224         if (!vd->vdev_removed && vd->vdev_faulted) {
1225                 ASSERT(vd->vdev_children == 0);
1226                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1227                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1228                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1229                     vd->vdev_label_aux);
1230                 return (SET_ERROR(ENXIO));
1231         } else if (vd->vdev_offline) {
1232                 ASSERT(vd->vdev_children == 0);
1233                 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1234                 return (SET_ERROR(ENXIO));
1235         }
1236
1237         error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize,
1238             &logical_ashift, &physical_ashift);
1239
1240         /*
1241          * Reset the vdev_reopening flag so that we actually close
1242          * the vdev on error.
1243          */
1244         vd->vdev_reopening = B_FALSE;
1245         if (zio_injection_enabled && error == 0)
1246                 error = zio_handle_device_injection(vd, NULL, ENXIO);
1247
1248         if (error) {
1249                 if (vd->vdev_removed &&
1250                     vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1251                         vd->vdev_removed = B_FALSE;
1252
1253                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1254                     vd->vdev_stat.vs_aux);
1255                 return (error);
1256         }
1257
1258         vd->vdev_removed = B_FALSE;
1259
1260         /*
1261          * Recheck the faulted flag now that we have confirmed that
1262          * the vdev is accessible.  If we're faulted, bail.
1263          */
1264         if (vd->vdev_faulted) {
1265                 ASSERT(vd->vdev_children == 0);
1266                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1267                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1268                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1269                     vd->vdev_label_aux);
1270                 return (SET_ERROR(ENXIO));
1271         }
1272
1273         if (vd->vdev_degraded) {
1274                 ASSERT(vd->vdev_children == 0);
1275                 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1276                     VDEV_AUX_ERR_EXCEEDED);
1277         } else {
1278                 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1279         }
1280
1281         /*
1282          * For hole or missing vdevs we just return success.
1283          */
1284         if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1285                 return (0);
1286
1287         if (zfs_trim_enabled && !vd->vdev_notrim && vd->vdev_ops->vdev_op_leaf)
1288                 trim_map_create(vd);
1289
1290         for (int c = 0; c < vd->vdev_children; c++) {
1291                 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1292                         vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1293                             VDEV_AUX_NONE);
1294                         break;
1295                 }
1296         }
1297
1298         osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1299         max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1300
1301         if (vd->vdev_children == 0) {
1302                 if (osize < SPA_MINDEVSIZE) {
1303                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1304                             VDEV_AUX_TOO_SMALL);
1305                         return (SET_ERROR(EOVERFLOW));
1306                 }
1307                 psize = osize;
1308                 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1309                 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1310                     VDEV_LABEL_END_SIZE);
1311         } else {
1312                 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1313                     (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1314                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1315                             VDEV_AUX_TOO_SMALL);
1316                         return (SET_ERROR(EOVERFLOW));
1317                 }
1318                 psize = 0;
1319                 asize = osize;
1320                 max_asize = max_osize;
1321         }
1322
1323         vd->vdev_psize = psize;
1324
1325         /*
1326          * Make sure the allocatable size hasn't shrunk.
1327          */
1328         if (asize < vd->vdev_min_asize) {
1329                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1330                     VDEV_AUX_BAD_LABEL);
1331                 return (SET_ERROR(EINVAL));
1332         }
1333
1334         vd->vdev_physical_ashift =
1335             MAX(physical_ashift, vd->vdev_physical_ashift);
1336         vd->vdev_logical_ashift = MAX(logical_ashift, vd->vdev_logical_ashift);
1337         vd->vdev_ashift = MAX(vd->vdev_logical_ashift, vd->vdev_ashift);
1338
1339         if (vd->vdev_logical_ashift > SPA_MAXASHIFT) {
1340                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1341                     VDEV_AUX_ASHIFT_TOO_BIG);
1342                 return (EINVAL);
1343         }
1344
1345         if (vd->vdev_asize == 0) {
1346                 /*
1347                  * This is the first-ever open, so use the computed values.
1348                  * For testing purposes, a higher ashift can be requested.
1349                  */
1350                 vd->vdev_asize = asize;
1351                 vd->vdev_max_asize = max_asize;
1352         } else {
1353                 /*
1354                  * Make sure the alignment requirement hasn't increased.
1355                  */
1356                 if (vd->vdev_ashift > vd->vdev_top->vdev_ashift &&
1357                     vd->vdev_ops->vdev_op_leaf) {
1358                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1359                             VDEV_AUX_BAD_LABEL);
1360                         return (EINVAL);
1361                 }
1362                 vd->vdev_max_asize = max_asize;
1363         }
1364
1365         /*
1366          * If all children are healthy and the asize has increased,
1367          * then we've experienced dynamic LUN growth.  If automatic
1368          * expansion is enabled then use the additional space.
1369          */
1370         if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1371             (vd->vdev_expanding || spa->spa_autoexpand))
1372                 vd->vdev_asize = asize;
1373
1374         vdev_set_min_asize(vd);
1375
1376         /*
1377          * Ensure we can issue some IO before declaring the
1378          * vdev open for business.
1379          */
1380         if (vd->vdev_ops->vdev_op_leaf &&
1381             (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1382                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1383                     VDEV_AUX_ERR_EXCEEDED);
1384                 return (error);
1385         }
1386
1387         /*
1388          * If a leaf vdev has a DTL, and seems healthy, then kick off a
1389          * resilver.  But don't do this if we are doing a reopen for a scrub,
1390          * since this would just restart the scrub we are already doing.
1391          */
1392         if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1393             vdev_resilver_needed(vd, NULL, NULL))
1394                 spa_async_request(spa, SPA_ASYNC_RESILVER);
1395
1396         return (0);
1397 }
1398
1399 /*
1400  * Called once the vdevs are all opened, this routine validates the label
1401  * contents.  This needs to be done before vdev_load() so that we don't
1402  * inadvertently do repair I/Os to the wrong device.
1403  *
1404  * If 'strict' is false ignore the spa guid check. This is necessary because
1405  * if the machine crashed during a re-guid the new guid might have been written
1406  * to all of the vdev labels, but not the cached config. The strict check
1407  * will be performed when the pool is opened again using the mos config.
1408  *
1409  * This function will only return failure if one of the vdevs indicates that it
1410  * has since been destroyed or exported.  This is only possible if
1411  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1412  * will be updated but the function will return 0.
1413  */
1414 int
1415 vdev_validate(vdev_t *vd, boolean_t strict)
1416 {
1417         spa_t *spa = vd->vdev_spa;
1418         nvlist_t *label;
1419         uint64_t guid = 0, top_guid;
1420         uint64_t state;
1421
1422         for (int c = 0; c < vd->vdev_children; c++)
1423                 if (vdev_validate(vd->vdev_child[c], strict) != 0)
1424                         return (SET_ERROR(EBADF));
1425
1426         /*
1427          * If the device has already failed, or was marked offline, don't do
1428          * any further validation.  Otherwise, label I/O will fail and we will
1429          * overwrite the previous state.
1430          */
1431         if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1432                 uint64_t aux_guid = 0;
1433                 nvlist_t *nvl;
1434                 uint64_t txg = spa_last_synced_txg(spa) != 0 ?
1435                     spa_last_synced_txg(spa) : -1ULL;
1436
1437                 if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1438                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1439                             VDEV_AUX_BAD_LABEL);
1440                         return (0);
1441                 }
1442
1443                 /*
1444                  * Determine if this vdev has been split off into another
1445                  * pool.  If so, then refuse to open it.
1446                  */
1447                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1448                     &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1449                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1450                             VDEV_AUX_SPLIT_POOL);
1451                         nvlist_free(label);
1452                         return (0);
1453                 }
1454
1455                 if (strict && (nvlist_lookup_uint64(label,
1456                     ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1457                     guid != spa_guid(spa))) {
1458                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1459                             VDEV_AUX_CORRUPT_DATA);
1460                         nvlist_free(label);
1461                         return (0);
1462                 }
1463
1464                 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1465                     != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1466                     &aux_guid) != 0)
1467                         aux_guid = 0;
1468
1469                 /*
1470                  * If this vdev just became a top-level vdev because its
1471                  * sibling was detached, it will have adopted the parent's
1472                  * vdev guid -- but the label may or may not be on disk yet.
1473                  * Fortunately, either version of the label will have the
1474                  * same top guid, so if we're a top-level vdev, we can
1475                  * safely compare to that instead.
1476                  *
1477                  * If we split this vdev off instead, then we also check the
1478                  * original pool's guid.  We don't want to consider the vdev
1479                  * corrupt if it is partway through a split operation.
1480                  */
1481                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1482                     &guid) != 0 ||
1483                     nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1484                     &top_guid) != 0 ||
1485                     ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1486                     (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1487                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1488                             VDEV_AUX_CORRUPT_DATA);
1489                         nvlist_free(label);
1490                         return (0);
1491                 }
1492
1493                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1494                     &state) != 0) {
1495                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1496                             VDEV_AUX_CORRUPT_DATA);
1497                         nvlist_free(label);
1498                         return (0);
1499                 }
1500
1501                 nvlist_free(label);
1502
1503                 /*
1504                  * If this is a verbatim import, no need to check the
1505                  * state of the pool.
1506                  */
1507                 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1508                     spa_load_state(spa) == SPA_LOAD_OPEN &&
1509                     state != POOL_STATE_ACTIVE)
1510                         return (SET_ERROR(EBADF));
1511
1512                 /*
1513                  * If we were able to open and validate a vdev that was
1514                  * previously marked permanently unavailable, clear that state
1515                  * now.
1516                  */
1517                 if (vd->vdev_not_present)
1518                         vd->vdev_not_present = 0;
1519         }
1520
1521         return (0);
1522 }
1523
1524 /*
1525  * Close a virtual device.
1526  */
1527 void
1528 vdev_close(vdev_t *vd)
1529 {
1530         spa_t *spa = vd->vdev_spa;
1531         vdev_t *pvd = vd->vdev_parent;
1532
1533         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1534
1535         /*
1536          * If our parent is reopening, then we are as well, unless we are
1537          * going offline.
1538          */
1539         if (pvd != NULL && pvd->vdev_reopening)
1540                 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1541
1542         vd->vdev_ops->vdev_op_close(vd);
1543
1544         vdev_cache_purge(vd);
1545
1546         if (vd->vdev_ops->vdev_op_leaf)
1547                 trim_map_destroy(vd);
1548
1549         /*
1550          * We record the previous state before we close it, so that if we are
1551          * doing a reopen(), we don't generate FMA ereports if we notice that
1552          * it's still faulted.
1553          */
1554         vd->vdev_prevstate = vd->vdev_state;
1555
1556         if (vd->vdev_offline)
1557                 vd->vdev_state = VDEV_STATE_OFFLINE;
1558         else
1559                 vd->vdev_state = VDEV_STATE_CLOSED;
1560         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1561 }
1562
1563 void
1564 vdev_hold(vdev_t *vd)
1565 {
1566         spa_t *spa = vd->vdev_spa;
1567
1568         ASSERT(spa_is_root(spa));
1569         if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1570                 return;
1571
1572         for (int c = 0; c < vd->vdev_children; c++)
1573                 vdev_hold(vd->vdev_child[c]);
1574
1575         if (vd->vdev_ops->vdev_op_leaf)
1576                 vd->vdev_ops->vdev_op_hold(vd);
1577 }
1578
1579 void
1580 vdev_rele(vdev_t *vd)
1581 {
1582         spa_t *spa = vd->vdev_spa;
1583
1584         ASSERT(spa_is_root(spa));
1585         for (int c = 0; c < vd->vdev_children; c++)
1586                 vdev_rele(vd->vdev_child[c]);
1587
1588         if (vd->vdev_ops->vdev_op_leaf)
1589                 vd->vdev_ops->vdev_op_rele(vd);
1590 }
1591
1592 /*
1593  * Reopen all interior vdevs and any unopened leaves.  We don't actually
1594  * reopen leaf vdevs which had previously been opened as they might deadlock
1595  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
1596  * If the leaf has never been opened then open it, as usual.
1597  */
1598 void
1599 vdev_reopen(vdev_t *vd)
1600 {
1601         spa_t *spa = vd->vdev_spa;
1602
1603         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1604
1605         /* set the reopening flag unless we're taking the vdev offline */
1606         vd->vdev_reopening = !vd->vdev_offline;
1607         vdev_close(vd);
1608         (void) vdev_open(vd);
1609
1610         /*
1611          * Call vdev_validate() here to make sure we have the same device.
1612          * Otherwise, a device with an invalid label could be successfully
1613          * opened in response to vdev_reopen().
1614          */
1615         if (vd->vdev_aux) {
1616                 (void) vdev_validate_aux(vd);
1617                 if (vdev_readable(vd) && vdev_writeable(vd) &&
1618                     vd->vdev_aux == &spa->spa_l2cache &&
1619                     !l2arc_vdev_present(vd))
1620                         l2arc_add_vdev(spa, vd);
1621         } else {
1622                 (void) vdev_validate(vd, B_TRUE);
1623         }
1624
1625         /*
1626          * Reassess parent vdev's health.
1627          */
1628         vdev_propagate_state(vd);
1629 }
1630
1631 int
1632 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1633 {
1634         int error;
1635
1636         /*
1637          * Normally, partial opens (e.g. of a mirror) are allowed.
1638          * For a create, however, we want to fail the request if
1639          * there are any components we can't open.
1640          */
1641         error = vdev_open(vd);
1642
1643         if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1644                 vdev_close(vd);
1645                 return (error ? error : ENXIO);
1646         }
1647
1648         /*
1649          * Recursively load DTLs and initialize all labels.
1650          */
1651         if ((error = vdev_dtl_load(vd)) != 0 ||
1652             (error = vdev_label_init(vd, txg, isreplacing ?
1653             VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1654                 vdev_close(vd);
1655                 return (error);
1656         }
1657
1658         return (0);
1659 }
1660
1661 void
1662 vdev_metaslab_set_size(vdev_t *vd)
1663 {
1664         /*
1665          * Aim for roughly 200 metaslabs per vdev.
1666          */
1667         vd->vdev_ms_shift = highbit64(vd->vdev_asize / 200);
1668         vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1669 }
1670
1671 /*
1672  * Maximize performance by inflating the configured ashift for top level
1673  * vdevs to be as close to the physical ashift as possible while maintaining
1674  * administrator defined limits and ensuring it doesn't go below the
1675  * logical ashift.
1676  */
1677 void
1678 vdev_ashift_optimize(vdev_t *vd)
1679 {
1680         if (vd == vd->vdev_top) {
1681                 if (vd->vdev_ashift < vd->vdev_physical_ashift) {
1682                         vd->vdev_ashift = MIN(
1683                             MAX(zfs_max_auto_ashift, vd->vdev_ashift),
1684                             MAX(zfs_min_auto_ashift, vd->vdev_physical_ashift));
1685                 } else {
1686                         /*
1687                          * Unusual case where logical ashift > physical ashift
1688                          * so we can't cap the calculated ashift based on max
1689                          * ashift as that would cause failures.
1690                          * We still check if we need to increase it to match
1691                          * the min ashift.
1692                          */
1693                         vd->vdev_ashift = MAX(zfs_min_auto_ashift,
1694                             vd->vdev_ashift);
1695                 }
1696         }
1697 }
1698
1699 void
1700 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1701 {
1702         ASSERT(vd == vd->vdev_top);
1703         ASSERT(!vd->vdev_ishole);
1704         ASSERT(ISP2(flags));
1705         ASSERT(spa_writeable(vd->vdev_spa));
1706
1707         if (flags & VDD_METASLAB)
1708                 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1709
1710         if (flags & VDD_DTL)
1711                 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1712
1713         (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1714 }
1715
1716 void
1717 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
1718 {
1719         for (int c = 0; c < vd->vdev_children; c++)
1720                 vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
1721
1722         if (vd->vdev_ops->vdev_op_leaf)
1723                 vdev_dirty(vd->vdev_top, flags, vd, txg);
1724 }
1725
1726 /*
1727  * DTLs.
1728  *
1729  * A vdev's DTL (dirty time log) is the set of transaction groups for which
1730  * the vdev has less than perfect replication.  There are four kinds of DTL:
1731  *
1732  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1733  *
1734  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1735  *
1736  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1737  *      scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1738  *      txgs that was scrubbed.
1739  *
1740  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1741  *      persistent errors or just some device being offline.
1742  *      Unlike the other three, the DTL_OUTAGE map is not generally
1743  *      maintained; it's only computed when needed, typically to
1744  *      determine whether a device can be detached.
1745  *
1746  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1747  * either has the data or it doesn't.
1748  *
1749  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1750  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1751  * if any child is less than fully replicated, then so is its parent.
1752  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1753  * comprising only those txgs which appear in 'maxfaults' or more children;
1754  * those are the txgs we don't have enough replication to read.  For example,
1755  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1756  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1757  * two child DTL_MISSING maps.
1758  *
1759  * It should be clear from the above that to compute the DTLs and outage maps
1760  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1761  * Therefore, that is all we keep on disk.  When loading the pool, or after
1762  * a configuration change, we generate all other DTLs from first principles.
1763  */
1764 void
1765 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1766 {
1767         range_tree_t *rt = vd->vdev_dtl[t];
1768
1769         ASSERT(t < DTL_TYPES);
1770         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1771         ASSERT(spa_writeable(vd->vdev_spa));
1772
1773         mutex_enter(rt->rt_lock);
1774         if (!range_tree_contains(rt, txg, size))
1775                 range_tree_add(rt, txg, size);
1776         mutex_exit(rt->rt_lock);
1777 }
1778
1779 boolean_t
1780 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1781 {
1782         range_tree_t *rt = vd->vdev_dtl[t];
1783         boolean_t dirty = B_FALSE;
1784
1785         ASSERT(t < DTL_TYPES);
1786         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1787
1788         mutex_enter(rt->rt_lock);
1789         if (range_tree_space(rt) != 0)
1790                 dirty = range_tree_contains(rt, txg, size);
1791         mutex_exit(rt->rt_lock);
1792
1793         return (dirty);
1794 }
1795
1796 boolean_t
1797 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1798 {
1799         range_tree_t *rt = vd->vdev_dtl[t];
1800         boolean_t empty;
1801
1802         mutex_enter(rt->rt_lock);
1803         empty = (range_tree_space(rt) == 0);
1804         mutex_exit(rt->rt_lock);
1805
1806         return (empty);
1807 }
1808
1809 /*
1810  * Returns the lowest txg in the DTL range.
1811  */
1812 static uint64_t
1813 vdev_dtl_min(vdev_t *vd)
1814 {
1815         range_seg_t *rs;
1816
1817         ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1818         ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1819         ASSERT0(vd->vdev_children);
1820
1821         rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1822         return (rs->rs_start - 1);
1823 }
1824
1825 /*
1826  * Returns the highest txg in the DTL.
1827  */
1828 static uint64_t
1829 vdev_dtl_max(vdev_t *vd)
1830 {
1831         range_seg_t *rs;
1832
1833         ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1834         ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1835         ASSERT0(vd->vdev_children);
1836
1837         rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1838         return (rs->rs_end);
1839 }
1840
1841 /*
1842  * Determine if a resilvering vdev should remove any DTL entries from
1843  * its range. If the vdev was resilvering for the entire duration of the
1844  * scan then it should excise that range from its DTLs. Otherwise, this
1845  * vdev is considered partially resilvered and should leave its DTL
1846  * entries intact. The comment in vdev_dtl_reassess() describes how we
1847  * excise the DTLs.
1848  */
1849 static boolean_t
1850 vdev_dtl_should_excise(vdev_t *vd)
1851 {
1852         spa_t *spa = vd->vdev_spa;
1853         dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1854
1855         ASSERT0(scn->scn_phys.scn_errors);
1856         ASSERT0(vd->vdev_children);
1857
1858         if (vd->vdev_resilver_txg == 0 ||
1859             range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0)
1860                 return (B_TRUE);
1861
1862         /*
1863          * When a resilver is initiated the scan will assign the scn_max_txg
1864          * value to the highest txg value that exists in all DTLs. If this
1865          * device's max DTL is not part of this scan (i.e. it is not in
1866          * the range (scn_min_txg, scn_max_txg] then it is not eligible
1867          * for excision.
1868          */
1869         if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
1870                 ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
1871                 ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
1872                 ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
1873                 return (B_TRUE);
1874         }
1875         return (B_FALSE);
1876 }
1877
1878 /*
1879  * Reassess DTLs after a config change or scrub completion.
1880  */
1881 void
1882 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1883 {
1884         spa_t *spa = vd->vdev_spa;
1885         avl_tree_t reftree;
1886         int minref;
1887
1888         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1889
1890         for (int c = 0; c < vd->vdev_children; c++)
1891                 vdev_dtl_reassess(vd->vdev_child[c], txg,
1892                     scrub_txg, scrub_done);
1893
1894         if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1895                 return;
1896
1897         if (vd->vdev_ops->vdev_op_leaf) {
1898                 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1899
1900                 mutex_enter(&vd->vdev_dtl_lock);
1901
1902                 /*
1903                  * If we've completed a scan cleanly then determine
1904                  * if this vdev should remove any DTLs. We only want to
1905                  * excise regions on vdevs that were available during
1906                  * the entire duration of this scan.
1907                  */
1908                 if (scrub_txg != 0 &&
1909                     (spa->spa_scrub_started ||
1910                     (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
1911                     vdev_dtl_should_excise(vd)) {
1912                         /*
1913                          * We completed a scrub up to scrub_txg.  If we
1914                          * did it without rebooting, then the scrub dtl
1915                          * will be valid, so excise the old region and
1916                          * fold in the scrub dtl.  Otherwise, leave the
1917                          * dtl as-is if there was an error.
1918                          *
1919                          * There's little trick here: to excise the beginning
1920                          * of the DTL_MISSING map, we put it into a reference
1921                          * tree and then add a segment with refcnt -1 that
1922                          * covers the range [0, scrub_txg).  This means
1923                          * that each txg in that range has refcnt -1 or 0.
1924                          * We then add DTL_SCRUB with a refcnt of 2, so that
1925                          * entries in the range [0, scrub_txg) will have a
1926                          * positive refcnt -- either 1 or 2.  We then convert
1927                          * the reference tree into the new DTL_MISSING map.
1928                          */
1929                         space_reftree_create(&reftree);
1930                         space_reftree_add_map(&reftree,
1931                             vd->vdev_dtl[DTL_MISSING], 1);
1932                         space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
1933                         space_reftree_add_map(&reftree,
1934                             vd->vdev_dtl[DTL_SCRUB], 2);
1935                         space_reftree_generate_map(&reftree,
1936                             vd->vdev_dtl[DTL_MISSING], 1);
1937                         space_reftree_destroy(&reftree);
1938                 }
1939                 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1940                 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1941                     range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
1942                 if (scrub_done)
1943                         range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1944                 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1945                 if (!vdev_readable(vd))
1946                         range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1947                 else
1948                         range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1949                             range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
1950
1951                 /*
1952                  * If the vdev was resilvering and no longer has any
1953                  * DTLs then reset its resilvering flag and dirty
1954                  * the top level so that we persist the change.
1955                  */
1956                 if (vd->vdev_resilver_txg != 0 &&
1957                     range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 &&
1958                     range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0) {
1959                         vd->vdev_resilver_txg = 0;
1960                         vdev_config_dirty(vd->vdev_top);
1961                 }
1962
1963                 mutex_exit(&vd->vdev_dtl_lock);
1964
1965                 if (txg != 0)
1966                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1967                 return;
1968         }
1969
1970         mutex_enter(&vd->vdev_dtl_lock);
1971         for (int t = 0; t < DTL_TYPES; t++) {
1972                 /* account for child's outage in parent's missing map */
1973                 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1974                 if (t == DTL_SCRUB)
1975                         continue;                       /* leaf vdevs only */
1976                 if (t == DTL_PARTIAL)
1977                         minref = 1;                     /* i.e. non-zero */
1978                 else if (vd->vdev_nparity != 0)
1979                         minref = vd->vdev_nparity + 1;  /* RAID-Z */
1980                 else
1981                         minref = vd->vdev_children;     /* any kind of mirror */
1982                 space_reftree_create(&reftree);
1983                 for (int c = 0; c < vd->vdev_children; c++) {
1984                         vdev_t *cvd = vd->vdev_child[c];
1985                         mutex_enter(&cvd->vdev_dtl_lock);
1986                         space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
1987                         mutex_exit(&cvd->vdev_dtl_lock);
1988                 }
1989                 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
1990                 space_reftree_destroy(&reftree);
1991         }
1992         mutex_exit(&vd->vdev_dtl_lock);
1993 }
1994
1995 int
1996 vdev_dtl_load(vdev_t *vd)
1997 {
1998         spa_t *spa = vd->vdev_spa;
1999         objset_t *mos = spa->spa_meta_objset;
2000         int error = 0;
2001
2002         if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
2003                 ASSERT(!vd->vdev_ishole);
2004
2005                 error = space_map_open(&vd->vdev_dtl_sm, mos,
2006                     vd->vdev_dtl_object, 0, -1ULL, 0, &vd->vdev_dtl_lock);
2007                 if (error)
2008                         return (error);
2009                 ASSERT(vd->vdev_dtl_sm != NULL);
2010
2011                 mutex_enter(&vd->vdev_dtl_lock);
2012
2013                 /*
2014                  * Now that we've opened the space_map we need to update
2015                  * the in-core DTL.
2016                  */
2017                 space_map_update(vd->vdev_dtl_sm);
2018
2019                 error = space_map_load(vd->vdev_dtl_sm,
2020                     vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
2021                 mutex_exit(&vd->vdev_dtl_lock);
2022
2023                 return (error);
2024         }
2025
2026         for (int c = 0; c < vd->vdev_children; c++) {
2027                 error = vdev_dtl_load(vd->vdev_child[c]);
2028                 if (error != 0)
2029                         break;
2030         }
2031
2032         return (error);
2033 }
2034
2035 void
2036 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
2037 {
2038         spa_t *spa = vd->vdev_spa;
2039         range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
2040         objset_t *mos = spa->spa_meta_objset;
2041         range_tree_t *rtsync;
2042         kmutex_t rtlock;
2043         dmu_tx_t *tx;
2044         uint64_t object = space_map_object(vd->vdev_dtl_sm);
2045
2046         ASSERT(!vd->vdev_ishole);
2047         ASSERT(vd->vdev_ops->vdev_op_leaf);
2048
2049         tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2050
2051         if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
2052                 mutex_enter(&vd->vdev_dtl_lock);
2053                 space_map_free(vd->vdev_dtl_sm, tx);
2054                 space_map_close(vd->vdev_dtl_sm);
2055                 vd->vdev_dtl_sm = NULL;
2056                 mutex_exit(&vd->vdev_dtl_lock);
2057                 dmu_tx_commit(tx);
2058                 return;
2059         }
2060
2061         if (vd->vdev_dtl_sm == NULL) {
2062                 uint64_t new_object;
2063
2064                 new_object = space_map_alloc(mos, tx);
2065                 VERIFY3U(new_object, !=, 0);
2066
2067                 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
2068                     0, -1ULL, 0, &vd->vdev_dtl_lock));
2069                 ASSERT(vd->vdev_dtl_sm != NULL);
2070         }
2071
2072         bzero(&rtlock, sizeof(rtlock));
2073         mutex_init(&rtlock, NULL, MUTEX_DEFAULT, NULL);
2074
2075         rtsync = range_tree_create(NULL, NULL, &rtlock);
2076
2077         mutex_enter(&rtlock);
2078
2079         mutex_enter(&vd->vdev_dtl_lock);
2080         range_tree_walk(rt, range_tree_add, rtsync);
2081         mutex_exit(&vd->vdev_dtl_lock);
2082
2083         space_map_truncate(vd->vdev_dtl_sm, tx);
2084         space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx);
2085         range_tree_vacate(rtsync, NULL, NULL);
2086
2087         range_tree_destroy(rtsync);
2088
2089         mutex_exit(&rtlock);
2090         mutex_destroy(&rtlock);
2091
2092         /*
2093          * If the object for the space map has changed then dirty
2094          * the top level so that we update the config.
2095          */
2096         if (object != space_map_object(vd->vdev_dtl_sm)) {
2097                 zfs_dbgmsg("txg %llu, spa %s, DTL old object %llu, "
2098                     "new object %llu", txg, spa_name(spa), object,
2099                     space_map_object(vd->vdev_dtl_sm));
2100                 vdev_config_dirty(vd->vdev_top);
2101         }
2102
2103         dmu_tx_commit(tx);
2104
2105         mutex_enter(&vd->vdev_dtl_lock);
2106         space_map_update(vd->vdev_dtl_sm);
2107         mutex_exit(&vd->vdev_dtl_lock);
2108 }
2109
2110 /*
2111  * Determine whether the specified vdev can be offlined/detached/removed
2112  * without losing data.
2113  */
2114 boolean_t
2115 vdev_dtl_required(vdev_t *vd)
2116 {
2117         spa_t *spa = vd->vdev_spa;
2118         vdev_t *tvd = vd->vdev_top;
2119         uint8_t cant_read = vd->vdev_cant_read;
2120         boolean_t required;
2121
2122         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2123
2124         if (vd == spa->spa_root_vdev || vd == tvd)
2125                 return (B_TRUE);
2126
2127         /*
2128          * Temporarily mark the device as unreadable, and then determine
2129          * whether this results in any DTL outages in the top-level vdev.
2130          * If not, we can safely offline/detach/remove the device.
2131          */
2132         vd->vdev_cant_read = B_TRUE;
2133         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2134         required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
2135         vd->vdev_cant_read = cant_read;
2136         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2137
2138         if (!required && zio_injection_enabled)
2139                 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
2140
2141         return (required);
2142 }
2143
2144 /*
2145  * Determine if resilver is needed, and if so the txg range.
2146  */
2147 boolean_t
2148 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2149 {
2150         boolean_t needed = B_FALSE;
2151         uint64_t thismin = UINT64_MAX;
2152         uint64_t thismax = 0;
2153
2154         if (vd->vdev_children == 0) {
2155                 mutex_enter(&vd->vdev_dtl_lock);
2156                 if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 &&
2157                     vdev_writeable(vd)) {
2158
2159                         thismin = vdev_dtl_min(vd);
2160                         thismax = vdev_dtl_max(vd);
2161                         needed = B_TRUE;
2162                 }
2163                 mutex_exit(&vd->vdev_dtl_lock);
2164         } else {
2165                 for (int c = 0; c < vd->vdev_children; c++) {
2166                         vdev_t *cvd = vd->vdev_child[c];
2167                         uint64_t cmin, cmax;
2168
2169                         if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2170                                 thismin = MIN(thismin, cmin);
2171                                 thismax = MAX(thismax, cmax);
2172                                 needed = B_TRUE;
2173                         }
2174                 }
2175         }
2176
2177         if (needed && minp) {
2178                 *minp = thismin;
2179                 *maxp = thismax;
2180         }
2181         return (needed);
2182 }
2183
2184 void
2185 vdev_load(vdev_t *vd)
2186 {
2187         /*
2188          * Recursively load all children.
2189          */
2190         for (int c = 0; c < vd->vdev_children; c++)
2191                 vdev_load(vd->vdev_child[c]);
2192
2193         /*
2194          * If this is a top-level vdev, initialize its metaslabs.
2195          */
2196         if (vd == vd->vdev_top && !vd->vdev_ishole &&
2197             (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
2198             vdev_metaslab_init(vd, 0) != 0))
2199                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2200                     VDEV_AUX_CORRUPT_DATA);
2201
2202         /*
2203          * If this is a leaf vdev, load its DTL.
2204          */
2205         if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
2206                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2207                     VDEV_AUX_CORRUPT_DATA);
2208 }
2209
2210 /*
2211  * The special vdev case is used for hot spares and l2cache devices.  Its
2212  * sole purpose it to set the vdev state for the associated vdev.  To do this,
2213  * we make sure that we can open the underlying device, then try to read the
2214  * label, and make sure that the label is sane and that it hasn't been
2215  * repurposed to another pool.
2216  */
2217 int
2218 vdev_validate_aux(vdev_t *vd)
2219 {
2220         nvlist_t *label;
2221         uint64_t guid, version;
2222         uint64_t state;
2223
2224         if (!vdev_readable(vd))
2225                 return (0);
2226
2227         if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
2228                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2229                     VDEV_AUX_CORRUPT_DATA);
2230                 return (-1);
2231         }
2232
2233         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2234             !SPA_VERSION_IS_SUPPORTED(version) ||
2235             nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2236             guid != vd->vdev_guid ||
2237             nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2238                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2239                     VDEV_AUX_CORRUPT_DATA);
2240                 nvlist_free(label);
2241                 return (-1);
2242         }
2243
2244         /*
2245          * We don't actually check the pool state here.  If it's in fact in
2246          * use by another pool, we update this fact on the fly when requested.
2247          */
2248         nvlist_free(label);
2249         return (0);
2250 }
2251
2252 void
2253 vdev_remove(vdev_t *vd, uint64_t txg)
2254 {
2255         spa_t *spa = vd->vdev_spa;
2256         objset_t *mos = spa->spa_meta_objset;
2257         dmu_tx_t *tx;
2258
2259         tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2260
2261         if (vd->vdev_ms != NULL) {
2262                 metaslab_group_t *mg = vd->vdev_mg;
2263
2264                 metaslab_group_histogram_verify(mg);
2265                 metaslab_class_histogram_verify(mg->mg_class);
2266
2267                 for (int m = 0; m < vd->vdev_ms_count; m++) {
2268                         metaslab_t *msp = vd->vdev_ms[m];
2269
2270                         if (msp == NULL || msp->ms_sm == NULL)
2271                                 continue;
2272
2273                         mutex_enter(&msp->ms_lock);
2274                         /*
2275                          * If the metaslab was not loaded when the vdev
2276                          * was removed then the histogram accounting may
2277                          * not be accurate. Update the histogram information
2278                          * here so that we ensure that the metaslab group
2279                          * and metaslab class are up-to-date.
2280                          */
2281                         metaslab_group_histogram_remove(mg, msp);
2282
2283                         VERIFY0(space_map_allocated(msp->ms_sm));
2284                         space_map_free(msp->ms_sm, tx);
2285                         space_map_close(msp->ms_sm);
2286                         msp->ms_sm = NULL;
2287                         mutex_exit(&msp->ms_lock);
2288                 }
2289
2290                 metaslab_group_histogram_verify(mg);
2291                 metaslab_class_histogram_verify(mg->mg_class);
2292                 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
2293                         ASSERT0(mg->mg_histogram[i]);
2294
2295         }
2296
2297         if (vd->vdev_ms_array) {
2298                 (void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2299                 vd->vdev_ms_array = 0;
2300         }
2301         dmu_tx_commit(tx);
2302 }
2303
2304 void
2305 vdev_sync_done(vdev_t *vd, uint64_t txg)
2306 {
2307         metaslab_t *msp;
2308         boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2309
2310         ASSERT(!vd->vdev_ishole);
2311
2312         while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2313                 metaslab_sync_done(msp, txg);
2314
2315         if (reassess)
2316                 metaslab_sync_reassess(vd->vdev_mg);
2317 }
2318
2319 void
2320 vdev_sync(vdev_t *vd, uint64_t txg)
2321 {
2322         spa_t *spa = vd->vdev_spa;
2323         vdev_t *lvd;
2324         metaslab_t *msp;
2325         dmu_tx_t *tx;
2326
2327         ASSERT(!vd->vdev_ishole);
2328
2329         if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2330                 ASSERT(vd == vd->vdev_top);
2331                 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2332                 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2333                     DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2334                 ASSERT(vd->vdev_ms_array != 0);
2335                 vdev_config_dirty(vd);
2336                 dmu_tx_commit(tx);
2337         }
2338
2339         /*
2340          * Remove the metadata associated with this vdev once it's empty.
2341          */
2342         if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2343                 vdev_remove(vd, txg);
2344
2345         while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2346                 metaslab_sync(msp, txg);
2347                 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2348         }
2349
2350         while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2351                 vdev_dtl_sync(lvd, txg);
2352
2353         (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2354 }
2355
2356 uint64_t
2357 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2358 {
2359         return (vd->vdev_ops->vdev_op_asize(vd, psize));
2360 }
2361
2362 /*
2363  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
2364  * not be opened, and no I/O is attempted.
2365  */
2366 int
2367 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2368 {
2369         vdev_t *vd, *tvd;
2370
2371         spa_vdev_state_enter(spa, SCL_NONE);
2372
2373         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2374                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2375
2376         if (!vd->vdev_ops->vdev_op_leaf)
2377                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2378
2379         tvd = vd->vdev_top;
2380
2381         /*
2382          * We don't directly use the aux state here, but if we do a
2383          * vdev_reopen(), we need this value to be present to remember why we
2384          * were faulted.
2385          */
2386         vd->vdev_label_aux = aux;
2387
2388         /*
2389          * Faulted state takes precedence over degraded.
2390          */
2391         vd->vdev_delayed_close = B_FALSE;
2392         vd->vdev_faulted = 1ULL;
2393         vd->vdev_degraded = 0ULL;
2394         vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2395
2396         /*
2397          * If this device has the only valid copy of the data, then
2398          * back off and simply mark the vdev as degraded instead.
2399          */
2400         if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2401                 vd->vdev_degraded = 1ULL;
2402                 vd->vdev_faulted = 0ULL;
2403
2404                 /*
2405                  * If we reopen the device and it's not dead, only then do we
2406                  * mark it degraded.
2407                  */
2408                 vdev_reopen(tvd);
2409
2410                 if (vdev_readable(vd))
2411                         vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2412         }
2413
2414         return (spa_vdev_state_exit(spa, vd, 0));
2415 }
2416
2417 /*
2418  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
2419  * user that something is wrong.  The vdev continues to operate as normal as far
2420  * as I/O is concerned.
2421  */
2422 int
2423 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2424 {
2425         vdev_t *vd;
2426
2427         spa_vdev_state_enter(spa, SCL_NONE);
2428
2429         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2430                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2431
2432         if (!vd->vdev_ops->vdev_op_leaf)
2433                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2434
2435         /*
2436          * If the vdev is already faulted, then don't do anything.
2437          */
2438         if (vd->vdev_faulted || vd->vdev_degraded)
2439                 return (spa_vdev_state_exit(spa, NULL, 0));
2440
2441         vd->vdev_degraded = 1ULL;
2442         if (!vdev_is_dead(vd))
2443                 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2444                     aux);
2445
2446         return (spa_vdev_state_exit(spa, vd, 0));
2447 }
2448
2449 /*
2450  * Online the given vdev.
2451  *
2452  * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things.  First, any attached
2453  * spare device should be detached when the device finishes resilvering.
2454  * Second, the online should be treated like a 'test' online case, so no FMA
2455  * events are generated if the device fails to open.
2456  */
2457 int
2458 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2459 {
2460         vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2461
2462         spa_vdev_state_enter(spa, SCL_NONE);
2463
2464         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2465                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2466
2467         if (!vd->vdev_ops->vdev_op_leaf)
2468                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2469
2470         tvd = vd->vdev_top;
2471         vd->vdev_offline = B_FALSE;
2472         vd->vdev_tmpoffline = B_FALSE;
2473         vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2474         vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2475
2476         /* XXX - L2ARC 1.0 does not support expansion */
2477         if (!vd->vdev_aux) {
2478                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2479                         pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2480         }
2481
2482         vdev_reopen(tvd);
2483         vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2484
2485         if (!vd->vdev_aux) {
2486                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2487                         pvd->vdev_expanding = B_FALSE;
2488         }
2489
2490         if (newstate)
2491                 *newstate = vd->vdev_state;
2492         if ((flags & ZFS_ONLINE_UNSPARE) &&
2493             !vdev_is_dead(vd) && vd->vdev_parent &&
2494             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2495             vd->vdev_parent->vdev_child[0] == vd)
2496                 vd->vdev_unspare = B_TRUE;
2497
2498         if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2499
2500                 /* XXX - L2ARC 1.0 does not support expansion */
2501                 if (vd->vdev_aux)
2502                         return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2503                 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2504         }
2505         return (spa_vdev_state_exit(spa, vd, 0));
2506 }
2507
2508 static int
2509 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2510 {
2511         vdev_t *vd, *tvd;
2512         int error = 0;
2513         uint64_t generation;
2514         metaslab_group_t *mg;
2515
2516 top:
2517         spa_vdev_state_enter(spa, SCL_ALLOC);
2518
2519         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2520                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2521
2522         if (!vd->vdev_ops->vdev_op_leaf)
2523                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2524
2525         tvd = vd->vdev_top;
2526         mg = tvd->vdev_mg;
2527         generation = spa->spa_config_generation + 1;
2528
2529         /*
2530          * If the device isn't already offline, try to offline it.
2531          */
2532         if (!vd->vdev_offline) {
2533                 /*
2534                  * If this device has the only valid copy of some data,
2535                  * don't allow it to be offlined. Log devices are always
2536                  * expendable.
2537                  */
2538                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2539                     vdev_dtl_required(vd))
2540                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
2541
2542                 /*
2543                  * If the top-level is a slog and it has had allocations
2544                  * then proceed.  We check that the vdev's metaslab group
2545                  * is not NULL since it's possible that we may have just
2546                  * added this vdev but not yet initialized its metaslabs.
2547                  */
2548                 if (tvd->vdev_islog && mg != NULL) {
2549                         /*
2550                          * Prevent any future allocations.
2551                          */
2552                         metaslab_group_passivate(mg);
2553                         (void) spa_vdev_state_exit(spa, vd, 0);
2554
2555                         error = spa_offline_log(spa);
2556
2557                         spa_vdev_state_enter(spa, SCL_ALLOC);
2558
2559                         /*
2560                          * Check to see if the config has changed.
2561                          */
2562                         if (error || generation != spa->spa_config_generation) {
2563                                 metaslab_group_activate(mg);
2564                                 if (error)
2565                                         return (spa_vdev_state_exit(spa,
2566                                             vd, error));
2567                                 (void) spa_vdev_state_exit(spa, vd, 0);
2568                                 goto top;
2569                         }
2570                         ASSERT0(tvd->vdev_stat.vs_alloc);
2571                 }
2572
2573                 /*
2574                  * Offline this device and reopen its top-level vdev.
2575                  * If the top-level vdev is a log device then just offline
2576                  * it. Otherwise, if this action results in the top-level
2577                  * vdev becoming unusable, undo it and fail the request.
2578                  */
2579                 vd->vdev_offline = B_TRUE;
2580                 vdev_reopen(tvd);
2581
2582                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2583                     vdev_is_dead(tvd)) {
2584                         vd->vdev_offline = B_FALSE;
2585                         vdev_reopen(tvd);
2586                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
2587                 }
2588
2589                 /*
2590                  * Add the device back into the metaslab rotor so that
2591                  * once we online the device it's open for business.
2592                  */
2593                 if (tvd->vdev_islog && mg != NULL)
2594                         metaslab_group_activate(mg);
2595         }
2596
2597         vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2598
2599         return (spa_vdev_state_exit(spa, vd, 0));
2600 }
2601
2602 int
2603 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2604 {
2605         int error;
2606
2607         mutex_enter(&spa->spa_vdev_top_lock);
2608         error = vdev_offline_locked(spa, guid, flags);
2609         mutex_exit(&spa->spa_vdev_top_lock);
2610
2611         return (error);
2612 }
2613
2614 /*
2615  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
2616  * vdev_offline(), we assume the spa config is locked.  We also clear all
2617  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
2618  */
2619 void
2620 vdev_clear(spa_t *spa, vdev_t *vd)
2621 {
2622         vdev_t *rvd = spa->spa_root_vdev;
2623
2624         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2625
2626         if (vd == NULL)
2627                 vd = rvd;
2628
2629         vd->vdev_stat.vs_read_errors = 0;
2630         vd->vdev_stat.vs_write_errors = 0;
2631         vd->vdev_stat.vs_checksum_errors = 0;
2632
2633         for (int c = 0; c < vd->vdev_children; c++)
2634                 vdev_clear(spa, vd->vdev_child[c]);
2635
2636         if (vd == rvd) {
2637                 for (int c = 0; c < spa->spa_l2cache.sav_count; c++)
2638                         vdev_clear(spa, spa->spa_l2cache.sav_vdevs[c]);
2639
2640                 for (int c = 0; c < spa->spa_spares.sav_count; c++)
2641                         vdev_clear(spa, spa->spa_spares.sav_vdevs[c]);
2642         }
2643
2644         /*
2645          * If we're in the FAULTED state or have experienced failed I/O, then
2646          * clear the persistent state and attempt to reopen the device.  We
2647          * also mark the vdev config dirty, so that the new faulted state is
2648          * written out to disk.
2649          */
2650         if (vd->vdev_faulted || vd->vdev_degraded ||
2651             !vdev_readable(vd) || !vdev_writeable(vd)) {
2652
2653                 /*
2654                  * When reopening in reponse to a clear event, it may be due to
2655                  * a fmadm repair request.  In this case, if the device is
2656                  * still broken, we want to still post the ereport again.
2657                  */
2658                 vd->vdev_forcefault = B_TRUE;
2659
2660                 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2661                 vd->vdev_cant_read = B_FALSE;
2662                 vd->vdev_cant_write = B_FALSE;
2663
2664                 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2665
2666                 vd->vdev_forcefault = B_FALSE;
2667
2668                 if (vd != rvd && vdev_writeable(vd->vdev_top))
2669                         vdev_state_dirty(vd->vdev_top);
2670
2671                 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2672                         spa_async_request(spa, SPA_ASYNC_RESILVER);
2673
2674                 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2675         }
2676
2677         /*
2678          * When clearing a FMA-diagnosed fault, we always want to
2679          * unspare the device, as we assume that the original spare was
2680          * done in response to the FMA fault.
2681          */
2682         if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2683             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2684             vd->vdev_parent->vdev_child[0] == vd)
2685                 vd->vdev_unspare = B_TRUE;
2686 }
2687
2688 boolean_t
2689 vdev_is_dead(vdev_t *vd)
2690 {
2691         /*
2692          * Holes and missing devices are always considered "dead".
2693          * This simplifies the code since we don't have to check for
2694          * these types of devices in the various code paths.
2695          * Instead we rely on the fact that we skip over dead devices
2696          * before issuing I/O to them.
2697          */
2698         return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2699             vd->vdev_ops == &vdev_missing_ops);
2700 }
2701
2702 boolean_t
2703 vdev_readable(vdev_t *vd)
2704 {
2705         return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2706 }
2707
2708 boolean_t
2709 vdev_writeable(vdev_t *vd)
2710 {
2711         return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2712 }
2713
2714 boolean_t
2715 vdev_allocatable(vdev_t *vd)
2716 {
2717         uint64_t state = vd->vdev_state;
2718
2719         /*
2720          * We currently allow allocations from vdevs which may be in the
2721          * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2722          * fails to reopen then we'll catch it later when we're holding
2723          * the proper locks.  Note that we have to get the vdev state
2724          * in a local variable because although it changes atomically,
2725          * we're asking two separate questions about it.
2726          */
2727         return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2728             !vd->vdev_cant_write && !vd->vdev_ishole);
2729 }
2730
2731 boolean_t
2732 vdev_accessible(vdev_t *vd, zio_t *zio)
2733 {
2734         ASSERT(zio->io_vd == vd);
2735
2736         if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2737                 return (B_FALSE);
2738
2739         if (zio->io_type == ZIO_TYPE_READ)
2740                 return (!vd->vdev_cant_read);
2741
2742         if (zio->io_type == ZIO_TYPE_WRITE)
2743                 return (!vd->vdev_cant_write);
2744
2745         return (B_TRUE);
2746 }
2747
2748 /*
2749  * Get statistics for the given vdev.
2750  */
2751 void
2752 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2753 {
2754         spa_t *spa = vd->vdev_spa;
2755         vdev_t *rvd = spa->spa_root_vdev;
2756
2757         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2758
2759         mutex_enter(&vd->vdev_stat_lock);
2760         bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2761         vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2762         vs->vs_state = vd->vdev_state;
2763         vs->vs_rsize = vdev_get_min_asize(vd);
2764         if (vd->vdev_ops->vdev_op_leaf)
2765                 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2766         vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize;
2767         vs->vs_configured_ashift = vd->vdev_top != NULL
2768             ? vd->vdev_top->vdev_ashift : vd->vdev_ashift;
2769         vs->vs_logical_ashift = vd->vdev_logical_ashift;
2770         vs->vs_physical_ashift = vd->vdev_physical_ashift;
2771         if (vd->vdev_aux == NULL && vd == vd->vdev_top && !vd->vdev_ishole) {
2772                 vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation;
2773         }
2774
2775         /*
2776          * If we're getting stats on the root vdev, aggregate the I/O counts
2777          * over all top-level vdevs (i.e. the direct children of the root).
2778          */
2779         if (vd == rvd) {
2780                 for (int c = 0; c < rvd->vdev_children; c++) {
2781                         vdev_t *cvd = rvd->vdev_child[c];
2782                         vdev_stat_t *cvs = &cvd->vdev_stat;
2783
2784                         for (int t = 0; t < ZIO_TYPES; t++) {
2785                                 vs->vs_ops[t] += cvs->vs_ops[t];
2786                                 vs->vs_bytes[t] += cvs->vs_bytes[t];
2787                         }
2788                         cvs->vs_scan_removing = cvd->vdev_removing;
2789                 }
2790         }
2791         mutex_exit(&vd->vdev_stat_lock);
2792 }
2793
2794 void
2795 vdev_clear_stats(vdev_t *vd)
2796 {
2797         mutex_enter(&vd->vdev_stat_lock);
2798         vd->vdev_stat.vs_space = 0;
2799         vd->vdev_stat.vs_dspace = 0;
2800         vd->vdev_stat.vs_alloc = 0;
2801         mutex_exit(&vd->vdev_stat_lock);
2802 }
2803
2804 void
2805 vdev_scan_stat_init(vdev_t *vd)
2806 {
2807         vdev_stat_t *vs = &vd->vdev_stat;
2808
2809         for (int c = 0; c < vd->vdev_children; c++)
2810                 vdev_scan_stat_init(vd->vdev_child[c]);
2811
2812         mutex_enter(&vd->vdev_stat_lock);
2813         vs->vs_scan_processed = 0;
2814         mutex_exit(&vd->vdev_stat_lock);
2815 }
2816
2817 void
2818 vdev_stat_update(zio_t *zio, uint64_t psize)
2819 {
2820         spa_t *spa = zio->io_spa;
2821         vdev_t *rvd = spa->spa_root_vdev;
2822         vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2823         vdev_t *pvd;
2824         uint64_t txg = zio->io_txg;
2825         vdev_stat_t *vs = &vd->vdev_stat;
2826         zio_type_t type = zio->io_type;
2827         int flags = zio->io_flags;
2828
2829         /*
2830          * If this i/o is a gang leader, it didn't do any actual work.
2831          */
2832         if (zio->io_gang_tree)
2833                 return;
2834
2835         if (zio->io_error == 0) {
2836                 /*
2837                  * If this is a root i/o, don't count it -- we've already
2838                  * counted the top-level vdevs, and vdev_get_stats() will
2839                  * aggregate them when asked.  This reduces contention on
2840                  * the root vdev_stat_lock and implicitly handles blocks
2841                  * that compress away to holes, for which there is no i/o.
2842                  * (Holes never create vdev children, so all the counters
2843                  * remain zero, which is what we want.)
2844                  *
2845                  * Note: this only applies to successful i/o (io_error == 0)
2846                  * because unlike i/o counts, errors are not additive.
2847                  * When reading a ditto block, for example, failure of
2848                  * one top-level vdev does not imply a root-level error.
2849                  */
2850                 if (vd == rvd)
2851                         return;
2852
2853                 ASSERT(vd == zio->io_vd);
2854
2855                 if (flags & ZIO_FLAG_IO_BYPASS)
2856                         return;
2857
2858                 mutex_enter(&vd->vdev_stat_lock);
2859
2860                 if (flags & ZIO_FLAG_IO_REPAIR) {
2861                         if (flags & ZIO_FLAG_SCAN_THREAD) {
2862                                 dsl_scan_phys_t *scn_phys =
2863                                     &spa->spa_dsl_pool->dp_scan->scn_phys;
2864                                 uint64_t *processed = &scn_phys->scn_processed;
2865
2866                                 /* XXX cleanup? */
2867                                 if (vd->vdev_ops->vdev_op_leaf)
2868                                         atomic_add_64(processed, psize);
2869                                 vs->vs_scan_processed += psize;
2870                         }
2871
2872                         if (flags & ZIO_FLAG_SELF_HEAL)
2873                                 vs->vs_self_healed += psize;
2874                 }
2875
2876                 vs->vs_ops[type]++;
2877                 vs->vs_bytes[type] += psize;
2878
2879                 mutex_exit(&vd->vdev_stat_lock);
2880                 return;
2881         }
2882
2883         if (flags & ZIO_FLAG_SPECULATIVE)
2884                 return;
2885
2886         /*
2887          * If this is an I/O error that is going to be retried, then ignore the
2888          * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
2889          * hard errors, when in reality they can happen for any number of
2890          * innocuous reasons (bus resets, MPxIO link failure, etc).
2891          */
2892         if (zio->io_error == EIO &&
2893             !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2894                 return;
2895
2896         /*
2897          * Intent logs writes won't propagate their error to the root
2898          * I/O so don't mark these types of failures as pool-level
2899          * errors.
2900          */
2901         if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2902                 return;
2903
2904         mutex_enter(&vd->vdev_stat_lock);
2905         if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2906                 if (zio->io_error == ECKSUM)
2907                         vs->vs_checksum_errors++;
2908                 else
2909                         vs->vs_read_errors++;
2910         }
2911         if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2912                 vs->vs_write_errors++;
2913         mutex_exit(&vd->vdev_stat_lock);
2914
2915         if (type == ZIO_TYPE_WRITE && txg != 0 &&
2916             (!(flags & ZIO_FLAG_IO_REPAIR) ||
2917             (flags & ZIO_FLAG_SCAN_THREAD) ||
2918             spa->spa_claiming)) {
2919                 /*
2920                  * This is either a normal write (not a repair), or it's
2921                  * a repair induced by the scrub thread, or it's a repair
2922                  * made by zil_claim() during spa_load() in the first txg.
2923                  * In the normal case, we commit the DTL change in the same
2924                  * txg as the block was born.  In the scrub-induced repair
2925                  * case, we know that scrubs run in first-pass syncing context,
2926                  * so we commit the DTL change in spa_syncing_txg(spa).
2927                  * In the zil_claim() case, we commit in spa_first_txg(spa).
2928                  *
2929                  * We currently do not make DTL entries for failed spontaneous
2930                  * self-healing writes triggered by normal (non-scrubbing)
2931                  * reads, because we have no transactional context in which to
2932                  * do so -- and it's not clear that it'd be desirable anyway.
2933                  */
2934                 if (vd->vdev_ops->vdev_op_leaf) {
2935                         uint64_t commit_txg = txg;
2936                         if (flags & ZIO_FLAG_SCAN_THREAD) {
2937                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2938                                 ASSERT(spa_sync_pass(spa) == 1);
2939                                 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2940                                 commit_txg = spa_syncing_txg(spa);
2941                         } else if (spa->spa_claiming) {
2942                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2943                                 commit_txg = spa_first_txg(spa);
2944                         }
2945                         ASSERT(commit_txg >= spa_syncing_txg(spa));
2946                         if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2947                                 return;
2948                         for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2949                                 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2950                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2951                 }
2952                 if (vd != rvd)
2953                         vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2954         }
2955 }
2956
2957 /*
2958  * Update the in-core space usage stats for this vdev, its metaslab class,
2959  * and the root vdev.
2960  */
2961 void
2962 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2963     int64_t space_delta)
2964 {
2965         int64_t dspace_delta = space_delta;
2966         spa_t *spa = vd->vdev_spa;
2967         vdev_t *rvd = spa->spa_root_vdev;
2968         metaslab_group_t *mg = vd->vdev_mg;
2969         metaslab_class_t *mc = mg ? mg->mg_class : NULL;
2970
2971         ASSERT(vd == vd->vdev_top);
2972
2973         /*
2974          * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2975          * factor.  We must calculate this here and not at the root vdev
2976          * because the root vdev's psize-to-asize is simply the max of its
2977          * childrens', thus not accurate enough for us.
2978          */
2979         ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2980         ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2981         dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2982             vd->vdev_deflate_ratio;
2983
2984         mutex_enter(&vd->vdev_stat_lock);
2985         vd->vdev_stat.vs_alloc += alloc_delta;
2986         vd->vdev_stat.vs_space += space_delta;
2987         vd->vdev_stat.vs_dspace += dspace_delta;
2988         mutex_exit(&vd->vdev_stat_lock);
2989
2990         if (mc == spa_normal_class(spa)) {
2991                 mutex_enter(&rvd->vdev_stat_lock);
2992                 rvd->vdev_stat.vs_alloc += alloc_delta;
2993                 rvd->vdev_stat.vs_space += space_delta;
2994                 rvd->vdev_stat.vs_dspace += dspace_delta;
2995                 mutex_exit(&rvd->vdev_stat_lock);
2996         }
2997
2998         if (mc != NULL) {
2999                 ASSERT(rvd == vd->vdev_parent);
3000                 ASSERT(vd->vdev_ms_count != 0);
3001
3002                 metaslab_class_space_update(mc,
3003                     alloc_delta, defer_delta, space_delta, dspace_delta);
3004         }
3005 }
3006
3007 /*
3008  * Mark a top-level vdev's config as dirty, placing it on the dirty list
3009  * so that it will be written out next time the vdev configuration is synced.
3010  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
3011  */
3012 void
3013 vdev_config_dirty(vdev_t *vd)
3014 {
3015         spa_t *spa = vd->vdev_spa;
3016         vdev_t *rvd = spa->spa_root_vdev;
3017         int c;
3018
3019         ASSERT(spa_writeable(spa));
3020
3021         /*
3022          * If this is an aux vdev (as with l2cache and spare devices), then we
3023          * update the vdev config manually and set the sync flag.
3024          */
3025         if (vd->vdev_aux != NULL) {
3026                 spa_aux_vdev_t *sav = vd->vdev_aux;
3027                 nvlist_t **aux;
3028                 uint_t naux;
3029
3030                 for (c = 0; c < sav->sav_count; c++) {
3031                         if (sav->sav_vdevs[c] == vd)
3032                                 break;
3033                 }
3034
3035                 if (c == sav->sav_count) {
3036                         /*
3037                          * We're being removed.  There's nothing more to do.
3038                          */
3039                         ASSERT(sav->sav_sync == B_TRUE);
3040                         return;
3041                 }
3042
3043                 sav->sav_sync = B_TRUE;
3044
3045                 if (nvlist_lookup_nvlist_array(sav->sav_config,
3046                     ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
3047                         VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
3048                             ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
3049                 }
3050
3051                 ASSERT(c < naux);
3052
3053                 /*
3054                  * Setting the nvlist in the middle if the array is a little
3055                  * sketchy, but it will work.
3056                  */
3057                 nvlist_free(aux[c]);
3058                 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
3059
3060                 return;
3061         }
3062
3063         /*
3064          * The dirty list is protected by the SCL_CONFIG lock.  The caller
3065          * must either hold SCL_CONFIG as writer, or must be the sync thread
3066          * (which holds SCL_CONFIG as reader).  There's only one sync thread,
3067          * so this is sufficient to ensure mutual exclusion.
3068          */
3069         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3070             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3071             spa_config_held(spa, SCL_CONFIG, RW_READER)));
3072
3073         if (vd == rvd) {
3074                 for (c = 0; c < rvd->vdev_children; c++)
3075                         vdev_config_dirty(rvd->vdev_child[c]);
3076         } else {
3077                 ASSERT(vd == vd->vdev_top);
3078
3079                 if (!list_link_active(&vd->vdev_config_dirty_node) &&
3080                     !vd->vdev_ishole)
3081                         list_insert_head(&spa->spa_config_dirty_list, vd);
3082         }
3083 }
3084
3085 void
3086 vdev_config_clean(vdev_t *vd)
3087 {
3088         spa_t *spa = vd->vdev_spa;
3089
3090         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3091             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3092             spa_config_held(spa, SCL_CONFIG, RW_READER)));
3093
3094         ASSERT(list_link_active(&vd->vdev_config_dirty_node));
3095         list_remove(&spa->spa_config_dirty_list, vd);
3096 }
3097
3098 /*
3099  * Mark a top-level vdev's state as dirty, so that the next pass of
3100  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
3101  * the state changes from larger config changes because they require
3102  * much less locking, and are often needed for administrative actions.
3103  */
3104 void
3105 vdev_state_dirty(vdev_t *vd)
3106 {
3107         spa_t *spa = vd->vdev_spa;
3108
3109         ASSERT(spa_writeable(spa));
3110         ASSERT(vd == vd->vdev_top);
3111
3112         /*
3113          * The state list is protected by the SCL_STATE lock.  The caller
3114          * must either hold SCL_STATE as writer, or must be the sync thread
3115          * (which holds SCL_STATE as reader).  There's only one sync thread,
3116          * so this is sufficient to ensure mutual exclusion.
3117          */
3118         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3119             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3120             spa_config_held(spa, SCL_STATE, RW_READER)));
3121
3122         if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
3123                 list_insert_head(&spa->spa_state_dirty_list, vd);
3124 }
3125
3126 void
3127 vdev_state_clean(vdev_t *vd)
3128 {
3129         spa_t *spa = vd->vdev_spa;
3130
3131         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3132             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3133             spa_config_held(spa, SCL_STATE, RW_READER)));
3134
3135         ASSERT(list_link_active(&vd->vdev_state_dirty_node));
3136         list_remove(&spa->spa_state_dirty_list, vd);
3137 }
3138
3139 /*
3140  * Propagate vdev state up from children to parent.
3141  */
3142 void
3143 vdev_propagate_state(vdev_t *vd)
3144 {
3145         spa_t *spa = vd->vdev_spa;
3146         vdev_t *rvd = spa->spa_root_vdev;
3147         int degraded = 0, faulted = 0;
3148         int corrupted = 0;
3149         vdev_t *child;
3150
3151         if (vd->vdev_children > 0) {
3152                 for (int c = 0; c < vd->vdev_children; c++) {
3153                         child = vd->vdev_child[c];
3154
3155                         /*
3156                          * Don't factor holes into the decision.
3157                          */
3158                         if (child->vdev_ishole)
3159                                 continue;
3160
3161                         if (!vdev_readable(child) ||
3162                             (!vdev_writeable(child) && spa_writeable(spa))) {
3163                                 /*
3164                                  * Root special: if there is a top-level log
3165                                  * device, treat the root vdev as if it were
3166                                  * degraded.
3167                                  */
3168                                 if (child->vdev_islog && vd == rvd)
3169                                         degraded++;
3170                                 else
3171                                         faulted++;
3172                         } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
3173                                 degraded++;
3174                         }
3175
3176                         if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
3177                                 corrupted++;
3178                 }
3179
3180                 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
3181
3182                 /*
3183                  * Root special: if there is a top-level vdev that cannot be
3184                  * opened due to corrupted metadata, then propagate the root
3185                  * vdev's aux state as 'corrupt' rather than 'insufficient
3186                  * replicas'.
3187                  */
3188                 if (corrupted && vd == rvd &&
3189                     rvd->vdev_state == VDEV_STATE_CANT_OPEN)
3190                         vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
3191                             VDEV_AUX_CORRUPT_DATA);
3192         }
3193
3194         if (vd->vdev_parent)
3195                 vdev_propagate_state(vd->vdev_parent);
3196 }
3197
3198 /*
3199  * Set a vdev's state.  If this is during an open, we don't update the parent
3200  * state, because we're in the process of opening children depth-first.
3201  * Otherwise, we propagate the change to the parent.
3202  *
3203  * If this routine places a device in a faulted state, an appropriate ereport is
3204  * generated.
3205  */
3206 void
3207 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
3208 {
3209         uint64_t save_state;
3210         spa_t *spa = vd->vdev_spa;
3211
3212         if (state == vd->vdev_state) {
3213                 vd->vdev_stat.vs_aux = aux;
3214                 return;
3215         }
3216
3217         save_state = vd->vdev_state;
3218
3219         vd->vdev_state = state;
3220         vd->vdev_stat.vs_aux = aux;
3221
3222         /*
3223          * If we are setting the vdev state to anything but an open state, then
3224          * always close the underlying device unless the device has requested
3225          * a delayed close (i.e. we're about to remove or fault the device).
3226          * Otherwise, we keep accessible but invalid devices open forever.
3227          * We don't call vdev_close() itself, because that implies some extra
3228          * checks (offline, etc) that we don't want here.  This is limited to
3229          * leaf devices, because otherwise closing the device will affect other
3230          * children.
3231          */
3232         if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
3233             vd->vdev_ops->vdev_op_leaf)
3234                 vd->vdev_ops->vdev_op_close(vd);
3235
3236         /*
3237          * If we have brought this vdev back into service, we need
3238          * to notify fmd so that it can gracefully repair any outstanding
3239          * cases due to a missing device.  We do this in all cases, even those
3240          * that probably don't correlate to a repaired fault.  This is sure to
3241          * catch all cases, and we let the zfs-retire agent sort it out.  If
3242          * this is a transient state it's OK, as the retire agent will
3243          * double-check the state of the vdev before repairing it.
3244          */
3245         if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
3246             vd->vdev_prevstate != state)
3247                 zfs_post_state_change(spa, vd);
3248
3249         if (vd->vdev_removed &&
3250             state == VDEV_STATE_CANT_OPEN &&
3251             (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
3252                 /*
3253                  * If the previous state is set to VDEV_STATE_REMOVED, then this
3254                  * device was previously marked removed and someone attempted to
3255                  * reopen it.  If this failed due to a nonexistent device, then
3256                  * keep the device in the REMOVED state.  We also let this be if
3257                  * it is one of our special test online cases, which is only
3258                  * attempting to online the device and shouldn't generate an FMA
3259                  * fault.
3260                  */
3261                 vd->vdev_state = VDEV_STATE_REMOVED;
3262                 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
3263         } else if (state == VDEV_STATE_REMOVED) {
3264                 vd->vdev_removed = B_TRUE;
3265         } else if (state == VDEV_STATE_CANT_OPEN) {
3266                 /*
3267                  * If we fail to open a vdev during an import or recovery, we
3268                  * mark it as "not available", which signifies that it was
3269                  * never there to begin with.  Failure to open such a device
3270                  * is not considered an error.
3271                  */
3272                 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3273                     spa_load_state(spa) == SPA_LOAD_RECOVER) &&
3274                     vd->vdev_ops->vdev_op_leaf)
3275                         vd->vdev_not_present = 1;
3276
3277                 /*
3278                  * Post the appropriate ereport.  If the 'prevstate' field is
3279                  * set to something other than VDEV_STATE_UNKNOWN, it indicates
3280                  * that this is part of a vdev_reopen().  In this case, we don't
3281                  * want to post the ereport if the device was already in the
3282                  * CANT_OPEN state beforehand.
3283                  *
3284                  * If the 'checkremove' flag is set, then this is an attempt to
3285                  * online the device in response to an insertion event.  If we
3286                  * hit this case, then we have detected an insertion event for a
3287                  * faulted or offline device that wasn't in the removed state.
3288                  * In this scenario, we don't post an ereport because we are
3289                  * about to replace the device, or attempt an online with
3290                  * vdev_forcefault, which will generate the fault for us.
3291                  */
3292                 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3293                     !vd->vdev_not_present && !vd->vdev_checkremove &&
3294                     vd != spa->spa_root_vdev) {
3295                         const char *class;
3296
3297                         switch (aux) {
3298                         case VDEV_AUX_OPEN_FAILED:
3299                                 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3300                                 break;
3301                         case VDEV_AUX_CORRUPT_DATA:
3302                                 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3303                                 break;
3304                         case VDEV_AUX_NO_REPLICAS:
3305                                 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3306                                 break;
3307                         case VDEV_AUX_BAD_GUID_SUM:
3308                                 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3309                                 break;
3310                         case VDEV_AUX_TOO_SMALL:
3311                                 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3312                                 break;
3313                         case VDEV_AUX_BAD_LABEL:
3314                                 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3315                                 break;
3316                         default:
3317                                 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3318                         }
3319
3320                         zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3321                 }
3322
3323                 /* Erase any notion of persistent removed state */
3324                 vd->vdev_removed = B_FALSE;
3325         } else {
3326                 vd->vdev_removed = B_FALSE;
3327         }
3328
3329         if (!isopen && vd->vdev_parent)
3330                 vdev_propagate_state(vd->vdev_parent);
3331 }
3332
3333 /*
3334  * Check the vdev configuration to ensure that it's capable of supporting
3335  * a root pool.
3336  *
3337  * On Solaris, we do not support RAID-Z or partial configuration.  In
3338  * addition, only a single top-level vdev is allowed and none of the
3339  * leaves can be wholedisks.
3340  *
3341  * For FreeBSD, we can boot from any configuration. There is a
3342  * limitation that the boot filesystem must be either uncompressed or
3343  * compresses with lzjb compression but I'm not sure how to enforce
3344  * that here.
3345  */
3346 boolean_t
3347 vdev_is_bootable(vdev_t *vd)
3348 {
3349 #ifdef sun
3350         if (!vd->vdev_ops->vdev_op_leaf) {
3351                 char *vdev_type = vd->vdev_ops->vdev_op_type;
3352
3353                 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3354                     vd->vdev_children > 1) {
3355                         return (B_FALSE);
3356                 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3357                     strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3358                         return (B_FALSE);
3359                 }
3360         } else if (vd->vdev_wholedisk == 1) {
3361                 return (B_FALSE);
3362         }
3363
3364         for (int c = 0; c < vd->vdev_children; c++) {
3365                 if (!vdev_is_bootable(vd->vdev_child[c]))
3366                         return (B_FALSE);
3367         }
3368 #endif  /* sun */
3369         return (B_TRUE);
3370 }
3371
3372 /*
3373  * Load the state from the original vdev tree (ovd) which
3374  * we've retrieved from the MOS config object. If the original
3375  * vdev was offline or faulted then we transfer that state to the
3376  * device in the current vdev tree (nvd).
3377  */
3378 void
3379 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3380 {
3381         spa_t *spa = nvd->vdev_spa;
3382
3383         ASSERT(nvd->vdev_top->vdev_islog);
3384         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3385         ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3386
3387         for (int c = 0; c < nvd->vdev_children; c++)
3388                 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3389
3390         if (nvd->vdev_ops->vdev_op_leaf) {
3391                 /*
3392                  * Restore the persistent vdev state
3393                  */
3394                 nvd->vdev_offline = ovd->vdev_offline;
3395                 nvd->vdev_faulted = ovd->vdev_faulted;
3396                 nvd->vdev_degraded = ovd->vdev_degraded;
3397                 nvd->vdev_removed = ovd->vdev_removed;
3398         }
3399 }
3400
3401 /*
3402  * Determine if a log device has valid content.  If the vdev was
3403  * removed or faulted in the MOS config then we know that
3404  * the content on the log device has already been written to the pool.
3405  */
3406 boolean_t
3407 vdev_log_state_valid(vdev_t *vd)
3408 {
3409         if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3410             !vd->vdev_removed)
3411                 return (B_TRUE);
3412
3413         for (int c = 0; c < vd->vdev_children; c++)
3414                 if (vdev_log_state_valid(vd->vdev_child[c]))
3415                         return (B_TRUE);
3416
3417         return (B_FALSE);
3418 }
3419
3420 /*
3421  * Expand a vdev if possible.
3422  */
3423 void
3424 vdev_expand(vdev_t *vd, uint64_t txg)
3425 {
3426         ASSERT(vd->vdev_top == vd);
3427         ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3428
3429         if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3430                 VERIFY(vdev_metaslab_init(vd, txg) == 0);
3431                 vdev_config_dirty(vd);
3432         }
3433 }
3434
3435 /*
3436  * Split a vdev.
3437  */
3438 void
3439 vdev_split(vdev_t *vd)
3440 {
3441         vdev_t *cvd, *pvd = vd->vdev_parent;
3442
3443         vdev_remove_child(pvd, vd);
3444         vdev_compact_children(pvd);
3445
3446         cvd = pvd->vdev_child[0];
3447         if (pvd->vdev_children == 1) {
3448                 vdev_remove_parent(cvd);
3449                 cvd->vdev_splitting = B_TRUE;
3450         }
3451         vdev_propagate_state(cvd);
3452 }
3453
3454 void
3455 vdev_deadman(vdev_t *vd)
3456 {
3457         for (int c = 0; c < vd->vdev_children; c++) {
3458                 vdev_t *cvd = vd->vdev_child[c];
3459
3460                 vdev_deadman(cvd);
3461         }
3462
3463         if (vd->vdev_ops->vdev_op_leaf) {
3464                 vdev_queue_t *vq = &vd->vdev_queue;
3465
3466                 mutex_enter(&vq->vq_lock);
3467                 if (avl_numnodes(&vq->vq_active_tree) > 0) {
3468                         spa_t *spa = vd->vdev_spa;
3469                         zio_t *fio;
3470                         uint64_t delta;
3471
3472                         /*
3473                          * Look at the head of all the pending queues,
3474                          * if any I/O has been outstanding for longer than
3475                          * the spa_deadman_synctime we panic the system.
3476                          */
3477                         fio = avl_first(&vq->vq_active_tree);
3478                         delta = gethrtime() - fio->io_timestamp;
3479                         if (delta > spa_deadman_synctime(spa)) {
3480                                 zfs_dbgmsg("SLOW IO: zio timestamp %lluns, "
3481                                     "delta %lluns, last io %lluns",
3482                                     fio->io_timestamp, delta,
3483                                     vq->vq_io_complete_ts);
3484                                 fm_panic("I/O to pool '%s' appears to be "
3485                                     "hung on vdev guid %llu at '%s'.",
3486                                     spa_name(spa),
3487                                     (long long unsigned int) vd->vdev_guid,
3488                                     vd->vdev_path);
3489                         }
3490                 }
3491                 mutex_exit(&vq->vq_lock);
3492         }
3493 }