]> CyberLeo.Net >> Repos - FreeBSD/releng/10.2.git/blob - contrib/ntp/parseutil/dcfd.c
- Copy stable/10@285827 to releng/10.2 in preparation for 10.2-RC1
[FreeBSD/releng/10.2.git] / contrib / ntp / parseutil / dcfd.c
1 /*
2  * /src/NTP/REPOSITORY/ntp4-dev/parseutil/dcfd.c,v 4.18 2005/10/07 22:08:18 kardel RELEASE_20051008_A
3  *
4  * dcfd.c,v 4.18 2005/10/07 22:08:18 kardel RELEASE_20051008_A
5  *
6  * DCF77 100/200ms pulse synchronisation daemon program (via 50Baud serial line)
7  *
8  * Features:
9  *  DCF77 decoding
10  *  simple NTP loopfilter logic for local clock
11  *  interactive display for debugging
12  *
13  * Lacks:
14  *  Leap second handling (at that level you should switch to NTP Version 4 - really!)
15  *
16  * Copyright (c) 1995-2015 by Frank Kardel <kardel <AT> ntp.org>
17  * Copyright (c) 1989-1994 by Frank Kardel, Friedrich-Alexander Universitaet Erlangen-Nuernberg, Germany
18  *
19  * Redistribution and use in source and binary forms, with or without
20  * modification, are permitted provided that the following conditions
21  * are met:
22  * 1. Redistributions of source code must retain the above copyright
23  *    notice, this list of conditions and the following disclaimer.
24  * 2. Redistributions in binary form must reproduce the above copyright
25  *    notice, this list of conditions and the following disclaimer in the
26  *    documentation and/or other materials provided with the distribution.
27  * 3. Neither the name of the author nor the names of its contributors
28  *    may be used to endorse or promote products derived from this software
29  *    without specific prior written permission.
30  *
31  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
32  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
35  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41  * SUCH DAMAGE.
42  *
43  */
44
45 #ifdef HAVE_CONFIG_H
46 # include <config.h>
47 #endif
48
49 #include <sys/ioctl.h>
50 #include <unistd.h>
51 #include <stdio.h>
52 #include <fcntl.h>
53 #include <sys/types.h>
54 #include <sys/time.h>
55 #include <signal.h>
56 #include <syslog.h>
57 #include <time.h>
58
59 /*
60  * NTP compilation environment
61  */
62 #include "ntp_stdlib.h"
63 #include "ntpd.h"   /* indirectly include ntp.h to get YEAR_PIVOT   Y2KFixes */
64
65 /*
66  * select which terminal handling to use (currently only SysV variants)
67  */
68 #if defined(HAVE_TERMIOS_H) || defined(STREAM)
69 #include <termios.h>
70 #define TTY_GETATTR(_FD_, _ARG_) tcgetattr((_FD_), (_ARG_))
71 #define TTY_SETATTR(_FD_, _ARG_) tcsetattr((_FD_), TCSANOW, (_ARG_))
72 #else  /* not HAVE_TERMIOS_H || STREAM */
73 # if defined(HAVE_TERMIO_H) || defined(HAVE_SYSV_TTYS)
74 #  include <termio.h>
75 #  define TTY_GETATTR(_FD_, _ARG_) ioctl((_FD_), TCGETA, (_ARG_))
76 #  define TTY_SETATTR(_FD_, _ARG_) ioctl((_FD_), TCSETAW, (_ARG_))
77 # endif/* HAVE_TERMIO_H || HAVE_SYSV_TTYS */
78 #endif /* not HAVE_TERMIOS_H || STREAM */
79
80
81 #ifndef TTY_GETATTR
82 #include "Bletch: MUST DEFINE ONE OF 'HAVE_TERMIOS_H' or 'HAVE_TERMIO_H'"
83 #endif
84
85 #ifndef days_per_year
86 #define days_per_year(_x_) (((_x_) % 4) ? 365 : (((_x_) % 400) ? 365 : 366))
87 #endif
88
89 #define timernormalize(_a_) \
90         if ((_a_)->tv_usec >= 1000000) \
91         { \
92                 (_a_)->tv_sec  += (_a_)->tv_usec / 1000000; \
93                 (_a_)->tv_usec  = (_a_)->tv_usec % 1000000; \
94         } \
95         if ((_a_)->tv_usec < 0) \
96         { \
97                 (_a_)->tv_sec  -= 1 + (-(_a_)->tv_usec / 1000000); \
98                 (_a_)->tv_usec = 999999 - (-(_a_)->tv_usec - 1); \
99         }
100
101 #ifdef timeradd
102 #undef timeradd
103 #endif
104 #define timeradd(_a_, _b_) \
105         (_a_)->tv_sec  += (_b_)->tv_sec; \
106         (_a_)->tv_usec += (_b_)->tv_usec; \
107         timernormalize((_a_))
108
109 #ifdef timersub
110 #undef timersub
111 #endif
112 #define timersub(_a_, _b_) \
113         (_a_)->tv_sec  -= (_b_)->tv_sec; \
114         (_a_)->tv_usec -= (_b_)->tv_usec; \
115         timernormalize((_a_))
116
117 /*
118  * debug macros
119  */
120 #define PRINTF if (interactive) printf
121 #define LPRINTF if (interactive && loop_filter_debug) printf
122
123 #ifdef DEBUG
124 #define dprintf(_x_) LPRINTF _x_
125 #else
126 #define dprintf(_x_)
127 #endif
128
129 #ifdef DECL_ERRNO
130      extern int errno;
131 #endif
132
133 static char *revision = "4.18";
134
135 /*
136  * display received data (avoids also detaching from tty)
137  */
138 static int interactive = 0;
139
140 /*
141  * display loopfilter (clock control) variables
142  */
143 static int loop_filter_debug = 0;
144
145 /*
146  * do not set/adjust system time
147  */
148 static int no_set = 0;
149
150 /*
151  * time that passes between start of DCF impulse and time stamping (fine
152  * adjustment) in microseconds (receiver/OS dependent)
153  */
154 #define DEFAULT_DELAY   230000  /* rough estimate */
155
156 /*
157  * The two states we can be in - eithe we receive nothing
158  * usable or we have the correct time
159  */
160 #define NO_SYNC         0x01
161 #define SYNC            0x02
162
163 static int    sync_state = NO_SYNC;
164 static time_t last_sync;
165
166 static unsigned long ticks = 0;
167
168 static char pat[] = "-\\|/";
169
170 #define LINES           (24-2)  /* error lines after which the two headlines are repeated */
171
172 #define MAX_UNSYNC      (10*60) /* allow synchronisation loss for 10 minutes */
173 #define NOTICE_INTERVAL (20*60) /* mention missing synchronisation every 20 minutes */
174
175 /*
176  * clock adjustment PLL - see NTP protocol spec (RFC1305) for details
177  */
178
179 #define USECSCALE       10
180 #define TIMECONSTANT    2
181 #define ADJINTERVAL     0
182 #define FREQ_WEIGHT     18
183 #define PHASE_WEIGHT    7
184 #define MAX_DRIFT       0x3FFFFFFF
185
186 #define R_SHIFT(_X_, _Y_) (((_X_) < 0) ? -(-(_X_) >> (_Y_)) : ((_X_) >> (_Y_)))
187
188 static long max_adj_offset_usec = 128000;
189
190 static long clock_adjust = 0;   /* current adjustment value (usec * 2^USECSCALE) */
191 static long accum_drift   = 0;  /* accumulated drift value  (usec / ADJINTERVAL) */
192 static long adjustments  = 0;
193 static char skip_adjust  = 1;   /* discard first adjustment (bad samples) */
194
195 /*
196  * DCF77 state flags
197  */
198 #define DCFB_ANNOUNCE           0x0001 /* switch time zone warning (DST switch) */
199 #define DCFB_DST                0x0002 /* DST in effect */
200 #define DCFB_LEAP               0x0004 /* LEAP warning (1 hour prior to occurrence) */
201 #define DCFB_CALLBIT            0x0008 /* "call bit" used to signalize irregularities in the control facilities */
202
203 struct clocktime                /* clock time broken up from time code */
204 {
205         long wday;              /* Day of week: 1: Monday - 7: Sunday */
206         long day;
207         long month;
208         long year;
209         long hour;
210         long minute;
211         long second;
212         long usecond;
213         long utcoffset; /* in minutes */
214         long flags;             /* current clock status  (DCF77 state flags) */
215 };
216
217 typedef struct clocktime clocktime_t;
218
219 /*
220  * (usually) quick constant multiplications
221  */
222 #ifndef TIMES10
223 #define TIMES10(_X_) (((_X_) << 3) + ((_X_) << 1))      /* *8 + *2 */
224 #endif
225 #ifndef TIMES24
226 #define TIMES24(_X_) (((_X_) << 4) + ((_X_) << 3))      /* *16 + *8 */
227 #endif
228 #ifndef TIMES60
229 #define TIMES60(_X_) ((((_X_) << 4)  - (_X_)) << 2)     /* *(16 - 1) *4 */
230 #endif
231
232 /*
233  * generic l_abs() function
234  */
235 #define l_abs(_x_)     (((_x_) < 0) ? -(_x_) : (_x_))
236
237 /*
238  * conversion related return/error codes
239  */
240 #define CVT_MASK        0x0000000F /* conversion exit code */
241 #define   CVT_NONE      0x00000001 /* format not applicable */
242 #define   CVT_FAIL      0x00000002 /* conversion failed - error code returned */
243 #define   CVT_OK        0x00000004 /* conversion succeeded */
244 #define CVT_BADFMT      0x00000010 /* general format error - (unparsable) */
245 #define CVT_BADDATE     0x00000020 /* invalid date */
246 #define CVT_BADTIME     0x00000040 /* invalid time */
247
248 /*
249  * DCF77 raw time code
250  *
251  * From "Zur Zeit", Physikalisch-Technische Bundesanstalt (PTB), Braunschweig
252  * und Berlin, Maerz 1989
253  *
254  * Timecode transmission:
255  * AM:
256  *      time marks are send every second except for the second before the
257  *      next minute mark
258  *      time marks consist of a reduction of transmitter power to 25%
259  *      of the nominal level
260  *      the falling edge is the time indication (on time)
261  *      time marks of a 100ms duration constitute a logical 0
262  *      time marks of a 200ms duration constitute a logical 1
263  * FM:
264  *      see the spec. (basically a (non-)inverted psuedo random phase shift)
265  *
266  * Encoding:
267  * Second       Contents
268  * 0  - 10      AM: free, FM: 0
269  * 11 - 14      free
270  * 15           R     - "call bit" used to signalize irregularities in the control facilities
271  *                      (until 2003 indicated transmission via alternate antenna)
272  * 16           A1    - expect zone change (1 hour before)
273  * 17 - 18      Z1,Z2 - time zone
274  *               0  0 illegal
275  *               0  1 MEZ  (MET)
276  *               1  0 MESZ (MED, MET DST)
277  *               1  1 illegal
278  * 19           A2    - expect leap insertion/deletion (1 hour before)
279  * 20           S     - start of time code (1)
280  * 21 - 24      M1    - BCD (lsb first) Minutes
281  * 25 - 27      M10   - BCD (lsb first) 10 Minutes
282  * 28           P1    - Minute Parity (even)
283  * 29 - 32      H1    - BCD (lsb first) Hours
284  * 33 - 34      H10   - BCD (lsb first) 10 Hours
285  * 35           P2    - Hour Parity (even)
286  * 36 - 39      D1    - BCD (lsb first) Days
287  * 40 - 41      D10   - BCD (lsb first) 10 Days
288  * 42 - 44      DW    - BCD (lsb first) day of week (1: Monday -> 7: Sunday)
289  * 45 - 49      MO    - BCD (lsb first) Month
290  * 50           MO0   - 10 Months
291  * 51 - 53      Y1    - BCD (lsb first) Years
292  * 54 - 57      Y10   - BCD (lsb first) 10 Years
293  * 58           P3    - Date Parity (even)
294  * 59                 - usually missing (minute indication), except for leap insertion
295  */
296
297 /*-----------------------------------------------------------------------
298  * conversion table to map DCF77 bit stream into data fields.
299  * Encoding:
300  *   Each field of the DCF77 code is described with two adjacent entries in
301  *   this table. The first entry specifies the offset into the DCF77 data stream
302  *   while the length is given as the difference between the start index and
303  *   the start index of the following field.
304  */
305 static struct rawdcfcode
306 {
307         char offset;                    /* start bit */
308 } rawdcfcode[] =
309 {
310         {  0 }, { 15 }, { 16 }, { 17 }, { 19 }, { 20 }, { 21 }, { 25 }, { 28 }, { 29 },
311         { 33 }, { 35 }, { 36 }, { 40 }, { 42 }, { 45 }, { 49 }, { 50 }, { 54 }, { 58 }, { 59 }
312 };
313
314 /*-----------------------------------------------------------------------
315  * symbolic names for the fields of DCF77 describes in "rawdcfcode".
316  * see comment above for the structure of the DCF77 data
317  */
318 #define DCF_M   0
319 #define DCF_R   1
320 #define DCF_A1  2
321 #define DCF_Z   3
322 #define DCF_A2  4
323 #define DCF_S   5
324 #define DCF_M1  6
325 #define DCF_M10 7
326 #define DCF_P1  8
327 #define DCF_H1  9
328 #define DCF_H10 10
329 #define DCF_P2  11
330 #define DCF_D1  12
331 #define DCF_D10 13
332 #define DCF_DW  14
333 #define DCF_MO  15
334 #define DCF_MO0 16
335 #define DCF_Y1  17
336 #define DCF_Y10 18
337 #define DCF_P3  19
338
339 /*-----------------------------------------------------------------------
340  * parity field table (same encoding as rawdcfcode)
341  * This table describes the sections of the DCF77 code that are
342  * parity protected
343  */
344 static struct partab
345 {
346         char offset;                    /* start bit of parity field */
347 } partab[] =
348 {
349         { 21 }, { 29 }, { 36 }, { 59 }
350 };
351
352 /*-----------------------------------------------------------------------
353  * offsets for parity field descriptions
354  */
355 #define DCF_P_P1        0
356 #define DCF_P_P2        1
357 #define DCF_P_P3        2
358
359 /*-----------------------------------------------------------------------
360  * legal values for time zone information
361  */
362 #define DCF_Z_MET 0x2
363 #define DCF_Z_MED 0x1
364
365 /*-----------------------------------------------------------------------
366  * symbolic representation if the DCF77 data stream
367  */
368 static struct dcfparam
369 {
370         unsigned char onebits[60];
371         unsigned char zerobits[60];
372 } dcfparam =
373 {
374         "###############RADMLS1248124P124812P1248121241248112481248P", /* 'ONE' representation */
375         "--------------------s-------p------p----------------------p"  /* 'ZERO' representation */
376 };
377
378 /*-----------------------------------------------------------------------
379  * extract a bitfield from DCF77 datastream
380  * All numeric fields are LSB first.
381  * buf holds a pointer to a DCF77 data buffer in symbolic
382  *     representation
383  * idx holds the index to the field description in rawdcfcode
384  */
385 static unsigned long
386 ext_bf(
387         register unsigned char *buf,
388         register int   idx
389         )
390 {
391         register unsigned long sum = 0;
392         register int i, first;
393
394         first = rawdcfcode[idx].offset;
395
396         for (i = rawdcfcode[idx+1].offset - 1; i >= first; i--)
397         {
398                 sum <<= 1;
399                 sum |= (buf[i] != dcfparam.zerobits[i]);
400         }
401         return sum;
402 }
403
404 /*-----------------------------------------------------------------------
405  * check even parity integrity for a bitfield
406  *
407  * buf holds a pointer to a DCF77 data buffer in symbolic
408  *     representation
409  * idx holds the index to the field description in partab
410  */
411 static unsigned
412 pcheck(
413         register unsigned char *buf,
414         register int   idx
415         )
416 {
417         register int i,last;
418         register unsigned psum = 1;
419
420         last = partab[idx+1].offset;
421
422         for (i = partab[idx].offset; i < last; i++)
423             psum ^= (buf[i] != dcfparam.zerobits[i]);
424
425         return psum;
426 }
427
428 /*-----------------------------------------------------------------------
429  * convert a DCF77 data buffer into wall clock time + flags
430  *
431  * buffer holds a pointer to a DCF77 data buffer in symbolic
432  *        representation
433  * size   describes the length of DCF77 information in bits (represented
434  *        as chars in symbolic notation
435  * clock  points to a wall clock time description of the DCF77 data (result)
436  */
437 static unsigned long
438 convert_rawdcf(
439                unsigned char   *buffer,
440                int              size,
441                clocktime_t     *clock_time
442                )
443 {
444         if (size < 57)
445         {
446                 PRINTF("%-30s", "*** INCOMPLETE");
447                 return CVT_NONE;
448         }
449
450         /*
451          * check Start and Parity bits
452          */
453         if ((ext_bf(buffer, DCF_S) == 1) &&
454             pcheck(buffer, DCF_P_P1) &&
455             pcheck(buffer, DCF_P_P2) &&
456             pcheck(buffer, DCF_P_P3))
457         {
458                 /*
459                  * buffer OK - extract all fields and build wall clock time from them
460                  */
461
462                 clock_time->flags  = 0;
463                 clock_time->usecond= 0;
464                 clock_time->second = 0;
465                 clock_time->minute = ext_bf(buffer, DCF_M10);
466                 clock_time->minute = TIMES10(clock_time->minute) + ext_bf(buffer, DCF_M1);
467                 clock_time->hour   = ext_bf(buffer, DCF_H10);
468                 clock_time->hour   = TIMES10(clock_time->hour)   + ext_bf(buffer, DCF_H1);
469                 clock_time->day    = ext_bf(buffer, DCF_D10);
470                 clock_time->day    = TIMES10(clock_time->day)    + ext_bf(buffer, DCF_D1);
471                 clock_time->month  = ext_bf(buffer, DCF_MO0);
472                 clock_time->month  = TIMES10(clock_time->month)  + ext_bf(buffer, DCF_MO);
473                 clock_time->year   = ext_bf(buffer, DCF_Y10);
474                 clock_time->year   = TIMES10(clock_time->year)   + ext_bf(buffer, DCF_Y1);
475                 clock_time->wday   = ext_bf(buffer, DCF_DW);
476
477                 /*
478                  * determine offset to UTC by examining the time zone
479                  */
480                 switch (ext_bf(buffer, DCF_Z))
481                 {
482                     case DCF_Z_MET:
483                         clock_time->utcoffset = -60;
484                         break;
485
486                     case DCF_Z_MED:
487                         clock_time->flags     |= DCFB_DST;
488                         clock_time->utcoffset  = -120;
489                         break;
490
491                     default:
492                         PRINTF("%-30s", "*** BAD TIME ZONE");
493                         return CVT_FAIL|CVT_BADFMT;
494                 }
495
496                 /*
497                  * extract various warnings from DCF77
498                  */
499                 if (ext_bf(buffer, DCF_A1))
500                     clock_time->flags |= DCFB_ANNOUNCE;
501
502                 if (ext_bf(buffer, DCF_A2))
503                     clock_time->flags |= DCFB_LEAP;
504
505                 if (ext_bf(buffer, DCF_R))
506                     clock_time->flags |= DCFB_CALLBIT;
507
508                 return CVT_OK;
509         }
510         else
511         {
512                 /*
513                  * bad format - not for us
514                  */
515                 PRINTF("%-30s", "*** BAD FORMAT (invalid/parity)");
516                 return CVT_FAIL|CVT_BADFMT;
517         }
518 }
519
520 /*-----------------------------------------------------------------------
521  * raw dcf input routine - fix up 50 baud
522  * characters for 1/0 decision
523  */
524 static unsigned long
525 cvt_rawdcf(
526            unsigned char   *buffer,
527            int              size,
528            clocktime_t     *clock_time
529            )
530 {
531         register unsigned char *s = buffer;
532         register unsigned char *e = buffer + size;
533         register unsigned char *b = dcfparam.onebits;
534         register unsigned char *c = dcfparam.zerobits;
535         register unsigned rtc = CVT_NONE;
536         register unsigned int i, lowmax, highmax, cutoff, span;
537 #define BITS 9
538         unsigned char     histbuf[BITS];
539         /*
540          * the input buffer contains characters with runs of consecutive
541          * bits set. These set bits are an indication of the DCF77 pulse
542          * length. We assume that we receive the pulse at 50 Baud. Thus
543          * a 100ms pulse would generate a 4 bit train (20ms per bit and
544          * start bit)
545          * a 200ms pulse would create all zeroes (and probably a frame error)
546          *
547          * The basic idea is that on corret reception we must have two
548          * maxima in the pulse length distribution histogram. (one for
549          * the zero representing pulses and one for the one representing
550          * pulses)
551          * There will always be ones in the datastream, thus we have to see
552          * two maxima.
553          * The best point to cut for a 1/0 decision is the minimum between those
554          * between the maxima. The following code tries to find this cutoff point.
555          */
556
557         /*
558          * clear histogram buffer
559          */
560         for (i = 0; i < BITS; i++)
561         {
562                 histbuf[i] = 0;
563         }
564
565         cutoff = 0;
566         lowmax = 0;
567
568         /*
569          * convert sequences of set bits into bits counts updating
570          * the histogram alongway
571          */
572         while (s < e)
573         {
574                 register unsigned int ch = *s ^ 0xFF;
575                 /*
576                  * check integrity and update histogramm
577                  */
578                 if (!((ch+1) & ch) || !*s)
579                 {
580                         /*
581                          * character ok
582                          */
583                         for (i = 0; ch; i++)
584                         {
585                                 ch >>= 1;
586                         }
587
588                         *s = i;
589                         histbuf[i]++;
590                         cutoff += i;
591                         lowmax++;
592                 }
593                 else
594                 {
595                         /*
596                          * invalid character (no consecutive bit sequence)
597                          */
598                         dprintf(("parse: cvt_rawdcf: character check for 0x%x@%ld FAILED\n",
599                                  (u_int)*s, (long)(s - buffer)));
600                         *s = (unsigned char)~0;
601                         rtc = CVT_FAIL|CVT_BADFMT;
602                 }
603                 s++;
604         }
605
606         /*
607          * first cutoff estimate (average bit count - must be between both
608          * maxima)
609          */
610         if (lowmax)
611         {
612                 cutoff /= lowmax;
613         }
614         else
615         {
616                 cutoff = 4;     /* doesn't really matter - it'll fail anyway, but gives error output */
617         }
618
619         dprintf(("parse: cvt_rawdcf: average bit count: %d\n", cutoff));
620
621         lowmax = 0;  /* weighted sum */
622         highmax = 0; /* bitcount */
623
624         /*
625          * collect weighted sum of lower bits (left of initial guess)
626          */
627         dprintf(("parse: cvt_rawdcf: histogram:"));
628         for (i = 0; i <= cutoff; i++)
629         {
630                 lowmax  += histbuf[i] * i;
631                 highmax += histbuf[i];
632                 dprintf((" %d", histbuf[i]));
633         }
634         dprintf((" <M>"));
635
636         /*
637          * round up
638          */
639         lowmax += highmax / 2;
640
641         /*
642          * calculate lower bit maximum (weighted sum / bit count)
643          *
644          * avoid divide by zero
645          */
646         if (highmax)
647         {
648                 lowmax /= highmax;
649         }
650         else
651         {
652                 lowmax = 0;
653         }
654
655         highmax = 0; /* weighted sum of upper bits counts */
656         cutoff = 0;  /* bitcount */
657
658         /*
659          * collect weighted sum of lower bits (right of initial guess)
660          */
661         for (; i < BITS; i++)
662         {
663                 highmax+=histbuf[i] * i;
664                 cutoff +=histbuf[i];
665                 dprintf((" %d", histbuf[i]));
666         }
667         dprintf(("\n"));
668
669         /*
670          * determine upper maximum (weighted sum / bit count)
671          */
672         if (cutoff)
673         {
674                 highmax /= cutoff;
675         }
676         else
677         {
678                 highmax = BITS-1;
679         }
680
681         /*
682          * following now holds:
683          * lowmax <= cutoff(initial guess) <= highmax
684          * best cutoff is the minimum nearest to higher bits
685          */
686
687         /*
688          * find the minimum between lowmax and highmax (detecting
689          * possibly a minimum span)
690          */
691         span = cutoff = lowmax;
692         for (i = lowmax; i <= highmax; i++)
693         {
694                 if (histbuf[cutoff] > histbuf[i])
695                 {
696                         /*
697                          * got a new minimum move beginning of minimum (cutoff) and
698                          * end of minimum (span) there
699                          */
700                         cutoff = span = i;
701                 }
702                 else
703                     if (histbuf[cutoff] == histbuf[i])
704                     {
705                             /*
706                              * minimum not better yet - but it spans more than
707                              * one bit value - follow it
708                              */
709                             span = i;
710                     }
711         }
712
713         /*
714          * cutoff point for 1/0 decision is the middle of the minimum section
715          * in the histogram
716          */
717         cutoff = (cutoff + span) / 2;
718
719         dprintf(("parse: cvt_rawdcf: lower maximum %d, higher maximum %d, cutoff %d\n", lowmax, highmax, cutoff));
720
721         /*
722          * convert the bit counts to symbolic 1/0 information for data conversion
723          */
724         s = buffer;
725         while ((s < e) && *c && *b)
726         {
727                 if (*s == (unsigned char)~0)
728                 {
729                         /*
730                          * invalid character
731                          */
732                         *s = '?';
733                 }
734                 else
735                 {
736                         /*
737                          * symbolic 1/0 representation
738                          */
739                         *s = (*s >= cutoff) ? *b : *c;
740                 }
741                 s++;
742                 b++;
743                 c++;
744         }
745
746         /*
747          * if everything went well so far return the result of the symbolic
748          * conversion routine else just the accumulated errors
749          */
750         if (rtc != CVT_NONE)
751         {
752                 PRINTF("%-30s", "*** BAD DATA");
753         }
754
755         return (rtc == CVT_NONE) ? convert_rawdcf(buffer, size, clock_time) : rtc;
756 }
757
758 /*-----------------------------------------------------------------------
759  * convert a wall clock time description of DCF77 to a Unix time (seconds
760  * since 1.1. 1970 UTC)
761  */
762 static time_t
763 dcf_to_unixtime(
764                 clocktime_t   *clock_time,
765                 unsigned *cvtrtc
766                 )
767 {
768 #define SETRTC(_X_)     { if (cvtrtc) *cvtrtc = (_X_); }
769         static int days_of_month[] =
770         {
771                 0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
772         };
773         register int i;
774         time_t t;
775
776         /*
777          * map 2 digit years to 19xx (DCF77 is a 20th century item)
778          */
779         if ( clock_time->year < YEAR_PIVOT )    /* in case of      Y2KFixes [ */
780                 clock_time->year += 100;        /* *year%100, make tm_year */
781                                                 /* *(do we need this?) */
782         if ( clock_time->year < YEAR_BREAK )    /* (failsafe if) */
783             clock_time->year += 1900;                           /* Y2KFixes ] */
784
785         /*
786          * must have been a really bad year code - drop it
787          */
788         if (clock_time->year < (YEAR_PIVOT + 1900) )            /* Y2KFixes */
789         {
790                 SETRTC(CVT_FAIL|CVT_BADDATE);
791                 return -1;
792         }
793         /*
794          * sorry, slow section here - but it's not time critical anyway
795          */
796
797         /*
798          * calculate days since 1970 (watching leap years)
799          */
800         t = julian0( clock_time->year ) - julian0( 1970 );
801
802                                 /* month */
803         if (clock_time->month <= 0 || clock_time->month > 12)
804         {
805                 SETRTC(CVT_FAIL|CVT_BADDATE);
806                 return -1;              /* bad month */
807         }
808                                 /* adjust current leap year */
809 #if 0
810         if (clock_time->month < 3 && days_per_year(clock_time->year) == 366)
811             t--;
812 #endif
813
814         /*
815          * collect days from months excluding the current one
816          */
817         for (i = 1; i < clock_time->month; i++)
818         {
819                 t += days_of_month[i];
820         }
821                                 /* day */
822         if (clock_time->day < 1 || ((clock_time->month == 2 && days_per_year(clock_time->year) == 366) ?
823                                clock_time->day > 29 : clock_time->day > days_of_month[clock_time->month]))
824         {
825                 SETRTC(CVT_FAIL|CVT_BADDATE);
826                 return -1;              /* bad day */
827         }
828
829         /*
830          * collect days from date excluding the current one
831          */
832         t += clock_time->day - 1;
833
834                                 /* hour */
835         if (clock_time->hour < 0 || clock_time->hour >= 24)
836         {
837                 SETRTC(CVT_FAIL|CVT_BADTIME);
838                 return -1;              /* bad hour */
839         }
840
841         /*
842          * calculate hours from 1. 1. 1970
843          */
844         t = TIMES24(t) + clock_time->hour;
845
846                                 /* min */
847         if (clock_time->minute < 0 || clock_time->minute > 59)
848         {
849                 SETRTC(CVT_FAIL|CVT_BADTIME);
850                 return -1;              /* bad min */
851         }
852
853         /*
854          * calculate minutes from 1. 1. 1970
855          */
856         t = TIMES60(t) + clock_time->minute;
857                                 /* sec */
858
859         /*
860          * calculate UTC in minutes
861          */
862         t += clock_time->utcoffset;
863
864         if (clock_time->second < 0 || clock_time->second > 60)  /* allow for LEAPs */
865         {
866                 SETRTC(CVT_FAIL|CVT_BADTIME);
867                 return -1;              /* bad sec */
868         }
869
870         /*
871          * calculate UTC in seconds - phew !
872          */
873         t  = TIMES60(t) + clock_time->second;
874                                 /* done */
875         return t;
876 }
877
878 /*-----------------------------------------------------------------------
879  * cheap half baked 1/0 decision - for interactive operation only
880  */
881 static char
882 type(
883      unsigned int c
884      )
885 {
886         c ^= 0xFF;
887         return (c > 0xF);
888 }
889
890 /*-----------------------------------------------------------------------
891  * week day representation
892  */
893 static const char *wday[8] =
894 {
895         "??",
896         "Mo",
897         "Tu",
898         "We",
899         "Th",
900         "Fr",
901         "Sa",
902         "Su"
903 };
904
905 /*-----------------------------------------------------------------------
906  * generate a string representation for a timeval
907  */
908 static char *
909 pr_timeval(
910         struct timeval *val
911         )
912 {
913         static char buf[20];
914
915         if (val->tv_sec == 0)
916                 snprintf(buf, sizeof(buf), "%c0.%06ld",
917                          (val->tv_usec < 0) ? '-' : '+',
918                          (long int)l_abs(val->tv_usec));
919         else
920                 snprintf(buf, sizeof(buf), "%ld.%06ld",
921                          (long int)val->tv_sec,
922                          (long int)l_abs(val->tv_usec));
923         return buf;
924 }
925
926 /*-----------------------------------------------------------------------
927  * correct the current time by an offset by setting the time rigorously
928  */
929 static void
930 set_time(
931          struct timeval *offset
932          )
933 {
934         struct timeval the_time;
935
936         if (no_set)
937             return;
938
939         LPRINTF("set_time: %s ", pr_timeval(offset));
940         syslog(LOG_NOTICE, "setting time (offset %s)", pr_timeval(offset));
941
942         if (gettimeofday(&the_time, 0L) == -1)
943         {
944                 perror("gettimeofday()");
945         }
946         else
947         {
948                 timeradd(&the_time, offset);
949                 if (settimeofday(&the_time, 0L) == -1)
950                 {
951                         perror("settimeofday()");
952                 }
953         }
954 }
955
956 /*-----------------------------------------------------------------------
957  * slew the time by a given offset
958  */
959 static void
960 adj_time(
961          long offset
962          )
963 {
964         struct timeval time_offset;
965
966         if (no_set)
967             return;
968
969         time_offset.tv_sec  = offset / 1000000;
970         time_offset.tv_usec = offset % 1000000;
971
972         LPRINTF("adj_time: %ld us ", (long int)offset);
973         if (adjtime(&time_offset, 0L) == -1)
974             perror("adjtime()");
975 }
976
977 /*-----------------------------------------------------------------------
978  * read in a possibly previously written drift value
979  */
980 static void
981 read_drift(
982            const char *drift_file
983            )
984 {
985         FILE *df;
986
987         df = fopen(drift_file, "r");
988         if (df != NULL)
989         {
990                 int idrift = 0, fdrift = 0;
991
992                 fscanf(df, "%4d.%03d", &idrift, &fdrift);
993                 fclose(df);
994                 LPRINTF("read_drift: %d.%03d ppm ", idrift, fdrift);
995
996                 accum_drift = idrift << USECSCALE;
997                 fdrift     = (fdrift << USECSCALE) / 1000;
998                 accum_drift += fdrift & (1<<USECSCALE);
999                 LPRINTF("read_drift: drift_comp %ld ", (long int)accum_drift);
1000         }
1001 }
1002
1003 /*-----------------------------------------------------------------------
1004  * write out the current drift value
1005  */
1006 static void
1007 update_drift(
1008              const char *drift_file,
1009              long offset,
1010              time_t reftime
1011              )
1012 {
1013         FILE *df;
1014
1015         df = fopen(drift_file, "w");
1016         if (df != NULL)
1017         {
1018                 int idrift = R_SHIFT(accum_drift, USECSCALE);
1019                 int fdrift = accum_drift & ((1<<USECSCALE)-1);
1020
1021                 LPRINTF("update_drift: drift_comp %ld ", (long int)accum_drift);
1022                 fdrift = (fdrift * 1000) / (1<<USECSCALE);
1023                 fprintf(df, "%4d.%03d %c%ld.%06ld %.24s\n", idrift, fdrift,
1024                         (offset < 0) ? '-' : '+', (long int)(l_abs(offset) / 1000000),
1025                         (long int)(l_abs(offset) % 1000000), asctime(localtime(&reftime)));
1026                 fclose(df);
1027                 LPRINTF("update_drift: %d.%03d ppm ", idrift, fdrift);
1028         }
1029 }
1030
1031 /*-----------------------------------------------------------------------
1032  * process adjustments derived from the DCF77 observation
1033  * (controls clock PLL)
1034  */
1035 static void
1036 adjust_clock(
1037              struct timeval *offset,
1038              const char *drift_file,
1039              time_t reftime
1040              )
1041 {
1042         struct timeval toffset;
1043         register long usecoffset;
1044         int tmp;
1045
1046         if (no_set)
1047             return;
1048
1049         if (skip_adjust)
1050         {
1051                 skip_adjust = 0;
1052                 return;
1053         }
1054
1055         toffset = *offset;
1056         toffset.tv_sec  = l_abs(toffset.tv_sec);
1057         toffset.tv_usec = l_abs(toffset.tv_usec);
1058         if (toffset.tv_sec ||
1059             (!toffset.tv_sec && toffset.tv_usec > max_adj_offset_usec))
1060         {
1061                 /*
1062                  * hopeless - set the clock - and clear the timing
1063                  */
1064                 set_time(offset);
1065                 clock_adjust = 0;
1066                 skip_adjust  = 1;
1067                 return;
1068         }
1069
1070         usecoffset   = offset->tv_sec * 1000000 + offset->tv_usec;
1071
1072         clock_adjust = R_SHIFT(usecoffset, TIMECONSTANT);       /* adjustment to make for next period */
1073
1074         tmp = 0;
1075         while (adjustments > (1 << tmp))
1076             tmp++;
1077         adjustments = 0;
1078         if (tmp > FREQ_WEIGHT)
1079             tmp = FREQ_WEIGHT;
1080
1081         accum_drift  += R_SHIFT(usecoffset << USECSCALE, TIMECONSTANT+TIMECONSTANT+FREQ_WEIGHT-tmp);
1082
1083         if (accum_drift > MAX_DRIFT)            /* clamp into interval */
1084             accum_drift = MAX_DRIFT;
1085         else
1086             if (accum_drift < -MAX_DRIFT)
1087                 accum_drift = -MAX_DRIFT;
1088
1089         update_drift(drift_file, usecoffset, reftime);
1090         LPRINTF("clock_adjust: %s, clock_adjust %ld, drift_comp %ld(%ld) ",
1091                 pr_timeval(offset),(long int) R_SHIFT(clock_adjust, USECSCALE),
1092                 (long int)R_SHIFT(accum_drift, USECSCALE), (long int)accum_drift);
1093 }
1094
1095 /*-----------------------------------------------------------------------
1096  * adjust the clock by a small mount to simulate frequency correction
1097  */
1098 static void
1099 periodic_adjust(
1100                 void
1101                 )
1102 {
1103         register long adjustment;
1104
1105         adjustments++;
1106
1107         adjustment = R_SHIFT(clock_adjust, PHASE_WEIGHT);
1108
1109         clock_adjust -= adjustment;
1110
1111         adjustment += R_SHIFT(accum_drift, USECSCALE+ADJINTERVAL);
1112
1113         adj_time(adjustment);
1114 }
1115
1116 /*-----------------------------------------------------------------------
1117  * control synchronisation status (warnings) and do periodic adjusts
1118  * (frequency control simulation)
1119  */
1120 static void
1121 tick(
1122      int signum
1123      )
1124 {
1125         static unsigned long last_notice = 0;
1126
1127 #if !defined(HAVE_SIGACTION) && !defined(HAVE_SIGVEC)
1128         (void)signal(SIGALRM, tick);
1129 #endif
1130
1131         periodic_adjust();
1132
1133         ticks += 1<<ADJINTERVAL;
1134
1135         if ((ticks - last_sync) > MAX_UNSYNC)
1136         {
1137                 /*
1138                  * not getting time for a while
1139                  */
1140                 if (sync_state == SYNC)
1141                 {
1142                         /*
1143                          * completely lost information
1144                          */
1145                         sync_state = NO_SYNC;
1146                         syslog(LOG_INFO, "DCF77 reception lost (timeout)");
1147                         last_notice = ticks;
1148                 }
1149                 else
1150                     /*
1151                      * in NO_SYNC state - look whether its time to speak up again
1152                      */
1153                     if ((ticks - last_notice) > NOTICE_INTERVAL)
1154                     {
1155                             syslog(LOG_NOTICE, "still not synchronized to DCF77 - check receiver/signal");
1156                             last_notice = ticks;
1157                     }
1158         }
1159
1160 #ifndef ITIMER_REAL
1161         (void) alarm(1<<ADJINTERVAL);
1162 #endif
1163 }
1164
1165 /*-----------------------------------------------------------------------
1166  * break association from terminal to avoid catching terminal
1167  * or process group related signals (-> daemon operation)
1168  */
1169 static void
1170 detach(
1171        void
1172        )
1173 {
1174 #   ifdef HAVE_DAEMON
1175         daemon(0, 0);
1176 #   else /* not HAVE_DAEMON */
1177         if (fork())
1178             exit(0);
1179
1180         {
1181                 u_long s;
1182                 int max_fd;
1183
1184 #if defined(HAVE_SYSCONF) && defined(_SC_OPEN_MAX)
1185                 max_fd = sysconf(_SC_OPEN_MAX);
1186 #else /* HAVE_SYSCONF && _SC_OPEN_MAX */
1187                 max_fd = getdtablesize();
1188 #endif /* HAVE_SYSCONF && _SC_OPEN_MAX */
1189                 for (s = 0; s < max_fd; s++)
1190                     (void) close((int)s);
1191                 (void) open("/", 0);
1192                 (void) dup2(0, 1);
1193                 (void) dup2(0, 2);
1194 #ifdef SYS_DOMAINOS
1195                 {
1196                         uid_$t puid;
1197                         status_$t st;
1198
1199                         proc2_$who_am_i(&puid);
1200                         proc2_$make_server(&puid, &st);
1201                 }
1202 #endif /* SYS_DOMAINOS */
1203 #if defined(HAVE_SETPGID) || defined(HAVE_SETSID)
1204 # ifdef HAVE_SETSID
1205                 if (setsid() == (pid_t)-1)
1206                     syslog(LOG_ERR, "dcfd: setsid(): %m");
1207 # else
1208                 if (setpgid(0, 0) == -1)
1209                     syslog(LOG_ERR, "dcfd: setpgid(): %m");
1210 # endif
1211 #else /* HAVE_SETPGID || HAVE_SETSID */
1212                 {
1213                         int fid;
1214
1215                         fid = open("/dev/tty", 2);
1216                         if (fid >= 0)
1217                         {
1218                                 (void) ioctl(fid, (u_long) TIOCNOTTY, (char *) 0);
1219                                 (void) close(fid);
1220                         }
1221 # ifdef HAVE_SETPGRP_0
1222                         (void) setpgrp();
1223 # else /* HAVE_SETPGRP_0 */
1224                         (void) setpgrp(0, getpid());
1225 # endif /* HAVE_SETPGRP_0 */
1226                 }
1227 #endif /* HAVE_SETPGID || HAVE_SETSID */
1228         }
1229 #endif /* not HAVE_DAEMON */
1230 }
1231
1232 /*-----------------------------------------------------------------------
1233  * list possible arguments and options
1234  */
1235 static void
1236 usage(
1237       char *program
1238       )
1239 {
1240   fprintf(stderr, "usage: %s [-n] [-f] [-l] [-t] [-i] [-o] [-d <drift_file>] [-D <input delay>] <device>\n", program);
1241         fprintf(stderr, "\t-n              do not change time\n");
1242         fprintf(stderr, "\t-i              interactive\n");
1243         fprintf(stderr, "\t-t              trace (print all datagrams)\n");
1244         fprintf(stderr, "\t-f              print all databits (includes PTB private data)\n");
1245         fprintf(stderr, "\t-l              print loop filter debug information\n");
1246         fprintf(stderr, "\t-o              print offet average for current minute\n");
1247         fprintf(stderr, "\t-Y              make internal Y2K checks then exit\n");      /* Y2KFixes */
1248         fprintf(stderr, "\t-d <drift_file> specify alternate drift file\n");
1249         fprintf(stderr, "\t-D <input delay>specify delay from input edge to processing in micro seconds\n");
1250 }
1251
1252 /*-----------------------------------------------------------------------
1253  * check_y2k() - internal check of Y2K logic
1254  *      (a lot of this logic lifted from ../ntpd/check_y2k.c)
1255  */
1256 static int
1257 check_y2k( void )
1258 {
1259     int  year;                  /* current working year */
1260     int  year0 = 1900;          /* sarting year for NTP time */
1261     int  yearend;               /* ending year we test for NTP time.
1262                                     * 32-bit systems: through 2036, the
1263                                       **year in which NTP time overflows.
1264                                     * 64-bit systems: a reasonable upper
1265                                       **limit (well, maybe somewhat beyond
1266                                       **reasonable, but well before the
1267                                       **max time, by which time the earth
1268                                       **will be dead.) */
1269     time_t Time;
1270     struct tm LocalTime;
1271
1272     int Fatals, Warnings;
1273 #define Error(year) if ( (year)>=2036 && LocalTime.tm_year < 110 ) \
1274         Warnings++; else Fatals++
1275
1276     Fatals = Warnings = 0;
1277
1278     Time = time( (time_t *)NULL );
1279     LocalTime = *localtime( &Time );
1280
1281     year = ( sizeof( u_long ) > 4 )     /* save max span using year as temp */
1282                 ? ( 400 * 3 )           /* three greater gregorian cycles */
1283                 : ((int)(0x7FFFFFFF / 365.242 / 24/60/60)* 2 ); /*32-bit limit*/
1284                         /* NOTE: will automacially expand test years on
1285                          * 64 bit machines.... this may cause some of the
1286                          * existing ntp logic to fail for years beyond
1287                          * 2036 (the current 32-bit limit). If all checks
1288                          * fail ONLY beyond year 2036 you may ignore such
1289                          * errors, at least for a decade or so. */
1290     yearend = year0 + year;
1291
1292     year = 1900+YEAR_PIVOT;
1293     printf( "  starting year %04d\n", (int) year );
1294     printf( "  ending year   %04d\n", (int) yearend );
1295
1296     for ( ; year < yearend; year++ )
1297     {
1298         clocktime_t  ct;
1299         time_t       Observed;
1300         time_t       Expected;
1301         unsigned     Flag;
1302         unsigned long t;
1303
1304         ct.day = 1;
1305         ct.month = 1;
1306         ct.year = year;
1307         ct.hour = ct.minute = ct.second = ct.usecond = 0;
1308         ct.utcoffset = 0;
1309         ct.flags = 0;
1310
1311         Flag = 0;
1312         Observed = dcf_to_unixtime( &ct, &Flag );
1313                 /* seems to be a clone of parse_to_unixtime() with
1314                  * *a minor difference to arg2 type */
1315         if ( ct.year != year )
1316         {
1317             fprintf( stdout,
1318                "%04d: dcf_to_unixtime(,%d) CORRUPTED ct.year: was %d\n",
1319                (int)year, (int)Flag, (int)ct.year );
1320             Error(year);
1321             break;
1322         }
1323         t = julian0(year) - julian0(1970);      /* Julian day from 1970 */
1324         Expected = t * 24 * 60 * 60;
1325         if ( Observed != Expected  ||  Flag )
1326         {   /* time difference */
1327             fprintf( stdout,
1328                "%04d: dcf_to_unixtime(,%d) FAILURE: was=%lu s/b=%lu  (%ld)\n",
1329                year, (int)Flag,
1330                (unsigned long)Observed, (unsigned long)Expected,
1331                ((long)Observed - (long)Expected) );
1332             Error(year);
1333             break;
1334         }
1335
1336     }
1337
1338     return ( Fatals );
1339 }
1340
1341 /*--------------------------------------------------
1342  * rawdcf_init - set up modem lines for RAWDCF receivers
1343  */
1344 #if defined(TIOCMSET) && (defined(TIOCM_DTR) || defined(CIOCM_DTR))
1345 static void
1346 rawdcf_init(
1347         int fd
1348         )
1349 {
1350         /*
1351          * You can use the RS232 to supply the power for a DCF77 receiver.
1352          * Here a voltage between the DTR and the RTS line is used. Unfortunately
1353          * the name has changed from CIOCM_DTR to TIOCM_DTR recently.
1354          */
1355
1356 #ifdef TIOCM_DTR
1357         int sl232 = TIOCM_DTR;  /* turn on DTR for power supply */
1358 #else
1359         int sl232 = CIOCM_DTR;  /* turn on DTR for power supply */
1360 #endif
1361
1362         if (ioctl(fd, TIOCMSET, (caddr_t)&sl232) == -1)
1363         {
1364                 syslog(LOG_NOTICE, "rawdcf_init: WARNING: ioctl(fd, TIOCMSET, [C|T]IOCM_DTR): %m");
1365         }
1366 }
1367 #else
1368 static void
1369 rawdcf_init(
1370             int fd
1371         )
1372 {
1373         syslog(LOG_NOTICE, "rawdcf_init: WARNING: OS interface incapable of setting DTR to power DCF modules");
1374 }
1375 #endif  /* DTR initialisation type */
1376
1377 /*-----------------------------------------------------------------------
1378  * main loop - argument interpreter / setup / main loop
1379  */
1380 int
1381 main(
1382      int argc,
1383      char **argv
1384      )
1385 {
1386         unsigned char c;
1387         char **a = argv;
1388         int  ac = argc;
1389         char *file = NULL;
1390         const char *drift_file = "/etc/dcfd.drift";
1391         int fd;
1392         int offset = 15;
1393         int offsets = 0;
1394         int delay = DEFAULT_DELAY;      /* average delay from input edge to time stamping */
1395         int trace = 0;
1396         int errs = 0;
1397
1398         /*
1399          * process arguments
1400          */
1401         while (--ac)
1402         {
1403                 char *arg = *++a;
1404                 if (*arg == '-')
1405                     while ((c = *++arg))
1406                         switch (c)
1407                         {
1408                             case 't':
1409                                 trace = 1;
1410                                 interactive = 1;
1411                                 break;
1412
1413                             case 'f':
1414                                 offset = 0;
1415                                 interactive = 1;
1416                                 break;
1417
1418                             case 'l':
1419                                 loop_filter_debug = 1;
1420                                 offsets = 1;
1421                                 interactive = 1;
1422                                 break;
1423
1424                             case 'n':
1425                                 no_set = 1;
1426                                 break;
1427
1428                             case 'o':
1429                                 offsets = 1;
1430                                 interactive = 1;
1431                                 break;
1432
1433                             case 'i':
1434                                 interactive = 1;
1435                                 break;
1436
1437                             case 'D':
1438                                 if (ac > 1)
1439                                 {
1440                                         delay = atoi(*++a);
1441                                         ac--;
1442                                 }
1443                                 else
1444                                 {
1445                                         fprintf(stderr, "%s: -D requires integer argument\n", argv[0]);
1446                                         errs=1;
1447                                 }
1448                                 break;
1449
1450                             case 'd':
1451                                 if (ac > 1)
1452                                 {
1453                                         drift_file = *++a;
1454                                         ac--;
1455                                 }
1456                                 else
1457                                 {
1458                                         fprintf(stderr, "%s: -d requires file name argument\n", argv[0]);
1459                                         errs=1;
1460                                 }
1461                                 break;
1462
1463                             case 'Y':
1464                                 errs=check_y2k();
1465                                 exit( errs ? 1 : 0 );
1466
1467                             default:
1468                                 fprintf(stderr, "%s: unknown option -%c\n", argv[0], c);
1469                                 errs=1;
1470                                 break;
1471                         }
1472                 else
1473                     if (file == NULL)
1474                         file = arg;
1475                     else
1476                     {
1477                             fprintf(stderr, "%s: device specified twice\n", argv[0]);
1478                             errs=1;
1479                     }
1480         }
1481
1482         if (errs)
1483         {
1484                 usage(argv[0]);
1485                 exit(1);
1486         }
1487         else
1488             if (file == NULL)
1489             {
1490                     fprintf(stderr, "%s: device not specified\n", argv[0]);
1491                     usage(argv[0]);
1492                     exit(1);
1493             }
1494
1495         errs = LINES+1;
1496
1497         /*
1498          * get access to DCF77 tty port
1499          */
1500         fd = open(file, O_RDONLY);
1501         if (fd == -1)
1502         {
1503                 perror(file);
1504                 exit(1);
1505         }
1506         else
1507         {
1508                 int i, rrc;
1509                 struct timeval t, tt, tlast;
1510                 struct timeval timeout;
1511                 struct timeval phase;
1512                 struct timeval time_offset;
1513                 char pbuf[61];          /* printable version */
1514                 char buf[61];           /* raw data */
1515                 clocktime_t clock_time; /* wall clock time */
1516                 time_t utc_time = 0;
1517                 time_t last_utc_time = 0;
1518                 long usecerror = 0;
1519                 long lasterror = 0;
1520 #if defined(HAVE_TERMIOS_H) || defined(STREAM)
1521                 struct termios term;
1522 #else  /* not HAVE_TERMIOS_H || STREAM */
1523 # if defined(HAVE_TERMIO_H) || defined(HAVE_SYSV_TTYS)
1524                 struct termio term;
1525 # endif/* HAVE_TERMIO_H || HAVE_SYSV_TTYS */
1526 #endif /* not HAVE_TERMIOS_H || STREAM */
1527                 unsigned int rtc = CVT_NONE;
1528
1529                 rawdcf_init(fd);
1530
1531                 timeout.tv_sec  = 1;
1532                 timeout.tv_usec = 500000;
1533
1534                 phase.tv_sec    = 0;
1535                 phase.tv_usec   = delay;
1536
1537                 /*
1538                  * setup TTY (50 Baud, Read, 8Bit, No Hangup, 1 character IO)
1539                  */
1540                 if (TTY_GETATTR(fd,  &term) == -1)
1541                 {
1542                         perror("tcgetattr");
1543                         exit(1);
1544                 }
1545
1546                 memset(term.c_cc, 0, sizeof(term.c_cc));
1547                 term.c_cc[VMIN] = 1;
1548 #ifdef NO_PARENB_IGNPAR
1549                 term.c_cflag = CS8|CREAD|CLOCAL;
1550 #else
1551                 term.c_cflag = CS8|CREAD|CLOCAL|PARENB;
1552 #endif
1553                 term.c_iflag = IGNPAR;
1554                 term.c_oflag = 0;
1555                 term.c_lflag = 0;
1556
1557                 cfsetispeed(&term, B50);
1558                 cfsetospeed(&term, B50);
1559
1560                 if (TTY_SETATTR(fd, &term) == -1)
1561                 {
1562                         perror("tcsetattr");
1563                         exit(1);
1564                 }
1565
1566                 /*
1567                  * lose terminal if in daemon operation
1568                  */
1569                 if (!interactive)
1570                     detach();
1571
1572                 /*
1573                  * get syslog() initialized
1574                  */
1575 #ifdef LOG_DAEMON
1576                 openlog("dcfd", LOG_PID, LOG_DAEMON);
1577 #else
1578                 openlog("dcfd", LOG_PID);
1579 #endif
1580
1581                 /*
1582                  * setup periodic operations (state control / frequency control)
1583                  */
1584 #ifdef HAVE_SIGACTION
1585                 {
1586                         struct sigaction act;
1587
1588 # ifdef HAVE_SA_SIGACTION_IN_STRUCT_SIGACTION
1589                         act.sa_sigaction = (void (*) (int, siginfo_t *, void *))0;
1590 # endif /* HAVE_SA_SIGACTION_IN_STRUCT_SIGACTION */
1591                         act.sa_handler   = tick;
1592                         sigemptyset(&act.sa_mask);
1593                         act.sa_flags     = 0;
1594
1595                         if (sigaction(SIGALRM, &act, (struct sigaction *)0) == -1)
1596                         {
1597                                 syslog(LOG_ERR, "sigaction(SIGALRM): %m");
1598                                 exit(1);
1599                         }
1600                 }
1601 #else
1602 #ifdef HAVE_SIGVEC
1603                 {
1604                         struct sigvec vec;
1605
1606                         vec.sv_handler   = tick;
1607                         vec.sv_mask      = 0;
1608                         vec.sv_flags     = 0;
1609
1610                         if (sigvec(SIGALRM, &vec, (struct sigvec *)0) == -1)
1611                         {
1612                                 syslog(LOG_ERR, "sigvec(SIGALRM): %m");
1613                                 exit(1);
1614                         }
1615                 }
1616 #else
1617                 (void) signal(SIGALRM, tick);
1618 #endif
1619 #endif
1620
1621 #ifdef ITIMER_REAL
1622                 {
1623                         struct itimerval it;
1624
1625                         it.it_interval.tv_sec  = 1<<ADJINTERVAL;
1626                         it.it_interval.tv_usec = 0;
1627                         it.it_value.tv_sec     = 1<<ADJINTERVAL;
1628                         it.it_value.tv_usec    = 0;
1629
1630                         if (setitimer(ITIMER_REAL, &it, (struct itimerval *)0) == -1)
1631                         {
1632                                 syslog(LOG_ERR, "setitimer: %m");
1633                                 exit(1);
1634                         }
1635                 }
1636 #else
1637                 (void) alarm(1<<ADJINTERVAL);
1638 #endif
1639
1640                 PRINTF("  DCF77 monitor %s - Copyright (C) 1993-2005 by Frank Kardel\n\n", revision);
1641
1642                 pbuf[60] = '\0';
1643                 for ( i = 0; i < 60; i++)
1644                     pbuf[i] = '.';
1645
1646                 read_drift(drift_file);
1647
1648                 /*
1649                  * what time is it now (for interval measurement)
1650                  */
1651                 gettimeofday(&tlast, 0L);
1652                 i = 0;
1653                 /*
1654                  * loop until input trouble ...
1655                  */
1656                 do
1657                 {
1658                         /*
1659                          * get an impulse
1660                          */
1661                         while ((rrc = read(fd, &c, 1)) == 1)
1662                         {
1663                                 gettimeofday(&t, 0L);
1664                                 tt = t;
1665                                 timersub(&t, &tlast);
1666
1667                                 if (errs > LINES)
1668                                 {
1669                                         PRINTF("  %s", &"PTB private....RADMLSMin....PHour..PMDay..DayMonthYear....P\n"[offset]);
1670                                         PRINTF("  %s", &"---------------RADMLS1248124P124812P1248121241248112481248P\n"[offset]);
1671                                         errs = 0;
1672                                 }
1673
1674                                 /*
1675                                  * timeout -> possible minute mark -> interpretation
1676                                  */
1677                                 if (timercmp(&t, &timeout, >))
1678                                 {
1679                                         PRINTF("%c %.*s ", pat[i % (sizeof(pat)-1)], 59 - offset, &pbuf[offset]);
1680
1681                                         if ((rtc = cvt_rawdcf((unsigned char *)buf, i, &clock_time)) != CVT_OK)
1682                                         {
1683                                                 /*
1684                                                  * this data was bad - well - forget synchronisation for now
1685                                                  */
1686                                                 PRINTF("\n");
1687                                                 if (sync_state == SYNC)
1688                                                 {
1689                                                         sync_state = NO_SYNC;
1690                                                         syslog(LOG_INFO, "DCF77 reception lost (bad data)");
1691                                                 }
1692                                                 errs++;
1693                                         }
1694                                         else
1695                                             if (trace)
1696                                             {
1697                                                     PRINTF("\r  %.*s ", 59 - offset, &buf[offset]);
1698                                             }
1699
1700
1701                                         buf[0] = c;
1702
1703                                         /*
1704                                          * collect first character
1705                                          */
1706                                         if (((c^0xFF)+1) & (c^0xFF))
1707                                             pbuf[0] = '?';
1708                                         else
1709                                             pbuf[0] = type(c) ? '#' : '-';
1710
1711                                         for ( i = 1; i < 60; i++)
1712                                             pbuf[i] = '.';
1713
1714                                         i = 0;
1715                                 }
1716                                 else
1717                                 {
1718                                         /*
1719                                          * collect character
1720                                          */
1721                                         buf[i] = c;
1722
1723                                         /*
1724                                          * initial guess (usually correct)
1725                                          */
1726                                         if (((c^0xFF)+1) & (c^0xFF))
1727                                             pbuf[i] = '?';
1728                                         else
1729                                             pbuf[i] = type(c) ? '#' : '-';
1730
1731                                         PRINTF("%c %.*s ", pat[i % (sizeof(pat)-1)], 59 - offset, &pbuf[offset]);
1732                                 }
1733
1734                                 if (i == 0 && rtc == CVT_OK)
1735                                 {
1736                                         /*
1737                                          * we got a good time code here - try to convert it to
1738                                          * UTC
1739                                          */
1740                                         if ((utc_time = dcf_to_unixtime(&clock_time, &rtc)) == -1)
1741                                         {
1742                                                 PRINTF("*** BAD CONVERSION\n");
1743                                         }
1744
1745                                         if (utc_time != (last_utc_time + 60))
1746                                         {
1747                                                 /*
1748                                                  * well, two successive sucessful telegrams are not 60 seconds
1749                                                  * apart
1750                                                  */
1751                                                 PRINTF("*** NO MINUTE INC\n");
1752                                                 if (sync_state == SYNC)
1753                                                 {
1754                                                         sync_state = NO_SYNC;
1755                                                         syslog(LOG_INFO, "DCF77 reception lost (data mismatch)");
1756                                                 }
1757                                                 errs++;
1758                                                 rtc = CVT_FAIL|CVT_BADTIME|CVT_BADDATE;
1759                                         }
1760                                         else
1761                                             usecerror = 0;
1762
1763                                         last_utc_time = utc_time;
1764                                 }
1765
1766                                 if (rtc == CVT_OK)
1767                                 {
1768                                         if (i == 0)
1769                                         {
1770                                                 /*
1771                                                  * valid time code - determine offset and
1772                                                  * note regained reception
1773                                                  */
1774                                                 last_sync = ticks;
1775                                                 if (sync_state == NO_SYNC)
1776                                                 {
1777                                                         syslog(LOG_INFO, "receiving DCF77");
1778                                                 }
1779                                                 else
1780                                                 {
1781                                                         /*
1782                                                          * we had at least one minute SYNC - thus
1783                                                          * last error is valid
1784                                                          */
1785                                                         time_offset.tv_sec  = lasterror / 1000000;
1786                                                         time_offset.tv_usec = lasterror % 1000000;
1787                                                         adjust_clock(&time_offset, drift_file, utc_time);
1788                                                 }
1789                                                 sync_state = SYNC;
1790                                         }
1791
1792                                         time_offset.tv_sec  = utc_time + i;
1793                                         time_offset.tv_usec = 0;
1794
1795                                         timeradd(&time_offset, &phase);
1796
1797                                         usecerror += (time_offset.tv_sec - tt.tv_sec) * 1000000 + time_offset.tv_usec
1798                                                 -tt.tv_usec;
1799
1800                                         /*
1801                                          * output interpreted DCF77 data
1802                                          */
1803                                         PRINTF(offsets ? "%s, %2ld:%02ld:%02d, %ld.%02ld.%02ld, <%s%s%s%s> (%c%ld.%06lds)" :
1804                                                "%s, %2ld:%02ld:%02d, %ld.%02ld.%02ld, <%s%s%s%s>",
1805                                                wday[clock_time.wday],
1806                                                clock_time.hour, clock_time.minute, i, clock_time.day, clock_time.month,
1807                                                clock_time.year,
1808                                                (clock_time.flags & DCFB_CALLBIT) ? "R" : "_",
1809                                                (clock_time.flags & DCFB_ANNOUNCE) ? "A" : "_",
1810                                                (clock_time.flags & DCFB_DST) ? "D" : "_",
1811                                                (clock_time.flags & DCFB_LEAP) ? "L" : "_",
1812                                                (lasterror < 0) ? '-' : '+', l_abs(lasterror) / 1000000, l_abs(lasterror) % 1000000
1813                                                );
1814
1815                                         if (trace && (i == 0))
1816                                         {
1817                                                 PRINTF("\n");
1818                                                 errs++;
1819                                         }
1820                                         lasterror = usecerror / (i+1);
1821                                 }
1822                                 else
1823                                 {
1824                                         lasterror = 0; /* we cannot calculate phase errors on bad reception */
1825                                 }
1826
1827                                 PRINTF("\r");
1828
1829                                 if (i < 60)
1830                                 {
1831                                         i++;
1832                                 }
1833
1834                                 tlast = tt;
1835
1836                                 if (interactive)
1837                                     fflush(stdout);
1838                         }
1839                 } while ((rrc == -1) && (errno == EINTR));
1840
1841                 /*
1842                  * lost IO - sorry guys
1843                  */
1844                 syslog(LOG_ERR, "TERMINATING - cannot read from device %s (%m)", file);
1845
1846                 (void)close(fd);
1847         }
1848
1849         closelog();
1850
1851         return 0;
1852 }
1853
1854 /*
1855  * History:
1856  *
1857  * dcfd.c,v
1858  * Revision 4.18  2005/10/07 22:08:18  kardel
1859  * make dcfd.c compile on NetBSD 3.99.9 again (configure/sigvec compatibility fix)
1860  *
1861  * Revision 4.17.2.1  2005/10/03 19:15:16  kardel
1862  * work around configure not detecting a missing sigvec compatibility
1863  * interface on NetBSD 3.99.9 and above
1864  *
1865  * Revision 4.17  2005/08/10 10:09:44  kardel
1866  * output revision information
1867  *
1868  * Revision 4.16  2005/08/10 06:33:25  kardel
1869  * cleanup warnings
1870  *
1871  * Revision 4.15  2005/08/10 06:28:45  kardel
1872  * fix setting of baud rate
1873  *
1874  * Revision 4.14  2005/04/16 17:32:10  kardel
1875  * update copyright
1876  *
1877  * Revision 4.13  2004/11/14 15:29:41  kardel
1878  * support PPSAPI, upgrade Copyright to Berkeley style
1879  *
1880  */