]> CyberLeo.Net >> Repos - FreeBSD/releng/7.2.git/blob - contrib/gdtoa/README
Create releng/7.2 from stable/7 in preparation for 7.2-RELEASE.
[FreeBSD/releng/7.2.git] / contrib / gdtoa / README
1 This directory contains source for a library of binary -> decimal
2 and decimal -> binary conversion routines, for single-, double-,
3 and extended-precision IEEE binary floating-point arithmetic, and
4 other IEEE-like binary floating-point, including "double double",
5 as in
6
7         T. J. Dekker, "A Floating-Point Technique for Extending the
8         Available Precision", Numer. Math. 18 (1971), pp. 224-242
9
10 and
11
12         "Inside Macintosh: PowerPC Numerics", Addison-Wesley, 1994
13
14 The conversion routines use double-precision floating-point arithmetic
15 and, where necessary, high precision integer arithmetic.  The routines
16 are generalizations of the strtod and dtoa routines described in
17
18         David M. Gay, "Correctly Rounded Binary-Decimal and
19         Decimal-Binary Conversions", Numerical Analysis Manuscript
20         No. 90-10, Bell Labs, Murray Hill, 1990;
21         http://cm.bell-labs.com/cm/cs/what/ampl/REFS/rounding.ps.gz
22
23 (based in part on papers by Clinger and Steele & White: see the
24 references in the above paper).
25
26 The present conversion routines should be able to use any of IEEE binary,
27 VAX, or IBM-mainframe double-precision arithmetic internally, but I (dmg)
28 have so far only had a chance to test them with IEEE double precision
29 arithmetic.
30
31 The core conversion routines are strtodg for decimal -> binary conversions
32 and gdtoa for binary -> decimal conversions.  These routines operate
33 on arrays of unsigned 32-bit integers of type ULong, a signed 32-bit
34 exponent of type Long, and arithmetic characteristics described in
35 struct FPI; FPI, Long, and ULong are defined in gdtoa.h.  File arith.h
36 is supposed to provide #defines that cause gdtoa.h to define its
37 types correctly.  File arithchk.c is source for a program that
38 generates a suitable arith.h on all systems where I've been able to
39 test it.
40
41 The core conversion routines are meant to be called by helper routines
42 that know details of the particular binary arithmetic of interest and
43 convert.  The present directory provides helper routines for 5 variants
44 of IEEE binary floating-point arithmetic, each indicated by one or
45 two letters:
46
47         f       IEEE single precision
48         d       IEEE double precision
49         x       IEEE extended precision, as on Intel 80x87
50                 and software emulations of Motorola 68xxx chips
51                 that do not pad the way the 68xxx does, but
52                 only store 80 bits
53         xL      IEEE extended precision, as on Motorola 68xxx chips
54         Q       quad precision, as on Sun Sparc chips
55         dd      double double, pairs of IEEE double numbers
56                 whose sum is the desired value
57
58 For decimal -> binary conversions, there are three families of
59 helper routines: one for round-nearest:
60
61         strtof
62         strtod
63         strtodd
64         strtopd
65         strtopf
66         strtopx
67         strtopxL
68         strtopQ
69
70 one with rounding direction specified:
71
72         strtorf
73         strtord
74         strtordd
75         strtorx
76         strtorxL
77         strtorQ
78
79 and one for computing an interval (at most one bit wide) that contains
80 the decimal number:
81
82         strtoIf
83         strtoId
84         strtoIdd
85         strtoIx
86         strtoIxL
87         strtoIQ
88
89 The latter call strtoIg, which makes one call on strtodg and adjusts
90 the result to provide the desired interval.  On systems where native
91 arithmetic can easily make one-ulp adjustments on values in the
92 desired floating-point format, it might be more efficient to use the
93 native arithmetic.  Routine strtodI is a variant of strtoId that
94 illustrates one way to do this for IEEE binary double-precision
95 arithmetic -- but whether this is more efficient remains to be seen.
96
97 Functions strtod and strtof have "natural" return types, float and
98 double -- strtod is specified by the C standard, and strtof appears
99 in the stdlib.h of some systems, such as (at least some) Linux systems.
100 The other functions write their results to their final argument(s):
101 to the final two argument for the strtoI... (interval) functions,
102 and to the final argument for the others (strtop... and strtor...).
103 Where possible, these arguments have "natural" return types (double*
104 or float*), to permit at least some type checking.  In reality, they
105 are viewed as arrays of ULong (or, for the "x" functions, UShort)
106 values. On systems where long double is the appropriate type, one can
107 pass long double* final argument(s) to these routines.  The int value
108 that these routines return is the return value from the call they make
109 on strtodg; see the enum of possible return values in gdtoa.h.
110
111 Source files g_ddfmt.c, misc.c, smisc.c, strtod.c, strtodg.c, and ulp.c
112 should use true IEEE double arithmetic (not, e.g., double extended),
113 at least for storing (and viewing the bits of) the variables declared
114 "double" within them.
115
116 One detail indicated in struct FPI is whether the target binary
117 arithmetic departs from the IEEE standard by flushing denormalized
118 numbers to 0.  On systems that do this, the helper routines for
119 conversion to double-double format (when compiled with
120 Sudden_Underflow #defined) penalize the bottom of the exponent
121 range so that they return a nonzero result only when the least
122 significant bit of the less significant member of the pair of
123 double values returned can be expressed as a normalized double
124 value.  An alternative would be to drop to 53-bit precision near
125 the bottom of the exponent range.  To get correct rounding, this
126 would (in general) require two calls on strtodg (one specifying
127 126-bit arithmetic, then, if necessary, one specifying 53-bit
128 arithmetic).
129
130 By default, the core routine strtodg and strtod set errno to ERANGE
131 if the result overflows to +Infinity or underflows to 0.  Compile
132 these routines with NO_ERRNO #defined to inhibit errno assignments.
133
134 Routine strtod is based on netlib's "dtoa.c from fp", and
135 (f = strtod(s,se)) is more efficient for some conversions than, say,
136 strtord(s,se,1,&f).  Parts of strtod require true IEEE double
137 arithmetic with the default rounding mode (round-to-nearest) and, on
138 systems with IEEE extended-precision registers, double-precision
139 (53-bit) rounding precision.  If the machine uses (the equivalent of)
140 Intel 80x87 arithmetic, the call
141         _control87(PC_53, MCW_PC);
142 does this with many compilers.  Whether this or another call is
143 appropriate depends on the compiler; for this to work, it may be
144 necessary to #include "float.h" or another system-dependent header
145 file.
146
147 Source file strtodnrp.c gives a strtod that does not require 53-bit
148 rounding precision on systems (such as Intel IA32 systems) that may
149 suffer double rounding due to use of extended-precision registers.
150 For some conversions this variant of strtod is less efficient than the
151 one in strtod.c when the latter is run with 53-bit rounding precision.
152
153 The values that the strto* routines return for NaNs are determined by
154 gd_qnan.h, which the makefile generates by running the program whose
155 source is qnan.c.  Note that the rules for distinguishing signaling
156 from quiet NaNs are system-dependent.  For cross-compilation, you need
157 to determine arith.h and gd_qnan.h suitably, e.g., using the
158 arithmetic of the target machine.
159
160 C99's hexadecimal floating-point constants are recognized by the
161 strto* routines (but this feature has not yet been heavily tested).
162 Compiling with NO_HEX_FP #defined disables this feature.
163
164 When compiled with -DINFNAN_CHECK, the strto* routines recognize C99's
165 NaN and Infinity syntax.  Moreover, unless No_Hex_NaN is #defined, the
166 strto* routines also recognize C99's NaN(...) syntax: they accept
167 (case insensitively) strings of the form NaN(x), where x is a string
168 of hexadecimal digits and spaces; if there is only one string of
169 hexadecimal digits, it is taken for the fraction bits of the resulting
170 NaN; if there are two or more strings of hexadecimal digits, each
171 string is assigned to the next available sequence of 32-bit words of
172 fractions bits (starting with the most significant), right-aligned in
173 each sequence.
174
175 For binary -> decimal conversions, I've provided just one family
176 of helper routines:
177
178         g_ffmt
179         g_dfmt
180         g_ddfmt
181         g_xfmt
182         g_xLfmt
183         g_Qfmt
184
185 which do a "%g" style conversion either to a specified number of decimal
186 places (if their ndig argument is positive), or to the shortest
187 decimal string that rounds to the given binary floating-point value
188 (if ndig <= 0).  They write into a buffer supplied as an argument
189 and return either a pointer to the end of the string (a null character)
190 in the buffer, if the buffer was long enough, or 0.  Other forms of
191 conversion are easily done with the help of gdtoa(), such as %e or %f
192 style and conversions with direction of rounding specified (so that, if
193 desired, the decimal value is either >= or <= the binary value).
194
195 For an example of more general conversions based on dtoa(), see
196 netlib's "printf.c from ampl/solvers".
197
198 For double-double -> decimal, g_ddfmt() assumes IEEE-like arithmetic
199 of precision max(126, #bits(input)) bits, where #bits(input) is the
200 number of mantissa bits needed to represent the sum of the two double
201 values in the input.
202
203 The makefile creates a library, gdtoa.a.  To use the helper
204 routines, a program only needs to include gdtoa.h.  All the
205 source files for gdtoa.a include a more extensive gdtoaimp.h;
206 among other things, gdtoaimp.h has #defines that make "internal"
207 names end in _D2A.  To make a "system" library, one could modify
208 these #defines to make the names start with __.
209
210 Various comments about possible #defines appear in gdtoaimp.h,
211 but for most purposes, arith.h should set suitable #defines.
212
213 Systems with preemptive scheduling of multiple threads require some
214 manual intervention.  On such systems, it's necessary to compile
215 dmisc.c, dtoa.c gdota.c, and misc.c with MULTIPLE_THREADS #defined,
216 and to provide (or suitably #define) two locks, acquired by
217 ACQUIRE_DTOA_LOCK(n) and freed by FREE_DTOA_LOCK(n) for n = 0 or 1.
218 (The second lock, accessed in pow5mult, ensures lazy evaluation of
219 only one copy of high powers of 5; omitting this lock would introduce
220 a small probability of wasting memory, but would otherwise be harmless.)
221 Routines that call dtoa or gdtoa directly must also invoke freedtoa(s)
222 to free the value s returned by dtoa or gdtoa.  It's OK to do so whether
223 or not MULTIPLE_THREADS is #defined, and the helper g_*fmt routines
224 listed above all do this indirectly (in gfmt_D2A(), which they all call).
225
226 By default, there is a private pool of memory of length 2000 bytes
227 for intermediate quantities, and MALLOC (see gdtoaimp.h) is called only
228 if the private pool does not suffice.   2000 is large enough that MALLOC
229 is called only under very unusual circumstances (decimal -> binary
230 conversion of very long strings) for conversions to and from double
231 precision.  For systems with preemptively scheduled multiple threads
232 or for conversions to extended or quad, it may be appropriate to
233 #define PRIVATE_MEM nnnn, where nnnn is a suitable value > 2000.
234 For extended and quad precisions, -DPRIVATE_MEM=20000 is probably
235 plenty even for many digits at the ends of the exponent range.
236 Use of the private pool avoids some overhead.
237
238 Directory test provides some test routines.  See its README.
239 I've also tested this stuff (except double double conversions)
240 with Vern Paxson's testbase program: see
241
242         V. Paxson and W. Kahan, "A Program for Testing IEEE Binary-Decimal
243         Conversion", manuscript, May 1991,
244         ftp://ftp.ee.lbl.gov/testbase-report.ps.Z .
245
246 (The same ftp directory has source for testbase.)
247
248 Some system-dependent additions to CFLAGS in the makefile:
249
250         HU-UX: -Aa -Ae
251         OSF (DEC Unix): -ieee_with_no_inexact
252         SunOS 4.1x: -DKR_headers -DBad_float_h
253
254 If you want to put this stuff into a shared library and your
255 operating system requires export lists for shared libraries,
256 the following would be an appropriate export list:
257
258         dtoa
259         freedtoa
260         g_Qfmt
261         g_ddfmt
262         g_dfmt
263         g_ffmt
264         g_xLfmt
265         g_xfmt
266         gdtoa
267         strtoIQ
268         strtoId
269         strtoIdd
270         strtoIf
271         strtoIx
272         strtoIxL
273         strtod
274         strtodI
275         strtodg
276         strtof
277         strtopQ
278         strtopd
279         strtopdd
280         strtopf
281         strtopx
282         strtopxL
283         strtorQ
284         strtord
285         strtordd
286         strtorf
287         strtorx
288         strtorxL
289
290 When time permits, I (dmg) hope to write in more detail about the
291 present conversion routines; for now, this README file must suffice.
292 Meanwhile, if you wish to write helper functions for other kinds of
293 IEEE-like arithmetic, some explanation of struct FPI and the bits
294 array may be helpful.  Both gdtoa and strtodg operate on a bits array
295 described by FPI *fpi.  The bits array is of type ULong, a 32-bit
296 unsigned integer type.  Floating-point numbers have fpi->nbits bits,
297 with the least significant 32 bits in bits[0], the next 32 bits in
298 bits[1], etc.  These numbers are regarded as integers multiplied by
299 2^e (i.e., 2 to the power of the exponent e), where e is the second
300 argument (be) to gdtoa and is stored in *exp by strtodg.  The minimum
301 and maximum exponent values fpi->emin and fpi->emax for normalized
302 floating-point numbers reflect this arrangement.  For example, the
303 P754 standard for binary IEEE arithmetic specifies doubles as having
304 53 bits, with normalized values of the form 1.xxxxx... times 2^(b-1023),
305 with 52 bits (the x's) and the biased exponent b represented explicitly;
306 b is an unsigned integer in the range 1 <= b <= 2046 for normalized
307 finite doubles, b = 0 for denormals, and b = 2047 for Infinities and NaNs.
308 To turn an IEEE double into the representation used by strtodg and gdtoa,
309 we multiply 1.xxxx... by 2^52 (to make it an integer) and reduce the
310 exponent e = (b-1023) by 52:
311
312         fpi->emin = 1 - 1023 - 52
313         fpi->emax = 1046 - 1023 - 52
314
315 In various wrappers for IEEE double, we actually write -53 + 1 rather
316 than -52, to emphasize that there are 53 bits including one implicit bit.
317 Field fpi->rounding indicates the desired rounding direction, with
318 possible values
319         FPI_Round_zero = toward 0,
320         FPI_Round_near = unbiased rounding -- the IEEE default,
321         FPI_Round_up = toward +Infinity, and
322         FPI_Round_down = toward -Infinity
323 given in gdtoa.h.
324
325 Field fpi->sudden_underflow indicates whether strtodg should return
326 denormals or flush them to zero.  Normal floating-point numbers have
327 bit fpi->nbits in the bits array on.  Denormals have it off, with
328 exponent = fpi->emin.  Strtodg provides distinct return values for normals
329 and denormals; see gdtoa.h.
330
331 Compiling g__fmt.c, strtod.c, and strtodg.c with -DUSE_LOCALE causes
332 the decimal-point character to be taken from the current locale; otherwise
333 it is '.'.
334
335 Please send comments to David M. Gay (dmg at acm dot org, with " at "
336 changed at "@" and " dot " changed to ".").