]> CyberLeo.Net >> Repos - FreeBSD/releng/7.2.git/blob - lib/msun/src/e_jnf.c
Create releng/7.2 from stable/7 in preparation for 7.2-RELEASE.
[FreeBSD/releng/7.2.git] / lib / msun / src / e_jnf.c
1 /* e_jnf.c -- float version of e_jn.c.
2  * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
3  */
4
5 /*
6  * ====================================================
7  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
8  *
9  * Developed at SunPro, a Sun Microsystems, Inc. business.
10  * Permission to use, copy, modify, and distribute this
11  * software is freely granted, provided that this notice
12  * is preserved.
13  * ====================================================
14  */
15
16 #ifndef lint
17 static char rcsid[] = "$FreeBSD$";
18 #endif
19
20 #include "math.h"
21 #include "math_private.h"
22
23 static const float
24 invsqrtpi=  5.6418961287e-01, /* 0x3f106ebb */
25 two   =  2.0000000000e+00, /* 0x40000000 */
26 one   =  1.0000000000e+00; /* 0x3F800000 */
27
28 static const float zero  =  0.0000000000e+00;
29
30 float
31 __ieee754_jnf(int n, float x)
32 {
33         int32_t i,hx,ix, sgn;
34         float a, b, temp, di;
35         float z, w;
36
37     /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
38      * Thus, J(-n,x) = J(n,-x)
39      */
40         GET_FLOAT_WORD(hx,x);
41         ix = 0x7fffffff&hx;
42     /* if J(n,NaN) is NaN */
43         if(ix>0x7f800000) return x+x;
44         if(n<0){
45                 n = -n;
46                 x = -x;
47                 hx ^= 0x80000000;
48         }
49         if(n==0) return(__ieee754_j0f(x));
50         if(n==1) return(__ieee754_j1f(x));
51         sgn = (n&1)&(hx>>31);   /* even n -- 0, odd n -- sign(x) */
52         x = fabsf(x);
53         if(ix==0||ix>=0x7f800000)       /* if x is 0 or inf */
54             b = zero;
55         else if((float)n<=x) {
56                 /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
57             a = __ieee754_j0f(x);
58             b = __ieee754_j1f(x);
59             for(i=1;i<n;i++){
60                 temp = b;
61                 b = b*((float)(i+i)/x) - a; /* avoid underflow */
62                 a = temp;
63             }
64         } else {
65             if(ix<0x30800000) { /* x < 2**-29 */
66     /* x is tiny, return the first Taylor expansion of J(n,x)
67      * J(n,x) = 1/n!*(x/2)^n  - ...
68      */
69                 if(n>33)        /* underflow */
70                     b = zero;
71                 else {
72                     temp = x*(float)0.5; b = temp;
73                     for (a=one,i=2;i<=n;i++) {
74                         a *= (float)i;          /* a = n! */
75                         b *= temp;              /* b = (x/2)^n */
76                     }
77                     b = b/a;
78                 }
79             } else {
80                 /* use backward recurrence */
81                 /*                      x      x^2      x^2
82                  *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
83                  *                      2n  - 2(n+1) - 2(n+2)
84                  *
85                  *                      1      1        1
86                  *  (for large x)   =  ----  ------   ------   .....
87                  *                      2n   2(n+1)   2(n+2)
88                  *                      -- - ------ - ------ -
89                  *                       x     x         x
90                  *
91                  * Let w = 2n/x and h=2/x, then the above quotient
92                  * is equal to the continued fraction:
93                  *                  1
94                  *      = -----------------------
95                  *                     1
96                  *         w - -----------------
97                  *                        1
98                  *              w+h - ---------
99                  *                     w+2h - ...
100                  *
101                  * To determine how many terms needed, let
102                  * Q(0) = w, Q(1) = w(w+h) - 1,
103                  * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
104                  * When Q(k) > 1e4      good for single
105                  * When Q(k) > 1e9      good for double
106                  * When Q(k) > 1e17     good for quadruple
107                  */
108             /* determine k */
109                 float t,v;
110                 float q0,q1,h,tmp; int32_t k,m;
111                 w  = (n+n)/(float)x; h = (float)2.0/(float)x;
112                 q0 = w;  z = w+h; q1 = w*z - (float)1.0; k=1;
113                 while(q1<(float)1.0e9) {
114                         k += 1; z += h;
115                         tmp = z*q1 - q0;
116                         q0 = q1;
117                         q1 = tmp;
118                 }
119                 m = n+n;
120                 for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);
121                 a = t;
122                 b = one;
123                 /*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
124                  *  Hence, if n*(log(2n/x)) > ...
125                  *  single 8.8722839355e+01
126                  *  double 7.09782712893383973096e+02
127                  *  long double 1.1356523406294143949491931077970765006170e+04
128                  *  then recurrent value may overflow and the result is
129                  *  likely underflow to zero
130                  */
131                 tmp = n;
132                 v = two/x;
133                 tmp = tmp*__ieee754_logf(fabsf(v*tmp));
134                 if(tmp<(float)8.8721679688e+01) {
135                     for(i=n-1,di=(float)(i+i);i>0;i--){
136                         temp = b;
137                         b *= di;
138                         b  = b/x - a;
139                         a = temp;
140                         di -= two;
141                     }
142                 } else {
143                     for(i=n-1,di=(float)(i+i);i>0;i--){
144                         temp = b;
145                         b *= di;
146                         b  = b/x - a;
147                         a = temp;
148                         di -= two;
149                     /* scale b to avoid spurious overflow */
150                         if(b>(float)1e10) {
151                             a /= b;
152                             t /= b;
153                             b  = one;
154                         }
155                     }
156                 }
157                 b = (t*__ieee754_j0f(x)/b);
158             }
159         }
160         if(sgn==1) return -b; else return b;
161 }
162
163 float
164 __ieee754_ynf(int n, float x)
165 {
166         int32_t i,hx,ix,ib;
167         int32_t sign;
168         float a, b, temp;
169
170         GET_FLOAT_WORD(hx,x);
171         ix = 0x7fffffff&hx;
172     /* if Y(n,NaN) is NaN */
173         if(ix>0x7f800000) return x+x;
174         if(ix==0) return -one/zero;
175         if(hx<0) return zero/zero;
176         sign = 1;
177         if(n<0){
178                 n = -n;
179                 sign = 1 - ((n&1)<<1);
180         }
181         if(n==0) return(__ieee754_y0f(x));
182         if(n==1) return(sign*__ieee754_y1f(x));
183         if(ix==0x7f800000) return zero;
184
185         a = __ieee754_y0f(x);
186         b = __ieee754_y1f(x);
187         /* quit if b is -inf */
188         GET_FLOAT_WORD(ib,b);
189         for(i=1;i<n&&ib!=0xff800000;i++){
190             temp = b;
191             b = ((float)(i+i)/x)*b - a;
192             GET_FLOAT_WORD(ib,b);
193             a = temp;
194         }
195         if(sign>0) return b; else return -b;
196 }