]> CyberLeo.Net >> Repos - FreeBSD/releng/7.2.git/blob - sys/cddl/contrib/opensolaris/uts/common/fs/zfs/dmu_zfetch.c
Create releng/7.2 from stable/7 in preparation for 7.2-RELEASE.
[FreeBSD/releng/7.2.git] / sys / cddl / contrib / opensolaris / uts / common / fs / zfs / dmu_zfetch.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25
26 #pragma ident   "%Z%%M% %I%     %E% SMI"
27
28 #include <sys/zfs_context.h>
29 #include <sys/dnode.h>
30 #include <sys/dmu_objset.h>
31 #include <sys/dmu_zfetch.h>
32 #include <sys/dmu.h>
33 #include <sys/dbuf.h>
34
35 /*
36  * I'm against tune-ables, but these should probably exist as tweakable globals
37  * until we can get this working the way we want it to.
38  */
39
40 int zfs_prefetch_disable = 0;
41 SYSCTL_DECL(_vfs_zfs);
42 TUNABLE_INT("vfs.zfs.prefetch_disable", &zfs_prefetch_disable);
43 SYSCTL_INT(_vfs_zfs, OID_AUTO, prefetch_disable, CTLFLAG_RDTUN,
44     &zfs_prefetch_disable, 0, "Disable prefetch");
45
46 /* max # of streams per zfetch */
47 uint32_t        zfetch_max_streams = 8;
48 /* min time before stream reclaim */
49 uint32_t        zfetch_min_sec_reap = 2;
50 /* max number of blocks to fetch at a time */
51 uint32_t        zfetch_block_cap = 256;
52 /* number of bytes in a array_read at which we stop prefetching (1Mb) */
53 uint64_t        zfetch_array_rd_sz = 1024 * 1024;
54
55 /* forward decls for static routines */
56 static int              dmu_zfetch_colinear(zfetch_t *, zstream_t *);
57 static void             dmu_zfetch_dofetch(zfetch_t *, zstream_t *);
58 static uint64_t         dmu_zfetch_fetch(dnode_t *, uint64_t, uint64_t);
59 static uint64_t         dmu_zfetch_fetchsz(dnode_t *, uint64_t, uint64_t);
60 static int              dmu_zfetch_find(zfetch_t *, zstream_t *, int);
61 static int              dmu_zfetch_stream_insert(zfetch_t *, zstream_t *);
62 static zstream_t        *dmu_zfetch_stream_reclaim(zfetch_t *);
63 static void             dmu_zfetch_stream_remove(zfetch_t *, zstream_t *);
64 static int              dmu_zfetch_streams_equal(zstream_t *, zstream_t *);
65
66 /*
67  * Given a zfetch structure and a zstream structure, determine whether the
68  * blocks to be read are part of a co-linear pair of existing prefetch
69  * streams.  If a set is found, coalesce the streams, removing one, and
70  * configure the prefetch so it looks for a strided access pattern.
71  *
72  * In other words: if we find two sequential access streams that are
73  * the same length and distance N appart, and this read is N from the
74  * last stream, then we are probably in a strided access pattern.  So
75  * combine the two sequential streams into a single strided stream.
76  *
77  * If no co-linear streams are found, return NULL.
78  */
79 static int
80 dmu_zfetch_colinear(zfetch_t *zf, zstream_t *zh)
81 {
82         zstream_t       *z_walk;
83         zstream_t       *z_comp;
84
85         if (! rw_tryenter(&zf->zf_rwlock, RW_WRITER))
86                 return (0);
87
88         if (zh == NULL) {
89                 rw_exit(&zf->zf_rwlock);
90                 return (0);
91         }
92
93         for (z_walk = list_head(&zf->zf_stream); z_walk;
94             z_walk = list_next(&zf->zf_stream, z_walk)) {
95                 for (z_comp = list_next(&zf->zf_stream, z_walk); z_comp;
96                     z_comp = list_next(&zf->zf_stream, z_comp)) {
97                         int64_t         diff;
98
99                         if (z_walk->zst_len != z_walk->zst_stride ||
100                             z_comp->zst_len != z_comp->zst_stride) {
101                                 continue;
102                         }
103
104                         diff = z_comp->zst_offset - z_walk->zst_offset;
105                         if (z_comp->zst_offset + diff == zh->zst_offset) {
106                                 z_walk->zst_offset = zh->zst_offset;
107                                 z_walk->zst_direction = diff < 0 ? -1 : 1;
108                                 z_walk->zst_stride =
109                                     diff * z_walk->zst_direction;
110                                 z_walk->zst_ph_offset =
111                                     zh->zst_offset + z_walk->zst_stride;
112                                 dmu_zfetch_stream_remove(zf, z_comp);
113                                 mutex_destroy(&z_comp->zst_lock);
114                                 kmem_free(z_comp, sizeof (zstream_t));
115
116                                 dmu_zfetch_dofetch(zf, z_walk);
117
118                                 rw_exit(&zf->zf_rwlock);
119                                 return (1);
120                         }
121
122                         diff = z_walk->zst_offset - z_comp->zst_offset;
123                         if (z_walk->zst_offset + diff == zh->zst_offset) {
124                                 z_walk->zst_offset = zh->zst_offset;
125                                 z_walk->zst_direction = diff < 0 ? -1 : 1;
126                                 z_walk->zst_stride =
127                                     diff * z_walk->zst_direction;
128                                 z_walk->zst_ph_offset =
129                                     zh->zst_offset + z_walk->zst_stride;
130                                 dmu_zfetch_stream_remove(zf, z_comp);
131                                 mutex_destroy(&z_comp->zst_lock);
132                                 kmem_free(z_comp, sizeof (zstream_t));
133
134                                 dmu_zfetch_dofetch(zf, z_walk);
135
136                                 rw_exit(&zf->zf_rwlock);
137                                 return (1);
138                         }
139                 }
140         }
141
142         rw_exit(&zf->zf_rwlock);
143         return (0);
144 }
145
146 /*
147  * Given a zstream_t, determine the bounds of the prefetch.  Then call the
148  * routine that actually prefetches the individual blocks.
149  */
150 static void
151 dmu_zfetch_dofetch(zfetch_t *zf, zstream_t *zs)
152 {
153         uint64_t        prefetch_tail;
154         uint64_t        prefetch_limit;
155         uint64_t        prefetch_ofst;
156         uint64_t        prefetch_len;
157         uint64_t        blocks_fetched;
158
159         zs->zst_stride = MAX((int64_t)zs->zst_stride, zs->zst_len);
160         zs->zst_cap = MIN(zfetch_block_cap, 2 * zs->zst_cap);
161
162         prefetch_tail = MAX((int64_t)zs->zst_ph_offset,
163             (int64_t)(zs->zst_offset + zs->zst_stride));
164         /*
165          * XXX: use a faster division method?
166          */
167         prefetch_limit = zs->zst_offset + zs->zst_len +
168             (zs->zst_cap * zs->zst_stride) / zs->zst_len;
169
170         while (prefetch_tail < prefetch_limit) {
171                 prefetch_ofst = zs->zst_offset + zs->zst_direction *
172                     (prefetch_tail - zs->zst_offset);
173
174                 prefetch_len = zs->zst_len;
175
176                 /*
177                  * Don't prefetch beyond the end of the file, if working
178                  * backwards.
179                  */
180                 if ((zs->zst_direction == ZFETCH_BACKWARD) &&
181                     (prefetch_ofst > prefetch_tail)) {
182                         prefetch_len += prefetch_ofst;
183                         prefetch_ofst = 0;
184                 }
185
186                 /* don't prefetch more than we're supposed to */
187                 if (prefetch_len > zs->zst_len)
188                         break;
189
190                 blocks_fetched = dmu_zfetch_fetch(zf->zf_dnode,
191                     prefetch_ofst, zs->zst_len);
192
193                 prefetch_tail += zs->zst_stride;
194                 /* stop if we've run out of stuff to prefetch */
195                 if (blocks_fetched < zs->zst_len)
196                         break;
197         }
198         zs->zst_ph_offset = prefetch_tail;
199         zs->zst_last = LBOLT;
200 }
201
202 /*
203  * This takes a pointer to a zfetch structure and a dnode.  It performs the
204  * necessary setup for the zfetch structure, grokking data from the
205  * associated dnode.
206  */
207 void
208 dmu_zfetch_init(zfetch_t *zf, dnode_t *dno)
209 {
210         if (zf == NULL) {
211                 return;
212         }
213
214         zf->zf_dnode = dno;
215         zf->zf_stream_cnt = 0;
216         zf->zf_alloc_fail = 0;
217
218         list_create(&zf->zf_stream, sizeof (zstream_t),
219             offsetof(zstream_t, zst_node));
220
221         rw_init(&zf->zf_rwlock, NULL, RW_DEFAULT, NULL);
222 }
223
224 /*
225  * This function computes the actual size, in blocks, that can be prefetched,
226  * and fetches it.
227  */
228 static uint64_t
229 dmu_zfetch_fetch(dnode_t *dn, uint64_t blkid, uint64_t nblks)
230 {
231         uint64_t        fetchsz;
232         uint64_t        i;
233
234         fetchsz = dmu_zfetch_fetchsz(dn, blkid, nblks);
235
236         for (i = 0; i < fetchsz; i++) {
237                 dbuf_prefetch(dn, blkid + i);
238         }
239
240         return (fetchsz);
241 }
242
243 /*
244  * this function returns the number of blocks that would be prefetched, based
245  * upon the supplied dnode, blockid, and nblks.  This is used so that we can
246  * update streams in place, and then prefetch with their old value after the
247  * fact.  This way, we can delay the prefetch, but subsequent accesses to the
248  * stream won't result in the same data being prefetched multiple times.
249  */
250 static uint64_t
251 dmu_zfetch_fetchsz(dnode_t *dn, uint64_t blkid, uint64_t nblks)
252 {
253         uint64_t        fetchsz;
254
255         if (blkid > dn->dn_maxblkid) {
256                 return (0);
257         }
258
259         /* compute fetch size */
260         if (blkid + nblks + 1 > dn->dn_maxblkid) {
261                 fetchsz = (dn->dn_maxblkid - blkid) + 1;
262                 ASSERT(blkid + fetchsz - 1 <= dn->dn_maxblkid);
263         } else {
264                 fetchsz = nblks;
265         }
266
267
268         return (fetchsz);
269 }
270
271 /*
272  * given a zfetch and a zsearch structure, see if there is an associated zstream
273  * for this block read.  If so, it starts a prefetch for the stream it
274  * located and returns true, otherwise it returns false
275  */
276 static int
277 dmu_zfetch_find(zfetch_t *zf, zstream_t *zh, int prefetched)
278 {
279         zstream_t       *zs;
280         int64_t         diff;
281         int             reset = !prefetched;
282         int             rc = 0;
283
284         if (zh == NULL)
285                 return (0);
286
287         /*
288          * XXX: This locking strategy is a bit coarse; however, it's impact has
289          * yet to be tested.  If this turns out to be an issue, it can be
290          * modified in a number of different ways.
291          */
292
293         rw_enter(&zf->zf_rwlock, RW_READER);
294 top:
295
296         for (zs = list_head(&zf->zf_stream); zs;
297             zs = list_next(&zf->zf_stream, zs)) {
298
299                 /*
300                  * XXX - should this be an assert?
301                  */
302                 if (zs->zst_len == 0) {
303                         /* bogus stream */
304                         continue;
305                 }
306
307                 /*
308                  * We hit this case when we are in a strided prefetch stream:
309                  * we will read "len" blocks before "striding".
310                  */
311                 if (zh->zst_offset >= zs->zst_offset &&
312                     zh->zst_offset < zs->zst_offset + zs->zst_len) {
313                         /* already fetched */
314                         rc = 1;
315                         goto out;
316                 }
317
318                 /*
319                  * This is the forward sequential read case: we increment
320                  * len by one each time we hit here, so we will enter this
321                  * case on every read.
322                  */
323                 if (zh->zst_offset == zs->zst_offset + zs->zst_len) {
324
325                         reset = !prefetched && zs->zst_len > 1;
326
327                         mutex_enter(&zs->zst_lock);
328
329                         if (zh->zst_offset != zs->zst_offset + zs->zst_len) {
330                                 mutex_exit(&zs->zst_lock);
331                                 goto top;
332                         }
333                         zs->zst_len += zh->zst_len;
334                         diff = zs->zst_len - zfetch_block_cap;
335                         if (diff > 0) {
336                                 zs->zst_offset += diff;
337                                 zs->zst_len = zs->zst_len > diff ?
338                                     zs->zst_len - diff : 0;
339                         }
340                         zs->zst_direction = ZFETCH_FORWARD;
341
342                         break;
343
344                 /*
345                  * Same as above, but reading backwards through the file.
346                  */
347                 } else if (zh->zst_offset == zs->zst_offset - zh->zst_len) {
348                         /* backwards sequential access */
349
350                         reset = !prefetched && zs->zst_len > 1;
351
352                         mutex_enter(&zs->zst_lock);
353
354                         if (zh->zst_offset != zs->zst_offset - zh->zst_len) {
355                                 mutex_exit(&zs->zst_lock);
356                                 goto top;
357                         }
358
359                         zs->zst_offset = zs->zst_offset > zh->zst_len ?
360                             zs->zst_offset - zh->zst_len : 0;
361                         zs->zst_ph_offset = zs->zst_ph_offset > zh->zst_len ?
362                             zs->zst_ph_offset - zh->zst_len : 0;
363                         zs->zst_len += zh->zst_len;
364
365                         diff = zs->zst_len - zfetch_block_cap;
366                         if (diff > 0) {
367                                 zs->zst_ph_offset = zs->zst_ph_offset > diff ?
368                                     zs->zst_ph_offset - diff : 0;
369                                 zs->zst_len = zs->zst_len > diff ?
370                                     zs->zst_len - diff : zs->zst_len;
371                         }
372                         zs->zst_direction = ZFETCH_BACKWARD;
373
374                         break;
375
376                 } else if ((zh->zst_offset - zs->zst_offset - zs->zst_stride <
377                     zs->zst_len) && (zs->zst_len != zs->zst_stride)) {
378                         /* strided forward access */
379
380                         mutex_enter(&zs->zst_lock);
381
382                         if ((zh->zst_offset - zs->zst_offset - zs->zst_stride >=
383                             zs->zst_len) || (zs->zst_len == zs->zst_stride)) {
384                                 mutex_exit(&zs->zst_lock);
385                                 goto top;
386                         }
387
388                         zs->zst_offset += zs->zst_stride;
389                         zs->zst_direction = ZFETCH_FORWARD;
390
391                         break;
392
393                 } else if ((zh->zst_offset - zs->zst_offset + zs->zst_stride <
394                     zs->zst_len) && (zs->zst_len != zs->zst_stride)) {
395                         /* strided reverse access */
396
397                         mutex_enter(&zs->zst_lock);
398
399                         if ((zh->zst_offset - zs->zst_offset + zs->zst_stride >=
400                             zs->zst_len) || (zs->zst_len == zs->zst_stride)) {
401                                 mutex_exit(&zs->zst_lock);
402                                 goto top;
403                         }
404
405                         zs->zst_offset = zs->zst_offset > zs->zst_stride ?
406                             zs->zst_offset - zs->zst_stride : 0;
407                         zs->zst_ph_offset = (zs->zst_ph_offset >
408                             (2 * zs->zst_stride)) ?
409                             (zs->zst_ph_offset - (2 * zs->zst_stride)) : 0;
410                         zs->zst_direction = ZFETCH_BACKWARD;
411
412                         break;
413                 }
414         }
415
416         if (zs) {
417                 if (reset) {
418                         zstream_t *remove = zs;
419
420                         rc = 0;
421                         mutex_exit(&zs->zst_lock);
422                         rw_exit(&zf->zf_rwlock);
423                         rw_enter(&zf->zf_rwlock, RW_WRITER);
424                         /*
425                          * Relocate the stream, in case someone removes
426                          * it while we were acquiring the WRITER lock.
427                          */
428                         for (zs = list_head(&zf->zf_stream); zs;
429                             zs = list_next(&zf->zf_stream, zs)) {
430                                 if (zs == remove) {
431                                         dmu_zfetch_stream_remove(zf, zs);
432                                         mutex_destroy(&zs->zst_lock);
433                                         kmem_free(zs, sizeof (zstream_t));
434                                         break;
435                                 }
436                         }
437                 } else {
438                         rc = 1;
439                         dmu_zfetch_dofetch(zf, zs);
440                         mutex_exit(&zs->zst_lock);
441                 }
442         }
443 out:
444         rw_exit(&zf->zf_rwlock);
445         return (rc);
446 }
447
448 /*
449  * Clean-up state associated with a zfetch structure.  This frees allocated
450  * structure members, empties the zf_stream tree, and generally makes things
451  * nice.  This doesn't free the zfetch_t itself, that's left to the caller.
452  */
453 void
454 dmu_zfetch_rele(zfetch_t *zf)
455 {
456         zstream_t       *zs;
457         zstream_t       *zs_next;
458
459         ASSERT(!RW_LOCK_HELD(&zf->zf_rwlock));
460
461         for (zs = list_head(&zf->zf_stream); zs; zs = zs_next) {
462                 zs_next = list_next(&zf->zf_stream, zs);
463
464                 list_remove(&zf->zf_stream, zs);
465                 mutex_destroy(&zs->zst_lock);
466                 kmem_free(zs, sizeof (zstream_t));
467         }
468         list_destroy(&zf->zf_stream);
469         rw_destroy(&zf->zf_rwlock);
470
471         zf->zf_dnode = NULL;
472 }
473
474 /*
475  * Given a zfetch and zstream structure, insert the zstream structure into the
476  * AVL tree contained within the zfetch structure.  Peform the appropriate
477  * book-keeping.  It is possible that another thread has inserted a stream which
478  * matches one that we are about to insert, so we must be sure to check for this
479  * case.  If one is found, return failure, and let the caller cleanup the
480  * duplicates.
481  */
482 static int
483 dmu_zfetch_stream_insert(zfetch_t *zf, zstream_t *zs)
484 {
485         zstream_t       *zs_walk;
486         zstream_t       *zs_next;
487
488         ASSERT(RW_WRITE_HELD(&zf->zf_rwlock));
489
490         for (zs_walk = list_head(&zf->zf_stream); zs_walk; zs_walk = zs_next) {
491                 zs_next = list_next(&zf->zf_stream, zs_walk);
492
493                 if (dmu_zfetch_streams_equal(zs_walk, zs)) {
494                     return (0);
495                 }
496         }
497
498         list_insert_head(&zf->zf_stream, zs);
499         zf->zf_stream_cnt++;
500
501         return (1);
502 }
503
504
505 /*
506  * Walk the list of zstreams in the given zfetch, find an old one (by time), and
507  * reclaim it for use by the caller.
508  */
509 static zstream_t *
510 dmu_zfetch_stream_reclaim(zfetch_t *zf)
511 {
512         zstream_t       *zs;
513
514         if (! rw_tryenter(&zf->zf_rwlock, RW_WRITER))
515                 return (0);
516
517         for (zs = list_head(&zf->zf_stream); zs;
518             zs = list_next(&zf->zf_stream, zs)) {
519
520                 if (((LBOLT - zs->zst_last) / hz) > zfetch_min_sec_reap)
521                         break;
522         }
523
524         if (zs) {
525                 dmu_zfetch_stream_remove(zf, zs);
526                 mutex_destroy(&zs->zst_lock);
527                 bzero(zs, sizeof (zstream_t));
528         } else {
529                 zf->zf_alloc_fail++;
530         }
531         rw_exit(&zf->zf_rwlock);
532
533         return (zs);
534 }
535
536 /*
537  * Given a zfetch and zstream structure, remove the zstream structure from its
538  * container in the zfetch structure.  Perform the appropriate book-keeping.
539  */
540 static void
541 dmu_zfetch_stream_remove(zfetch_t *zf, zstream_t *zs)
542 {
543         ASSERT(RW_WRITE_HELD(&zf->zf_rwlock));
544
545         list_remove(&zf->zf_stream, zs);
546         zf->zf_stream_cnt--;
547 }
548
549 static int
550 dmu_zfetch_streams_equal(zstream_t *zs1, zstream_t *zs2)
551 {
552         if (zs1->zst_offset != zs2->zst_offset)
553                 return (0);
554
555         if (zs1->zst_len != zs2->zst_len)
556                 return (0);
557
558         if (zs1->zst_stride != zs2->zst_stride)
559                 return (0);
560
561         if (zs1->zst_ph_offset != zs2->zst_ph_offset)
562                 return (0);
563
564         if (zs1->zst_cap != zs2->zst_cap)
565                 return (0);
566
567         if (zs1->zst_direction != zs2->zst_direction)
568                 return (0);
569
570         return (1);
571 }
572
573 /*
574  * This is the prefetch entry point.  It calls all of the other dmu_zfetch
575  * routines to create, delete, find, or operate upon prefetch streams.
576  */
577 void
578 dmu_zfetch(zfetch_t *zf, uint64_t offset, uint64_t size, int prefetched)
579 {
580         zstream_t       zst;
581         zstream_t       *newstream;
582         int             fetched;
583         int             inserted;
584         unsigned int    blkshft;
585         uint64_t        blksz;
586
587         if (zfs_prefetch_disable)
588                 return;
589
590         /* files that aren't ln2 blocksz are only one block -- nothing to do */
591         if (!zf->zf_dnode->dn_datablkshift)
592                 return;
593
594         /* convert offset and size, into blockid and nblocks */
595         blkshft = zf->zf_dnode->dn_datablkshift;
596         blksz = (1 << blkshft);
597
598         bzero(&zst, sizeof (zstream_t));
599         zst.zst_offset = offset >> blkshft;
600         zst.zst_len = (P2ROUNDUP(offset + size, blksz) -
601             P2ALIGN(offset, blksz)) >> blkshft;
602
603         fetched = dmu_zfetch_find(zf, &zst, prefetched);
604         if (!fetched) {
605                 fetched = dmu_zfetch_colinear(zf, &zst);
606         }
607
608         if (!fetched) {
609                 newstream = dmu_zfetch_stream_reclaim(zf);
610
611                 /*
612                  * we still couldn't find a stream, drop the lock, and allocate
613                  * one if possible.  Otherwise, give up and go home.
614                  */
615                 if (newstream == NULL) {
616                         uint64_t        maxblocks;
617                         uint32_t        max_streams;
618                         uint32_t        cur_streams;
619
620                         cur_streams = zf->zf_stream_cnt;
621                         maxblocks = zf->zf_dnode->dn_maxblkid;
622
623                         max_streams = MIN(zfetch_max_streams,
624                             (maxblocks / zfetch_block_cap));
625                         if (max_streams == 0) {
626                                 max_streams++;
627                         }
628
629                         if (cur_streams >= max_streams) {
630                                 return;
631                         }
632
633                         newstream = kmem_zalloc(sizeof (zstream_t), KM_SLEEP);
634                 }
635
636                 newstream->zst_offset = zst.zst_offset;
637                 newstream->zst_len = zst.zst_len;
638                 newstream->zst_stride = zst.zst_len;
639                 newstream->zst_ph_offset = zst.zst_len + zst.zst_offset;
640                 newstream->zst_cap = zst.zst_len;
641                 newstream->zst_direction = ZFETCH_FORWARD;
642                 newstream->zst_last = LBOLT;
643
644                 mutex_init(&newstream->zst_lock, NULL, MUTEX_DEFAULT, NULL);
645
646                 rw_enter(&zf->zf_rwlock, RW_WRITER);
647                 inserted = dmu_zfetch_stream_insert(zf, newstream);
648                 rw_exit(&zf->zf_rwlock);
649
650                 if (!inserted) {
651                         mutex_destroy(&newstream->zst_lock);
652                         kmem_free(newstream, sizeof (zstream_t));
653                 }
654         }
655 }