]> CyberLeo.Net >> Repos - FreeBSD/releng/7.2.git/blob - sys/cddl/contrib/opensolaris/uts/common/fs/zfs/zap_leaf.c
Create releng/7.2 from stable/7 in preparation for 7.2-RELEASE.
[FreeBSD/releng/7.2.git] / sys / cddl / contrib / opensolaris / uts / common / fs / zfs / zap_leaf.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25
26 #pragma ident   "%Z%%M% %I%     %E% SMI"
27
28 /*
29  * The 512-byte leaf is broken into 32 16-byte chunks.
30  * chunk number n means l_chunk[n], even though the header precedes it.
31  * the names are stored null-terminated.
32  */
33
34 #include <sys/zfs_context.h>
35 #include <sys/zap.h>
36 #include <sys/zap_impl.h>
37 #include <sys/zap_leaf.h>
38 #include <sys/spa.h>
39 #include <sys/dmu.h>
40
41 #define CHAIN_END 0xffff /* end of the chunk chain */
42
43 /* half the (current) minimum block size */
44 #define MAX_ARRAY_BYTES (8<<10)
45
46 #define LEAF_HASH(l, h) \
47         ((ZAP_LEAF_HASH_NUMENTRIES(l)-1) & \
48         ((h) >> (64 - ZAP_LEAF_HASH_SHIFT(l)-(l)->l_phys->l_hdr.lh_prefix_len)))
49
50 #define LEAF_HASH_ENTPTR(l, h) (&(l)->l_phys->l_hash[LEAF_HASH(l, h)])
51
52
53 static void
54 zap_memset(void *a, int c, size_t n)
55 {
56         char *cp = a;
57         char *cpend = cp + n;
58
59         while (cp < cpend)
60                 *cp++ = c;
61 }
62
63 static void
64 stv(int len, void *addr, uint64_t value)
65 {
66         switch (len) {
67         case 1:
68                 *(uint8_t *)addr = value;
69                 return;
70         case 2:
71                 *(uint16_t *)addr = value;
72                 return;
73         case 4:
74                 *(uint32_t *)addr = value;
75                 return;
76         case 8:
77                 *(uint64_t *)addr = value;
78                 return;
79         }
80         ASSERT(!"bad int len");
81 }
82
83 static uint64_t
84 ldv(int len, const void *addr)
85 {
86         switch (len) {
87         case 1:
88                 return (*(uint8_t *)addr);
89         case 2:
90                 return (*(uint16_t *)addr);
91         case 4:
92                 return (*(uint32_t *)addr);
93         case 8:
94                 return (*(uint64_t *)addr);
95         }
96         ASSERT(!"bad int len");
97         return (0xFEEDFACEDEADBEEFULL);
98 }
99
100 void
101 zap_leaf_byteswap(zap_leaf_phys_t *buf, int size)
102 {
103         int i;
104         zap_leaf_t l;
105         l.l_bs = highbit(size)-1;
106         l.l_phys = buf;
107
108         buf->l_hdr.lh_block_type =      BSWAP_64(buf->l_hdr.lh_block_type);
109         buf->l_hdr.lh_prefix =          BSWAP_64(buf->l_hdr.lh_prefix);
110         buf->l_hdr.lh_magic =           BSWAP_32(buf->l_hdr.lh_magic);
111         buf->l_hdr.lh_nfree =           BSWAP_16(buf->l_hdr.lh_nfree);
112         buf->l_hdr.lh_nentries =        BSWAP_16(buf->l_hdr.lh_nentries);
113         buf->l_hdr.lh_prefix_len =      BSWAP_16(buf->l_hdr.lh_prefix_len);
114         buf->l_hdr.lh_freelist =        BSWAP_16(buf->l_hdr.lh_freelist);
115
116         for (i = 0; i < ZAP_LEAF_HASH_NUMENTRIES(&l); i++)
117                 buf->l_hash[i] = BSWAP_16(buf->l_hash[i]);
118
119         for (i = 0; i < ZAP_LEAF_NUMCHUNKS(&l); i++) {
120                 zap_leaf_chunk_t *lc = &ZAP_LEAF_CHUNK(&l, i);
121                 struct zap_leaf_entry *le;
122
123                 switch (lc->l_free.lf_type) {
124                 case ZAP_CHUNK_ENTRY:
125                         le = &lc->l_entry;
126
127                         le->le_type =           BSWAP_8(le->le_type);
128                         le->le_int_size =       BSWAP_8(le->le_int_size);
129                         le->le_next =           BSWAP_16(le->le_next);
130                         le->le_name_chunk =     BSWAP_16(le->le_name_chunk);
131                         le->le_name_length =    BSWAP_16(le->le_name_length);
132                         le->le_value_chunk =    BSWAP_16(le->le_value_chunk);
133                         le->le_value_length =   BSWAP_16(le->le_value_length);
134                         le->le_cd =             BSWAP_32(le->le_cd);
135                         le->le_hash =           BSWAP_64(le->le_hash);
136                         break;
137                 case ZAP_CHUNK_FREE:
138                         lc->l_free.lf_type =    BSWAP_8(lc->l_free.lf_type);
139                         lc->l_free.lf_next =    BSWAP_16(lc->l_free.lf_next);
140                         break;
141                 case ZAP_CHUNK_ARRAY:
142                         lc->l_array.la_type =   BSWAP_8(lc->l_array.la_type);
143                         lc->l_array.la_next =   BSWAP_16(lc->l_array.la_next);
144                         /* la_array doesn't need swapping */
145                         break;
146                 default:
147                         ASSERT(!"bad leaf type");
148                 }
149         }
150 }
151
152 void
153 zap_leaf_init(zap_leaf_t *l)
154 {
155         int i;
156
157         l->l_bs = highbit(l->l_dbuf->db_size)-1;
158         zap_memset(&l->l_phys->l_hdr, 0, sizeof (struct zap_leaf_header));
159         zap_memset(l->l_phys->l_hash, CHAIN_END, 2*ZAP_LEAF_HASH_NUMENTRIES(l));
160         for (i = 0; i < ZAP_LEAF_NUMCHUNKS(l); i++) {
161                 ZAP_LEAF_CHUNK(l, i).l_free.lf_type = ZAP_CHUNK_FREE;
162                 ZAP_LEAF_CHUNK(l, i).l_free.lf_next = i+1;
163         }
164         ZAP_LEAF_CHUNK(l, ZAP_LEAF_NUMCHUNKS(l)-1).l_free.lf_next = CHAIN_END;
165         l->l_phys->l_hdr.lh_block_type = ZBT_LEAF;
166         l->l_phys->l_hdr.lh_magic = ZAP_LEAF_MAGIC;
167         l->l_phys->l_hdr.lh_nfree = ZAP_LEAF_NUMCHUNKS(l);
168 }
169
170 /*
171  * Routines which manipulate leaf chunks (l_chunk[]).
172  */
173
174 static uint16_t
175 zap_leaf_chunk_alloc(zap_leaf_t *l)
176 {
177         int chunk;
178
179         ASSERT(l->l_phys->l_hdr.lh_nfree > 0);
180
181         chunk = l->l_phys->l_hdr.lh_freelist;
182         ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
183         ASSERT3U(ZAP_LEAF_CHUNK(l, chunk).l_free.lf_type, ==, ZAP_CHUNK_FREE);
184
185         l->l_phys->l_hdr.lh_freelist = ZAP_LEAF_CHUNK(l, chunk).l_free.lf_next;
186
187         l->l_phys->l_hdr.lh_nfree--;
188
189         return (chunk);
190 }
191
192 static void
193 zap_leaf_chunk_free(zap_leaf_t *l, uint16_t chunk)
194 {
195         struct zap_leaf_free *zlf = &ZAP_LEAF_CHUNK(l, chunk).l_free;
196         ASSERT3U(l->l_phys->l_hdr.lh_nfree, <, ZAP_LEAF_NUMCHUNKS(l));
197         ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
198         ASSERT(zlf->lf_type != ZAP_CHUNK_FREE);
199
200         zlf->lf_type = ZAP_CHUNK_FREE;
201         zlf->lf_next = l->l_phys->l_hdr.lh_freelist;
202         bzero(zlf->lf_pad, sizeof (zlf->lf_pad)); /* help it to compress */
203         l->l_phys->l_hdr.lh_freelist = chunk;
204
205         l->l_phys->l_hdr.lh_nfree++;
206 }
207
208 /*
209  * Routines which manipulate leaf arrays (zap_leaf_array type chunks).
210  */
211
212 static uint16_t
213 zap_leaf_array_create(zap_leaf_t *l, const char *buf,
214         int integer_size, int num_integers)
215 {
216         uint16_t chunk_head;
217         uint16_t *chunkp = &chunk_head;
218         int byten = 0;
219         uint64_t value;
220         int shift = (integer_size-1)*8;
221         int len = num_integers;
222
223         ASSERT3U(num_integers * integer_size, <, MAX_ARRAY_BYTES);
224
225         while (len > 0) {
226                 uint16_t chunk = zap_leaf_chunk_alloc(l);
227                 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array;
228                 int i;
229
230                 la->la_type = ZAP_CHUNK_ARRAY;
231                 for (i = 0; i < ZAP_LEAF_ARRAY_BYTES; i++) {
232                         if (byten == 0)
233                                 value = ldv(integer_size, buf);
234                         la->la_array[i] = value >> shift;
235                         value <<= 8;
236                         if (++byten == integer_size) {
237                                 byten = 0;
238                                 buf += integer_size;
239                                 if (--len == 0)
240                                         break;
241                         }
242                 }
243
244                 *chunkp = chunk;
245                 chunkp = &la->la_next;
246         }
247         *chunkp = CHAIN_END;
248
249         return (chunk_head);
250 }
251
252 static void
253 zap_leaf_array_free(zap_leaf_t *l, uint16_t *chunkp)
254 {
255         uint16_t chunk = *chunkp;
256
257         *chunkp = CHAIN_END;
258
259         while (chunk != CHAIN_END) {
260                 int nextchunk = ZAP_LEAF_CHUNK(l, chunk).l_array.la_next;
261                 ASSERT3U(ZAP_LEAF_CHUNK(l, chunk).l_array.la_type, ==,
262                     ZAP_CHUNK_ARRAY);
263                 zap_leaf_chunk_free(l, chunk);
264                 chunk = nextchunk;
265         }
266 }
267
268 /* array_len and buf_len are in integers, not bytes */
269 static void
270 zap_leaf_array_read(zap_leaf_t *l, uint16_t chunk,
271     int array_int_len, int array_len, int buf_int_len, uint64_t buf_len,
272     char *buf)
273 {
274         int len = MIN(array_len, buf_len);
275         int byten = 0;
276         uint64_t value = 0;
277
278         ASSERT3U(array_int_len, <=, buf_int_len);
279
280         /* Fast path for one 8-byte integer */
281         if (array_int_len == 8 && buf_int_len == 8 && len == 1) {
282                 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array;
283                 uint8_t *ip = la->la_array;
284                 uint64_t *buf64 = (uint64_t *)buf;
285
286                 *buf64 = (uint64_t)ip[0] << 56 | (uint64_t)ip[1] << 48 |
287                     (uint64_t)ip[2] << 40 | (uint64_t)ip[3] << 32 |
288                     (uint64_t)ip[4] << 24 | (uint64_t)ip[5] << 16 |
289                     (uint64_t)ip[6] << 8 | (uint64_t)ip[7];
290                 return;
291         }
292
293         /* Fast path for an array of 1-byte integers (eg. the entry name) */
294         if (array_int_len == 1 && buf_int_len == 1 &&
295             buf_len > array_len + ZAP_LEAF_ARRAY_BYTES) {
296                 while (chunk != CHAIN_END) {
297                         struct zap_leaf_array *la =
298                             &ZAP_LEAF_CHUNK(l, chunk).l_array;
299                         bcopy(la->la_array, buf, ZAP_LEAF_ARRAY_BYTES);
300                         buf += ZAP_LEAF_ARRAY_BYTES;
301                         chunk = la->la_next;
302                 }
303                 return;
304         }
305
306         while (len > 0) {
307                 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array;
308                 int i;
309
310                 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
311                 for (i = 0; i < ZAP_LEAF_ARRAY_BYTES && len > 0; i++) {
312                         value = (value << 8) | la->la_array[i];
313                         byten++;
314                         if (byten == array_int_len) {
315                                 stv(buf_int_len, buf, value);
316                                 byten = 0;
317                                 len--;
318                                 if (len == 0)
319                                         return;
320                                 buf += buf_int_len;
321                         }
322                 }
323                 chunk = la->la_next;
324         }
325 }
326
327 /*
328  * Only to be used on 8-bit arrays.
329  * array_len is actual len in bytes (not encoded le_value_length).
330  * buf is null-terminated.
331  */
332 static int
333 zap_leaf_array_equal(zap_leaf_t *l, int chunk,
334     int array_len, const char *buf)
335 {
336         int bseen = 0;
337
338         while (bseen < array_len) {
339                 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array;
340                 int toread = MIN(array_len - bseen, ZAP_LEAF_ARRAY_BYTES);
341                 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
342                 if (bcmp(la->la_array, buf + bseen, toread))
343                         break;
344                 chunk = la->la_next;
345                 bseen += toread;
346         }
347         return (bseen == array_len);
348 }
349
350 /*
351  * Routines which manipulate leaf entries.
352  */
353
354 int
355 zap_leaf_lookup(zap_leaf_t *l,
356     const char *name, uint64_t h, zap_entry_handle_t *zeh)
357 {
358         uint16_t *chunkp;
359         struct zap_leaf_entry *le;
360
361         ASSERT3U(l->l_phys->l_hdr.lh_magic, ==, ZAP_LEAF_MAGIC);
362
363         for (chunkp = LEAF_HASH_ENTPTR(l, h);
364             *chunkp != CHAIN_END; chunkp = &le->le_next) {
365                 uint16_t chunk = *chunkp;
366                 le = ZAP_LEAF_ENTRY(l, chunk);
367
368                 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
369                 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
370
371                 if (le->le_hash != h)
372                         continue;
373
374                 if (zap_leaf_array_equal(l, le->le_name_chunk,
375                     le->le_name_length, name)) {
376                         zeh->zeh_num_integers = le->le_value_length;
377                         zeh->zeh_integer_size = le->le_int_size;
378                         zeh->zeh_cd = le->le_cd;
379                         zeh->zeh_hash = le->le_hash;
380                         zeh->zeh_chunkp = chunkp;
381                         zeh->zeh_leaf = l;
382                         return (0);
383                 }
384         }
385
386         return (ENOENT);
387 }
388
389 /* Return (h1,cd1 >= h2,cd2) */
390 #define HCD_GTEQ(h1, cd1, h2, cd2) \
391         ((h1 > h2) ? TRUE : ((h1 == h2 && cd1 >= cd2) ? TRUE : FALSE))
392
393 int
394 zap_leaf_lookup_closest(zap_leaf_t *l,
395     uint64_t h, uint32_t cd, zap_entry_handle_t *zeh)
396 {
397         uint16_t chunk;
398         uint64_t besth = -1ULL;
399         uint32_t bestcd = ZAP_MAXCD;
400         uint16_t bestlh = ZAP_LEAF_HASH_NUMENTRIES(l)-1;
401         uint16_t lh;
402         struct zap_leaf_entry *le;
403
404         ASSERT3U(l->l_phys->l_hdr.lh_magic, ==, ZAP_LEAF_MAGIC);
405
406         for (lh = LEAF_HASH(l, h); lh <= bestlh; lh++) {
407                 for (chunk = l->l_phys->l_hash[lh];
408                     chunk != CHAIN_END; chunk = le->le_next) {
409                         le = ZAP_LEAF_ENTRY(l, chunk);
410
411                         ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
412                         ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
413
414                         if (HCD_GTEQ(le->le_hash, le->le_cd, h, cd) &&
415                             HCD_GTEQ(besth, bestcd, le->le_hash, le->le_cd)) {
416                                 ASSERT3U(bestlh, >=, lh);
417                                 bestlh = lh;
418                                 besth = le->le_hash;
419                                 bestcd = le->le_cd;
420
421                                 zeh->zeh_num_integers = le->le_value_length;
422                                 zeh->zeh_integer_size = le->le_int_size;
423                                 zeh->zeh_cd = le->le_cd;
424                                 zeh->zeh_hash = le->le_hash;
425                                 zeh->zeh_fakechunk = chunk;
426                                 zeh->zeh_chunkp = &zeh->zeh_fakechunk;
427                                 zeh->zeh_leaf = l;
428                         }
429                 }
430         }
431
432         return (bestcd == ZAP_MAXCD ? ENOENT : 0);
433 }
434
435 int
436 zap_entry_read(const zap_entry_handle_t *zeh,
437     uint8_t integer_size, uint64_t num_integers, void *buf)
438 {
439         struct zap_leaf_entry *le =
440             ZAP_LEAF_ENTRY(zeh->zeh_leaf, *zeh->zeh_chunkp);
441         ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
442
443         if (le->le_int_size > integer_size)
444                 return (EINVAL);
445
446         zap_leaf_array_read(zeh->zeh_leaf, le->le_value_chunk, le->le_int_size,
447             le->le_value_length, integer_size, num_integers, buf);
448
449         if (zeh->zeh_num_integers > num_integers)
450                 return (EOVERFLOW);
451         return (0);
452
453 }
454
455 int
456 zap_entry_read_name(const zap_entry_handle_t *zeh, uint16_t buflen, char *buf)
457 {
458         struct zap_leaf_entry *le =
459             ZAP_LEAF_ENTRY(zeh->zeh_leaf, *zeh->zeh_chunkp);
460         ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
461
462         zap_leaf_array_read(zeh->zeh_leaf, le->le_name_chunk, 1,
463             le->le_name_length, 1, buflen, buf);
464         if (le->le_name_length > buflen)
465                 return (EOVERFLOW);
466         return (0);
467 }
468
469 int
470 zap_entry_update(zap_entry_handle_t *zeh,
471         uint8_t integer_size, uint64_t num_integers, const void *buf)
472 {
473         int delta_chunks;
474         zap_leaf_t *l = zeh->zeh_leaf;
475         struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, *zeh->zeh_chunkp);
476
477         delta_chunks = ZAP_LEAF_ARRAY_NCHUNKS(num_integers * integer_size) -
478             ZAP_LEAF_ARRAY_NCHUNKS(le->le_value_length * le->le_int_size);
479
480         if ((int)l->l_phys->l_hdr.lh_nfree < delta_chunks)
481                 return (EAGAIN);
482
483         /*
484          * We should search other chained leaves (via
485          * zap_entry_remove,create?) otherwise returning EAGAIN will
486          * just send us into an infinite loop if we have to chain
487          * another leaf block, rather than being able to split this
488          * block.
489          */
490
491         zap_leaf_array_free(l, &le->le_value_chunk);
492         le->le_value_chunk =
493             zap_leaf_array_create(l, buf, integer_size, num_integers);
494         le->le_value_length = num_integers;
495         le->le_int_size = integer_size;
496         return (0);
497 }
498
499 void
500 zap_entry_remove(zap_entry_handle_t *zeh)
501 {
502         uint16_t entry_chunk;
503         struct zap_leaf_entry *le;
504         zap_leaf_t *l = zeh->zeh_leaf;
505
506         ASSERT3P(zeh->zeh_chunkp, !=, &zeh->zeh_fakechunk);
507
508         entry_chunk = *zeh->zeh_chunkp;
509         le = ZAP_LEAF_ENTRY(l, entry_chunk);
510         ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
511
512         zap_leaf_array_free(l, &le->le_name_chunk);
513         zap_leaf_array_free(l, &le->le_value_chunk);
514
515         *zeh->zeh_chunkp = le->le_next;
516         zap_leaf_chunk_free(l, entry_chunk);
517
518         l->l_phys->l_hdr.lh_nentries--;
519 }
520
521 int
522 zap_entry_create(zap_leaf_t *l, const char *name, uint64_t h, uint32_t cd,
523     uint8_t integer_size, uint64_t num_integers, const void *buf,
524     zap_entry_handle_t *zeh)
525 {
526         uint16_t chunk;
527         uint16_t *chunkp;
528         struct zap_leaf_entry *le;
529         uint64_t namelen, valuelen;
530         int numchunks;
531
532         valuelen = integer_size * num_integers;
533         namelen = strlen(name) + 1;
534         ASSERT(namelen >= 2);
535
536         numchunks = 1 + ZAP_LEAF_ARRAY_NCHUNKS(namelen) +
537             ZAP_LEAF_ARRAY_NCHUNKS(valuelen);
538         if (numchunks > ZAP_LEAF_NUMCHUNKS(l))
539                 return (E2BIG);
540
541         if (cd == ZAP_MAXCD) {
542                 for (cd = 0; cd < ZAP_MAXCD; cd++) {
543                         for (chunk = *LEAF_HASH_ENTPTR(l, h);
544                             chunk != CHAIN_END; chunk = le->le_next) {
545                                 le = ZAP_LEAF_ENTRY(l, chunk);
546                                 if (le->le_hash == h &&
547                                     le->le_cd == cd) {
548                                         break;
549                                 }
550                         }
551                         /* If this cd is not in use, we are good. */
552                         if (chunk == CHAIN_END)
553                                 break;
554                 }
555                 /* If we tried all the cd's, we lose. */
556                 if (cd == ZAP_MAXCD)
557                         return (ENOSPC);
558         }
559
560         if (l->l_phys->l_hdr.lh_nfree < numchunks)
561                 return (EAGAIN);
562
563         /* make the entry */
564         chunk = zap_leaf_chunk_alloc(l);
565         le = ZAP_LEAF_ENTRY(l, chunk);
566         le->le_type = ZAP_CHUNK_ENTRY;
567         le->le_name_chunk = zap_leaf_array_create(l, name, 1, namelen);
568         le->le_name_length = namelen;
569         le->le_value_chunk =
570             zap_leaf_array_create(l, buf, integer_size, num_integers);
571         le->le_value_length = num_integers;
572         le->le_int_size = integer_size;
573         le->le_hash = h;
574         le->le_cd = cd;
575
576         /* link it into the hash chain */
577         chunkp = LEAF_HASH_ENTPTR(l, h);
578         le->le_next = *chunkp;
579         *chunkp = chunk;
580
581         l->l_phys->l_hdr.lh_nentries++;
582
583         zeh->zeh_leaf = l;
584         zeh->zeh_num_integers = num_integers;
585         zeh->zeh_integer_size = le->le_int_size;
586         zeh->zeh_cd = le->le_cd;
587         zeh->zeh_hash = le->le_hash;
588         zeh->zeh_chunkp = chunkp;
589
590         return (0);
591 }
592
593 /*
594  * Routines for transferring entries between leafs.
595  */
596
597 static void
598 zap_leaf_rehash_entry(zap_leaf_t *l, uint16_t entry)
599 {
600         struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, entry);
601         uint16_t *ptr = LEAF_HASH_ENTPTR(l, le->le_hash);
602         le->le_next = *ptr;
603         *ptr = entry;
604 }
605
606 static uint16_t
607 zap_leaf_transfer_array(zap_leaf_t *l, uint16_t chunk, zap_leaf_t *nl)
608 {
609         uint16_t new_chunk;
610         uint16_t *nchunkp = &new_chunk;
611
612         while (chunk != CHAIN_END) {
613                 uint16_t nchunk = zap_leaf_chunk_alloc(nl);
614                 struct zap_leaf_array *nla =
615                     &ZAP_LEAF_CHUNK(nl, nchunk).l_array;
616                 struct zap_leaf_array *la =
617                     &ZAP_LEAF_CHUNK(l, chunk).l_array;
618                 int nextchunk = la->la_next;
619
620                 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
621                 ASSERT3U(nchunk, <, ZAP_LEAF_NUMCHUNKS(l));
622
623                 *nla = *la; /* structure assignment */
624
625                 zap_leaf_chunk_free(l, chunk);
626                 chunk = nextchunk;
627                 *nchunkp = nchunk;
628                 nchunkp = &nla->la_next;
629         }
630         *nchunkp = CHAIN_END;
631         return (new_chunk);
632 }
633
634 static void
635 zap_leaf_transfer_entry(zap_leaf_t *l, int entry, zap_leaf_t *nl)
636 {
637         struct zap_leaf_entry *le, *nle;
638         uint16_t chunk;
639
640         le = ZAP_LEAF_ENTRY(l, entry);
641         ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
642
643         chunk = zap_leaf_chunk_alloc(nl);
644         nle = ZAP_LEAF_ENTRY(nl, chunk);
645         *nle = *le; /* structure assignment */
646
647         zap_leaf_rehash_entry(nl, chunk);
648
649         nle->le_name_chunk = zap_leaf_transfer_array(l, le->le_name_chunk, nl);
650         nle->le_value_chunk =
651             zap_leaf_transfer_array(l, le->le_value_chunk, nl);
652
653         zap_leaf_chunk_free(l, entry);
654
655         l->l_phys->l_hdr.lh_nentries--;
656         nl->l_phys->l_hdr.lh_nentries++;
657 }
658
659 /*
660  * Transfer the entries whose hash prefix ends in 1 to the new leaf.
661  */
662 void
663 zap_leaf_split(zap_leaf_t *l, zap_leaf_t *nl)
664 {
665         int i;
666         int bit = 64 - 1 - l->l_phys->l_hdr.lh_prefix_len;
667
668         /* set new prefix and prefix_len */
669         l->l_phys->l_hdr.lh_prefix <<= 1;
670         l->l_phys->l_hdr.lh_prefix_len++;
671         nl->l_phys->l_hdr.lh_prefix = l->l_phys->l_hdr.lh_prefix | 1;
672         nl->l_phys->l_hdr.lh_prefix_len = l->l_phys->l_hdr.lh_prefix_len;
673
674         /* break existing hash chains */
675         zap_memset(l->l_phys->l_hash, CHAIN_END, 2*ZAP_LEAF_HASH_NUMENTRIES(l));
676
677         /*
678          * Transfer entries whose hash bit 'bit' is set to nl; rehash
679          * the remaining entries
680          *
681          * NB: We could find entries via the hashtable instead. That
682          * would be O(hashents+numents) rather than O(numblks+numents),
683          * but this accesses memory more sequentially, and when we're
684          * called, the block is usually pretty full.
685          */
686         for (i = 0; i < ZAP_LEAF_NUMCHUNKS(l); i++) {
687                 struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, i);
688                 if (le->le_type != ZAP_CHUNK_ENTRY)
689                         continue;
690
691                 if (le->le_hash & (1ULL << bit))
692                         zap_leaf_transfer_entry(l, i, nl);
693                 else
694                         zap_leaf_rehash_entry(l, i);
695         }
696 }
697
698 void
699 zap_leaf_stats(zap_t *zap, zap_leaf_t *l, zap_stats_t *zs)
700 {
701         int i, n;
702
703         n = zap->zap_f.zap_phys->zap_ptrtbl.zt_shift -
704             l->l_phys->l_hdr.lh_prefix_len;
705         n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
706         zs->zs_leafs_with_2n_pointers[n]++;
707
708
709         n = l->l_phys->l_hdr.lh_nentries/5;
710         n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
711         zs->zs_blocks_with_n5_entries[n]++;
712
713         n = ((1<<FZAP_BLOCK_SHIFT(zap)) -
714             l->l_phys->l_hdr.lh_nfree * (ZAP_LEAF_ARRAY_BYTES+1))*10 /
715             (1<<FZAP_BLOCK_SHIFT(zap));
716         n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
717         zs->zs_blocks_n_tenths_full[n]++;
718
719         for (i = 0; i < ZAP_LEAF_HASH_NUMENTRIES(l); i++) {
720                 int nentries = 0;
721                 int chunk = l->l_phys->l_hash[i];
722
723                 while (chunk != CHAIN_END) {
724                         struct zap_leaf_entry *le =
725                             ZAP_LEAF_ENTRY(l, chunk);
726
727                         n = 1 + ZAP_LEAF_ARRAY_NCHUNKS(le->le_name_length) +
728                             ZAP_LEAF_ARRAY_NCHUNKS(le->le_value_length *
729                                 le->le_int_size);
730                         n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
731                         zs->zs_entries_using_n_chunks[n]++;
732
733                         chunk = le->le_next;
734                         nentries++;
735                 }
736
737                 n = nentries;
738                 n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
739                 zs->zs_buckets_with_n_entries[n]++;
740         }
741 }