]> CyberLeo.Net >> Repos - FreeBSD/releng/7.2.git/blob - sys/cddl/dev/dtrace/amd64/dtrace_subr.c
Create releng/7.2 from stable/7 in preparation for 7.2-RELEASE.
[FreeBSD/releng/7.2.git] / sys / cddl / dev / dtrace / amd64 / dtrace_subr.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  *
22  * $FreeBSD$
23  *
24  */
25 /*
26  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
27  * Use is subject to license terms.
28  */
29
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/types.h>
33 #include <sys/kernel.h>
34 #include <sys/malloc.h>
35 #include <sys/kmem.h>
36 #include <sys/smp.h>
37 #include <sys/dtrace_impl.h>
38 #include <sys/dtrace_bsd.h>
39 #include <machine/clock.h>
40 #include <machine/frame.h>
41 #include <vm/pmap.h>
42
43 extern uintptr_t        kernelbase;
44 extern uintptr_t        dtrace_in_probe_addr;
45 extern int              dtrace_in_probe;
46
47 int dtrace_invop(uintptr_t, uintptr_t *, uintptr_t);
48
49 typedef struct dtrace_invop_hdlr {
50         int (*dtih_func)(uintptr_t, uintptr_t *, uintptr_t);
51         struct dtrace_invop_hdlr *dtih_next;
52 } dtrace_invop_hdlr_t;
53
54 dtrace_invop_hdlr_t *dtrace_invop_hdlr;
55
56 int
57 dtrace_invop(uintptr_t addr, uintptr_t *stack, uintptr_t eax)
58 {
59         dtrace_invop_hdlr_t *hdlr;
60         int rval;
61
62         for (hdlr = dtrace_invop_hdlr; hdlr != NULL; hdlr = hdlr->dtih_next)
63                 if ((rval = hdlr->dtih_func(addr, stack, eax)) != 0)
64                         return (rval);
65
66         return (0);
67 }
68
69 void
70 dtrace_invop_add(int (*func)(uintptr_t, uintptr_t *, uintptr_t))
71 {
72         dtrace_invop_hdlr_t *hdlr;
73
74         hdlr = kmem_alloc(sizeof (dtrace_invop_hdlr_t), KM_SLEEP);
75         hdlr->dtih_func = func;
76         hdlr->dtih_next = dtrace_invop_hdlr;
77         dtrace_invop_hdlr = hdlr;
78 }
79
80 void
81 dtrace_invop_remove(int (*func)(uintptr_t, uintptr_t *, uintptr_t))
82 {
83         dtrace_invop_hdlr_t *hdlr = dtrace_invop_hdlr, *prev = NULL;
84
85         for (;;) {
86                 if (hdlr == NULL)
87                         panic("attempt to remove non-existent invop handler");
88
89                 if (hdlr->dtih_func == func)
90                         break;
91
92                 prev = hdlr;
93                 hdlr = hdlr->dtih_next;
94         }
95
96         if (prev == NULL) {
97                 ASSERT(dtrace_invop_hdlr == hdlr);
98                 dtrace_invop_hdlr = hdlr->dtih_next;
99         } else {
100                 ASSERT(dtrace_invop_hdlr != hdlr);
101                 prev->dtih_next = hdlr->dtih_next;
102         }
103
104         kmem_free(hdlr, 0);
105 }
106
107 /*ARGSUSED*/
108 void
109 dtrace_toxic_ranges(void (*func)(uintptr_t base, uintptr_t limit))
110 {
111         (*func)(0, (uintptr_t) addr_PTmap);
112 }
113
114 void
115 dtrace_xcall(processorid_t cpu, dtrace_xcall_t func, void *arg)
116 {
117         cpumask_t cpus;
118
119         critical_enter();
120
121         if (cpu == DTRACE_CPUALL)
122                 cpus = all_cpus;
123         else
124                 cpus = (cpumask_t) (1 << cpu);
125
126         /* If the current CPU is in the set, call the function directly: */
127         if ((cpus & (1 << curcpu)) != 0) {
128                 (*func)(arg);
129
130                 /* Mask the current CPU from the set */
131                 cpus &= ~(1 << curcpu);
132         }
133
134         /* If there are any CPUs in the set, cross-call to those CPUs */
135         if (cpus != 0)
136                 smp_rendezvous_cpus(cpus, NULL, func, smp_no_rendevous_barrier, arg);
137
138         critical_exit();
139 }
140
141 static void
142 dtrace_sync_func(void)
143 {
144 }
145
146 void
147 dtrace_sync(void)
148 {
149         dtrace_xcall(DTRACE_CPUALL, (dtrace_xcall_t)dtrace_sync_func, NULL);
150 }
151
152 #ifdef notyet
153 int (*dtrace_fasttrap_probe_ptr)(struct regs *);
154 int (*dtrace_pid_probe_ptr)(struct regs *);
155 int (*dtrace_return_probe_ptr)(struct regs *);
156
157 void
158 dtrace_user_probe(struct regs *rp, caddr_t addr, processorid_t cpuid)
159 {
160         krwlock_t *rwp;
161         proc_t *p = curproc;
162         extern void trap(struct regs *, caddr_t, processorid_t);
163
164         if (USERMODE(rp->r_cs) || (rp->r_ps & PS_VM)) {
165                 if (curthread->t_cred != p->p_cred) {
166                         cred_t *oldcred = curthread->t_cred;
167                         /*
168                          * DTrace accesses t_cred in probe context.  t_cred
169                          * must always be either NULL, or point to a valid,
170                          * allocated cred structure.
171                          */
172                         curthread->t_cred = crgetcred();
173                         crfree(oldcred);
174                 }
175         }
176
177         if (rp->r_trapno == T_DTRACE_RET) {
178                 uint8_t step = curthread->t_dtrace_step;
179                 uint8_t ret = curthread->t_dtrace_ret;
180                 uintptr_t npc = curthread->t_dtrace_npc;
181
182                 if (curthread->t_dtrace_ast) {
183                         aston(curthread);
184                         curthread->t_sig_check = 1;
185                 }
186
187                 /*
188                  * Clear all user tracing flags.
189                  */
190                 curthread->t_dtrace_ft = 0;
191
192                 /*
193                  * If we weren't expecting to take a return probe trap, kill
194                  * the process as though it had just executed an unassigned
195                  * trap instruction.
196                  */
197                 if (step == 0) {
198                         tsignal(curthread, SIGILL);
199                         return;
200                 }
201
202                 /*
203                  * If we hit this trap unrelated to a return probe, we're
204                  * just here to reset the AST flag since we deferred a signal
205                  * until after we logically single-stepped the instruction we
206                  * copied out.
207                  */
208                 if (ret == 0) {
209                         rp->r_pc = npc;
210                         return;
211                 }
212
213                 /*
214                  * We need to wait until after we've called the
215                  * dtrace_return_probe_ptr function pointer to set %pc.
216                  */
217                 rwp = &CPU->cpu_ft_lock;
218                 rw_enter(rwp, RW_READER);
219                 if (dtrace_return_probe_ptr != NULL)
220                         (void) (*dtrace_return_probe_ptr)(rp);
221                 rw_exit(rwp);
222                 rp->r_pc = npc;
223
224         } else if (rp->r_trapno == T_DTRACE_PROBE) {
225                 rwp = &CPU->cpu_ft_lock;
226                 rw_enter(rwp, RW_READER);
227                 if (dtrace_fasttrap_probe_ptr != NULL)
228                         (void) (*dtrace_fasttrap_probe_ptr)(rp);
229                 rw_exit(rwp);
230
231         } else if (rp->r_trapno == T_BPTFLT) {
232                 uint8_t instr;
233                 rwp = &CPU->cpu_ft_lock;
234
235                 /*
236                  * The DTrace fasttrap provider uses the breakpoint trap
237                  * (int 3). We let DTrace take the first crack at handling
238                  * this trap; if it's not a probe that DTrace knowns about,
239                  * we call into the trap() routine to handle it like a
240                  * breakpoint placed by a conventional debugger.
241                  */
242                 rw_enter(rwp, RW_READER);
243                 if (dtrace_pid_probe_ptr != NULL &&
244                     (*dtrace_pid_probe_ptr)(rp) == 0) {
245                         rw_exit(rwp);
246                         return;
247                 }
248                 rw_exit(rwp);
249
250                 /*
251                  * If the instruction that caused the breakpoint trap doesn't
252                  * look like an int 3 anymore, it may be that this tracepoint
253                  * was removed just after the user thread executed it. In
254                  * that case, return to user land to retry the instuction.
255                  */
256                 if (fuword8((void *)(rp->r_pc - 1), &instr) == 0 &&
257                     instr != FASTTRAP_INSTR) {
258                         rp->r_pc--;
259                         return;
260                 }
261
262                 trap(rp, addr, cpuid);
263
264         } else {
265                 trap(rp, addr, cpuid);
266         }
267 }
268
269 void
270 dtrace_safe_synchronous_signal(void)
271 {
272         kthread_t *t = curthread;
273         struct regs *rp = lwptoregs(ttolwp(t));
274         size_t isz = t->t_dtrace_npc - t->t_dtrace_pc;
275
276         ASSERT(t->t_dtrace_on);
277
278         /*
279          * If we're not in the range of scratch addresses, we're not actually
280          * tracing user instructions so turn off the flags. If the instruction
281          * we copied out caused a synchonous trap, reset the pc back to its
282          * original value and turn off the flags.
283          */
284         if (rp->r_pc < t->t_dtrace_scrpc ||
285             rp->r_pc > t->t_dtrace_astpc + isz) {
286                 t->t_dtrace_ft = 0;
287         } else if (rp->r_pc == t->t_dtrace_scrpc ||
288             rp->r_pc == t->t_dtrace_astpc) {
289                 rp->r_pc = t->t_dtrace_pc;
290                 t->t_dtrace_ft = 0;
291         }
292 }
293
294 int
295 dtrace_safe_defer_signal(void)
296 {
297         kthread_t *t = curthread;
298         struct regs *rp = lwptoregs(ttolwp(t));
299         size_t isz = t->t_dtrace_npc - t->t_dtrace_pc;
300
301         ASSERT(t->t_dtrace_on);
302
303         /*
304          * If we're not in the range of scratch addresses, we're not actually
305          * tracing user instructions so turn off the flags.
306          */
307         if (rp->r_pc < t->t_dtrace_scrpc ||
308             rp->r_pc > t->t_dtrace_astpc + isz) {
309                 t->t_dtrace_ft = 0;
310                 return (0);
311         }
312
313         /*
314          * If we've executed the original instruction, but haven't performed
315          * the jmp back to t->t_dtrace_npc or the clean up of any registers
316          * used to emulate %rip-relative instructions in 64-bit mode, do that
317          * here and take the signal right away. We detect this condition by
318          * seeing if the program counter is the range [scrpc + isz, astpc).
319          */
320         if (t->t_dtrace_astpc - rp->r_pc <
321             t->t_dtrace_astpc - t->t_dtrace_scrpc - isz) {
322 #ifdef __amd64
323                 /*
324                  * If there is a scratch register and we're on the
325                  * instruction immediately after the modified instruction,
326                  * restore the value of that scratch register.
327                  */
328                 if (t->t_dtrace_reg != 0 &&
329                     rp->r_pc == t->t_dtrace_scrpc + isz) {
330                         switch (t->t_dtrace_reg) {
331                         case REG_RAX:
332                                 rp->r_rax = t->t_dtrace_regv;
333                                 break;
334                         case REG_RCX:
335                                 rp->r_rcx = t->t_dtrace_regv;
336                                 break;
337                         case REG_R8:
338                                 rp->r_r8 = t->t_dtrace_regv;
339                                 break;
340                         case REG_R9:
341                                 rp->r_r9 = t->t_dtrace_regv;
342                                 break;
343                         }
344                 }
345 #endif
346                 rp->r_pc = t->t_dtrace_npc;
347                 t->t_dtrace_ft = 0;
348                 return (0);
349         }
350
351         /*
352          * Otherwise, make sure we'll return to the kernel after executing
353          * the copied out instruction and defer the signal.
354          */
355         if (!t->t_dtrace_step) {
356                 ASSERT(rp->r_pc < t->t_dtrace_astpc);
357                 rp->r_pc += t->t_dtrace_astpc - t->t_dtrace_scrpc;
358                 t->t_dtrace_step = 1;
359         }
360
361         t->t_dtrace_ast = 1;
362
363         return (1);
364 }
365 #endif
366
367 static int64_t  tgt_cpu_tsc;
368 static int64_t  hst_cpu_tsc;
369 static int64_t  tsc_skew[MAXCPU];
370
371 static void
372 dtrace_gethrtime_init_sync(void *arg)
373 {
374 #ifdef CHECK_SYNC
375         /*
376          * Delay this function from returning on one
377          * of the CPUs to check that the synchronisation
378          * works.
379          */
380         uintptr_t cpu = (uintptr_t) arg;
381
382         if (cpu == curcpu) {
383                 int i;
384                 for (i = 0; i < 1000000000; i++)
385                         tgt_cpu_tsc = rdtsc();
386                 tgt_cpu_tsc = 0;
387         }
388 #endif
389 }
390
391 static void
392 dtrace_gethrtime_init_cpu(void *arg)
393 {
394         uintptr_t cpu = (uintptr_t) arg;
395
396         if (cpu == curcpu)
397                 tgt_cpu_tsc = rdtsc();
398         else
399                 hst_cpu_tsc = rdtsc();
400 }
401
402 static void
403 dtrace_gethrtime_init(void *arg)
404 {
405         cpumask_t map;
406         int i;
407         struct pcpu *cp;
408
409         /* The current CPU is the reference one. */
410         tsc_skew[curcpu] = 0;
411
412         for (i = 0; i <= mp_maxid; i++) {
413                 if (i == curcpu)
414                         continue;
415
416                 if ((cp = pcpu_find(i)) == NULL)
417                         continue;
418
419                 map = 0;
420                 map |= (1 << curcpu);
421                 map |= (1 << i);
422
423                 smp_rendezvous_cpus(map, dtrace_gethrtime_init_sync,
424                     dtrace_gethrtime_init_cpu,
425                     smp_no_rendevous_barrier, (void *)(uintptr_t) i);
426
427                 tsc_skew[i] = tgt_cpu_tsc - hst_cpu_tsc;
428         }
429 }
430
431 SYSINIT(dtrace_gethrtime_init, SI_SUB_SMP, SI_ORDER_ANY, dtrace_gethrtime_init, NULL);
432
433 /*
434  * DTrace needs a high resolution time function which can
435  * be called from a probe context and guaranteed not to have
436  * instrumented with probes itself.
437  *
438  * Returns nanoseconds since boot.
439  */
440 uint64_t
441 dtrace_gethrtime()
442 {
443         return ((rdtsc() + tsc_skew[curcpu]) * (int64_t) 1000000000 / tsc_freq);
444 }
445
446 uint64_t
447 dtrace_gethrestime(void)
448 {
449         printf("%s(%d): XXX\n",__func__,__LINE__);
450         return (0);
451 }
452
453 /* Function to handle DTrace traps during probes. See amd64/amd64/trap.c */
454 int
455 dtrace_trap(struct trapframe *frame, u_int type)
456 {
457         /*
458          * A trap can occur while DTrace executes a probe. Before
459          * executing the probe, DTrace blocks re-scheduling and sets
460          * a flag in it's per-cpu flags to indicate that it doesn't
461          * want to fault. On returning from the the probe, the no-fault
462          * flag is cleared and finally re-scheduling is enabled.
463          *
464          * Check if DTrace has enabled 'no-fault' mode:
465          *
466          */
467         if ((cpu_core[curcpu].cpuc_dtrace_flags & CPU_DTRACE_NOFAULT) != 0) {
468                 /*
469                  * There are only a couple of trap types that are expected.
470                  * All the rest will be handled in the usual way.
471                  */
472                 switch (type) {
473                 /* Privilieged instruction fault. */
474                 case T_PRIVINFLT:
475                         break;
476                 /* General protection fault. */
477                 case T_PROTFLT:
478                         /* Flag an illegal operation. */
479                         cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
480
481                         /*
482                          * Offset the instruction pointer to the instruction
483                          * following the one causing the fault.
484                          */
485                         frame->tf_rip += dtrace_instr_size((u_char *) frame->tf_rip);
486                         return (1);
487                 /* Page fault. */
488                 case T_PAGEFLT:
489                         /* Flag a bad address. */
490                         cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_BADADDR;
491                         cpu_core[curcpu].cpuc_dtrace_illval = frame->tf_addr;
492
493                         /*
494                          * Offset the instruction pointer to the instruction
495                          * following the one causing the fault.
496                          */
497                         frame->tf_rip += dtrace_instr_size((u_char *) frame->tf_rip);
498                         return (1);
499                 default:
500                         /* Handle all other traps in the usual way. */
501                         break;
502                 }
503         }
504
505         /* Handle the trap in the usual way. */
506         return (0);
507 }