]> CyberLeo.Net >> Repos - FreeBSD/releng/7.2.git/blob - sys/dev/age/if_age.c
Create releng/7.2 from stable/7 in preparation for 7.2-RELEASE.
[FreeBSD/releng/7.2.git] / sys / dev / age / if_age.c
1 /*-
2  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27
28 /* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
29
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/bus.h>
36 #include <sys/endian.h>
37 #include <sys/kernel.h>
38 #include <sys/malloc.h>
39 #include <sys/mbuf.h>
40 #include <sys/rman.h>
41 #include <sys/module.h>
42 #include <sys/queue.h>
43 #include <sys/socket.h>
44 #include <sys/sockio.h>
45 #include <sys/sysctl.h>
46 #include <sys/taskqueue.h>
47
48 #include <net/bpf.h>
49 #include <net/if.h>
50 #include <net/if_arp.h>
51 #include <net/ethernet.h>
52 #include <net/if_dl.h>
53 #include <net/if_media.h>
54 #include <net/if_types.h>
55 #include <net/if_vlan_var.h>
56
57 #include <netinet/in.h>
58 #include <netinet/in_systm.h>
59 #include <netinet/ip.h>
60 #include <netinet/tcp.h>
61
62 #include <dev/mii/mii.h>
63 #include <dev/mii/miivar.h>
64
65 #include <dev/pci/pcireg.h>
66 #include <dev/pci/pcivar.h>
67
68 #include <machine/bus.h>
69 #include <machine/in_cksum.h>
70
71 #include <dev/age/if_agereg.h>
72 #include <dev/age/if_agevar.h>
73
74 /* "device miibus" required.  See GENERIC if you get errors here. */
75 #include "miibus_if.h"
76
77 #ifndef IFCAP_VLAN_HWTSO
78 #define IFCAP_VLAN_HWTSO        0
79 #endif
80 #define AGE_CSUM_FEATURES       (CSUM_TCP | CSUM_UDP)
81
82 MODULE_DEPEND(age, pci, 1, 1, 1);
83 MODULE_DEPEND(age, ether, 1, 1, 1);
84 MODULE_DEPEND(age, miibus, 1, 1, 1);
85
86 /* Tunables. */
87 static int msi_disable = 0;
88 static int msix_disable = 0;
89 TUNABLE_INT("hw.age.msi_disable", &msi_disable);
90 TUNABLE_INT("hw.age.msix_disable", &msix_disable);
91
92 /*
93  * Devices supported by this driver.
94  */
95 static struct age_dev {
96         uint16_t        age_vendorid;
97         uint16_t        age_deviceid;
98         const char      *age_name;
99 } age_devs[] = {
100         { VENDORID_ATTANSIC, DEVICEID_ATTANSIC_L1,
101             "Attansic Technology Corp, L1 Gigabit Ethernet" },
102 };
103
104 static int age_miibus_readreg(device_t, int, int);
105 static int age_miibus_writereg(device_t, int, int, int);
106 static void age_miibus_statchg(device_t);
107 static void age_mediastatus(struct ifnet *, struct ifmediareq *);
108 static int age_mediachange(struct ifnet *);
109 static int age_read_vpd_word(struct age_softc *, uint32_t, uint32_t,
110     uint32_t *);
111 static int age_probe(device_t);
112 static void age_get_macaddr(struct age_softc *);
113 static void age_phy_reset(struct age_softc *);
114 static int age_attach(device_t);
115 static int age_detach(device_t);
116 static void age_sysctl_node(struct age_softc *);
117 static void age_dmamap_cb(void *, bus_dma_segment_t *, int, int);
118 static int age_check_boundary(struct age_softc *);
119 static int age_dma_alloc(struct age_softc *);
120 static void age_dma_free(struct age_softc *);
121 static int age_shutdown(device_t);
122 static void age_setwol(struct age_softc *);
123 static int age_suspend(device_t);
124 static int age_resume(device_t);
125 static int age_encap(struct age_softc *, struct mbuf **);
126 static void age_tx_task(void *, int);
127 static void age_start(struct ifnet *);
128 static void age_watchdog(struct age_softc *);
129 static int age_ioctl(struct ifnet *, u_long, caddr_t);
130 static void age_mac_config(struct age_softc *);
131 static void age_link_task(void *, int);
132 static void age_stats_update(struct age_softc *);
133 static int age_intr(void *);
134 static void age_int_task(void *, int);
135 static void age_txintr(struct age_softc *, int);
136 static void age_rxeof(struct age_softc *sc, struct rx_rdesc *);
137 static int age_rxintr(struct age_softc *, int, int);
138 static void age_tick(void *);
139 static void age_reset(struct age_softc *);
140 static void age_init(void *);
141 static void age_init_locked(struct age_softc *);
142 static void age_stop(struct age_softc *);
143 static void age_stop_txmac(struct age_softc *);
144 static void age_stop_rxmac(struct age_softc *);
145 static void age_init_tx_ring(struct age_softc *);
146 static int age_init_rx_ring(struct age_softc *);
147 static void age_init_rr_ring(struct age_softc *);
148 static void age_init_cmb_block(struct age_softc *);
149 static void age_init_smb_block(struct age_softc *);
150 static int age_newbuf(struct age_softc *, struct age_rxdesc *);
151 static void age_rxvlan(struct age_softc *);
152 static void age_rxfilter(struct age_softc *);
153 static int sysctl_age_stats(SYSCTL_HANDLER_ARGS);
154 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
155 static int sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS);
156 static int sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS);
157
158
159 static device_method_t age_methods[] = {
160         /* Device interface. */
161         DEVMETHOD(device_probe,         age_probe),
162         DEVMETHOD(device_attach,        age_attach),
163         DEVMETHOD(device_detach,        age_detach),
164         DEVMETHOD(device_shutdown,      age_shutdown),
165         DEVMETHOD(device_suspend,       age_suspend),
166         DEVMETHOD(device_resume,        age_resume),
167
168         /* MII interface. */
169         DEVMETHOD(miibus_readreg,       age_miibus_readreg),
170         DEVMETHOD(miibus_writereg,      age_miibus_writereg),
171         DEVMETHOD(miibus_statchg,       age_miibus_statchg),
172
173         { NULL, NULL }
174 };
175
176 static driver_t age_driver = {
177         "age",
178         age_methods,
179         sizeof(struct age_softc)
180 };
181
182 static devclass_t age_devclass;
183
184 DRIVER_MODULE(age, pci, age_driver, age_devclass, 0, 0);
185 DRIVER_MODULE(miibus, age, miibus_driver, miibus_devclass, 0, 0);
186
187 static struct resource_spec age_res_spec_mem[] = {
188         { SYS_RES_MEMORY,       PCIR_BAR(0),    RF_ACTIVE },
189         { -1,                   0,              0 }
190 };
191
192 static struct resource_spec age_irq_spec_legacy[] = {
193         { SYS_RES_IRQ,          0,              RF_ACTIVE | RF_SHAREABLE },
194         { -1,                   0,              0 }
195 };
196
197 static struct resource_spec age_irq_spec_msi[] = {
198         { SYS_RES_IRQ,          1,              RF_ACTIVE },
199         { -1,                   0,              0 }
200 };
201
202 static struct resource_spec age_irq_spec_msix[] = {
203         { SYS_RES_IRQ,          1,              RF_ACTIVE },
204         { -1,                   0,              0 }
205 };
206
207 /*
208  *      Read a PHY register on the MII of the L1.
209  */
210 static int
211 age_miibus_readreg(device_t dev, int phy, int reg)
212 {
213         struct age_softc *sc;
214         uint32_t v;
215         int i;
216
217         sc = device_get_softc(dev);
218         if (phy != sc->age_phyaddr)
219                 return (0);
220
221         CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
222             MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
223         for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
224                 DELAY(1);
225                 v = CSR_READ_4(sc, AGE_MDIO);
226                 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
227                         break;
228         }
229
230         if (i == 0) {
231                 device_printf(sc->age_dev, "phy read timeout : %d\n", reg);
232                 return (0);
233         }
234
235         return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
236 }
237
238 /*
239  *      Write a PHY register on the MII of the L1.
240  */
241 static int
242 age_miibus_writereg(device_t dev, int phy, int reg, int val)
243 {
244         struct age_softc *sc;
245         uint32_t v;
246         int i;
247
248         sc = device_get_softc(dev);
249         if (phy != sc->age_phyaddr)
250                 return (0);
251
252         CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
253             (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
254             MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
255         for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
256                 DELAY(1);
257                 v = CSR_READ_4(sc, AGE_MDIO);
258                 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
259                         break;
260         }
261
262         if (i == 0)
263                 device_printf(sc->age_dev, "phy write timeout : %d\n", reg);
264
265         return (0);
266 }
267
268 /*
269  *      Callback from MII layer when media changes.
270  */
271 static void
272 age_miibus_statchg(device_t dev)
273 {
274         struct age_softc *sc;
275
276         sc = device_get_softc(dev);
277         taskqueue_enqueue(taskqueue_swi, &sc->age_link_task);
278 }
279
280 /*
281  *      Get the current interface media status.
282  */
283 static void
284 age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
285 {
286         struct age_softc *sc;
287         struct mii_data *mii;
288
289         sc = ifp->if_softc;
290         AGE_LOCK(sc);
291         mii = device_get_softc(sc->age_miibus);
292
293         mii_pollstat(mii);
294         AGE_UNLOCK(sc);
295         ifmr->ifm_status = mii->mii_media_status;
296         ifmr->ifm_active = mii->mii_media_active;
297 }
298
299 /*
300  *      Set hardware to newly-selected media.
301  */
302 static int
303 age_mediachange(struct ifnet *ifp)
304 {
305         struct age_softc *sc;
306         struct mii_data *mii;
307         struct mii_softc *miisc;
308         int error;
309
310         sc = ifp->if_softc;
311         AGE_LOCK(sc);
312         mii = device_get_softc(sc->age_miibus);
313         if (mii->mii_instance != 0) {
314                 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
315                         mii_phy_reset(miisc);
316         }
317         error = mii_mediachg(mii);
318         AGE_UNLOCK(sc);
319
320         return (error);
321 }
322
323 static int
324 age_read_vpd_word(struct age_softc *sc, uint32_t vpdc, uint32_t offset,
325     uint32_t *word)
326 {
327         int i;
328
329         pci_write_config(sc->age_dev, vpdc + PCIR_VPD_ADDR, offset, 2);
330         for (i = AGE_TIMEOUT; i > 0; i--) {
331                 DELAY(10);
332                 if ((pci_read_config(sc->age_dev, vpdc + PCIR_VPD_ADDR, 2) &
333                     0x8000) == 0x8000)
334                         break;
335         }
336         if (i == 0) {
337                 device_printf(sc->age_dev, "VPD read timeout!\n");
338                 *word = 0;
339                 return (ETIMEDOUT);
340         }
341
342         *word = pci_read_config(sc->age_dev, vpdc + PCIR_VPD_DATA, 4);
343         return (0);
344 }
345
346 static int
347 age_probe(device_t dev)
348 {
349         struct age_dev *sp;
350         int i;
351         uint16_t vendor, devid;
352
353         vendor = pci_get_vendor(dev);
354         devid = pci_get_device(dev);
355         sp = age_devs;
356         for (i = 0; i < sizeof(age_devs) / sizeof(age_devs[0]);
357             i++, sp++) {
358                 if (vendor == sp->age_vendorid &&
359                     devid == sp->age_deviceid) {
360                         device_set_desc(dev, sp->age_name);
361                         return (BUS_PROBE_DEFAULT);
362                 }
363         }
364
365         return (ENXIO);
366 }
367
368 static void
369 age_get_macaddr(struct age_softc *sc)
370 {
371         uint32_t ea[2], off, reg, word;
372         int vpd_error, match, vpdc;
373
374         reg = CSR_READ_4(sc, AGE_SPI_CTRL);
375         if ((reg & SPI_VPD_ENB) != 0) {
376                 /* Get VPD stored in TWSI EEPROM. */
377                 reg &= ~SPI_VPD_ENB;
378                 CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
379         }
380
381         vpd_error = 0;
382         ea[0] = ea[1] = 0;
383         if ((vpd_error = pci_find_extcap(sc->age_dev, PCIY_VPD, &vpdc)) == 0) {
384                 /*
385                  * PCI VPD capability exists, but it seems that it's
386                  * not in the standard form as stated in PCI VPD
387                  * specification such that driver could not use
388                  * pci_get_vpd_readonly(9) with keyword 'NA'.
389                  * Search VPD data starting at address 0x0100. The data
390                  * should be used as initializers to set AGE_PAR0,
391                  * AGE_PAR1 register including other PCI configuration
392                  * registers.
393                  */
394                 word = 0;
395                 match = 0;
396                 reg = 0;
397                 for (off = AGE_VPD_REG_CONF_START; off < AGE_VPD_REG_CONF_END;
398                     off += sizeof(uint32_t)) {
399                         vpd_error = age_read_vpd_word(sc, vpdc, off, &word);
400                         if (vpd_error != 0)
401                                 break;
402                         if (match != 0) {
403                                 switch (reg) {
404                                 case AGE_PAR0:
405                                         ea[0] = word;
406                                         break;
407                                 case AGE_PAR1:
408                                         ea[1] = word;
409                                         break;
410                                 default:
411                                         break;
412                                 }
413                                 match = 0;
414                         } else if ((word & 0xFF) == AGE_VPD_REG_CONF_SIG) {
415                                 match = 1;
416                                 reg = word >> 16;
417                         } else
418                                 break;
419                 }
420                 if (off >= AGE_VPD_REG_CONF_END)
421                         vpd_error = ENOENT;
422                 if (vpd_error == 0) {
423                         /*
424                          * Don't blindly trust ethernet address obtained
425                          * from VPD. Check whether ethernet address is
426                          * valid one. Otherwise fall-back to reading
427                          * PAR register.
428                          */
429                         ea[1] &= 0xFFFF;
430                         if ((ea[0] == 0 && ea[1] == 0) ||
431                             (ea[0] == 0xFFFFFFFF && ea[1] == 0xFFFF)) {
432                                 if (bootverbose)
433                                         device_printf(sc->age_dev,
434                                             "invalid ethernet address "
435                                             "returned from VPD.\n");
436                                 vpd_error = EINVAL;
437                         }
438                 }
439                 if (vpd_error != 0 && (bootverbose))
440                         device_printf(sc->age_dev, "VPD access failure!\n");
441         } else {
442                 if (bootverbose)
443                         device_printf(sc->age_dev,
444                             "PCI VPD capability not found!\n");
445         }
446
447         /*
448          * It seems that L1 also provides a way to extract ethernet
449          * address via SPI flash interface. Because SPI flash memory
450          * device of different vendors vary in their instruction
451          * codes for read ID instruction, it's very hard to get
452          * instructions codes without detailed information for the
453          * flash memory device used on ethernet controller. To simplify
454          * code, just read AGE_PAR0/AGE_PAR1 register to get ethernet
455          * address which is supposed to be set by hardware during
456          * power on reset.
457          */
458         if (vpd_error != 0) {
459                 /*
460                  * VPD is mapped to SPI flash memory or BIOS set it.
461                  */
462                 ea[0] = CSR_READ_4(sc, AGE_PAR0);
463                 ea[1] = CSR_READ_4(sc, AGE_PAR1);
464         }
465
466         ea[1] &= 0xFFFF;
467         if ((ea[0] == 0 && ea[1]  == 0) ||
468             (ea[0] == 0xFFFFFFFF && ea[1] == 0xFFFF)) {
469                 device_printf(sc->age_dev,
470                     "generating fake ethernet address.\n");
471                 ea[0] = arc4random();
472                 /* Set OUI to ASUSTek COMPUTER INC. */
473                 sc->age_eaddr[0] = 0x00;
474                 sc->age_eaddr[1] = 0x1B;
475                 sc->age_eaddr[2] = 0xFC;
476                 sc->age_eaddr[3] = (ea[0] >> 16) & 0xFF;
477                 sc->age_eaddr[4] = (ea[0] >> 8) & 0xFF;
478                 sc->age_eaddr[5] = (ea[0] >> 0) & 0xFF;
479         } else {
480                 sc->age_eaddr[0] = (ea[1] >> 8) & 0xFF;
481                 sc->age_eaddr[1] = (ea[1] >> 0) & 0xFF;
482                 sc->age_eaddr[2] = (ea[0] >> 24) & 0xFF;
483                 sc->age_eaddr[3] = (ea[0] >> 16) & 0xFF;
484                 sc->age_eaddr[4] = (ea[0] >> 8) & 0xFF;
485                 sc->age_eaddr[5] = (ea[0] >> 0) & 0xFF;
486         }
487 }
488
489 static void
490 age_phy_reset(struct age_softc *sc)
491 {
492
493         /* Reset PHY. */
494         CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
495         DELAY(1000);
496         CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
497         DELAY(1000);
498 }
499
500 static int
501 age_attach(device_t dev)
502 {
503         struct age_softc *sc;
504         struct ifnet *ifp;
505         uint16_t burst;
506         int error, i, msic, msixc, pmc;
507
508         error = 0;
509         sc = device_get_softc(dev);
510         sc->age_dev = dev;
511
512         mtx_init(&sc->age_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
513             MTX_DEF);
514         callout_init_mtx(&sc->age_tick_ch, &sc->age_mtx, 0);
515         TASK_INIT(&sc->age_int_task, 0, age_int_task, sc);
516         TASK_INIT(&sc->age_link_task, 0, age_link_task, sc);
517
518         /* Map the device. */
519         pci_enable_busmaster(dev);
520         sc->age_res_spec = age_res_spec_mem;
521         sc->age_irq_spec = age_irq_spec_legacy;
522         error = bus_alloc_resources(dev, sc->age_res_spec, sc->age_res);
523         if (error != 0) {
524                 device_printf(dev, "cannot allocate memory resources.\n");
525                 goto fail;
526         }
527
528         /* Set PHY address. */
529         sc->age_phyaddr = AGE_PHY_ADDR;
530
531         /* Reset PHY. */
532         age_phy_reset(sc);
533
534         /* Reset the ethernet controller. */
535         age_reset(sc);
536
537         /* Get PCI and chip id/revision. */
538         sc->age_rev = pci_get_revid(dev);
539         sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
540             MASTER_CHIP_REV_SHIFT;
541         if (bootverbose) {
542                 device_printf(dev, "PCI device revision : 0x%04x\n", sc->age_rev);
543                 device_printf(dev, "Chip id/revision : 0x%04x\n",
544                     sc->age_chip_rev);
545         }
546
547         /*
548          * XXX
549          * Unintialized hardware returns an invalid chip id/revision
550          * as well as 0xFFFFFFFF for Tx/Rx fifo length. It seems that
551          * unplugged cable results in putting hardware into automatic
552          * power down mode which in turn returns invalld chip revision.
553          */
554         if (sc->age_chip_rev == 0xFFFF) {
555                 device_printf(dev,"invalid chip revision : 0x%04x -- "
556                     "not initialized?\n", sc->age_chip_rev);
557                 error = ENXIO;
558                 goto fail;
559         }
560
561         device_printf(dev, "%d Tx FIFO, %d Rx FIFO\n",
562             CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
563             CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
564
565         /* Allocate IRQ resources. */
566         msixc = pci_msix_count(dev);
567         msic = pci_msi_count(dev);
568         if (bootverbose) {
569                 device_printf(dev, "MSIX count : %d\n", msixc);
570                 device_printf(dev, "MSI count : %d\n", msic);
571         }
572
573         /* Prefer MSIX over MSI. */
574         if (msix_disable == 0 || msi_disable == 0) {
575                 if (msix_disable == 0 && msixc == AGE_MSIX_MESSAGES &&
576                     pci_alloc_msix(dev, &msixc) == 0) {
577                         if (msic == AGE_MSIX_MESSAGES) {
578                                 device_printf(dev, "Using %d MSIX messages.\n",
579                                     msixc);
580                                 sc->age_flags |= AGE_FLAG_MSIX;
581                                 sc->age_irq_spec = age_irq_spec_msix;
582                         } else
583                                 pci_release_msi(dev);
584                 }
585                 if (msi_disable == 0 && (sc->age_flags & AGE_FLAG_MSIX) == 0 &&
586                     msic == AGE_MSI_MESSAGES &&
587                     pci_alloc_msi(dev, &msic) == 0) {
588                         if (msic == AGE_MSI_MESSAGES) {
589                                 device_printf(dev, "Using %d MSI messages.\n",
590                                     msic);
591                                 sc->age_flags |= AGE_FLAG_MSI;
592                                 sc->age_irq_spec = age_irq_spec_msi;
593                         } else
594                                 pci_release_msi(dev);
595                 }
596         }
597
598         error = bus_alloc_resources(dev, sc->age_irq_spec, sc->age_irq);
599         if (error != 0) {
600                 device_printf(dev, "cannot allocate IRQ resources.\n");
601                 goto fail;
602         }
603
604
605         /* Get DMA parameters from PCIe device control register. */
606         if (pci_find_extcap(dev, PCIY_EXPRESS, &i) == 0) {
607                 sc->age_flags |= AGE_FLAG_PCIE;
608                 burst = pci_read_config(dev, i + 0x08, 2);
609                 /* Max read request size. */
610                 sc->age_dma_rd_burst = ((burst >> 12) & 0x07) <<
611                     DMA_CFG_RD_BURST_SHIFT;
612                 /* Max payload size. */
613                 sc->age_dma_wr_burst = ((burst >> 5) & 0x07) <<
614                     DMA_CFG_WR_BURST_SHIFT;
615                 if (bootverbose) {
616                         device_printf(dev, "Read request size : %d bytes.\n",
617                             128 << ((burst >> 12) & 0x07));
618                         device_printf(dev, "TLP payload size : %d bytes.\n",
619                             128 << ((burst >> 5) & 0x07));
620                 }
621         } else {
622                 sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
623                 sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
624         }
625
626         /* Create device sysctl node. */
627         age_sysctl_node(sc);
628
629         if ((error = age_dma_alloc(sc) != 0))
630                 goto fail;
631
632         /* Load station address. */
633         age_get_macaddr(sc);
634
635         ifp = sc->age_ifp = if_alloc(IFT_ETHER);
636         if (ifp == NULL) {
637                 device_printf(dev, "cannot allocate ifnet structure.\n");
638                 error = ENXIO;
639                 goto fail;
640         }
641
642         ifp->if_softc = sc;
643         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
644         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
645         ifp->if_ioctl = age_ioctl;
646         ifp->if_start = age_start;
647         ifp->if_init = age_init;
648         ifp->if_snd.ifq_drv_maxlen = AGE_TX_RING_CNT - 1;
649         IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
650         IFQ_SET_READY(&ifp->if_snd);
651         ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_TSO4;
652         ifp->if_hwassist = AGE_CSUM_FEATURES | CSUM_TSO;
653         if (pci_find_extcap(dev, PCIY_PMG, &pmc) == 0) {
654                 sc->age_flags |= AGE_FLAG_PMCAP;
655                 ifp->if_capabilities |= IFCAP_WOL_MAGIC | IFCAP_WOL_MCAST;
656         }
657         ifp->if_capenable = ifp->if_capabilities;
658
659         /* Set up MII bus. */
660         if ((error = mii_phy_probe(dev, &sc->age_miibus, age_mediachange,
661             age_mediastatus)) != 0) {
662                 device_printf(dev, "no PHY found!\n");
663                 goto fail;
664         }
665
666         ether_ifattach(ifp, sc->age_eaddr);
667
668         /* VLAN capability setup. */
669         ifp->if_capabilities |= IFCAP_VLAN_MTU;
670         ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWCSUM;
671         ifp->if_capenable = ifp->if_capabilities;
672
673         /* Tell the upper layer(s) we support long frames. */
674         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
675
676         /* Create local taskq. */
677         TASK_INIT(&sc->age_tx_task, 1, age_tx_task, ifp);
678         sc->age_tq = taskqueue_create_fast("age_taskq", M_WAITOK,
679             taskqueue_thread_enqueue, &sc->age_tq);
680         if (sc->age_tq == NULL) {
681                 device_printf(dev, "could not create taskqueue.\n");
682                 ether_ifdetach(ifp);
683                 error = ENXIO;
684                 goto fail;
685         }
686         taskqueue_start_threads(&sc->age_tq, 1, PI_NET, "%s taskq",
687             device_get_nameunit(sc->age_dev));
688
689         if ((sc->age_flags & AGE_FLAG_MSIX) != 0)
690                 msic = AGE_MSIX_MESSAGES;
691         else if ((sc->age_flags & AGE_FLAG_MSI) != 0)
692                 msic = AGE_MSI_MESSAGES;
693         else
694                 msic = 1;
695         for (i = 0; i < msic; i++) {
696                 error = bus_setup_intr(dev, sc->age_irq[i],
697                     INTR_TYPE_NET | INTR_MPSAFE, age_intr, NULL, sc,
698                     &sc->age_intrhand[i]);
699                 if (error != 0)
700                         break;
701         }
702         if (error != 0) {
703                 device_printf(dev, "could not set up interrupt handler.\n");
704                 taskqueue_free(sc->age_tq);
705                 sc->age_tq = NULL;
706                 ether_ifdetach(ifp);
707                 goto fail;
708         }
709
710 fail:
711         if (error != 0)
712                 age_detach(dev);
713
714         return (error);
715 }
716
717 static int
718 age_detach(device_t dev)
719 {
720         struct age_softc *sc;
721         struct ifnet *ifp;
722         int i, msic;
723
724         sc = device_get_softc(dev);
725
726         ifp = sc->age_ifp;
727         if (device_is_attached(dev)) {
728                 AGE_LOCK(sc);
729                 sc->age_flags |= AGE_FLAG_DETACH;
730                 age_stop(sc);
731                 AGE_UNLOCK(sc);
732                 callout_drain(&sc->age_tick_ch);
733                 taskqueue_drain(sc->age_tq, &sc->age_int_task);
734                 taskqueue_drain(sc->age_tq, &sc->age_tx_task);
735                 taskqueue_drain(taskqueue_swi, &sc->age_link_task);
736                 ether_ifdetach(ifp);
737         }
738
739         if (sc->age_tq != NULL) {
740                 taskqueue_drain(sc->age_tq, &sc->age_int_task);
741                 taskqueue_free(sc->age_tq);
742                 sc->age_tq = NULL;
743         }
744
745         if (sc->age_miibus != NULL) {
746                 device_delete_child(dev, sc->age_miibus);
747                 sc->age_miibus = NULL;
748         }
749         bus_generic_detach(dev);
750         age_dma_free(sc);
751
752         if (ifp != NULL) {
753                 if_free(ifp);
754                 sc->age_ifp = NULL;
755         }
756
757         if ((sc->age_flags & AGE_FLAG_MSIX) != 0)
758                 msic = AGE_MSIX_MESSAGES;
759         else if ((sc->age_flags & AGE_FLAG_MSI) != 0)
760                 msic = AGE_MSI_MESSAGES;
761         else
762                 msic = 1;
763         for (i = 0; i < msic; i++) {
764                 if (sc->age_intrhand[i] != NULL) {
765                         bus_teardown_intr(dev, sc->age_irq[i],
766                             sc->age_intrhand[i]);
767                         sc->age_intrhand[i] = NULL;
768                 }
769         }
770
771         bus_release_resources(dev, sc->age_irq_spec, sc->age_irq);
772         if ((sc->age_flags & (AGE_FLAG_MSI | AGE_FLAG_MSIX)) != 0)
773                 pci_release_msi(dev);
774         bus_release_resources(dev, sc->age_res_spec, sc->age_res);
775         mtx_destroy(&sc->age_mtx);
776
777         return (0);
778 }
779
780 static void
781 age_sysctl_node(struct age_softc *sc)
782 {
783         int error;
784
785         SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
786             SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
787             "stats", CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_age_stats,
788             "I", "Statistics");
789
790         SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
791             SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
792             "int_mod", CTLTYPE_INT | CTLFLAG_RW, &sc->age_int_mod, 0,
793             sysctl_hw_age_int_mod, "I", "age interrupt moderation");
794
795         /* Pull in device tunables. */
796         sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
797         error = resource_int_value(device_get_name(sc->age_dev),
798             device_get_unit(sc->age_dev), "int_mod", &sc->age_int_mod);
799         if (error == 0) {
800                 if (sc->age_int_mod < AGE_IM_TIMER_MIN ||
801                     sc->age_int_mod > AGE_IM_TIMER_MAX) {
802                         device_printf(sc->age_dev,
803                             "int_mod value out of range; using default: %d\n",
804                             AGE_IM_TIMER_DEFAULT);
805                         sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
806                 }
807         }
808
809         SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
810             SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
811             "process_limit", CTLTYPE_INT | CTLFLAG_RW, &sc->age_process_limit,
812             0, sysctl_hw_age_proc_limit, "I",
813             "max number of Rx events to process");
814
815         /* Pull in device tunables. */
816         sc->age_process_limit = AGE_PROC_DEFAULT;
817         error = resource_int_value(device_get_name(sc->age_dev),
818             device_get_unit(sc->age_dev), "process_limit",
819             &sc->age_process_limit);
820         if (error == 0) {
821                 if (sc->age_process_limit < AGE_PROC_MIN ||
822                     sc->age_process_limit > AGE_PROC_MAX) {
823                         device_printf(sc->age_dev,
824                             "process_limit value out of range; "
825                             "using default: %d\n", AGE_PROC_DEFAULT);
826                         sc->age_process_limit = AGE_PROC_DEFAULT;
827                 }
828         }
829 }
830
831 struct age_dmamap_arg {
832         bus_addr_t      age_busaddr;
833 };
834
835 static void
836 age_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
837 {
838         struct age_dmamap_arg *ctx;
839
840         if (error != 0)
841                 return;
842
843         KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
844
845         ctx = (struct age_dmamap_arg *)arg;
846         ctx->age_busaddr = segs[0].ds_addr;
847 }
848
849 /*
850  * Attansic L1 controller have single register to specify high
851  * address part of DMA blocks. So all descriptor structures and
852  * DMA memory blocks should have the same high address of given
853  * 4GB address space(i.e. crossing 4GB boundary is not allowed).
854  */
855 static int
856 age_check_boundary(struct age_softc *sc)
857 {
858         bus_addr_t rx_ring_end, rr_ring_end, tx_ring_end;
859         bus_addr_t cmb_block_end, smb_block_end;
860
861         /* Tx/Rx descriptor queue should reside within 4GB boundary. */
862         tx_ring_end = sc->age_rdata.age_tx_ring_paddr + AGE_TX_RING_SZ;
863         rx_ring_end = sc->age_rdata.age_rx_ring_paddr + AGE_RX_RING_SZ;
864         rr_ring_end = sc->age_rdata.age_rr_ring_paddr + AGE_RR_RING_SZ;
865         cmb_block_end = sc->age_rdata.age_cmb_block_paddr + AGE_CMB_BLOCK_SZ;
866         smb_block_end = sc->age_rdata.age_smb_block_paddr + AGE_SMB_BLOCK_SZ;
867
868         if ((AGE_ADDR_HI(tx_ring_end) !=
869             AGE_ADDR_HI(sc->age_rdata.age_tx_ring_paddr)) ||
870             (AGE_ADDR_HI(rx_ring_end) !=
871             AGE_ADDR_HI(sc->age_rdata.age_rx_ring_paddr)) ||
872             (AGE_ADDR_HI(rr_ring_end) !=
873             AGE_ADDR_HI(sc->age_rdata.age_rr_ring_paddr)) ||
874             (AGE_ADDR_HI(cmb_block_end) !=
875             AGE_ADDR_HI(sc->age_rdata.age_cmb_block_paddr)) ||
876             (AGE_ADDR_HI(smb_block_end) !=
877             AGE_ADDR_HI(sc->age_rdata.age_smb_block_paddr)))
878                 return (EFBIG);
879
880         if ((AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rx_ring_end)) ||
881             (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rr_ring_end)) ||
882             (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(cmb_block_end)) ||
883             (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(smb_block_end)))
884                 return (EFBIG);
885
886         return (0);
887 }
888
889 static int
890 age_dma_alloc(struct age_softc *sc)
891 {
892         struct age_txdesc *txd;
893         struct age_rxdesc *rxd;
894         bus_addr_t lowaddr;
895         struct age_dmamap_arg ctx;
896         int error, i;
897
898         lowaddr = BUS_SPACE_MAXADDR;
899
900 again:
901         /* Create parent ring/DMA block tag. */
902         error = bus_dma_tag_create(
903             bus_get_dma_tag(sc->age_dev), /* parent */
904             1, 0,                       /* alignment, boundary */
905             lowaddr,                    /* lowaddr */
906             BUS_SPACE_MAXADDR,          /* highaddr */
907             NULL, NULL,                 /* filter, filterarg */
908             BUS_SPACE_MAXSIZE_32BIT,    /* maxsize */
909             0,                          /* nsegments */
910             BUS_SPACE_MAXSIZE_32BIT,    /* maxsegsize */
911             0,                          /* flags */
912             NULL, NULL,                 /* lockfunc, lockarg */
913             &sc->age_cdata.age_parent_tag);
914         if (error != 0) {
915                 device_printf(sc->age_dev,
916                     "could not create parent DMA tag.\n");
917                 goto fail;
918         }
919
920         /* Create tag for Tx ring. */
921         error = bus_dma_tag_create(
922             sc->age_cdata.age_parent_tag, /* parent */
923             AGE_TX_RING_ALIGN, 0,       /* alignment, boundary */
924             BUS_SPACE_MAXADDR,          /* lowaddr */
925             BUS_SPACE_MAXADDR,          /* highaddr */
926             NULL, NULL,                 /* filter, filterarg */
927             AGE_TX_RING_SZ,             /* maxsize */
928             1,                          /* nsegments */
929             AGE_TX_RING_SZ,             /* maxsegsize */
930             0,                          /* flags */
931             NULL, NULL,                 /* lockfunc, lockarg */
932             &sc->age_cdata.age_tx_ring_tag);
933         if (error != 0) {
934                 device_printf(sc->age_dev,
935                     "could not create Tx ring DMA tag.\n");
936                 goto fail;
937         }
938
939         /* Create tag for Rx ring. */
940         error = bus_dma_tag_create(
941             sc->age_cdata.age_parent_tag, /* parent */
942             AGE_RX_RING_ALIGN, 0,       /* alignment, boundary */
943             BUS_SPACE_MAXADDR,          /* lowaddr */
944             BUS_SPACE_MAXADDR,          /* highaddr */
945             NULL, NULL,                 /* filter, filterarg */
946             AGE_RX_RING_SZ,             /* maxsize */
947             1,                          /* nsegments */
948             AGE_RX_RING_SZ,             /* maxsegsize */
949             0,                          /* flags */
950             NULL, NULL,                 /* lockfunc, lockarg */
951             &sc->age_cdata.age_rx_ring_tag);
952         if (error != 0) {
953                 device_printf(sc->age_dev,
954                     "could not create Rx ring DMA tag.\n");
955                 goto fail;
956         }
957
958         /* Create tag for Rx return ring. */
959         error = bus_dma_tag_create(
960             sc->age_cdata.age_parent_tag, /* parent */
961             AGE_RR_RING_ALIGN, 0,       /* alignment, boundary */
962             BUS_SPACE_MAXADDR,          /* lowaddr */
963             BUS_SPACE_MAXADDR,          /* highaddr */
964             NULL, NULL,                 /* filter, filterarg */
965             AGE_RR_RING_SZ,             /* maxsize */
966             1,                          /* nsegments */
967             AGE_RR_RING_SZ,             /* maxsegsize */
968             0,                          /* flags */
969             NULL, NULL,                 /* lockfunc, lockarg */
970             &sc->age_cdata.age_rr_ring_tag);
971         if (error != 0) {
972                 device_printf(sc->age_dev,
973                     "could not create Rx return ring DMA tag.\n");
974                 goto fail;
975         }
976
977         /* Create tag for coalesing message block. */
978         error = bus_dma_tag_create(
979             sc->age_cdata.age_parent_tag, /* parent */
980             AGE_CMB_ALIGN, 0,           /* alignment, boundary */
981             BUS_SPACE_MAXADDR,          /* lowaddr */
982             BUS_SPACE_MAXADDR,          /* highaddr */
983             NULL, NULL,                 /* filter, filterarg */
984             AGE_CMB_BLOCK_SZ,           /* maxsize */
985             1,                          /* nsegments */
986             AGE_CMB_BLOCK_SZ,           /* maxsegsize */
987             0,                          /* flags */
988             NULL, NULL,                 /* lockfunc, lockarg */
989             &sc->age_cdata.age_cmb_block_tag);
990         if (error != 0) {
991                 device_printf(sc->age_dev,
992                     "could not create CMB DMA tag.\n");
993                 goto fail;
994         }
995
996         /* Create tag for statistics message block. */
997         error = bus_dma_tag_create(
998             sc->age_cdata.age_parent_tag, /* parent */
999             AGE_SMB_ALIGN, 0,           /* alignment, boundary */
1000             BUS_SPACE_MAXADDR,          /* lowaddr */
1001             BUS_SPACE_MAXADDR,          /* highaddr */
1002             NULL, NULL,                 /* filter, filterarg */
1003             AGE_SMB_BLOCK_SZ,           /* maxsize */
1004             1,                          /* nsegments */
1005             AGE_SMB_BLOCK_SZ,           /* maxsegsize */
1006             0,                          /* flags */
1007             NULL, NULL,                 /* lockfunc, lockarg */
1008             &sc->age_cdata.age_smb_block_tag);
1009         if (error != 0) {
1010                 device_printf(sc->age_dev,
1011                     "could not create SMB DMA tag.\n");
1012                 goto fail;
1013         }
1014
1015         /* Allocate DMA'able memory and load the DMA map. */
1016         error = bus_dmamem_alloc(sc->age_cdata.age_tx_ring_tag,
1017             (void **)&sc->age_rdata.age_tx_ring,
1018             BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1019             &sc->age_cdata.age_tx_ring_map);
1020         if (error != 0) {
1021                 device_printf(sc->age_dev,
1022                     "could not allocate DMA'able memory for Tx ring.\n");
1023                 goto fail;
1024         }
1025         ctx.age_busaddr = 0;
1026         error = bus_dmamap_load(sc->age_cdata.age_tx_ring_tag,
1027             sc->age_cdata.age_tx_ring_map, sc->age_rdata.age_tx_ring,
1028             AGE_TX_RING_SZ, age_dmamap_cb, &ctx, 0);
1029         if (error != 0 || ctx.age_busaddr == 0) {
1030                 device_printf(sc->age_dev,
1031                     "could not load DMA'able memory for Tx ring.\n");
1032                 goto fail;
1033         }
1034         sc->age_rdata.age_tx_ring_paddr = ctx.age_busaddr;
1035         /* Rx ring */
1036         error = bus_dmamem_alloc(sc->age_cdata.age_rx_ring_tag,
1037             (void **)&sc->age_rdata.age_rx_ring,
1038             BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1039             &sc->age_cdata.age_rx_ring_map);
1040         if (error != 0) {
1041                 device_printf(sc->age_dev,
1042                     "could not allocate DMA'able memory for Rx ring.\n");
1043                 goto fail;
1044         }
1045         ctx.age_busaddr = 0;
1046         error = bus_dmamap_load(sc->age_cdata.age_rx_ring_tag,
1047             sc->age_cdata.age_rx_ring_map, sc->age_rdata.age_rx_ring,
1048             AGE_RX_RING_SZ, age_dmamap_cb, &ctx, 0);
1049         if (error != 0 || ctx.age_busaddr == 0) {
1050                 device_printf(sc->age_dev,
1051                     "could not load DMA'able memory for Rx ring.\n");
1052                 goto fail;
1053         }
1054         sc->age_rdata.age_rx_ring_paddr = ctx.age_busaddr;
1055         /* Rx return ring */
1056         error = bus_dmamem_alloc(sc->age_cdata.age_rr_ring_tag,
1057             (void **)&sc->age_rdata.age_rr_ring,
1058             BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1059             &sc->age_cdata.age_rr_ring_map);
1060         if (error != 0) {
1061                 device_printf(sc->age_dev,
1062                     "could not allocate DMA'able memory for Rx return ring.\n");
1063                 goto fail;
1064         }
1065         ctx.age_busaddr = 0;
1066         error = bus_dmamap_load(sc->age_cdata.age_rr_ring_tag,
1067             sc->age_cdata.age_rr_ring_map, sc->age_rdata.age_rr_ring,
1068             AGE_RR_RING_SZ, age_dmamap_cb,
1069             &ctx, 0);
1070         if (error != 0 || ctx.age_busaddr == 0) {
1071                 device_printf(sc->age_dev,
1072                     "could not load DMA'able memory for Rx return ring.\n");
1073                 goto fail;
1074         }
1075         sc->age_rdata.age_rr_ring_paddr = ctx.age_busaddr;
1076         /* CMB block */
1077         error = bus_dmamem_alloc(sc->age_cdata.age_cmb_block_tag,
1078             (void **)&sc->age_rdata.age_cmb_block,
1079             BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1080             &sc->age_cdata.age_cmb_block_map);
1081         if (error != 0) {
1082                 device_printf(sc->age_dev,
1083                     "could not allocate DMA'able memory for CMB block.\n");
1084                 goto fail;
1085         }
1086         ctx.age_busaddr = 0;
1087         error = bus_dmamap_load(sc->age_cdata.age_cmb_block_tag,
1088             sc->age_cdata.age_cmb_block_map, sc->age_rdata.age_cmb_block,
1089             AGE_CMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
1090         if (error != 0 || ctx.age_busaddr == 0) {
1091                 device_printf(sc->age_dev,
1092                     "could not load DMA'able memory for CMB block.\n");
1093                 goto fail;
1094         }
1095         sc->age_rdata.age_cmb_block_paddr = ctx.age_busaddr;
1096         /* SMB block */
1097         error = bus_dmamem_alloc(sc->age_cdata.age_smb_block_tag,
1098             (void **)&sc->age_rdata.age_smb_block,
1099             BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1100             &sc->age_cdata.age_smb_block_map);
1101         if (error != 0) {
1102                 device_printf(sc->age_dev,
1103                     "could not allocate DMA'able memory for SMB block.\n");
1104                 goto fail;
1105         }
1106         ctx.age_busaddr = 0;
1107         error = bus_dmamap_load(sc->age_cdata.age_smb_block_tag,
1108             sc->age_cdata.age_smb_block_map, sc->age_rdata.age_smb_block,
1109             AGE_SMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
1110         if (error != 0 || ctx.age_busaddr == 0) {
1111                 device_printf(sc->age_dev,
1112                     "could not load DMA'able memory for SMB block.\n");
1113                 goto fail;
1114         }
1115         sc->age_rdata.age_smb_block_paddr = ctx.age_busaddr;
1116
1117         /*
1118          * All ring buffer and DMA blocks should have the same
1119          * high address part of 64bit DMA address space.
1120          */
1121         if (lowaddr != BUS_SPACE_MAXADDR_32BIT &&
1122             (error = age_check_boundary(sc)) != 0) {
1123                 device_printf(sc->age_dev, "4GB boundary crossed, "
1124                     "switching to 32bit DMA addressing mode.\n");
1125                 age_dma_free(sc);
1126                 /* Limit DMA address space to 32bit and try again. */
1127                 lowaddr = BUS_SPACE_MAXADDR_32BIT;
1128                 goto again;
1129         }
1130
1131         /*
1132          * Create Tx/Rx buffer parent tag.
1133          * L1 supports full 64bit DMA addressing in Tx/Rx buffers
1134          * so it needs separate parent DMA tag.
1135          */
1136         error = bus_dma_tag_create(
1137             bus_get_dma_tag(sc->age_dev), /* parent */
1138             1, 0,                       /* alignment, boundary */
1139             BUS_SPACE_MAXADDR,          /* lowaddr */
1140             BUS_SPACE_MAXADDR,          /* highaddr */
1141             NULL, NULL,                 /* filter, filterarg */
1142             BUS_SPACE_MAXSIZE_32BIT,    /* maxsize */
1143             0,                          /* nsegments */
1144             BUS_SPACE_MAXSIZE_32BIT,    /* maxsegsize */
1145             0,                          /* flags */
1146             NULL, NULL,                 /* lockfunc, lockarg */
1147             &sc->age_cdata.age_buffer_tag);
1148         if (error != 0) {
1149                 device_printf(sc->age_dev,
1150                     "could not create parent buffer DMA tag.\n");
1151                 goto fail;
1152         }
1153
1154         /* Create tag for Tx buffers. */
1155         error = bus_dma_tag_create(
1156             sc->age_cdata.age_buffer_tag, /* parent */
1157             1, 0,                       /* alignment, boundary */
1158             BUS_SPACE_MAXADDR,          /* lowaddr */
1159             BUS_SPACE_MAXADDR,          /* highaddr */
1160             NULL, NULL,                 /* filter, filterarg */
1161             AGE_TSO_MAXSIZE,            /* maxsize */
1162             AGE_MAXTXSEGS,              /* nsegments */
1163             AGE_TSO_MAXSEGSIZE,         /* maxsegsize */
1164             0,                          /* flags */
1165             NULL, NULL,                 /* lockfunc, lockarg */
1166             &sc->age_cdata.age_tx_tag);
1167         if (error != 0) {
1168                 device_printf(sc->age_dev, "could not create Tx DMA tag.\n");
1169                 goto fail;
1170         }
1171
1172         /* Create tag for Rx buffers. */
1173         error = bus_dma_tag_create(
1174             sc->age_cdata.age_buffer_tag, /* parent */
1175             1, 0,                       /* alignment, boundary */
1176             BUS_SPACE_MAXADDR,          /* lowaddr */
1177             BUS_SPACE_MAXADDR,          /* highaddr */
1178             NULL, NULL,                 /* filter, filterarg */
1179             MCLBYTES,                   /* maxsize */
1180             1,                          /* nsegments */
1181             MCLBYTES,                   /* maxsegsize */
1182             0,                          /* flags */
1183             NULL, NULL,                 /* lockfunc, lockarg */
1184             &sc->age_cdata.age_rx_tag);
1185         if (error != 0) {
1186                 device_printf(sc->age_dev, "could not create Rx DMA tag.\n");
1187                 goto fail;
1188         }
1189
1190         /* Create DMA maps for Tx buffers. */
1191         for (i = 0; i < AGE_TX_RING_CNT; i++) {
1192                 txd = &sc->age_cdata.age_txdesc[i];
1193                 txd->tx_m = NULL;
1194                 txd->tx_dmamap = NULL;
1195                 error = bus_dmamap_create(sc->age_cdata.age_tx_tag, 0,
1196                     &txd->tx_dmamap);
1197                 if (error != 0) {
1198                         device_printf(sc->age_dev,
1199                             "could not create Tx dmamap.\n");
1200                         goto fail;
1201                 }
1202         }
1203         /* Create DMA maps for Rx buffers. */
1204         if ((error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
1205             &sc->age_cdata.age_rx_sparemap)) != 0) {
1206                 device_printf(sc->age_dev,
1207                     "could not create spare Rx dmamap.\n");
1208                 goto fail;
1209         }
1210         for (i = 0; i < AGE_RX_RING_CNT; i++) {
1211                 rxd = &sc->age_cdata.age_rxdesc[i];
1212                 rxd->rx_m = NULL;
1213                 rxd->rx_dmamap = NULL;
1214                 error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
1215                     &rxd->rx_dmamap);
1216                 if (error != 0) {
1217                         device_printf(sc->age_dev,
1218                             "could not create Rx dmamap.\n");
1219                         goto fail;
1220                 }
1221         }
1222
1223 fail:
1224         return (error);
1225 }
1226
1227 static void
1228 age_dma_free(struct age_softc *sc)
1229 {
1230         struct age_txdesc *txd;
1231         struct age_rxdesc *rxd;
1232         int i;
1233
1234         /* Tx buffers */
1235         if (sc->age_cdata.age_tx_tag != NULL) {
1236                 for (i = 0; i < AGE_TX_RING_CNT; i++) {
1237                         txd = &sc->age_cdata.age_txdesc[i];
1238                         if (txd->tx_dmamap != NULL) {
1239                                 bus_dmamap_destroy(sc->age_cdata.age_tx_tag,
1240                                     txd->tx_dmamap);
1241                                 txd->tx_dmamap = NULL;
1242                         }
1243                 }
1244                 bus_dma_tag_destroy(sc->age_cdata.age_tx_tag);
1245                 sc->age_cdata.age_tx_tag = NULL;
1246         }
1247         /* Rx buffers */
1248         if (sc->age_cdata.age_rx_tag != NULL) {
1249                 for (i = 0; i < AGE_RX_RING_CNT; i++) {
1250                         rxd = &sc->age_cdata.age_rxdesc[i];
1251                         if (rxd->rx_dmamap != NULL) {
1252                                 bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
1253                                     rxd->rx_dmamap);
1254                                 rxd->rx_dmamap = NULL;
1255                         }
1256                 }
1257                 if (sc->age_cdata.age_rx_sparemap != NULL) {
1258                         bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
1259                             sc->age_cdata.age_rx_sparemap);
1260                         sc->age_cdata.age_rx_sparemap = NULL;
1261                 }
1262                 bus_dma_tag_destroy(sc->age_cdata.age_rx_tag);
1263                 sc->age_cdata.age_rx_tag = NULL;
1264         }
1265         /* Tx ring. */
1266         if (sc->age_cdata.age_tx_ring_tag != NULL) {
1267                 if (sc->age_cdata.age_tx_ring_map != NULL)
1268                         bus_dmamap_unload(sc->age_cdata.age_tx_ring_tag,
1269                             sc->age_cdata.age_tx_ring_map);
1270                 if (sc->age_cdata.age_tx_ring_map != NULL &&
1271                     sc->age_rdata.age_tx_ring != NULL)
1272                         bus_dmamem_free(sc->age_cdata.age_tx_ring_tag,
1273                             sc->age_rdata.age_tx_ring,
1274                             sc->age_cdata.age_tx_ring_map);
1275                 sc->age_rdata.age_tx_ring = NULL;
1276                 sc->age_cdata.age_tx_ring_map = NULL;
1277                 bus_dma_tag_destroy(sc->age_cdata.age_tx_ring_tag);
1278                 sc->age_cdata.age_tx_ring_tag = NULL;
1279         }
1280         /* Rx ring. */
1281         if (sc->age_cdata.age_rx_ring_tag != NULL) {
1282                 if (sc->age_cdata.age_rx_ring_map != NULL)
1283                         bus_dmamap_unload(sc->age_cdata.age_rx_ring_tag,
1284                             sc->age_cdata.age_rx_ring_map);
1285                 if (sc->age_cdata.age_rx_ring_map != NULL &&
1286                     sc->age_rdata.age_rx_ring != NULL)
1287                         bus_dmamem_free(sc->age_cdata.age_rx_ring_tag,
1288                             sc->age_rdata.age_rx_ring,
1289                             sc->age_cdata.age_rx_ring_map);
1290                 sc->age_rdata.age_rx_ring = NULL;
1291                 sc->age_cdata.age_rx_ring_map = NULL;
1292                 bus_dma_tag_destroy(sc->age_cdata.age_rx_ring_tag);
1293                 sc->age_cdata.age_rx_ring_tag = NULL;
1294         }
1295         /* Rx return ring. */
1296         if (sc->age_cdata.age_rr_ring_tag != NULL) {
1297                 if (sc->age_cdata.age_rr_ring_map != NULL)
1298                         bus_dmamap_unload(sc->age_cdata.age_rr_ring_tag,
1299                             sc->age_cdata.age_rr_ring_map);
1300                 if (sc->age_cdata.age_rr_ring_map != NULL &&
1301                     sc->age_rdata.age_rr_ring != NULL)
1302                         bus_dmamem_free(sc->age_cdata.age_rr_ring_tag,
1303                             sc->age_rdata.age_rr_ring,
1304                             sc->age_cdata.age_rr_ring_map);
1305                 sc->age_rdata.age_rr_ring = NULL;
1306                 sc->age_cdata.age_rr_ring_map = NULL;
1307                 bus_dma_tag_destroy(sc->age_cdata.age_rr_ring_tag);
1308                 sc->age_cdata.age_rr_ring_tag = NULL;
1309         }
1310         /* CMB block */
1311         if (sc->age_cdata.age_cmb_block_tag != NULL) {
1312                 if (sc->age_cdata.age_cmb_block_map != NULL)
1313                         bus_dmamap_unload(sc->age_cdata.age_cmb_block_tag,
1314                             sc->age_cdata.age_cmb_block_map);
1315                 if (sc->age_cdata.age_cmb_block_map != NULL &&
1316                     sc->age_rdata.age_cmb_block != NULL)
1317                         bus_dmamem_free(sc->age_cdata.age_cmb_block_tag,
1318                             sc->age_rdata.age_cmb_block,
1319                             sc->age_cdata.age_cmb_block_map);
1320                 sc->age_rdata.age_cmb_block = NULL;
1321                 sc->age_cdata.age_cmb_block_map = NULL;
1322                 bus_dma_tag_destroy(sc->age_cdata.age_cmb_block_tag);
1323                 sc->age_cdata.age_cmb_block_tag = NULL;
1324         }
1325         /* SMB block */
1326         if (sc->age_cdata.age_smb_block_tag != NULL) {
1327                 if (sc->age_cdata.age_smb_block_map != NULL)
1328                         bus_dmamap_unload(sc->age_cdata.age_smb_block_tag,
1329                             sc->age_cdata.age_smb_block_map);
1330                 if (sc->age_cdata.age_smb_block_map != NULL &&
1331                     sc->age_rdata.age_smb_block != NULL)
1332                         bus_dmamem_free(sc->age_cdata.age_smb_block_tag,
1333                             sc->age_rdata.age_smb_block,
1334                             sc->age_cdata.age_smb_block_map);
1335                 sc->age_rdata.age_smb_block = NULL;
1336                 sc->age_cdata.age_smb_block_map = NULL;
1337                 bus_dma_tag_destroy(sc->age_cdata.age_smb_block_tag);
1338                 sc->age_cdata.age_smb_block_tag = NULL;
1339         }
1340
1341         if (sc->age_cdata.age_buffer_tag != NULL) {
1342                 bus_dma_tag_destroy(sc->age_cdata.age_buffer_tag);
1343                 sc->age_cdata.age_buffer_tag = NULL;
1344         }
1345         if (sc->age_cdata.age_parent_tag != NULL) {
1346                 bus_dma_tag_destroy(sc->age_cdata.age_parent_tag);
1347                 sc->age_cdata.age_parent_tag = NULL;
1348         }
1349 }
1350
1351 /*
1352  *      Make sure the interface is stopped at reboot time.
1353  */
1354 static int
1355 age_shutdown(device_t dev)
1356 {
1357
1358         return (age_suspend(dev));
1359 }
1360
1361 static void
1362 age_setwol(struct age_softc *sc)
1363 {
1364         struct ifnet *ifp;
1365         struct mii_data *mii;
1366         uint32_t reg, pmcs;
1367         uint16_t pmstat;
1368         int aneg, i, pmc;
1369
1370         AGE_LOCK_ASSERT(sc);
1371
1372         if (pci_find_extcap(sc->age_dev, PCIY_PMG, &pmc) == 0) {
1373                 CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
1374                 /*
1375                  * No PME capability, PHY power down.
1376                  * XXX
1377                  * Due to an unknown reason powering down PHY resulted
1378                  * in unexpected results such as inaccessbility of
1379                  * hardware of freshly rebooted system. Disable
1380                  * powering down PHY until I got more information for
1381                  * Attansic/Atheros PHY hardwares.
1382                  */
1383 #ifdef notyet
1384                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1385                     MII_BMCR, BMCR_PDOWN);
1386 #endif
1387                 return;
1388         }
1389
1390         ifp = sc->age_ifp;
1391         if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1392                 /*
1393                  * Note, this driver resets the link speed to 10/100Mbps with
1394                  * auto-negotiation but we don't know whether that operation
1395                  * would succeed or not as it have no control after powering
1396                  * off. If the renegotiation fail WOL may not work. Running
1397                  * at 1Gbps will draw more power than 375mA at 3.3V which is
1398                  * specified in PCI specification and that would result in
1399                  * complete shutdowning power to ethernet controller.
1400                  *
1401                  * TODO
1402                  *  Save current negotiated media speed/duplex/flow-control
1403                  *  to softc and restore the same link again after resuming.
1404                  *  PHY handling such as power down/resetting to 100Mbps
1405                  *  may be better handled in suspend method in phy driver.
1406                  */
1407                 mii = device_get_softc(sc->age_miibus);
1408                 mii_pollstat(mii);
1409                 aneg = 0;
1410                 if ((mii->mii_media_status & IFM_AVALID) != 0) {
1411                         switch IFM_SUBTYPE(mii->mii_media_active) {
1412                         case IFM_10_T:
1413                         case IFM_100_TX:
1414                                 goto got_link;
1415                         case IFM_1000_T:
1416                                 aneg++;
1417                         default:
1418                                 break;
1419                         }
1420                 }
1421                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1422                     MII_100T2CR, 0);
1423                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1424                     MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD |
1425                     ANAR_10 | ANAR_CSMA);
1426                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1427                     MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
1428                 DELAY(1000);
1429                 if (aneg != 0) {
1430                         /* Poll link state until age(4) get a 10/100 link. */
1431                         for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1432                                 mii_pollstat(mii);
1433                                 if ((mii->mii_media_status & IFM_AVALID) != 0) {
1434                                         switch (IFM_SUBTYPE(
1435                                             mii->mii_media_active)) {
1436                                         case IFM_10_T:
1437                                         case IFM_100_TX:
1438                                                 age_mac_config(sc);
1439                                                 goto got_link;
1440                                         default:
1441                                                 break;
1442                                         }
1443                                 }
1444                                 AGE_UNLOCK(sc);
1445                                 pause("agelnk", hz);
1446                                 AGE_LOCK(sc);
1447                         }
1448                         if (i == MII_ANEGTICKS_GIGE)
1449                                 device_printf(sc->age_dev,
1450                                     "establishing link failed, "
1451                                     "WOL may not work!");
1452                 }
1453                 /*
1454                  * No link, force MAC to have 100Mbps, full-duplex link.
1455                  * This is the last resort and may/may not work.
1456                  */
1457                 mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1458                 mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1459                 age_mac_config(sc);
1460         }
1461
1462 got_link:
1463         pmcs = 0;
1464         if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
1465                 pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB;
1466         CSR_WRITE_4(sc, AGE_WOL_CFG, pmcs);
1467         reg = CSR_READ_4(sc, AGE_MAC_CFG);
1468         reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC);
1469         reg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST);
1470         if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
1471                 reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST;
1472         if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1473                 reg |= MAC_CFG_RX_ENB;
1474                 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1475         }
1476
1477         /* Request PME. */
1478         pmstat = pci_read_config(sc->age_dev, pmc + PCIR_POWER_STATUS, 2);
1479         pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1480         if ((ifp->if_capenable & IFCAP_WOL) != 0)
1481                 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1482         pci_write_config(sc->age_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1483 #ifdef notyet
1484         /* See above for powering down PHY issues. */
1485         if ((ifp->if_capenable & IFCAP_WOL) == 0) {
1486                 /* No WOL, PHY power down. */
1487                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1488                     MII_BMCR, BMCR_PDOWN);
1489         }
1490 #endif
1491 }
1492
1493 static int
1494 age_suspend(device_t dev)
1495 {
1496         struct age_softc *sc;
1497
1498         sc = device_get_softc(dev);
1499
1500         AGE_LOCK(sc);
1501         age_stop(sc);
1502         age_setwol(sc);
1503         AGE_UNLOCK(sc);
1504
1505         return (0);
1506 }
1507
1508 static int
1509 age_resume(device_t dev)
1510 {
1511         struct age_softc *sc;
1512         struct ifnet *ifp;
1513         uint16_t cmd;
1514
1515         sc = device_get_softc(dev);
1516
1517         AGE_LOCK(sc);
1518         /*
1519          * Clear INTx emulation disable for hardwares that
1520          * is set in resume event. From Linux.
1521          */
1522         cmd = pci_read_config(sc->age_dev, PCIR_COMMAND, 2);
1523         if ((cmd & 0x0400) != 0) {
1524                 cmd &= ~0x0400;
1525                 pci_write_config(sc->age_dev, PCIR_COMMAND, cmd, 2);
1526         }
1527         ifp = sc->age_ifp;
1528         if ((ifp->if_flags & IFF_UP) != 0)
1529                 age_init_locked(sc);
1530
1531         AGE_UNLOCK(sc);
1532
1533         return (0);
1534 }
1535
1536 static int
1537 age_encap(struct age_softc *sc, struct mbuf **m_head)
1538 {
1539         struct age_txdesc *txd, *txd_last;
1540         struct tx_desc *desc;
1541         struct mbuf *m;
1542         struct ip *ip;
1543         struct tcphdr *tcp;
1544         bus_dma_segment_t txsegs[AGE_MAXTXSEGS];
1545         bus_dmamap_t map;
1546         uint32_t cflags, ip_off, poff, vtag;
1547         int error, i, nsegs, prod, si;
1548
1549         AGE_LOCK_ASSERT(sc);
1550
1551         M_ASSERTPKTHDR((*m_head));
1552
1553         m = *m_head;
1554         ip = NULL;
1555         tcp = NULL;
1556         cflags = vtag = 0;
1557         ip_off = poff = 0;
1558         if ((m->m_pkthdr.csum_flags & (AGE_CSUM_FEATURES | CSUM_TSO)) != 0) {
1559                 /*
1560                  * L1 requires offset of TCP/UDP payload in its Tx
1561                  * descriptor to perform hardware Tx checksum offload.
1562                  * Additionally, TSO requires IP/TCP header size and
1563                  * modification of IP/TCP header in order to make TSO
1564                  * engine work. This kind of operation takes many CPU
1565                  * cycles on FreeBSD so fast host CPU is needed to get
1566                  * smooth TSO performance.
1567                  */
1568                 struct ether_header *eh;
1569
1570                 if (M_WRITABLE(m) == 0) {
1571                         /* Get a writable copy. */
1572                         m = m_dup(*m_head, M_DONTWAIT);
1573                         /* Release original mbufs. */
1574                         m_freem(*m_head);
1575                         if (m == NULL) {
1576                                 *m_head = NULL;
1577                                 return (ENOBUFS);
1578                         }
1579                         *m_head = m;
1580                 }
1581                 ip_off = sizeof(struct ether_header);
1582                 m = m_pullup(m, ip_off);
1583                 if (m == NULL) {
1584                         *m_head = NULL;
1585                         return (ENOBUFS);
1586                 }
1587                 eh = mtod(m, struct ether_header *);
1588                 /*
1589                  * Check if hardware VLAN insertion is off.
1590                  * Additional check for LLC/SNAP frame?
1591                  */
1592                 if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1593                         ip_off = sizeof(struct ether_vlan_header);
1594                         m = m_pullup(m, ip_off);
1595                         if (m == NULL) {
1596                                 *m_head = NULL;
1597                                 return (ENOBUFS);
1598                         }
1599                 }
1600                 m = m_pullup(m, ip_off + sizeof(struct ip));
1601                 if (m == NULL) {
1602                         *m_head = NULL;
1603                         return (ENOBUFS);
1604                 }
1605                 ip = (struct ip *)(mtod(m, char *) + ip_off);
1606                 poff = ip_off + (ip->ip_hl << 2);
1607                 if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1608                         m = m_pullup(m, poff + sizeof(struct tcphdr));
1609                         if (m == NULL) {
1610                                 *m_head = NULL;
1611                                 return (ENOBUFS);
1612                         }
1613                         tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1614                         /*
1615                          * L1 requires IP/TCP header size and offset as
1616                          * well as TCP pseudo checksum which complicates
1617                          * TSO configuration. I guess this comes from the
1618                          * adherence to Microsoft NDIS Large Send
1619                          * specification which requires insertion of
1620                          * pseudo checksum by upper stack. The pseudo
1621                          * checksum that NDIS refers to doesn't include
1622                          * TCP payload length so age(4) should recompute
1623                          * the pseudo checksum here. Hopefully this wouldn't
1624                          * be much burden on modern CPUs.
1625                          * Reset IP checksum and recompute TCP pseudo
1626                          * checksum as NDIS specification said.
1627                          */
1628                         ip->ip_sum = 0;
1629                         if (poff + (tcp->th_off << 2) == m->m_pkthdr.len)
1630                                 tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1631                                     ip->ip_dst.s_addr,
1632                                     htons((tcp->th_off << 2) + IPPROTO_TCP));
1633                         else
1634                                 tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1635                                     ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1636                 }
1637                 *m_head = m;
1638         }
1639
1640         si = prod = sc->age_cdata.age_tx_prod;
1641         txd = &sc->age_cdata.age_txdesc[prod];
1642         txd_last = txd;
1643         map = txd->tx_dmamap;
1644
1645         error =  bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map,
1646             *m_head, txsegs, &nsegs, 0);
1647         if (error == EFBIG) {
1648                 m = m_collapse(*m_head, M_DONTWAIT, AGE_MAXTXSEGS);
1649                 if (m == NULL) {
1650                         m_freem(*m_head);
1651                         *m_head = NULL;
1652                         return (ENOMEM);
1653                 }
1654                 *m_head = m;
1655                 error = bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map,
1656                     *m_head, txsegs, &nsegs, 0);
1657                 if (error != 0) {
1658                         m_freem(*m_head);
1659                         *m_head = NULL;
1660                         return (error);
1661                 }
1662         } else if (error != 0)
1663                 return (error);
1664         if (nsegs == 0) {
1665                 m_freem(*m_head);
1666                 *m_head = NULL;
1667                 return (EIO);
1668         }
1669
1670         /* Check descriptor overrun. */
1671         if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
1672                 bus_dmamap_unload(sc->age_cdata.age_tx_tag, map);
1673                 return (ENOBUFS);
1674         }
1675
1676         m = *m_head;
1677         /* Configure Tx IP/TCP/UDP checksum offload. */
1678         if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
1679                 cflags |= AGE_TD_CSUM;
1680                 if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1681                         cflags |= AGE_TD_TCPCSUM;
1682                 if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1683                         cflags |= AGE_TD_UDPCSUM;
1684                 /* Set checksum start offset. */
1685                 cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
1686                 /* Set checksum insertion position of TCP/UDP. */
1687                 cflags |= ((poff + m->m_pkthdr.csum_data) <<
1688                     AGE_TD_CSUM_XSUMOFFSET_SHIFT);
1689         }
1690
1691         /* Configure TSO. */
1692         if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1693                 if (poff + (tcp->th_off << 2) == m->m_pkthdr.len) {
1694                         /* Not TSO but IP/TCP checksum offload. */
1695                         cflags |= AGE_TD_IPCSUM | AGE_TD_TCPCSUM;
1696                         /* Clear TSO in order not to set AGE_TD_TSO_HDR. */
1697                         m->m_pkthdr.csum_flags &= ~CSUM_TSO;
1698                 } else {
1699                         /* Request TSO and set MSS. */
1700                         cflags |= AGE_TD_TSO_IPV4;
1701                         cflags |= AGE_TD_IPCSUM | AGE_TD_TCPCSUM;
1702                         cflags |= ((uint32_t)m->m_pkthdr.tso_segsz <<
1703                             AGE_TD_TSO_MSS_SHIFT);
1704                 }
1705                 /* Set IP/TCP header size. */
1706                 cflags |= ip->ip_hl << AGE_TD_IPHDR_LEN_SHIFT;
1707                 cflags |= tcp->th_off << AGE_TD_TSO_TCPHDR_LEN_SHIFT;
1708         }
1709
1710         /* Configure VLAN hardware tag insertion. */
1711         if ((m->m_flags & M_VLANTAG) != 0) {
1712                 vtag = AGE_TX_VLAN_TAG(m->m_pkthdr.ether_vtag);
1713                 vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
1714                 cflags |= AGE_TD_INSERT_VLAN_TAG;
1715         }
1716
1717         desc = NULL;
1718         for (i = 0; i < nsegs; i++) {
1719                 desc = &sc->age_rdata.age_tx_ring[prod];
1720                 desc->addr = htole64(txsegs[i].ds_addr);
1721                 desc->len = htole32(AGE_TX_BYTES(txsegs[i].ds_len) | vtag);
1722                 desc->flags = htole32(cflags);
1723                 sc->age_cdata.age_tx_cnt++;
1724                 AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1725         }
1726         /* Update producer index. */
1727         sc->age_cdata.age_tx_prod = prod;
1728
1729         /* Set EOP on the last descriptor. */
1730         prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT;
1731         desc = &sc->age_rdata.age_tx_ring[prod];
1732         desc->flags |= htole32(AGE_TD_EOP);
1733
1734         /* Lastly set TSO header and modify IP/TCP header for TSO operation. */
1735         if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1736                 desc = &sc->age_rdata.age_tx_ring[si];
1737                 desc->flags |= htole32(AGE_TD_TSO_HDR);
1738         }
1739
1740         /* Swap dmamap of the first and the last. */
1741         txd = &sc->age_cdata.age_txdesc[prod];
1742         map = txd_last->tx_dmamap;
1743         txd_last->tx_dmamap = txd->tx_dmamap;
1744         txd->tx_dmamap = map;
1745         txd->tx_m = m;
1746
1747         /* Sync descriptors. */
1748         bus_dmamap_sync(sc->age_cdata.age_tx_tag, map, BUS_DMASYNC_PREWRITE);
1749         bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
1750             sc->age_cdata.age_tx_ring_map,
1751             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1752
1753         return (0);
1754 }
1755
1756 static void
1757 age_tx_task(void *arg, int pending)
1758 {
1759         struct ifnet *ifp;
1760
1761         ifp = (struct ifnet *)arg;
1762         age_start(ifp);
1763 }
1764
1765 static void
1766 age_start(struct ifnet *ifp)
1767 {
1768         struct age_softc *sc;
1769         struct mbuf *m_head;
1770         int enq;
1771
1772         sc = ifp->if_softc;
1773
1774         AGE_LOCK(sc);
1775
1776         if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1777             IFF_DRV_RUNNING || (sc->age_flags & AGE_FLAG_LINK) == 0) {
1778                 AGE_UNLOCK(sc);
1779                 return;
1780         }
1781
1782         for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
1783                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1784                 if (m_head == NULL)
1785                         break;
1786                 /*
1787                  * Pack the data into the transmit ring. If we
1788                  * don't have room, set the OACTIVE flag and wait
1789                  * for the NIC to drain the ring.
1790                  */
1791                 if (age_encap(sc, &m_head)) {
1792                         if (m_head == NULL)
1793                                 break;
1794                         IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1795                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1796                         break;
1797                 }
1798
1799                 enq++;
1800                 /*
1801                  * If there's a BPF listener, bounce a copy of this frame
1802                  * to him.
1803                  */
1804                 ETHER_BPF_MTAP(ifp, m_head);
1805         }
1806
1807         if (enq > 0) {
1808                 /* Update mbox. */
1809                 AGE_COMMIT_MBOX(sc);
1810                 /* Set a timeout in case the chip goes out to lunch. */
1811                 sc->age_watchdog_timer = AGE_TX_TIMEOUT;
1812         }
1813
1814         AGE_UNLOCK(sc);
1815 }
1816
1817 static void
1818 age_watchdog(struct age_softc *sc)
1819 {
1820         struct ifnet *ifp;
1821
1822         AGE_LOCK_ASSERT(sc);
1823
1824         if (sc->age_watchdog_timer == 0 || --sc->age_watchdog_timer)
1825                 return;
1826
1827         ifp = sc->age_ifp;
1828         if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
1829                 if_printf(sc->age_ifp, "watchdog timeout (missed link)\n");
1830                 ifp->if_oerrors++;
1831                 age_init_locked(sc);
1832                 return;
1833         }
1834         if (sc->age_cdata.age_tx_cnt == 0) {
1835                 if_printf(sc->age_ifp,
1836                     "watchdog timeout (missed Tx interrupts) -- recovering\n");
1837                 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1838                         taskqueue_enqueue(sc->age_tq, &sc->age_tx_task);
1839                 return;
1840         }
1841         if_printf(sc->age_ifp, "watchdog timeout\n");
1842         ifp->if_oerrors++;
1843         age_init_locked(sc);
1844         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1845                 taskqueue_enqueue(sc->age_tq, &sc->age_tx_task);
1846 }
1847
1848 static int
1849 age_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1850 {
1851         struct age_softc *sc;
1852         struct ifreq *ifr;
1853         struct mii_data *mii;
1854         uint32_t reg;
1855         int error, mask;
1856
1857         sc = ifp->if_softc;
1858         ifr = (struct ifreq *)data;
1859         error = 0;
1860         switch (cmd) {
1861         case SIOCSIFMTU:
1862                 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > AGE_JUMBO_MTU)
1863                         error = EINVAL;
1864                 else if (ifp->if_mtu != ifr->ifr_mtu) {
1865                         AGE_LOCK(sc);
1866                         ifp->if_mtu = ifr->ifr_mtu;
1867                         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1868                                 age_init_locked(sc);
1869                         AGE_UNLOCK(sc);
1870                 }
1871                 break;
1872         case SIOCSIFFLAGS:
1873                 AGE_LOCK(sc);
1874                 if ((ifp->if_flags & IFF_UP) != 0) {
1875                         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1876                                 if (((ifp->if_flags ^ sc->age_if_flags)
1877                                     & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1878                                         age_rxfilter(sc);
1879                         } else {
1880                                 if ((sc->age_flags & AGE_FLAG_DETACH) == 0)
1881                                         age_init_locked(sc);
1882                         }
1883                 } else {
1884                         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1885                                 age_stop(sc);
1886                 }
1887                 sc->age_if_flags = ifp->if_flags;
1888                 AGE_UNLOCK(sc);
1889                 break;
1890         case SIOCADDMULTI:
1891         case SIOCDELMULTI:
1892                 AGE_LOCK(sc);
1893                 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1894                         age_rxfilter(sc);
1895                 AGE_UNLOCK(sc);
1896                 break;
1897         case SIOCSIFMEDIA:
1898         case SIOCGIFMEDIA:
1899                 mii = device_get_softc(sc->age_miibus);
1900                 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1901                 break;
1902         case SIOCSIFCAP:
1903                 AGE_LOCK(sc);
1904                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1905                 if ((mask & IFCAP_TXCSUM) != 0 &&
1906                     (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
1907                         ifp->if_capenable ^= IFCAP_TXCSUM;
1908                         if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
1909                                 ifp->if_hwassist |= AGE_CSUM_FEATURES;
1910                         else
1911                                 ifp->if_hwassist &= ~AGE_CSUM_FEATURES;
1912                 }
1913                 if ((mask & IFCAP_RXCSUM) != 0 &&
1914                     (ifp->if_capabilities & IFCAP_RXCSUM) != 0) {
1915                         ifp->if_capenable ^= IFCAP_RXCSUM;
1916                         reg = CSR_READ_4(sc, AGE_MAC_CFG);
1917                         reg &= ~MAC_CFG_RXCSUM_ENB;
1918                         if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
1919                                 reg |= MAC_CFG_RXCSUM_ENB;
1920                         CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1921                 }
1922                 if ((mask & IFCAP_TSO4) != 0 &&
1923                     (ifp->if_capabilities & IFCAP_TSO4) != 0) {
1924                         ifp->if_capenable ^= IFCAP_TSO4;
1925                         if ((ifp->if_capenable & IFCAP_TSO4) != 0)
1926                                 ifp->if_hwassist |= CSUM_TSO;
1927                         else
1928                                 ifp->if_hwassist &= ~CSUM_TSO;
1929                 }
1930
1931                 if ((mask & IFCAP_WOL_MCAST) != 0 &&
1932                     (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0)
1933                         ifp->if_capenable ^= IFCAP_WOL_MCAST;
1934                 if ((mask & IFCAP_WOL_MAGIC) != 0 &&
1935                     (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
1936                         ifp->if_capenable ^= IFCAP_WOL_MAGIC;
1937
1938                 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
1939                     (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
1940                         ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1941                         age_rxvlan(sc);
1942                 }
1943                 if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
1944                     (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
1945                         ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
1946                 if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
1947                     (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
1948                         ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
1949                 /*
1950                  * VLAN hardware tagging is required to do checksum
1951                  * offload or TSO on VLAN interface. Checksum offload
1952                  * on VLAN interface also requires hardware assistance
1953                  * of parent interface.
1954                  */
1955                 if ((ifp->if_capenable & IFCAP_TXCSUM) == 0)
1956                         ifp->if_capenable &= ~IFCAP_VLAN_HWCSUM;
1957                 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
1958                         ifp->if_capenable &=
1959                             ~(IFCAP_VLAN_HWTSO | IFCAP_VLAN_HWCSUM);
1960                 AGE_UNLOCK(sc);
1961                 VLAN_CAPABILITIES(ifp);
1962                 break;
1963         default:
1964                 error = ether_ioctl(ifp, cmd, data);
1965                 break;
1966         }
1967
1968         return (error);
1969 }
1970
1971 static void
1972 age_mac_config(struct age_softc *sc)
1973 {
1974         struct mii_data *mii;
1975         uint32_t reg;
1976
1977         AGE_LOCK_ASSERT(sc);
1978
1979         mii = device_get_softc(sc->age_miibus);
1980         reg = CSR_READ_4(sc, AGE_MAC_CFG);
1981         reg &= ~MAC_CFG_FULL_DUPLEX;
1982         reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
1983         reg &= ~MAC_CFG_SPEED_MASK;
1984         /* Reprogram MAC with resolved speed/duplex. */
1985         switch (IFM_SUBTYPE(mii->mii_media_active)) {
1986         case IFM_10_T:
1987         case IFM_100_TX:
1988                 reg |= MAC_CFG_SPEED_10_100;
1989                 break;
1990         case IFM_1000_T:
1991                 reg |= MAC_CFG_SPEED_1000;
1992                 break;
1993         }
1994         if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1995                 reg |= MAC_CFG_FULL_DUPLEX;
1996 #ifdef notyet
1997                 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1998                         reg |= MAC_CFG_TX_FC;
1999                 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
2000                         reg |= MAC_CFG_RX_FC;
2001 #endif
2002         }
2003
2004         CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2005 }
2006
2007 static void
2008 age_link_task(void *arg, int pending)
2009 {
2010         struct age_softc *sc;
2011         struct mii_data *mii;
2012         struct ifnet *ifp;
2013         uint32_t reg;
2014
2015         sc = (struct age_softc *)arg;
2016
2017         AGE_LOCK(sc);
2018         mii = device_get_softc(sc->age_miibus);
2019         ifp = sc->age_ifp;
2020         if (mii == NULL || ifp == NULL ||
2021             (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2022                 AGE_UNLOCK(sc);
2023                 return;
2024         }
2025
2026         sc->age_flags &= ~AGE_FLAG_LINK;
2027         if ((mii->mii_media_status & IFM_AVALID) != 0) {
2028                 switch (IFM_SUBTYPE(mii->mii_media_active)) {
2029                 case IFM_10_T:
2030                 case IFM_100_TX:
2031                 case IFM_1000_T:
2032                         sc->age_flags |= AGE_FLAG_LINK;
2033                         break;
2034                 default:
2035                         break;
2036                 }
2037         }
2038
2039         /* Stop Rx/Tx MACs. */
2040         age_stop_rxmac(sc);
2041         age_stop_txmac(sc);
2042
2043         /* Program MACs with resolved speed/duplex/flow-control. */
2044         if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
2045                 age_mac_config(sc);
2046                 reg = CSR_READ_4(sc, AGE_MAC_CFG);
2047                 /* Restart DMA engine and Tx/Rx MAC. */
2048                 CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
2049                     DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
2050                 reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
2051                 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2052         }
2053
2054         AGE_UNLOCK(sc);
2055 }
2056
2057 static void
2058 age_stats_update(struct age_softc *sc)
2059 {
2060         struct age_stats *stat;
2061         struct smb *smb;
2062         struct ifnet *ifp;
2063
2064         AGE_LOCK_ASSERT(sc);
2065
2066         stat = &sc->age_stat;
2067
2068         bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
2069             sc->age_cdata.age_smb_block_map,
2070             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2071
2072         smb = sc->age_rdata.age_smb_block;
2073         if (smb->updated == 0)
2074                 return;
2075
2076         ifp = sc->age_ifp;
2077         /* Rx stats. */
2078         stat->rx_frames += smb->rx_frames;
2079         stat->rx_bcast_frames += smb->rx_bcast_frames;
2080         stat->rx_mcast_frames += smb->rx_mcast_frames;
2081         stat->rx_pause_frames += smb->rx_pause_frames;
2082         stat->rx_control_frames += smb->rx_control_frames;
2083         stat->rx_crcerrs += smb->rx_crcerrs;
2084         stat->rx_lenerrs += smb->rx_lenerrs;
2085         stat->rx_bytes += smb->rx_bytes;
2086         stat->rx_runts += smb->rx_runts;
2087         stat->rx_fragments += smb->rx_fragments;
2088         stat->rx_pkts_64 += smb->rx_pkts_64;
2089         stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2090         stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2091         stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2092         stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2093         stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2094         stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2095         stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2096         stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2097         stat->rx_desc_oflows += smb->rx_desc_oflows;
2098         stat->rx_alignerrs += smb->rx_alignerrs;
2099         stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2100         stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2101         stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2102
2103         /* Tx stats. */
2104         stat->tx_frames += smb->tx_frames;
2105         stat->tx_bcast_frames += smb->tx_bcast_frames;
2106         stat->tx_mcast_frames += smb->tx_mcast_frames;
2107         stat->tx_pause_frames += smb->tx_pause_frames;
2108         stat->tx_excess_defer += smb->tx_excess_defer;
2109         stat->tx_control_frames += smb->tx_control_frames;
2110         stat->tx_deferred += smb->tx_deferred;
2111         stat->tx_bytes += smb->tx_bytes;
2112         stat->tx_pkts_64 += smb->tx_pkts_64;
2113         stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2114         stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2115         stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2116         stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2117         stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2118         stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2119         stat->tx_single_colls += smb->tx_single_colls;
2120         stat->tx_multi_colls += smb->tx_multi_colls;
2121         stat->tx_late_colls += smb->tx_late_colls;
2122         stat->tx_excess_colls += smb->tx_excess_colls;
2123         stat->tx_underrun += smb->tx_underrun;
2124         stat->tx_desc_underrun += smb->tx_desc_underrun;
2125         stat->tx_lenerrs += smb->tx_lenerrs;
2126         stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2127         stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2128         stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2129
2130         /* Update counters in ifnet. */
2131         ifp->if_opackets += smb->tx_frames;
2132
2133         ifp->if_collisions += smb->tx_single_colls +
2134             smb->tx_multi_colls + smb->tx_late_colls +
2135             smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT;
2136
2137         ifp->if_oerrors += smb->tx_excess_colls +
2138             smb->tx_late_colls + smb->tx_underrun +
2139             smb->tx_pkts_truncated;
2140
2141         ifp->if_ipackets += smb->rx_frames;
2142
2143         ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
2144             smb->rx_runts + smb->rx_pkts_truncated +
2145             smb->rx_fifo_oflows + smb->rx_desc_oflows +
2146             smb->rx_alignerrs;
2147
2148         /* Update done, clear. */
2149         smb->updated = 0;
2150
2151         bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
2152             sc->age_cdata.age_smb_block_map,
2153             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2154 }
2155
2156 static int
2157 age_intr(void *arg)
2158 {
2159         struct age_softc *sc;
2160         uint32_t status;
2161
2162         sc = (struct age_softc *)arg;
2163
2164         status = CSR_READ_4(sc, AGE_INTR_STATUS);
2165         if (status == 0 || (status & AGE_INTRS) == 0)
2166                 return (FILTER_STRAY);
2167         /* Disable interrupts. */
2168         CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
2169         taskqueue_enqueue(sc->age_tq, &sc->age_int_task);
2170
2171         return (FILTER_HANDLED);
2172 }
2173
2174 static void
2175 age_int_task(void *arg, int pending)
2176 {
2177         struct age_softc *sc;
2178         struct ifnet *ifp;
2179         struct cmb *cmb;
2180         uint32_t status;
2181
2182         sc = (struct age_softc *)arg;
2183
2184         AGE_LOCK(sc);
2185
2186         bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2187             sc->age_cdata.age_cmb_block_map,
2188             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2189         cmb = sc->age_rdata.age_cmb_block;
2190         status = le32toh(cmb->intr_status);
2191         if (sc->age_morework != 0)
2192                 status |= INTR_CMB_RX;
2193         if ((status & AGE_INTRS) == 0)
2194                 goto done;
2195
2196         sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >>
2197             TPD_CONS_SHIFT;
2198         sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >>
2199             RRD_PROD_SHIFT;
2200         /* Let hardware know CMB was served. */
2201         cmb->intr_status = 0;
2202         bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2203             sc->age_cdata.age_cmb_block_map,
2204             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2205
2206 #if 0
2207         printf("INTR: 0x%08x\n", status);
2208         status &= ~INTR_DIS_DMA;
2209         CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
2210 #endif
2211         ifp = sc->age_ifp;
2212         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2213                 if ((status & INTR_CMB_RX) != 0)
2214                         sc->age_morework = age_rxintr(sc, sc->age_rr_prod,
2215                             sc->age_process_limit);
2216                 if ((status & INTR_CMB_TX) != 0)
2217                         age_txintr(sc, sc->age_tpd_cons);
2218                 if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) != 0) {
2219                         if ((status & INTR_DMA_RD_TO_RST) != 0)
2220                                 device_printf(sc->age_dev,
2221                                     "DMA read error! -- resetting\n");
2222                         if ((status & INTR_DMA_WR_TO_RST) != 0)
2223                                 device_printf(sc->age_dev,
2224                                     "DMA write error! -- resetting\n");
2225                         age_init_locked(sc);
2226                 }
2227                 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2228                         taskqueue_enqueue(sc->age_tq, &sc->age_tx_task);
2229                 if ((status & INTR_SMB) != 0)
2230                         age_stats_update(sc);
2231         }
2232
2233         /* Check whether CMB was updated while serving Tx/Rx/SMB handler. */
2234         bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2235             sc->age_cdata.age_cmb_block_map,
2236             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2237         status = le32toh(cmb->intr_status);
2238         if (sc->age_morework != 0 || (status & AGE_INTRS) != 0) {
2239                 taskqueue_enqueue(sc->age_tq, &sc->age_int_task);
2240                 AGE_UNLOCK(sc);
2241                 return;
2242         }
2243
2244 done:
2245         /* Re-enable interrupts. */
2246         CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
2247         AGE_UNLOCK(sc);
2248 }
2249
2250 static void
2251 age_txintr(struct age_softc *sc, int tpd_cons)
2252 {
2253         struct ifnet *ifp;
2254         struct age_txdesc *txd;
2255         int cons, prog;
2256
2257         AGE_LOCK_ASSERT(sc);
2258
2259         ifp = sc->age_ifp;
2260
2261         bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2262             sc->age_cdata.age_tx_ring_map,
2263             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2264
2265         /*
2266          * Go through our Tx list and free mbufs for those
2267          * frames which have been transmitted.
2268          */
2269         cons = sc->age_cdata.age_tx_cons;
2270         for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
2271                 if (sc->age_cdata.age_tx_cnt <= 0)
2272                         break;
2273                 prog++;
2274                 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2275                 sc->age_cdata.age_tx_cnt--;
2276                 txd = &sc->age_cdata.age_txdesc[cons];
2277                 /*
2278                  * Clear Tx descriptors, it's not required but would
2279                  * help debugging in case of Tx issues.
2280                  */
2281                 txd->tx_desc->addr = 0;
2282                 txd->tx_desc->len = 0;
2283                 txd->tx_desc->flags = 0;
2284
2285                 if (txd->tx_m == NULL)
2286                         continue;
2287                 /* Reclaim transmitted mbufs. */
2288                 bus_dmamap_sync(sc->age_cdata.age_tx_tag, txd->tx_dmamap,
2289                     BUS_DMASYNC_POSTWRITE);
2290                 bus_dmamap_unload(sc->age_cdata.age_tx_tag, txd->tx_dmamap);
2291                 m_freem(txd->tx_m);
2292                 txd->tx_m = NULL;
2293         }
2294
2295         if (prog > 0) {
2296                 sc->age_cdata.age_tx_cons = cons;
2297
2298                 /*
2299                  * Unarm watchdog timer only when there are no pending
2300                  * Tx descriptors in queue.
2301                  */
2302                 if (sc->age_cdata.age_tx_cnt == 0)
2303                         sc->age_watchdog_timer = 0;
2304                 bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2305                     sc->age_cdata.age_tx_ring_map,
2306                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2307         }
2308 }
2309
2310 /* Receive a frame. */
2311 static void
2312 age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
2313 {
2314         struct age_rxdesc *rxd;
2315         struct rx_desc *desc;
2316         struct ifnet *ifp;
2317         struct mbuf *mp, *m;
2318         uint32_t status, index, vtag;
2319         int count, nsegs, pktlen;
2320         int rx_cons;
2321
2322         AGE_LOCK_ASSERT(sc);
2323
2324         ifp = sc->age_ifp;
2325         status = le32toh(rxrd->flags);
2326         index = le32toh(rxrd->index);
2327         rx_cons = AGE_RX_CONS(index);
2328         nsegs = AGE_RX_NSEGS(index);
2329
2330         sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len));
2331         if ((status & AGE_RRD_ERROR) != 0 &&
2332             (status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
2333             AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0) {
2334                 /*
2335                  * We want to pass the following frames to upper
2336                  * layer regardless of error status of Rx return
2337                  * ring.
2338                  *
2339                  *  o IP/TCP/UDP checksum is bad.
2340                  *  o frame length and protocol specific length
2341                  *     does not match.
2342                  */
2343                 sc->age_cdata.age_rx_cons += nsegs;
2344                 sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
2345                 return;
2346         }
2347
2348         pktlen = 0;
2349         for (count = 0; count < nsegs; count++,
2350             AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
2351                 rxd = &sc->age_cdata.age_rxdesc[rx_cons];
2352                 mp = rxd->rx_m;
2353                 desc = rxd->rx_desc;
2354                 /* Add a new receive buffer to the ring. */
2355                 if (age_newbuf(sc, rxd) != 0) {
2356                         ifp->if_iqdrops++;
2357                         /* Reuse Rx buffers. */
2358                         if (sc->age_cdata.age_rxhead != NULL) {
2359                                 m_freem(sc->age_cdata.age_rxhead);
2360                                 AGE_RXCHAIN_RESET(sc);
2361                         }
2362                         break;
2363                 }
2364
2365                 /* The length of the first mbuf is computed last. */
2366                 if (count != 0) {
2367                         mp->m_len = AGE_RX_BYTES(le32toh(desc->len));
2368                         pktlen += mp->m_len;
2369                 }
2370
2371                 /* Chain received mbufs. */
2372                 if (sc->age_cdata.age_rxhead == NULL) {
2373                         sc->age_cdata.age_rxhead = mp;
2374                         sc->age_cdata.age_rxtail = mp;
2375                 } else {
2376                         mp->m_flags &= ~M_PKTHDR;
2377                         sc->age_cdata.age_rxprev_tail =
2378                             sc->age_cdata.age_rxtail;
2379                         sc->age_cdata.age_rxtail->m_next = mp;
2380                         sc->age_cdata.age_rxtail = mp;
2381                 }
2382
2383                 if (count == nsegs - 1) {
2384                         /*
2385                          * It seems that L1 controller has no way
2386                          * to tell hardware to strip CRC bytes.
2387                          */
2388                         sc->age_cdata.age_rxlen -= ETHER_CRC_LEN;
2389                         if (nsegs > 1) {
2390                                 /* Remove the CRC bytes in chained mbufs. */
2391                                 pktlen -= ETHER_CRC_LEN;
2392                                 if (mp->m_len <= ETHER_CRC_LEN) {
2393                                         sc->age_cdata.age_rxtail =
2394                                             sc->age_cdata.age_rxprev_tail;
2395                                         sc->age_cdata.age_rxtail->m_len -=
2396                                             (ETHER_CRC_LEN - mp->m_len);
2397                                         sc->age_cdata.age_rxtail->m_next = NULL;
2398                                         m_freem(mp);
2399                                 } else {
2400                                         mp->m_len -= ETHER_CRC_LEN;
2401                                 }
2402                         }
2403
2404                         m = sc->age_cdata.age_rxhead;
2405                         m->m_flags |= M_PKTHDR;
2406                         m->m_pkthdr.rcvif = ifp;
2407                         m->m_pkthdr.len = sc->age_cdata.age_rxlen;
2408                         /* Set the first mbuf length. */
2409                         m->m_len = sc->age_cdata.age_rxlen - pktlen;
2410
2411                         /*
2412                          * Set checksum information.
2413                          * It seems that L1 controller can compute partial
2414                          * checksum. The partial checksum value can be used
2415                          * to accelerate checksum computation for fragmented
2416                          * TCP/UDP packets. Upper network stack already
2417                          * takes advantage of the partial checksum value in
2418                          * IP reassembly stage. But I'm not sure the
2419                          * correctness of the partial hardware checksum
2420                          * assistance due to lack of data sheet. If it is
2421                          * proven to work on L1 I'll enable it.
2422                          */
2423                         if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
2424                             (status & AGE_RRD_IPV4) != 0) {
2425                                 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2426                                 if ((status & AGE_RRD_IPCSUM_NOK) == 0)
2427                                         m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2428                                 if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
2429                                     (status & AGE_RRD_TCP_UDPCSUM_NOK) == 0) {
2430                                         m->m_pkthdr.csum_flags |=
2431                                             CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2432                                         m->m_pkthdr.csum_data = 0xffff;
2433                                 }
2434                                 /*
2435                                  * Don't mark bad checksum for TCP/UDP frames
2436                                  * as fragmented frames may always have set
2437                                  * bad checksummed bit of descriptor status.
2438                                  */
2439                         }
2440
2441                         /* Check for VLAN tagged frames. */
2442                         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
2443                             (status & AGE_RRD_VLAN) != 0) {
2444                                 vtag = AGE_RX_VLAN(le32toh(rxrd->vtags));
2445                                 m->m_pkthdr.ether_vtag = AGE_RX_VLAN_TAG(vtag);
2446                                 m->m_flags |= M_VLANTAG;
2447                         }
2448
2449                         /* Pass it on. */
2450                         AGE_UNLOCK(sc);
2451                         (*ifp->if_input)(ifp, m);
2452                         AGE_LOCK(sc);
2453
2454                         /* Reset mbuf chains. */
2455                         AGE_RXCHAIN_RESET(sc);
2456                 }
2457         }
2458
2459         if (count != nsegs) {
2460                 sc->age_cdata.age_rx_cons += nsegs;
2461                 sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
2462         } else
2463                 sc->age_cdata.age_rx_cons = rx_cons;
2464 }
2465
2466 static int
2467 age_rxintr(struct age_softc *sc, int rr_prod, int count)
2468 {
2469         struct rx_rdesc *rxrd;
2470         int rr_cons, nsegs, pktlen, prog;
2471
2472         AGE_LOCK_ASSERT(sc);
2473
2474         rr_cons = sc->age_cdata.age_rr_cons;
2475         if (rr_cons == rr_prod)
2476                 return (0);
2477
2478         bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2479             sc->age_cdata.age_rr_ring_map,
2480             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2481
2482         for (prog = 0; rr_cons != rr_prod; prog++) {
2483                 if (count <= 0)
2484                         break;
2485                 rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
2486                 nsegs = AGE_RX_NSEGS(le32toh(rxrd->index));
2487                 if (nsegs == 0)
2488                         break;
2489                 /*
2490                  * Check number of segments against received bytes.
2491                  * Non-matching value would indicate that hardware
2492                  * is still trying to update Rx return descriptors.
2493                  * I'm not sure whether this check is really needed.
2494                  */
2495                 pktlen = AGE_RX_BYTES(le32toh(rxrd->len));
2496                 if (nsegs != ((pktlen + (MCLBYTES - ETHER_ALIGN - 1)) /
2497                     (MCLBYTES - ETHER_ALIGN)))
2498                         break;
2499
2500                 prog++;
2501                 /* Received a frame. */
2502                 age_rxeof(sc, rxrd);
2503                 /* Clear return ring. */
2504                 rxrd->index = 0;
2505                 AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
2506         }
2507
2508         if (prog > 0) {
2509                 /* Update the consumer index. */
2510                 sc->age_cdata.age_rr_cons = rr_cons;
2511
2512                 /* Sync descriptors. */
2513                 bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2514                     sc->age_cdata.age_rr_ring_map,
2515                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2516
2517                 /* Notify hardware availability of new Rx buffers. */
2518                 AGE_COMMIT_MBOX(sc);
2519         }
2520
2521         return (count > 0 ? 0 : EAGAIN);
2522 }
2523
2524 static void
2525 age_tick(void *arg)
2526 {
2527         struct age_softc *sc;
2528         struct mii_data *mii;
2529
2530         sc = (struct age_softc *)arg;
2531
2532         AGE_LOCK_ASSERT(sc);
2533
2534         mii = device_get_softc(sc->age_miibus);
2535         mii_tick(mii);
2536         age_watchdog(sc);
2537         callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
2538 }
2539
2540 static void
2541 age_reset(struct age_softc *sc)
2542 {
2543         uint32_t reg;
2544         int i;
2545
2546         CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
2547         for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2548                 DELAY(1);
2549                 if ((CSR_READ_4(sc, AGE_MASTER_CFG) & MASTER_RESET) == 0)
2550                         break;
2551         }
2552         if (i == 0)
2553                 device_printf(sc->age_dev, "master reset timeout!\n");
2554
2555         for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2556                 if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
2557                         break;
2558                 DELAY(10);
2559         }
2560
2561         if (i == 0)
2562                 device_printf(sc->age_dev, "reset timeout(0x%08x)!\n", reg);
2563         /* Initialize PCIe module. From Linux. */
2564         CSR_WRITE_4(sc, 0x12FC, 0x6500);
2565         CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2566 }
2567
2568 static void
2569 age_init(void *xsc)
2570 {
2571         struct age_softc *sc;
2572
2573         sc = (struct age_softc *)xsc;
2574         AGE_LOCK(sc);
2575         age_init_locked(sc);
2576         AGE_UNLOCK(sc);
2577 }
2578
2579 static void
2580 age_init_locked(struct age_softc *sc)
2581 {
2582         struct ifnet *ifp;
2583         struct mii_data *mii;
2584         uint8_t eaddr[ETHER_ADDR_LEN];
2585         bus_addr_t paddr;
2586         uint32_t reg, fsize;
2587         uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
2588         int error;
2589
2590         AGE_LOCK_ASSERT(sc);
2591
2592         ifp = sc->age_ifp;
2593         mii = device_get_softc(sc->age_miibus);
2594
2595         /*
2596          * Cancel any pending I/O.
2597          */
2598         age_stop(sc);
2599
2600         /*
2601          * Reset the chip to a known state.
2602          */
2603         age_reset(sc);
2604
2605         /* Initialize descriptors. */
2606         error = age_init_rx_ring(sc);
2607         if (error != 0) {
2608                 device_printf(sc->age_dev, "no memory for Rx buffers.\n");
2609                 age_stop(sc);
2610                 return;
2611         }
2612         age_init_rr_ring(sc);
2613         age_init_tx_ring(sc);
2614         age_init_cmb_block(sc);
2615         age_init_smb_block(sc);
2616
2617         /* Reprogram the station address. */
2618         bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
2619         CSR_WRITE_4(sc, AGE_PAR0,
2620             eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
2621         CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
2622
2623         /* Set descriptor base addresses. */
2624         paddr = sc->age_rdata.age_tx_ring_paddr;
2625         CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
2626         paddr = sc->age_rdata.age_rx_ring_paddr;
2627         CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
2628         paddr = sc->age_rdata.age_rr_ring_paddr;
2629         CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
2630         paddr = sc->age_rdata.age_tx_ring_paddr;
2631         CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
2632         paddr = sc->age_rdata.age_cmb_block_paddr;
2633         CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
2634         paddr = sc->age_rdata.age_smb_block_paddr;
2635         CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
2636         /* Set Rx/Rx return descriptor counter. */
2637         CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
2638             ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
2639             DESC_RRD_CNT_MASK) |
2640             ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
2641         /* Set Tx descriptor counter. */
2642         CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
2643             (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
2644
2645         /* Tell hardware that we're ready to load descriptors. */
2646         CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
2647
2648         /*
2649          * Initialize mailbox register.
2650          * Updated producer/consumer index information is exchanged
2651          * through this mailbox register. However Tx producer and
2652          * Rx return consumer/Rx producer are all shared such that
2653          * it's hard to separate code path between Tx and Rx without
2654          * locking. If L1 hardware have a separate mail box register
2655          * for Tx and Rx consumer/producer management we could have
2656          * indepent Tx/Rx handler which in turn Rx handler could have
2657          * been run without any locking.
2658          */
2659         AGE_COMMIT_MBOX(sc);
2660
2661         /* Configure IPG/IFG parameters. */
2662         CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
2663             ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
2664             ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
2665             ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
2666             ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
2667
2668         /* Set parameters for half-duplex media. */
2669         CSR_WRITE_4(sc, AGE_HDPX_CFG,
2670             ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
2671             HDPX_CFG_LCOL_MASK) |
2672             ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
2673             HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
2674             ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
2675             HDPX_CFG_ABEBT_MASK) |
2676             ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
2677             HDPX_CFG_JAMIPG_MASK));
2678
2679         /* Configure interrupt moderation timer. */
2680         CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
2681         reg = CSR_READ_4(sc, AGE_MASTER_CFG);
2682         reg &= ~MASTER_MTIMER_ENB;
2683         if (AGE_USECS(sc->age_int_mod) == 0)
2684                 reg &= ~MASTER_ITIMER_ENB;
2685         else
2686                 reg |= MASTER_ITIMER_ENB;
2687         CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
2688         if (bootverbose)
2689                 device_printf(sc->age_dev, "interrupt moderation is %d us.\n",
2690                     sc->age_int_mod);
2691         CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
2692
2693         /* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
2694         if (ifp->if_mtu < ETHERMTU)
2695                 sc->age_max_frame_size = ETHERMTU;
2696         else
2697                 sc->age_max_frame_size = ifp->if_mtu;
2698         sc->age_max_frame_size += ETHER_HDR_LEN +
2699             sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
2700         CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
2701         /* Configure jumbo frame. */
2702         fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
2703         CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
2704             (((fsize / sizeof(uint64_t)) <<
2705             RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
2706             ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
2707             RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
2708             ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
2709             RXQ_JUMBO_CFG_RRD_TIMER_MASK));
2710
2711         /* Configure flow-control parameters. From Linux. */
2712         if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
2713                 /*
2714                  * Magic workaround for old-L1.
2715                  * Don't know which hw revision requires this magic.
2716                  */
2717                 CSR_WRITE_4(sc, 0x12FC, 0x6500);
2718                 /*
2719                  * Another magic workaround for flow-control mode
2720                  * change. From Linux.
2721                  */
2722                 CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2723         }
2724         /*
2725          * TODO
2726          *  Should understand pause parameter relationships between FIFO
2727          *  size and number of Rx descriptors and Rx return descriptors.
2728          *
2729          *  Magic parameters came from Linux.
2730          */
2731         switch (sc->age_chip_rev) {
2732         case 0x8001:
2733         case 0x9001:
2734         case 0x9002:
2735         case 0x9003:
2736                 rxf_hi = AGE_RX_RING_CNT / 16;
2737                 rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
2738                 rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
2739                 rrd_lo = AGE_RR_RING_CNT / 16;
2740                 break;
2741         default:
2742                 reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
2743                 rxf_lo = reg / 16;
2744                 if (rxf_lo < 192)
2745                         rxf_lo = 192;
2746                 rxf_hi = (reg * 7) / 8;
2747                 if (rxf_hi < rxf_lo)
2748                         rxf_hi = rxf_lo + 16;
2749                 reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
2750                 rrd_lo = reg / 8;
2751                 rrd_hi = (reg * 7) / 8;
2752                 if (rrd_lo < 2)
2753                         rrd_lo = 2;
2754                 if (rrd_hi < rrd_lo)
2755                         rrd_hi = rrd_lo + 3;
2756                 break;
2757         }
2758         CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
2759             ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
2760             RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
2761             ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
2762             RXQ_FIFO_PAUSE_THRESH_HI_MASK));
2763         CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
2764             ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
2765             RXQ_RRD_PAUSE_THRESH_LO_MASK) |
2766             ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
2767             RXQ_RRD_PAUSE_THRESH_HI_MASK));
2768
2769         /* Configure RxQ. */
2770         CSR_WRITE_4(sc, AGE_RXQ_CFG,
2771             ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
2772             RXQ_CFG_RD_BURST_MASK) |
2773             ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
2774             RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
2775             ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
2776             RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
2777             RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
2778
2779         /* Configure TxQ. */
2780         CSR_WRITE_4(sc, AGE_TXQ_CFG,
2781             ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
2782             TXQ_CFG_TPD_BURST_MASK) |
2783             ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
2784             TXQ_CFG_TX_FIFO_BURST_MASK) |
2785             ((TXQ_CFG_TPD_FETCH_DEFAULT <<
2786             TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
2787             TXQ_CFG_ENB);
2788
2789         CSR_WRITE_4(sc, AGE_TX_JUMBO_TPD_TH_IPG,
2790             (((fsize / sizeof(uint64_t) << TX_JUMBO_TPD_TH_SHIFT)) &
2791             TX_JUMBO_TPD_TH_MASK) |
2792             ((TX_JUMBO_TPD_IPG_DEFAULT << TX_JUMBO_TPD_IPG_SHIFT) &
2793             TX_JUMBO_TPD_IPG_MASK));
2794         /* Configure DMA parameters. */
2795         CSR_WRITE_4(sc, AGE_DMA_CFG,
2796             DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
2797             sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
2798             sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
2799
2800         /* Configure CMB DMA write threshold. */
2801         CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
2802             ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
2803             CMB_WR_THRESH_RRD_MASK) |
2804             ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
2805             CMB_WR_THRESH_TPD_MASK));
2806
2807         /* Set CMB/SMB timer and enable them. */
2808         CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
2809             ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
2810             ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
2811         /* Request SMB updates for every seconds. */
2812         CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
2813         CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
2814
2815         /*
2816          * Disable all WOL bits as WOL can interfere normal Rx
2817          * operation.
2818          */
2819         CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
2820
2821         /*
2822          * Configure Tx/Rx MACs.
2823          *  - Auto-padding for short frames.
2824          *  - Enable CRC generation.
2825          *  Start with full-duplex/1000Mbps media. Actual reconfiguration
2826          *  of MAC is followed after link establishment.
2827          */
2828         CSR_WRITE_4(sc, AGE_MAC_CFG,
2829             MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
2830             MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
2831             ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
2832             MAC_CFG_PREAMBLE_MASK));
2833         /* Set up the receive filter. */
2834         age_rxfilter(sc);
2835         age_rxvlan(sc);
2836
2837         reg = CSR_READ_4(sc, AGE_MAC_CFG);
2838         if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2839                 reg |= MAC_CFG_RXCSUM_ENB;
2840
2841         /* Ack all pending interrupts and clear it. */
2842         CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
2843         CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
2844
2845         /* Finally enable Tx/Rx MAC. */
2846         CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
2847
2848         sc->age_flags &= ~AGE_FLAG_LINK;
2849         /* Switch to the current media. */
2850         mii_mediachg(mii);
2851
2852         callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
2853
2854         ifp->if_drv_flags |= IFF_DRV_RUNNING;
2855         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2856 }
2857
2858 static void
2859 age_stop(struct age_softc *sc)
2860 {
2861         struct ifnet *ifp;
2862         struct age_txdesc *txd;
2863         struct age_rxdesc *rxd;
2864         uint32_t reg;
2865         int i;
2866
2867         AGE_LOCK_ASSERT(sc);
2868         /*
2869          * Mark the interface down and cancel the watchdog timer.
2870          */
2871         ifp = sc->age_ifp;
2872         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2873         sc->age_flags &= ~AGE_FLAG_LINK;
2874         callout_stop(&sc->age_tick_ch);
2875         sc->age_watchdog_timer = 0;
2876
2877         /*
2878          * Disable interrupts.
2879          */
2880         CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
2881         CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
2882         /* Stop CMB/SMB updates. */
2883         CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
2884         /* Stop Rx/Tx MAC. */
2885         age_stop_rxmac(sc);
2886         age_stop_txmac(sc);
2887         /* Stop DMA. */
2888         CSR_WRITE_4(sc, AGE_DMA_CFG,
2889             CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
2890         /* Stop TxQ/RxQ. */
2891         CSR_WRITE_4(sc, AGE_TXQ_CFG,
2892             CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
2893         CSR_WRITE_4(sc, AGE_RXQ_CFG,
2894             CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
2895         for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2896                 if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
2897                         break;
2898                 DELAY(10);
2899         }
2900         if (i == 0)
2901                 device_printf(sc->age_dev,
2902                     "stopping Rx/Tx MACs timed out(0x%08x)!\n", reg);
2903
2904          /* Reclaim Rx buffers that have been processed. */
2905         if (sc->age_cdata.age_rxhead != NULL)
2906                 m_freem(sc->age_cdata.age_rxhead);
2907         AGE_RXCHAIN_RESET(sc);
2908         /*
2909          * Free RX and TX mbufs still in the queues.
2910          */
2911         for (i = 0; i < AGE_RX_RING_CNT; i++) {
2912                 rxd = &sc->age_cdata.age_rxdesc[i];
2913                 if (rxd->rx_m != NULL) {
2914                         bus_dmamap_sync(sc->age_cdata.age_rx_tag,
2915                             rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2916                         bus_dmamap_unload(sc->age_cdata.age_rx_tag,
2917                             rxd->rx_dmamap);
2918                         m_freem(rxd->rx_m);
2919                         rxd->rx_m = NULL;
2920                 }
2921         }
2922         for (i = 0; i < AGE_TX_RING_CNT; i++) {
2923                 txd = &sc->age_cdata.age_txdesc[i];
2924                 if (txd->tx_m != NULL) {
2925                         bus_dmamap_sync(sc->age_cdata.age_tx_tag,
2926                             txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2927                         bus_dmamap_unload(sc->age_cdata.age_tx_tag,
2928                             txd->tx_dmamap);
2929                         m_freem(txd->tx_m);
2930                         txd->tx_m = NULL;
2931                 }
2932         }
2933 }
2934
2935 static void
2936 age_stop_txmac(struct age_softc *sc)
2937 {
2938         uint32_t reg;
2939         int i;
2940
2941         AGE_LOCK_ASSERT(sc);
2942
2943         reg = CSR_READ_4(sc, AGE_MAC_CFG);
2944         if ((reg & MAC_CFG_TX_ENB) != 0) {
2945                 reg &= ~MAC_CFG_TX_ENB;
2946                 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2947         }
2948         /* Stop Tx DMA engine. */
2949         reg = CSR_READ_4(sc, AGE_DMA_CFG);
2950         if ((reg & DMA_CFG_RD_ENB) != 0) {
2951                 reg &= ~DMA_CFG_RD_ENB;
2952                 CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2953         }
2954         for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2955                 if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2956                     (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
2957                         break;
2958                 DELAY(10);
2959         }
2960         if (i == 0)
2961                 device_printf(sc->age_dev, "stopping TxMAC timeout!\n");
2962 }
2963
2964 static void
2965 age_stop_rxmac(struct age_softc *sc)
2966 {
2967         uint32_t reg;
2968         int i;
2969
2970         AGE_LOCK_ASSERT(sc);
2971
2972         reg = CSR_READ_4(sc, AGE_MAC_CFG);
2973         if ((reg & MAC_CFG_RX_ENB) != 0) {
2974                 reg &= ~MAC_CFG_RX_ENB;
2975                 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2976         }
2977         /* Stop Rx DMA engine. */
2978         reg = CSR_READ_4(sc, AGE_DMA_CFG);
2979         if ((reg & DMA_CFG_WR_ENB) != 0) {
2980                 reg &= ~DMA_CFG_WR_ENB;
2981                 CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2982         }
2983         for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2984                 if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2985                     (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
2986                         break;
2987                 DELAY(10);
2988         }
2989         if (i == 0)
2990                 device_printf(sc->age_dev, "stopping RxMAC timeout!\n");
2991 }
2992
2993 static void
2994 age_init_tx_ring(struct age_softc *sc)
2995 {
2996         struct age_ring_data *rd;
2997         struct age_txdesc *txd;
2998         int i;
2999
3000         AGE_LOCK_ASSERT(sc);
3001
3002         sc->age_cdata.age_tx_prod = 0;
3003         sc->age_cdata.age_tx_cons = 0;
3004         sc->age_cdata.age_tx_cnt = 0;
3005
3006         rd = &sc->age_rdata;
3007         bzero(rd->age_tx_ring, AGE_TX_RING_SZ);
3008         for (i = 0; i < AGE_TX_RING_CNT; i++) {
3009                 txd = &sc->age_cdata.age_txdesc[i];
3010                 txd->tx_desc = &rd->age_tx_ring[i];
3011                 txd->tx_m = NULL;
3012         }
3013
3014         bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
3015             sc->age_cdata.age_tx_ring_map,
3016             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3017 }
3018
3019 static int
3020 age_init_rx_ring(struct age_softc *sc)
3021 {
3022         struct age_ring_data *rd;
3023         struct age_rxdesc *rxd;
3024         int i;
3025
3026         AGE_LOCK_ASSERT(sc);
3027
3028         sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
3029         sc->age_morework = 0;
3030         rd = &sc->age_rdata;
3031         bzero(rd->age_rx_ring, AGE_RX_RING_SZ);
3032         for (i = 0; i < AGE_RX_RING_CNT; i++) {
3033                 rxd = &sc->age_cdata.age_rxdesc[i];
3034                 rxd->rx_m = NULL;
3035                 rxd->rx_desc = &rd->age_rx_ring[i];
3036                 if (age_newbuf(sc, rxd) != 0)
3037                         return (ENOBUFS);
3038         }
3039
3040         bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
3041             sc->age_cdata.age_rx_ring_map,
3042             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3043
3044         return (0);
3045 }
3046
3047 static void
3048 age_init_rr_ring(struct age_softc *sc)
3049 {
3050         struct age_ring_data *rd;
3051
3052         AGE_LOCK_ASSERT(sc);
3053
3054         sc->age_cdata.age_rr_cons = 0;
3055         AGE_RXCHAIN_RESET(sc);
3056
3057         rd = &sc->age_rdata;
3058         bzero(rd->age_rr_ring, AGE_RR_RING_SZ);
3059         bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
3060             sc->age_cdata.age_rr_ring_map,
3061             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3062 }
3063
3064 static void
3065 age_init_cmb_block(struct age_softc *sc)
3066 {
3067         struct age_ring_data *rd;
3068
3069         AGE_LOCK_ASSERT(sc);
3070
3071         rd = &sc->age_rdata;
3072         bzero(rd->age_cmb_block, AGE_CMB_BLOCK_SZ);
3073         bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
3074             sc->age_cdata.age_cmb_block_map,
3075             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3076 }
3077
3078 static void
3079 age_init_smb_block(struct age_softc *sc)
3080 {
3081         struct age_ring_data *rd;
3082
3083         AGE_LOCK_ASSERT(sc);
3084
3085         rd = &sc->age_rdata;
3086         bzero(rd->age_smb_block, AGE_SMB_BLOCK_SZ);
3087         bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
3088             sc->age_cdata.age_smb_block_map,
3089             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3090 }
3091
3092 static int
3093 age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd)
3094 {
3095         struct rx_desc *desc;
3096         struct mbuf *m;
3097         bus_dma_segment_t segs[1];
3098         bus_dmamap_t map;
3099         int nsegs;
3100
3101         AGE_LOCK_ASSERT(sc);
3102
3103         m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
3104         if (m == NULL)
3105                 return (ENOBUFS);
3106         m->m_len = m->m_pkthdr.len = MCLBYTES;
3107         m_adj(m, ETHER_ALIGN);
3108
3109         if (bus_dmamap_load_mbuf_sg(sc->age_cdata.age_rx_tag,
3110             sc->age_cdata.age_rx_sparemap, m, segs, &nsegs, 0) != 0) {
3111                 m_freem(m);
3112                 return (ENOBUFS);
3113         }
3114         KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
3115
3116         if (rxd->rx_m != NULL) {
3117                 bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap,
3118                     BUS_DMASYNC_POSTREAD);
3119                 bus_dmamap_unload(sc->age_cdata.age_rx_tag, rxd->rx_dmamap);
3120         }
3121         map = rxd->rx_dmamap;
3122         rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
3123         sc->age_cdata.age_rx_sparemap = map;
3124         bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap,
3125             BUS_DMASYNC_PREREAD);
3126         rxd->rx_m = m;
3127
3128         desc = rxd->rx_desc;
3129         desc->addr = htole64(segs[0].ds_addr);
3130         desc->len = htole32((segs[0].ds_len & AGE_RD_LEN_MASK) <<
3131             AGE_RD_LEN_SHIFT);
3132         return (0);
3133 }
3134
3135 static void
3136 age_rxvlan(struct age_softc *sc)
3137 {
3138         struct ifnet *ifp;
3139         uint32_t reg;
3140
3141         AGE_LOCK_ASSERT(sc);
3142
3143         ifp = sc->age_ifp;
3144         reg = CSR_READ_4(sc, AGE_MAC_CFG);
3145         reg &= ~MAC_CFG_VLAN_TAG_STRIP;
3146         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3147                 reg |= MAC_CFG_VLAN_TAG_STRIP;
3148         CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
3149 }
3150
3151 static void
3152 age_rxfilter(struct age_softc *sc)
3153 {
3154         struct ifnet *ifp;
3155         struct ifmultiaddr *ifma;
3156         uint32_t crc;
3157         uint32_t mchash[2];
3158         uint32_t rxcfg;
3159
3160         AGE_LOCK_ASSERT(sc);
3161
3162         ifp = sc->age_ifp;
3163
3164         rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
3165         rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
3166         if ((ifp->if_flags & IFF_BROADCAST) != 0)
3167                 rxcfg |= MAC_CFG_BCAST;
3168         if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
3169                 if ((ifp->if_flags & IFF_PROMISC) != 0)
3170                         rxcfg |= MAC_CFG_PROMISC;
3171                 if ((ifp->if_flags & IFF_ALLMULTI) != 0)
3172                         rxcfg |= MAC_CFG_ALLMULTI;
3173                 CSR_WRITE_4(sc, AGE_MAR0, 0xFFFFFFFF);
3174                 CSR_WRITE_4(sc, AGE_MAR1, 0xFFFFFFFF);
3175                 CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
3176                 return;
3177         }
3178
3179         /* Program new filter. */
3180         bzero(mchash, sizeof(mchash));
3181
3182         IF_ADDR_LOCK(ifp);
3183         TAILQ_FOREACH(ifma, &sc->age_ifp->if_multiaddrs, ifma_link) {
3184                 if (ifma->ifma_addr->sa_family != AF_LINK)
3185                         continue;
3186                 crc = ether_crc32_le(LLADDR((struct sockaddr_dl *)
3187                     ifma->ifma_addr), ETHER_ADDR_LEN);
3188                 mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
3189         }
3190         IF_ADDR_UNLOCK(ifp);
3191
3192         CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
3193         CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
3194         CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
3195 }
3196
3197 static int
3198 sysctl_age_stats(SYSCTL_HANDLER_ARGS)
3199 {
3200         struct age_softc *sc;
3201         struct age_stats *stats;
3202         int error, result;
3203
3204         result = -1;
3205         error = sysctl_handle_int(oidp, &result, 0, req);
3206
3207         if (error != 0 || req->newptr == NULL)
3208                 return (error);
3209
3210         if (result != 1)
3211                 return (error);
3212
3213         sc = (struct age_softc *)arg1;
3214         stats = &sc->age_stat;
3215         printf("%s statistics:\n", device_get_nameunit(sc->age_dev));
3216         printf("Transmit good frames : %ju\n",
3217             (uintmax_t)stats->tx_frames);
3218         printf("Transmit good broadcast frames : %ju\n",
3219             (uintmax_t)stats->tx_bcast_frames);
3220         printf("Transmit good multicast frames : %ju\n",
3221             (uintmax_t)stats->tx_mcast_frames);
3222         printf("Transmit pause control frames : %u\n",
3223             stats->tx_pause_frames);
3224         printf("Transmit control frames : %u\n",
3225             stats->tx_control_frames);
3226         printf("Transmit frames with excessive deferrals : %u\n",
3227             stats->tx_excess_defer);
3228         printf("Transmit deferrals : %u\n",
3229             stats->tx_deferred);
3230         printf("Transmit good octets : %ju\n",
3231             (uintmax_t)stats->tx_bytes);
3232         printf("Transmit good broadcast octets : %ju\n",
3233             (uintmax_t)stats->tx_bcast_bytes);
3234         printf("Transmit good multicast octets : %ju\n",
3235             (uintmax_t)stats->tx_mcast_bytes);
3236         printf("Transmit frames 64 bytes : %ju\n",
3237             (uintmax_t)stats->tx_pkts_64);
3238         printf("Transmit frames 65 to 127 bytes : %ju\n",
3239             (uintmax_t)stats->tx_pkts_65_127);
3240         printf("Transmit frames 128 to 255 bytes : %ju\n",
3241             (uintmax_t)stats->tx_pkts_128_255);
3242         printf("Transmit frames 256 to 511 bytes : %ju\n",
3243             (uintmax_t)stats->tx_pkts_256_511);
3244         printf("Transmit frames 512 to 1024 bytes : %ju\n",
3245             (uintmax_t)stats->tx_pkts_512_1023);
3246         printf("Transmit frames 1024 to 1518 bytes : %ju\n",
3247             (uintmax_t)stats->tx_pkts_1024_1518);
3248         printf("Transmit frames 1519 to MTU bytes : %ju\n",
3249             (uintmax_t)stats->tx_pkts_1519_max);
3250         printf("Transmit single collisions : %u\n",
3251             stats->tx_single_colls);
3252         printf("Transmit multiple collisions : %u\n",
3253             stats->tx_multi_colls);
3254         printf("Transmit late collisions : %u\n",
3255             stats->tx_late_colls);
3256         printf("Transmit abort due to excessive collisions : %u\n",
3257             stats->tx_excess_colls);
3258         printf("Transmit underruns due to FIFO underruns : %u\n",
3259             stats->tx_underrun);
3260         printf("Transmit descriptor write-back errors : %u\n",
3261             stats->tx_desc_underrun);
3262         printf("Transmit frames with length mismatched frame size : %u\n",
3263             stats->tx_lenerrs);
3264         printf("Transmit frames with truncated due to MTU size : %u\n",
3265             stats->tx_lenerrs);
3266
3267         printf("Receive good frames : %ju\n",
3268             (uintmax_t)stats->rx_frames);
3269         printf("Receive good broadcast frames : %ju\n",
3270             (uintmax_t)stats->rx_bcast_frames);
3271         printf("Receive good multicast frames : %ju\n",
3272             (uintmax_t)stats->rx_mcast_frames);
3273         printf("Receive pause control frames : %u\n",
3274             stats->rx_pause_frames);
3275         printf("Receive control frames : %u\n",
3276             stats->rx_control_frames);
3277         printf("Receive CRC errors : %u\n",
3278             stats->rx_crcerrs);
3279         printf("Receive frames with length errors : %u\n",
3280             stats->rx_lenerrs);
3281         printf("Receive good octets : %ju\n",
3282             (uintmax_t)stats->rx_bytes);
3283         printf("Receive good broadcast octets : %ju\n",
3284             (uintmax_t)stats->rx_bcast_bytes);
3285         printf("Receive good multicast octets : %ju\n",
3286             (uintmax_t)stats->rx_mcast_bytes);
3287         printf("Receive frames too short : %u\n",
3288             stats->rx_runts);
3289         printf("Receive fragmented frames : %ju\n",
3290             (uintmax_t)stats->rx_fragments);
3291         printf("Receive frames 64 bytes : %ju\n",
3292             (uintmax_t)stats->rx_pkts_64);
3293         printf("Receive frames 65 to 127 bytes : %ju\n",
3294             (uintmax_t)stats->rx_pkts_65_127);
3295         printf("Receive frames 128 to 255 bytes : %ju\n",
3296             (uintmax_t)stats->rx_pkts_128_255);
3297         printf("Receive frames 256 to 511 bytes : %ju\n",
3298             (uintmax_t)stats->rx_pkts_256_511);
3299         printf("Receive frames 512 to 1024 bytes : %ju\n",
3300             (uintmax_t)stats->rx_pkts_512_1023);
3301         printf("Receive frames 1024 to 1518 bytes : %ju\n",
3302             (uintmax_t)stats->rx_pkts_1024_1518);
3303         printf("Receive frames 1519 to MTU bytes : %ju\n",
3304             (uintmax_t)stats->rx_pkts_1519_max);
3305         printf("Receive frames too long : %ju\n",
3306             (uint64_t)stats->rx_pkts_truncated);
3307         printf("Receive frames with FIFO overflow : %u\n",
3308             stats->rx_fifo_oflows);
3309         printf("Receive frames with return descriptor overflow : %u\n",
3310             stats->rx_desc_oflows);
3311         printf("Receive frames with alignment errors : %u\n",
3312             stats->rx_alignerrs);
3313         printf("Receive frames dropped due to address filtering : %ju\n",
3314             (uint64_t)stats->rx_pkts_filtered);
3315
3316         return (error);
3317 }
3318
3319 static int
3320 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3321 {
3322         int error, value;
3323
3324         if (arg1 == NULL)
3325                 return (EINVAL);
3326         value = *(int *)arg1;
3327         error = sysctl_handle_int(oidp, &value, 0, req);
3328         if (error || req->newptr == NULL)
3329                 return (error);
3330         if (value < low || value > high)
3331                 return (EINVAL);
3332         *(int *)arg1 = value;
3333
3334         return (0);
3335 }
3336
3337 static int
3338 sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS)
3339 {
3340         return (sysctl_int_range(oidp, arg1, arg2, req,
3341             AGE_PROC_MIN, AGE_PROC_MAX));
3342 }
3343
3344 static int
3345 sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS)
3346 {
3347
3348         return (sysctl_int_range(oidp, arg1, arg2, req, AGE_IM_TIMER_MIN,
3349             AGE_IM_TIMER_MAX));
3350 }