]> CyberLeo.Net >> Repos - FreeBSD/releng/7.2.git/blob - sys/dev/bge/if_bge.c
Create releng/7.2 from stable/7 in preparation for 7.2-RELEASE.
[FreeBSD/releng/7.2.git] / sys / dev / bge / if_bge.c
1 /*-
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2001
4  *      Bill Paul <wpaul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *      This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36
37 /*
38  * Broadcom BCM570x family gigabit ethernet driver for FreeBSD.
39  *
40  * The Broadcom BCM5700 is based on technology originally developed by
41  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
42  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
43  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
44  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
45  * frames, highly configurable RX filtering, and 16 RX and TX queues
46  * (which, along with RX filter rules, can be used for QOS applications).
47  * Other features, such as TCP segmentation, may be available as part
48  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
49  * firmware images can be stored in hardware and need not be compiled
50  * into the driver.
51  *
52  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
53  * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
54  *
55  * The BCM5701 is a single-chip solution incorporating both the BCM5700
56  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
57  * does not support external SSRAM.
58  *
59  * Broadcom also produces a variation of the BCM5700 under the "Altima"
60  * brand name, which is functionally similar but lacks PCI-X support.
61  *
62  * Without external SSRAM, you can only have at most 4 TX rings,
63  * and the use of the mini RX ring is disabled. This seems to imply
64  * that these features are simply not available on the BCM5701. As a
65  * result, this driver does not implement any support for the mini RX
66  * ring.
67  */
68
69 #ifdef HAVE_KERNEL_OPTION_HEADERS
70 #include "opt_device_polling.h"
71 #endif
72
73 #include <sys/param.h>
74 #include <sys/endian.h>
75 #include <sys/systm.h>
76 #include <sys/sockio.h>
77 #include <sys/mbuf.h>
78 #include <sys/malloc.h>
79 #include <sys/kernel.h>
80 #include <sys/module.h>
81 #include <sys/socket.h>
82 #include <sys/sysctl.h>
83
84 #include <net/if.h>
85 #include <net/if_arp.h>
86 #include <net/ethernet.h>
87 #include <net/if_dl.h>
88 #include <net/if_media.h>
89
90 #include <net/bpf.h>
91
92 #include <net/if_types.h>
93 #include <net/if_vlan_var.h>
94
95 #include <netinet/in_systm.h>
96 #include <netinet/in.h>
97 #include <netinet/ip.h>
98
99 #include <machine/bus.h>
100 #include <machine/resource.h>
101 #include <sys/bus.h>
102 #include <sys/rman.h>
103
104 #include <dev/mii/mii.h>
105 #include <dev/mii/miivar.h>
106 #include "miidevs.h"
107 #include <dev/mii/brgphyreg.h>
108
109 #ifdef __sparc64__
110 #include <dev/ofw/ofw_bus.h>
111 #include <dev/ofw/openfirm.h>
112 #include <machine/ofw_machdep.h>
113 #include <machine/ver.h>
114 #endif
115
116 #include <dev/pci/pcireg.h>
117 #include <dev/pci/pcivar.h>
118
119 #include <dev/bge/if_bgereg.h>
120
121 #define BGE_CSUM_FEATURES       (CSUM_IP | CSUM_TCP | CSUM_UDP)
122 #define ETHER_MIN_NOPAD         (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
123
124 MODULE_DEPEND(bge, pci, 1, 1, 1);
125 MODULE_DEPEND(bge, ether, 1, 1, 1);
126 MODULE_DEPEND(bge, miibus, 1, 1, 1);
127
128 /* "device miibus" required.  See GENERIC if you get errors here. */
129 #include "miibus_if.h"
130
131 /*
132  * Various supported device vendors/types and their names. Note: the
133  * spec seems to indicate that the hardware still has Alteon's vendor
134  * ID burned into it, though it will always be overriden by the vendor
135  * ID in the EEPROM. Just to be safe, we cover all possibilities.
136  */
137 static const struct bge_type {
138         uint16_t        bge_vid;
139         uint16_t        bge_did;
140 } bge_devs[] = {
141         { ALTEON_VENDORID,      ALTEON_DEVICEID_BCM5700 },
142         { ALTEON_VENDORID,      ALTEON_DEVICEID_BCM5701 },
143
144         { ALTIMA_VENDORID,      ALTIMA_DEVICE_AC1000 },
145         { ALTIMA_VENDORID,      ALTIMA_DEVICE_AC1002 },
146         { ALTIMA_VENDORID,      ALTIMA_DEVICE_AC9100 },
147
148         { APPLE_VENDORID,       APPLE_DEVICE_BCM5701 },
149
150         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5700 },
151         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5701 },
152         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5702 },
153         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5702_ALT },
154         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5702X },
155         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5703 },
156         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5703_ALT },
157         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5703X },
158         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5704C },
159         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5704S },
160         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5704S_ALT },
161         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5705 },
162         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5705F },
163         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5705K },
164         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5705M },
165         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5705M_ALT },
166         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5714C },
167         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5714S },
168         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5715 },
169         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5715S },
170         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5720 },
171         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5721 },
172         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5722 },
173         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5750 },
174         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5750M },
175         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5751 },
176         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5751F },
177         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5751M },
178         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5752 },
179         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5752M },
180         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5753 },
181         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5753F },
182         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5753M },
183         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5754 },
184         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5754M },
185         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5755 },
186         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5755M },
187         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5780 },
188         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5780S },
189         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5781 },
190         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5782 },
191         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5786 },
192         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5787 },
193         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5787M },
194         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5788 },
195         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5789 },
196         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5901 },
197         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5901A2 },
198         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5903M },
199         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5906 },
200         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5906M },
201
202         { SK_VENDORID,          SK_DEVICEID_ALTIMA },
203
204         { TC_VENDORID,          TC_DEVICEID_3C996 },
205
206         { 0, 0 }
207 };
208
209 static const struct bge_vendor {
210         uint16_t        v_id;
211         const char      *v_name;
212 } bge_vendors[] = {
213         { ALTEON_VENDORID,      "Alteon" },
214         { ALTIMA_VENDORID,      "Altima" },
215         { APPLE_VENDORID,       "Apple" },
216         { BCOM_VENDORID,        "Broadcom" },
217         { SK_VENDORID,          "SysKonnect" },
218         { TC_VENDORID,          "3Com" },
219
220         { 0, NULL }
221 };
222         
223 static const struct bge_revision {
224         uint32_t        br_chipid;
225         const char      *br_name;
226 } bge_revisions[] = {
227         { BGE_CHIPID_BCM5700_A0,        "BCM5700 A0" },
228         { BGE_CHIPID_BCM5700_A1,        "BCM5700 A1" },
229         { BGE_CHIPID_BCM5700_B0,        "BCM5700 B0" },
230         { BGE_CHIPID_BCM5700_B1,        "BCM5700 B1" },
231         { BGE_CHIPID_BCM5700_B2,        "BCM5700 B2" },
232         { BGE_CHIPID_BCM5700_B3,        "BCM5700 B3" },
233         { BGE_CHIPID_BCM5700_ALTIMA,    "BCM5700 Altima" },
234         { BGE_CHIPID_BCM5700_C0,        "BCM5700 C0" },
235         { BGE_CHIPID_BCM5701_A0,        "BCM5701 A0" },
236         { BGE_CHIPID_BCM5701_B0,        "BCM5701 B0" },
237         { BGE_CHIPID_BCM5701_B2,        "BCM5701 B2" },
238         { BGE_CHIPID_BCM5701_B5,        "BCM5701 B5" },
239         { BGE_CHIPID_BCM5703_A0,        "BCM5703 A0" },
240         { BGE_CHIPID_BCM5703_A1,        "BCM5703 A1" },
241         { BGE_CHIPID_BCM5703_A2,        "BCM5703 A2" },
242         { BGE_CHIPID_BCM5703_A3,        "BCM5703 A3" },
243         { BGE_CHIPID_BCM5703_B0,        "BCM5703 B0" },
244         { BGE_CHIPID_BCM5704_A0,        "BCM5704 A0" },
245         { BGE_CHIPID_BCM5704_A1,        "BCM5704 A1" },
246         { BGE_CHIPID_BCM5704_A2,        "BCM5704 A2" },
247         { BGE_CHIPID_BCM5704_A3,        "BCM5704 A3" },
248         { BGE_CHIPID_BCM5704_B0,        "BCM5704 B0" },
249         { BGE_CHIPID_BCM5705_A0,        "BCM5705 A0" },
250         { BGE_CHIPID_BCM5705_A1,        "BCM5705 A1" },
251         { BGE_CHIPID_BCM5705_A2,        "BCM5705 A2" },
252         { BGE_CHIPID_BCM5705_A3,        "BCM5705 A3" },
253         { BGE_CHIPID_BCM5750_A0,        "BCM5750 A0" },
254         { BGE_CHIPID_BCM5750_A1,        "BCM5750 A1" },
255         { BGE_CHIPID_BCM5750_A3,        "BCM5750 A3" },
256         { BGE_CHIPID_BCM5750_B0,        "BCM5750 B0" },
257         { BGE_CHIPID_BCM5750_B1,        "BCM5750 B1" },
258         { BGE_CHIPID_BCM5750_C0,        "BCM5750 C0" },
259         { BGE_CHIPID_BCM5750_C1,        "BCM5750 C1" },
260         { BGE_CHIPID_BCM5750_C2,        "BCM5750 C2" },
261         { BGE_CHIPID_BCM5714_A0,        "BCM5714 A0" },
262         { BGE_CHIPID_BCM5752_A0,        "BCM5752 A0" },
263         { BGE_CHIPID_BCM5752_A1,        "BCM5752 A1" },
264         { BGE_CHIPID_BCM5752_A2,        "BCM5752 A2" },
265         { BGE_CHIPID_BCM5714_B0,        "BCM5714 B0" },
266         { BGE_CHIPID_BCM5714_B3,        "BCM5714 B3" },
267         { BGE_CHIPID_BCM5715_A0,        "BCM5715 A0" },
268         { BGE_CHIPID_BCM5715_A1,        "BCM5715 A1" },
269         { BGE_CHIPID_BCM5715_A3,        "BCM5715 A3" },
270         { BGE_CHIPID_BCM5755_A0,        "BCM5755 A0" },
271         { BGE_CHIPID_BCM5755_A1,        "BCM5755 A1" },
272         { BGE_CHIPID_BCM5755_A2,        "BCM5755 A2" },
273         { BGE_CHIPID_BCM5722_A0,        "BCM5722 A0" },
274         /* 5754 and 5787 share the same ASIC ID */
275         { BGE_CHIPID_BCM5787_A0,        "BCM5754/5787 A0" }, 
276         { BGE_CHIPID_BCM5787_A1,        "BCM5754/5787 A1" },
277         { BGE_CHIPID_BCM5787_A2,        "BCM5754/5787 A2" },
278         { BGE_CHIPID_BCM5906_A1,        "BCM5906 A1" },
279         { BGE_CHIPID_BCM5906_A2,        "BCM5906 A2" },
280
281         { 0, NULL }
282 };
283
284 /*
285  * Some defaults for major revisions, so that newer steppings
286  * that we don't know about have a shot at working.
287  */
288 static const struct bge_revision bge_majorrevs[] = {
289         { BGE_ASICREV_BCM5700,          "unknown BCM5700" },
290         { BGE_ASICREV_BCM5701,          "unknown BCM5701" },
291         { BGE_ASICREV_BCM5703,          "unknown BCM5703" },
292         { BGE_ASICREV_BCM5704,          "unknown BCM5704" },
293         { BGE_ASICREV_BCM5705,          "unknown BCM5705" },
294         { BGE_ASICREV_BCM5750,          "unknown BCM5750" },
295         { BGE_ASICREV_BCM5714_A0,       "unknown BCM5714" },
296         { BGE_ASICREV_BCM5752,          "unknown BCM5752" },
297         { BGE_ASICREV_BCM5780,          "unknown BCM5780" },
298         { BGE_ASICREV_BCM5714,          "unknown BCM5714" },
299         { BGE_ASICREV_BCM5755,          "unknown BCM5755" },
300         /* 5754 and 5787 share the same ASIC ID */
301         { BGE_ASICREV_BCM5787,          "unknown BCM5754/5787" },
302         { BGE_ASICREV_BCM5906,          "unknown BCM5906" },
303
304         { 0, NULL }
305 };
306
307 #define BGE_IS_JUMBO_CAPABLE(sc)        ((sc)->bge_flags & BGE_FLAG_JUMBO)
308 #define BGE_IS_5700_FAMILY(sc)          ((sc)->bge_flags & BGE_FLAG_5700_FAMILY)
309 #define BGE_IS_5705_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_5705_PLUS)
310 #define BGE_IS_5714_FAMILY(sc)          ((sc)->bge_flags & BGE_FLAG_5714_FAMILY)
311 #define BGE_IS_575X_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_575X_PLUS)
312
313 const struct bge_revision * bge_lookup_rev(uint32_t);
314 const struct bge_vendor * bge_lookup_vendor(uint16_t);
315
316 typedef int     (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
317
318 static int bge_probe(device_t);
319 static int bge_attach(device_t);
320 static int bge_detach(device_t);
321 static int bge_suspend(device_t);
322 static int bge_resume(device_t);
323 static void bge_release_resources(struct bge_softc *);
324 static void bge_dma_map_addr(void *, bus_dma_segment_t *, int, int);
325 static int bge_dma_alloc(device_t);
326 static void bge_dma_free(struct bge_softc *);
327
328 static int bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[]);
329 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
330 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
331 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
332 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
333
334 static void bge_txeof(struct bge_softc *);
335 static void bge_rxeof(struct bge_softc *);
336
337 static void bge_asf_driver_up (struct bge_softc *);
338 static void bge_tick(void *);
339 static void bge_stats_update(struct bge_softc *);
340 static void bge_stats_update_regs(struct bge_softc *);
341 static int bge_encap(struct bge_softc *, struct mbuf **, uint32_t *);
342
343 static void bge_intr(void *);
344 static void bge_start_locked(struct ifnet *);
345 static void bge_start(struct ifnet *);
346 static int bge_ioctl(struct ifnet *, u_long, caddr_t);
347 static void bge_init_locked(struct bge_softc *);
348 static void bge_init(void *);
349 static void bge_stop(struct bge_softc *);
350 static void bge_watchdog(struct bge_softc *);
351 static int bge_shutdown(device_t);
352 static int bge_ifmedia_upd_locked(struct ifnet *);
353 static int bge_ifmedia_upd(struct ifnet *);
354 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
355
356 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
357 static int bge_read_nvram(struct bge_softc *, caddr_t, int, int);
358
359 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
360 static int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
361
362 static void bge_setpromisc(struct bge_softc *);
363 static void bge_setmulti(struct bge_softc *);
364 static void bge_setvlan(struct bge_softc *);
365
366 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *);
367 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
368 static int bge_init_rx_ring_std(struct bge_softc *);
369 static void bge_free_rx_ring_std(struct bge_softc *);
370 static int bge_init_rx_ring_jumbo(struct bge_softc *);
371 static void bge_free_rx_ring_jumbo(struct bge_softc *);
372 static void bge_free_tx_ring(struct bge_softc *);
373 static int bge_init_tx_ring(struct bge_softc *);
374
375 static int bge_chipinit(struct bge_softc *);
376 static int bge_blockinit(struct bge_softc *);
377
378 static int bge_has_eaddr(struct bge_softc *);
379 static uint32_t bge_readmem_ind(struct bge_softc *, int);
380 static void bge_writemem_ind(struct bge_softc *, int, int);
381 static void bge_writembx(struct bge_softc *, int, int);
382 #ifdef notdef
383 static uint32_t bge_readreg_ind(struct bge_softc *, int);
384 #endif
385 static void bge_writemem_direct(struct bge_softc *, int, int);
386 static void bge_writereg_ind(struct bge_softc *, int, int);
387 static void bge_set_max_readrq(struct bge_softc *, int);
388
389 static int bge_miibus_readreg(device_t, int, int);
390 static int bge_miibus_writereg(device_t, int, int, int);
391 static void bge_miibus_statchg(device_t);
392 #ifdef DEVICE_POLLING
393 static void bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
394 #endif
395
396 #define BGE_RESET_START 1
397 #define BGE_RESET_STOP  2
398 static void bge_sig_post_reset(struct bge_softc *, int);
399 static void bge_sig_legacy(struct bge_softc *, int);
400 static void bge_sig_pre_reset(struct bge_softc *, int);
401 static int bge_reset(struct bge_softc *);
402 static void bge_link_upd(struct bge_softc *);
403
404 /*
405  * The BGE_REGISTER_DEBUG option is only for low-level debugging.  It may
406  * leak information to untrusted users.  It is also known to cause alignment
407  * traps on certain architectures.
408  */
409 #ifdef BGE_REGISTER_DEBUG
410 static int bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
411 static int bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS);
412 static int bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS);
413 #endif
414 static void bge_add_sysctls(struct bge_softc *);
415 static int bge_sysctl_stats(SYSCTL_HANDLER_ARGS);
416
417 static device_method_t bge_methods[] = {
418         /* Device interface */
419         DEVMETHOD(device_probe,         bge_probe),
420         DEVMETHOD(device_attach,        bge_attach),
421         DEVMETHOD(device_detach,        bge_detach),
422         DEVMETHOD(device_shutdown,      bge_shutdown),
423         DEVMETHOD(device_suspend,       bge_suspend),
424         DEVMETHOD(device_resume,        bge_resume),
425
426         /* bus interface */
427         DEVMETHOD(bus_print_child,      bus_generic_print_child),
428         DEVMETHOD(bus_driver_added,     bus_generic_driver_added),
429
430         /* MII interface */
431         DEVMETHOD(miibus_readreg,       bge_miibus_readreg),
432         DEVMETHOD(miibus_writereg,      bge_miibus_writereg),
433         DEVMETHOD(miibus_statchg,       bge_miibus_statchg),
434
435         { 0, 0 }
436 };
437
438 static driver_t bge_driver = {
439         "bge",
440         bge_methods,
441         sizeof(struct bge_softc)
442 };
443
444 static devclass_t bge_devclass;
445
446 DRIVER_MODULE(bge, pci, bge_driver, bge_devclass, 0, 0);
447 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0);
448
449 static int bge_allow_asf = 0;
450
451 TUNABLE_INT("hw.bge.allow_asf", &bge_allow_asf);
452
453 SYSCTL_NODE(_hw, OID_AUTO, bge, CTLFLAG_RD, 0, "BGE driver parameters");
454 SYSCTL_INT(_hw_bge, OID_AUTO, allow_asf, CTLFLAG_RD, &bge_allow_asf, 0,
455         "Allow ASF mode if available");
456
457 #define SPARC64_BLADE_1500_MODEL        "SUNW,Sun-Blade-1500"
458 #define SPARC64_BLADE_1500_PATH_BGE     "/pci@1f,700000/network@2"
459 #define SPARC64_BLADE_2500_MODEL        "SUNW,Sun-Blade-2500"
460 #define SPARC64_BLADE_2500_PATH_BGE     "/pci@1c,600000/network@3"
461 #define SPARC64_OFW_SUBVENDOR           "subsystem-vendor-id"
462
463 static int
464 bge_has_eaddr(struct bge_softc *sc)
465 {
466 #ifdef __sparc64__
467         char buf[sizeof(SPARC64_BLADE_1500_PATH_BGE)];
468         device_t dev;
469         uint32_t subvendor;
470
471         dev = sc->bge_dev;
472
473         /*
474          * The on-board BGEs found in sun4u machines aren't fitted with
475          * an EEPROM which means that we have to obtain the MAC address
476          * via OFW and that some tests will always fail.  We distinguish
477          * such BGEs by the subvendor ID, which also has to be obtained
478          * from OFW instead of the PCI configuration space as the latter
479          * indicates Broadcom as the subvendor of the netboot interface.
480          * For early Blade 1500 and 2500 we even have to check the OFW
481          * device path as the subvendor ID always defaults to Broadcom
482          * there.
483          */
484         if (OF_getprop(ofw_bus_get_node(dev), SPARC64_OFW_SUBVENDOR,
485             &subvendor, sizeof(subvendor)) == sizeof(subvendor) &&
486             subvendor == SUN_VENDORID)
487                 return (0);
488         memset(buf, 0, sizeof(buf));
489         if (OF_package_to_path(ofw_bus_get_node(dev), buf, sizeof(buf)) > 0) {
490                 if (strcmp(sparc64_model, SPARC64_BLADE_1500_MODEL) == 0 &&
491                     strcmp(buf, SPARC64_BLADE_1500_PATH_BGE) == 0)
492                         return (0);
493                 if (strcmp(sparc64_model, SPARC64_BLADE_2500_MODEL) == 0 &&
494                     strcmp(buf, SPARC64_BLADE_2500_PATH_BGE) == 0)
495                         return (0);
496         }
497 #endif
498         return (1);
499 }
500
501 static uint32_t
502 bge_readmem_ind(struct bge_softc *sc, int off)
503 {
504         device_t dev;
505         uint32_t val;
506
507         dev = sc->bge_dev;
508
509         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
510         val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4);
511         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
512         return (val);
513 }
514
515 static void
516 bge_writemem_ind(struct bge_softc *sc, int off, int val)
517 {
518         device_t dev;
519
520         dev = sc->bge_dev;
521
522         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
523         pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
524         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
525 }
526
527 /*
528  * PCI Express only
529  */
530 static void
531 bge_set_max_readrq(struct bge_softc *sc, int expr_ptr)
532 {
533         device_t dev;
534         uint16_t val;
535
536         KASSERT((sc->bge_flags & BGE_FLAG_PCIE) && expr_ptr != 0,
537             ("%s: not applicable", __func__));
538
539         dev = sc->bge_dev;
540
541         val = pci_read_config(dev, expr_ptr + BGE_PCIE_DEVCTL, 2);
542         if ((val & BGE_PCIE_DEVCTL_MAX_READRQ_MASK) !=
543             BGE_PCIE_DEVCTL_MAX_READRQ_4096) {
544                 if (bootverbose)
545                         device_printf(dev, "adjust device control 0x%04x ",
546                             val);
547                 val &= ~BGE_PCIE_DEVCTL_MAX_READRQ_MASK;
548                 val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
549                 pci_write_config(dev, expr_ptr + BGE_PCIE_DEVCTL, val, 2);
550                 if (bootverbose)
551                         printf("-> 0x%04x\n", val);
552         }
553 }
554
555 #ifdef notdef
556 static uint32_t
557 bge_readreg_ind(struct bge_softc *sc, int off)
558 {
559         device_t dev;
560
561         dev = sc->bge_dev;
562
563         pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
564         return (pci_read_config(dev, BGE_PCI_REG_DATA, 4));
565 }
566 #endif
567
568 static void
569 bge_writereg_ind(struct bge_softc *sc, int off, int val)
570 {
571         device_t dev;
572
573         dev = sc->bge_dev;
574
575         pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
576         pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
577 }
578
579 static void
580 bge_writemem_direct(struct bge_softc *sc, int off, int val)
581 {
582         CSR_WRITE_4(sc, off, val);
583 }
584
585 static void
586 bge_writembx(struct bge_softc *sc, int off, int val)
587 {
588         if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
589                 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
590
591         CSR_WRITE_4(sc, off, val);
592 }
593
594 /*
595  * Map a single buffer address.
596  */
597
598 static void
599 bge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
600 {
601         struct bge_dmamap_arg *ctx;
602
603         if (error)
604                 return;
605
606         ctx = arg;
607
608         if (nseg > ctx->bge_maxsegs) {
609                 ctx->bge_maxsegs = 0;
610                 return;
611         }
612
613         ctx->bge_busaddr = segs->ds_addr;
614 }
615
616 static uint8_t
617 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
618 {
619         uint32_t access, byte = 0;
620         int i;
621
622         /* Lock. */
623         CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
624         for (i = 0; i < 8000; i++) {
625                 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
626                         break;
627                 DELAY(20);
628         }
629         if (i == 8000)
630                 return (1);
631
632         /* Enable access. */
633         access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
634         CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
635
636         CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
637         CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
638         for (i = 0; i < BGE_TIMEOUT * 10; i++) {
639                 DELAY(10);
640                 if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
641                         DELAY(10);
642                         break;
643                 }
644         }
645
646         if (i == BGE_TIMEOUT * 10) {
647                 if_printf(sc->bge_ifp, "nvram read timed out\n");
648                 return (1);
649         }
650
651         /* Get result. */
652         byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
653
654         *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
655
656         /* Disable access. */
657         CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
658
659         /* Unlock. */
660         CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
661         CSR_READ_4(sc, BGE_NVRAM_SWARB);
662
663         return (0);
664 }
665
666 /*
667  * Read a sequence of bytes from NVRAM.
668  */
669 static int
670 bge_read_nvram(struct bge_softc *sc, caddr_t dest, int off, int cnt)
671 {
672         int err = 0, i;
673         uint8_t byte = 0;
674
675         if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
676                 return (1);
677
678         for (i = 0; i < cnt; i++) {
679                 err = bge_nvram_getbyte(sc, off + i, &byte);
680                 if (err)
681                         break;
682                 *(dest + i) = byte;
683         }
684
685         return (err ? 1 : 0);
686 }
687
688 /*
689  * Read a byte of data stored in the EEPROM at address 'addr.' The
690  * BCM570x supports both the traditional bitbang interface and an
691  * auto access interface for reading the EEPROM. We use the auto
692  * access method.
693  */
694 static uint8_t
695 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
696 {
697         int i;
698         uint32_t byte = 0;
699
700         /*
701          * Enable use of auto EEPROM access so we can avoid
702          * having to use the bitbang method.
703          */
704         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
705
706         /* Reset the EEPROM, load the clock period. */
707         CSR_WRITE_4(sc, BGE_EE_ADDR,
708             BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
709         DELAY(20);
710
711         /* Issue the read EEPROM command. */
712         CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
713
714         /* Wait for completion */
715         for(i = 0; i < BGE_TIMEOUT * 10; i++) {
716                 DELAY(10);
717                 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
718                         break;
719         }
720
721         if (i == BGE_TIMEOUT * 10) {
722                 device_printf(sc->bge_dev, "EEPROM read timed out\n");
723                 return (1);
724         }
725
726         /* Get result. */
727         byte = CSR_READ_4(sc, BGE_EE_DATA);
728
729         *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
730
731         return (0);
732 }
733
734 /*
735  * Read a sequence of bytes from the EEPROM.
736  */
737 static int
738 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, int off, int cnt)
739 {
740         int i, error = 0;
741         uint8_t byte = 0;
742
743         for (i = 0; i < cnt; i++) {
744                 error = bge_eeprom_getbyte(sc, off + i, &byte);
745                 if (error)
746                         break;
747                 *(dest + i) = byte;
748         }
749
750         return (error ? 1 : 0);
751 }
752
753 static int
754 bge_miibus_readreg(device_t dev, int phy, int reg)
755 {
756         struct bge_softc *sc;
757         uint32_t val, autopoll;
758         int i;
759
760         sc = device_get_softc(dev);
761
762         /*
763          * Broadcom's own driver always assumes the internal
764          * PHY is at GMII address 1. On some chips, the PHY responds
765          * to accesses at all addresses, which could cause us to
766          * bogusly attach the PHY 32 times at probe type. Always
767          * restricting the lookup to address 1 is simpler than
768          * trying to figure out which chips revisions should be
769          * special-cased.
770          */
771         if (phy != 1)
772                 return (0);
773
774         /* Reading with autopolling on may trigger PCI errors */
775         autopoll = CSR_READ_4(sc, BGE_MI_MODE);
776         if (autopoll & BGE_MIMODE_AUTOPOLL) {
777                 BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
778                 DELAY(40);
779         }
780
781         CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
782             BGE_MIPHY(phy) | BGE_MIREG(reg));
783
784         for (i = 0; i < BGE_TIMEOUT; i++) {
785                 DELAY(10);
786                 val = CSR_READ_4(sc, BGE_MI_COMM);
787                 if (!(val & BGE_MICOMM_BUSY))
788                         break;
789         }
790
791         if (i == BGE_TIMEOUT) {
792                 device_printf(sc->bge_dev,
793                     "PHY read timed out (phy %d, reg %d, val 0x%08x)\n",
794                     phy, reg, val);
795                 val = 0;
796                 goto done;
797         }
798
799         DELAY(5);
800         val = CSR_READ_4(sc, BGE_MI_COMM);
801
802 done:
803         if (autopoll & BGE_MIMODE_AUTOPOLL) {
804                 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
805                 DELAY(40);
806         }
807
808         if (val & BGE_MICOMM_READFAIL)
809                 return (0);
810
811         return (val & 0xFFFF);
812 }
813
814 static int
815 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
816 {
817         struct bge_softc *sc;
818         uint32_t autopoll;
819         int i;
820
821         sc = device_get_softc(dev);
822
823         if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
824             (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
825                 return(0);
826
827         /* Reading with autopolling on may trigger PCI errors */
828         autopoll = CSR_READ_4(sc, BGE_MI_MODE);
829         if (autopoll & BGE_MIMODE_AUTOPOLL) {
830                 BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
831                 DELAY(40);
832         }
833
834         CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
835             BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
836
837         for (i = 0; i < BGE_TIMEOUT; i++) {
838                 DELAY(10);
839                 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
840                         DELAY(5);
841                         CSR_READ_4(sc, BGE_MI_COMM); /* dummy read */
842                         break;
843                 }
844         }
845
846         if (i == BGE_TIMEOUT) {
847                 device_printf(sc->bge_dev,
848                     "PHY write timed out (phy %d, reg %d, val %d)\n",
849                     phy, reg, val);
850                 return (0);
851         }
852
853         if (autopoll & BGE_MIMODE_AUTOPOLL) {
854                 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
855                 DELAY(40);
856         }
857
858         return (0);
859 }
860
861 static void
862 bge_miibus_statchg(device_t dev)
863 {
864         struct bge_softc *sc;
865         struct mii_data *mii;
866         sc = device_get_softc(dev);
867         mii = device_get_softc(sc->bge_miibus);
868
869         BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
870         if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T)
871                 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
872         else
873                 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
874
875         if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
876                 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
877         else
878                 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
879 }
880
881 /*
882  * Intialize a standard receive ring descriptor.
883  */
884 static int
885 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m)
886 {
887         struct mbuf *m_new = NULL;
888         struct bge_rx_bd *r;
889         struct bge_dmamap_arg ctx;
890         int error;
891
892         if (m == NULL) {
893                 m_new = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
894                 if (m_new == NULL)
895                         return (ENOBUFS);
896                 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
897         } else {
898                 m_new = m;
899                 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
900                 m_new->m_data = m_new->m_ext.ext_buf;
901         }
902
903         if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
904                 m_adj(m_new, ETHER_ALIGN);
905         sc->bge_cdata.bge_rx_std_chain[i] = m_new;
906         r = &sc->bge_ldata.bge_rx_std_ring[i];
907         ctx.bge_maxsegs = 1;
908         ctx.sc = sc;
909         error = bus_dmamap_load(sc->bge_cdata.bge_mtag,
910             sc->bge_cdata.bge_rx_std_dmamap[i], mtod(m_new, void *),
911             m_new->m_len, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
912         if (error || ctx.bge_maxsegs == 0) {
913                 if (m == NULL) {
914                         sc->bge_cdata.bge_rx_std_chain[i] = NULL;
915                         m_freem(m_new);
916                 }
917                 return (ENOMEM);
918         }
919         r->bge_addr.bge_addr_lo = BGE_ADDR_LO(ctx.bge_busaddr);
920         r->bge_addr.bge_addr_hi = BGE_ADDR_HI(ctx.bge_busaddr);
921         r->bge_flags = BGE_RXBDFLAG_END;
922         r->bge_len = m_new->m_len;
923         r->bge_idx = i;
924
925         bus_dmamap_sync(sc->bge_cdata.bge_mtag,
926             sc->bge_cdata.bge_rx_std_dmamap[i],
927             BUS_DMASYNC_PREREAD);
928
929         return (0);
930 }
931
932 /*
933  * Initialize a jumbo receive ring descriptor. This allocates
934  * a jumbo buffer from the pool managed internally by the driver.
935  */
936 static int
937 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
938 {
939         bus_dma_segment_t segs[BGE_NSEG_JUMBO];
940         struct bge_extrx_bd *r;
941         struct mbuf *m_new = NULL;
942         int nsegs;
943         int error;
944
945         if (m == NULL) {
946                 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
947                 if (m_new == NULL)
948                         return (ENOBUFS);
949
950                 m_cljget(m_new, M_DONTWAIT, MJUM9BYTES);
951                 if (!(m_new->m_flags & M_EXT)) {
952                         m_freem(m_new);
953                         return (ENOBUFS);
954                 }
955                 m_new->m_len = m_new->m_pkthdr.len = MJUM9BYTES;
956         } else {
957                 m_new = m;
958                 m_new->m_len = m_new->m_pkthdr.len = MJUM9BYTES;
959                 m_new->m_data = m_new->m_ext.ext_buf;
960         }
961
962         if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
963                 m_adj(m_new, ETHER_ALIGN);
964
965         error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_mtag_jumbo,
966             sc->bge_cdata.bge_rx_jumbo_dmamap[i],
967             m_new, segs, &nsegs, BUS_DMA_NOWAIT);
968         if (error) {
969                 if (m == NULL)
970                         m_freem(m_new);
971                 return (error);
972         }
973         sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
974
975         /*
976          * Fill in the extended RX buffer descriptor.
977          */
978         r = &sc->bge_ldata.bge_rx_jumbo_ring[i];
979         r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END;
980         r->bge_idx = i;
981         r->bge_len3 = r->bge_len2 = r->bge_len1 = 0;
982         switch (nsegs) {
983         case 4:
984                 r->bge_addr3.bge_addr_lo = BGE_ADDR_LO(segs[3].ds_addr);
985                 r->bge_addr3.bge_addr_hi = BGE_ADDR_HI(segs[3].ds_addr);
986                 r->bge_len3 = segs[3].ds_len;
987         case 3:
988                 r->bge_addr2.bge_addr_lo = BGE_ADDR_LO(segs[2].ds_addr);
989                 r->bge_addr2.bge_addr_hi = BGE_ADDR_HI(segs[2].ds_addr);
990                 r->bge_len2 = segs[2].ds_len;
991         case 2:
992                 r->bge_addr1.bge_addr_lo = BGE_ADDR_LO(segs[1].ds_addr);
993                 r->bge_addr1.bge_addr_hi = BGE_ADDR_HI(segs[1].ds_addr);
994                 r->bge_len1 = segs[1].ds_len;
995         case 1:
996                 r->bge_addr0.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
997                 r->bge_addr0.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
998                 r->bge_len0 = segs[0].ds_len;
999                 break;
1000         default:
1001                 panic("%s: %d segments\n", __func__, nsegs);
1002         }
1003
1004         bus_dmamap_sync(sc->bge_cdata.bge_mtag,
1005             sc->bge_cdata.bge_rx_jumbo_dmamap[i],
1006             BUS_DMASYNC_PREREAD);
1007
1008         return (0);
1009 }
1010
1011 /*
1012  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1013  * that's 1MB or memory, which is a lot. For now, we fill only the first
1014  * 256 ring entries and hope that our CPU is fast enough to keep up with
1015  * the NIC.
1016  */
1017 static int
1018 bge_init_rx_ring_std(struct bge_softc *sc)
1019 {
1020         int i;
1021
1022         for (i = 0; i < BGE_SSLOTS; i++) {
1023                 if (bge_newbuf_std(sc, i, NULL) == ENOBUFS)
1024                         return (ENOBUFS);
1025         };
1026
1027         bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
1028             sc->bge_cdata.bge_rx_std_ring_map,
1029             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1030
1031         sc->bge_std = i - 1;
1032         bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1033
1034         return (0);
1035 }
1036
1037 static void
1038 bge_free_rx_ring_std(struct bge_softc *sc)
1039 {
1040         int i;
1041
1042         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1043                 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1044                         bus_dmamap_sync(sc->bge_cdata.bge_mtag,
1045                             sc->bge_cdata.bge_rx_std_dmamap[i],
1046                             BUS_DMASYNC_POSTREAD);
1047                         bus_dmamap_unload(sc->bge_cdata.bge_mtag,
1048                             sc->bge_cdata.bge_rx_std_dmamap[i]);
1049                         m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1050                         sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1051                 }
1052                 bzero((char *)&sc->bge_ldata.bge_rx_std_ring[i],
1053                     sizeof(struct bge_rx_bd));
1054         }
1055 }
1056
1057 static int
1058 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1059 {
1060         struct bge_rcb *rcb;
1061         int i;
1062
1063         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1064                 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1065                         return (ENOBUFS);
1066         };
1067
1068         bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
1069             sc->bge_cdata.bge_rx_jumbo_ring_map,
1070             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1071
1072         sc->bge_jumbo = i - 1;
1073
1074         rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1075         rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
1076                                     BGE_RCB_FLAG_USE_EXT_RX_BD);
1077         CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1078
1079         bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1080
1081         return (0);
1082 }
1083
1084 static void
1085 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1086 {
1087         int i;
1088
1089         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1090                 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1091                         bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1092                             sc->bge_cdata.bge_rx_jumbo_dmamap[i],
1093                             BUS_DMASYNC_POSTREAD);
1094                         bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
1095                             sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
1096                         m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1097                         sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1098                 }
1099                 bzero((char *)&sc->bge_ldata.bge_rx_jumbo_ring[i],
1100                     sizeof(struct bge_extrx_bd));
1101         }
1102 }
1103
1104 static void
1105 bge_free_tx_ring(struct bge_softc *sc)
1106 {
1107         int i;
1108
1109         if (sc->bge_ldata.bge_tx_ring == NULL)
1110                 return;
1111
1112         for (i = 0; i < BGE_TX_RING_CNT; i++) {
1113                 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1114                         bus_dmamap_sync(sc->bge_cdata.bge_mtag,
1115                             sc->bge_cdata.bge_tx_dmamap[i],
1116                             BUS_DMASYNC_POSTWRITE);
1117                         bus_dmamap_unload(sc->bge_cdata.bge_mtag,
1118                             sc->bge_cdata.bge_tx_dmamap[i]);
1119                         m_freem(sc->bge_cdata.bge_tx_chain[i]);
1120                         sc->bge_cdata.bge_tx_chain[i] = NULL;
1121                 }
1122                 bzero((char *)&sc->bge_ldata.bge_tx_ring[i],
1123                     sizeof(struct bge_tx_bd));
1124         }
1125 }
1126
1127 static int
1128 bge_init_tx_ring(struct bge_softc *sc)
1129 {
1130         sc->bge_txcnt = 0;
1131         sc->bge_tx_saved_considx = 0;
1132
1133         /* Initialize transmit producer index for host-memory send ring. */
1134         sc->bge_tx_prodidx = 0;
1135         bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1136
1137         /* 5700 b2 errata */
1138         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1139                 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1140
1141         /* NIC-memory send ring not used; initialize to zero. */
1142         bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1143         /* 5700 b2 errata */
1144         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1145                 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1146
1147         return (0);
1148 }
1149
1150 static void
1151 bge_setpromisc(struct bge_softc *sc)
1152 {
1153         struct ifnet *ifp;
1154
1155         BGE_LOCK_ASSERT(sc);
1156
1157         ifp = sc->bge_ifp;
1158
1159         /* Enable or disable promiscuous mode as needed. */
1160         if (ifp->if_flags & IFF_PROMISC)
1161                 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
1162         else
1163                 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
1164 }
1165
1166 static void
1167 bge_setmulti(struct bge_softc *sc)
1168 {
1169         struct ifnet *ifp;
1170         struct ifmultiaddr *ifma;
1171         uint32_t hashes[4] = { 0, 0, 0, 0 };
1172         int h, i;
1173
1174         BGE_LOCK_ASSERT(sc);
1175
1176         ifp = sc->bge_ifp;
1177
1178         if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
1179                 for (i = 0; i < 4; i++)
1180                         CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
1181                 return;
1182         }
1183
1184         /* First, zot all the existing filters. */
1185         for (i = 0; i < 4; i++)
1186                 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
1187
1188         /* Now program new ones. */
1189         IF_ADDR_LOCK(ifp);
1190         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1191                 if (ifma->ifma_addr->sa_family != AF_LINK)
1192                         continue;
1193                 h = ether_crc32_le(LLADDR((struct sockaddr_dl *)
1194                     ifma->ifma_addr), ETHER_ADDR_LEN) & 0x7F;
1195                 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1196         }
1197         IF_ADDR_UNLOCK(ifp);
1198
1199         for (i = 0; i < 4; i++)
1200                 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1201 }
1202
1203 static void
1204 bge_setvlan(struct bge_softc *sc)
1205 {
1206         struct ifnet *ifp;
1207
1208         BGE_LOCK_ASSERT(sc);
1209
1210         ifp = sc->bge_ifp;
1211
1212         /* Enable or disable VLAN tag stripping as needed. */
1213         if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
1214                 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
1215         else
1216                 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
1217 }
1218
1219 static void
1220 bge_sig_pre_reset(sc, type)
1221         struct bge_softc *sc;
1222         int type;
1223 {
1224         /*
1225          * Some chips don't like this so only do this if ASF is enabled
1226          */
1227         if (sc->bge_asf_mode)
1228                 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
1229
1230         if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1231                 switch (type) {
1232                 case BGE_RESET_START:
1233                         bge_writemem_ind(sc, BGE_SDI_STATUS, 0x1); /* START */
1234                         break;
1235                 case BGE_RESET_STOP:
1236                         bge_writemem_ind(sc, BGE_SDI_STATUS, 0x2); /* UNLOAD */
1237                         break;
1238                 }
1239         }
1240 }
1241
1242 static void
1243 bge_sig_post_reset(sc, type)
1244         struct bge_softc *sc;
1245         int type;
1246 {
1247         if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1248                 switch (type) {
1249                 case BGE_RESET_START:
1250                         bge_writemem_ind(sc, BGE_SDI_STATUS, 0x80000001); 
1251                         /* START DONE */
1252                         break;
1253                 case BGE_RESET_STOP:
1254                         bge_writemem_ind(sc, BGE_SDI_STATUS, 0x80000002); 
1255                         break;
1256                 }
1257         }
1258 }
1259
1260 static void
1261 bge_sig_legacy(sc, type)
1262         struct bge_softc *sc;
1263         int type;
1264 {
1265         if (sc->bge_asf_mode) {
1266                 switch (type) {
1267                 case BGE_RESET_START:
1268                         bge_writemem_ind(sc, BGE_SDI_STATUS, 0x1); /* START */
1269                         break;
1270                 case BGE_RESET_STOP:
1271                         bge_writemem_ind(sc, BGE_SDI_STATUS, 0x2); /* UNLOAD */
1272                         break;
1273                 }
1274         }
1275 }
1276
1277 void bge_stop_fw(struct bge_softc *);
1278 void
1279 bge_stop_fw(sc)
1280         struct bge_softc *sc;
1281 {
1282         int i;
1283
1284         if (sc->bge_asf_mode) {
1285                 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM_FW, BGE_FW_PAUSE);
1286                 CSR_WRITE_4(sc, BGE_CPU_EVENT,
1287                     CSR_READ_4(sc, BGE_CPU_EVENT) | (1 << 14));
1288
1289                 for (i = 0; i < 100; i++ ) {
1290                         if (!(CSR_READ_4(sc, BGE_CPU_EVENT) & (1 << 14)))
1291                                 break;
1292                         DELAY(10);
1293                 }
1294         }
1295 }
1296
1297 /*
1298  * Do endian, PCI and DMA initialization.
1299  */
1300 static int
1301 bge_chipinit(struct bge_softc *sc)
1302 {
1303         uint32_t dma_rw_ctl;
1304         int i;
1305
1306         /* Set endianness before we access any non-PCI registers. */
1307         pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, BGE_INIT, 4);
1308
1309         /* Clear the MAC control register */
1310         CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1311
1312         /*
1313          * Clear the MAC statistics block in the NIC's
1314          * internal memory.
1315          */
1316         for (i = BGE_STATS_BLOCK;
1317             i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1318                 BGE_MEMWIN_WRITE(sc, i, 0);
1319
1320         for (i = BGE_STATUS_BLOCK;
1321             i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1322                 BGE_MEMWIN_WRITE(sc, i, 0);
1323
1324         /*
1325          * Set up the PCI DMA control register.
1326          */
1327         dma_rw_ctl = BGE_PCIDMARWCTL_RD_CMD_SHIFT(6) |
1328             BGE_PCIDMARWCTL_WR_CMD_SHIFT(7);
1329         if (sc->bge_flags & BGE_FLAG_PCIE) {
1330                 /* Read watermark not used, 128 bytes for write. */
1331                 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1332         } else if (sc->bge_flags & BGE_FLAG_PCIX) {
1333                 if (BGE_IS_5714_FAMILY(sc)) {
1334                         /* 256 bytes for read and write. */
1335                         dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
1336                             BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
1337                         dma_rw_ctl |= (sc->bge_asicrev == BGE_ASICREV_BCM5780) ?
1338                             BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL :
1339                             BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
1340                 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1341                         /* 1536 bytes for read, 384 bytes for write. */
1342                         dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
1343                             BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1344                 } else {
1345                         /* 384 bytes for read and write. */
1346                         dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
1347                             BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
1348                             0x0F;
1349                 }
1350                 if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1351                     sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1352                         uint32_t tmp;
1353
1354                         /* Set ONE_DMA_AT_ONCE for hardware workaround. */
1355                         tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F;
1356                         if (tmp == 6 || tmp == 7)
1357                                 dma_rw_ctl |=
1358                                     BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1359
1360                         /* Set PCI-X DMA write workaround. */
1361                         dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
1362                 }
1363         } else {
1364                 /* Conventional PCI bus: 256 bytes for read and write. */
1365                 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
1366                     BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
1367
1368                 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1369                     sc->bge_asicrev != BGE_ASICREV_BCM5750)
1370                         dma_rw_ctl |= 0x0F;
1371         }
1372         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
1373             sc->bge_asicrev == BGE_ASICREV_BCM5701)
1374                 dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
1375                     BGE_PCIDMARWCTL_ASRT_ALL_BE;
1376         if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1377             sc->bge_asicrev == BGE_ASICREV_BCM5704)
1378                 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1379         pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1380
1381         /*
1382          * Set up general mode register.
1383          */
1384         CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
1385             BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
1386             BGE_MODECTL_TX_NO_PHDR_CSUM);
1387
1388         /*
1389          * BCM5701 B5 have a bug causing data corruption when using
1390          * 64-bit DMA reads, which can be terminated early and then
1391          * completed later as 32-bit accesses, in combination with
1392          * certain bridges.
1393          */
1394         if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
1395             sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
1396                 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_FORCE_PCI32);
1397
1398         /*
1399          * Tell the firmware the driver is running
1400          */
1401         if (sc->bge_asf_mode & ASF_STACKUP)
1402                 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
1403
1404         /*
1405          * Disable memory write invalidate.  Apparently it is not supported
1406          * properly by these devices.  Also ensure that INTx isn't disabled,
1407          * as these chips need it even when using MSI.
1408          */
1409         PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD,
1410             PCIM_CMD_INTxDIS | PCIM_CMD_MWIEN, 4);
1411
1412         /* Set the timer prescaler (always 66Mhz) */
1413         CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
1414
1415         /* XXX: The Linux tg3 driver does this at the start of brgphy_reset. */
1416         if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1417                 DELAY(40);      /* XXX */
1418
1419                 /* Put PHY into ready state */
1420                 BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
1421                 CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
1422                 DELAY(40);
1423         }
1424
1425         return (0);
1426 }
1427
1428 static int
1429 bge_blockinit(struct bge_softc *sc)
1430 {
1431         struct bge_rcb *rcb;
1432         bus_size_t vrcb;
1433         bge_hostaddr taddr;
1434         uint32_t val;
1435         int i;
1436
1437         /*
1438          * Initialize the memory window pointer register so that
1439          * we can access the first 32K of internal NIC RAM. This will
1440          * allow us to set up the TX send ring RCBs and the RX return
1441          * ring RCBs, plus other things which live in NIC memory.
1442          */
1443         CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1444
1445         /* Note: the BCM5704 has a smaller mbuf space than other chips. */
1446
1447         if (!(BGE_IS_5705_PLUS(sc))) {
1448                 /* Configure mbuf memory pool */
1449                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
1450                 if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1451                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1452                 else
1453                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1454
1455                 /* Configure DMA resource pool */
1456                 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1457                     BGE_DMA_DESCRIPTORS);
1458                 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1459         }
1460
1461         /* Configure mbuf pool watermarks */
1462         if (!BGE_IS_5705_PLUS(sc)) {
1463                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1464                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1465                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1466         } else if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1467                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1468                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
1469                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
1470         } else {
1471                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1472                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1473                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1474         }
1475
1476         /* Configure DMA resource watermarks */
1477         CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1478         CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1479
1480         /* Enable buffer manager */
1481         if (!(BGE_IS_5705_PLUS(sc))) {
1482                 CSR_WRITE_4(sc, BGE_BMAN_MODE,
1483                     BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN);
1484
1485                 /* Poll for buffer manager start indication */
1486                 for (i = 0; i < BGE_TIMEOUT; i++) {
1487                         DELAY(10);
1488                         if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1489                                 break;
1490                 }
1491
1492                 if (i == BGE_TIMEOUT) {
1493                         device_printf(sc->bge_dev,
1494                             "buffer manager failed to start\n");
1495                         return (ENXIO);
1496                 }
1497         }
1498
1499         /* Enable flow-through queues */
1500         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1501         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1502
1503         /* Wait until queue initialization is complete */
1504         for (i = 0; i < BGE_TIMEOUT; i++) {
1505                 DELAY(10);
1506                 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1507                         break;
1508         }
1509
1510         if (i == BGE_TIMEOUT) {
1511                 device_printf(sc->bge_dev, "flow-through queue init failed\n");
1512                 return (ENXIO);
1513         }
1514
1515         /* Initialize the standard RX ring control block */
1516         rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb;
1517         rcb->bge_hostaddr.bge_addr_lo =
1518             BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr);
1519         rcb->bge_hostaddr.bge_addr_hi =
1520             BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr);
1521         bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
1522             sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREREAD);
1523         if (BGE_IS_5705_PLUS(sc))
1524                 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1525         else
1526                 rcb->bge_maxlen_flags =
1527                     BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1528         rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1529         CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1530         CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1531
1532         CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1533         CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1534
1535         /*
1536          * Initialize the jumbo RX ring control block
1537          * We set the 'ring disabled' bit in the flags
1538          * field until we're actually ready to start
1539          * using this ring (i.e. once we set the MTU
1540          * high enough to require it).
1541          */
1542         if (BGE_IS_JUMBO_CAPABLE(sc)) {
1543                 rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1544
1545                 rcb->bge_hostaddr.bge_addr_lo =
1546                     BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1547                 rcb->bge_hostaddr.bge_addr_hi =
1548                     BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1549                 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
1550                     sc->bge_cdata.bge_rx_jumbo_ring_map,
1551                     BUS_DMASYNC_PREREAD);
1552                 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
1553                     BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
1554                 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1555                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1556                     rcb->bge_hostaddr.bge_addr_hi);
1557                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1558                     rcb->bge_hostaddr.bge_addr_lo);
1559
1560                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1561                     rcb->bge_maxlen_flags);
1562                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1563
1564                 /* Set up dummy disabled mini ring RCB */
1565                 rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb;
1566                 rcb->bge_maxlen_flags =
1567                     BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
1568                 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1569                     rcb->bge_maxlen_flags);
1570         }
1571
1572         /*
1573          * Set the BD ring replentish thresholds. The recommended
1574          * values are 1/8th the number of descriptors allocated to
1575          * each ring.
1576          * XXX The 5754 requires a lower threshold, so it might be a
1577          * requirement of all 575x family chips.  The Linux driver sets
1578          * the lower threshold for all 5705 family chips as well, but there
1579          * are reports that it might not need to be so strict.
1580          *
1581          * XXX Linux does some extra fiddling here for the 5906 parts as
1582          * well.
1583          */
1584         if (BGE_IS_5705_PLUS(sc))
1585                 val = 8;
1586         else
1587                 val = BGE_STD_RX_RING_CNT / 8;
1588         CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val);
1589         CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
1590
1591         /*
1592          * Disable all unused send rings by setting the 'ring disabled'
1593          * bit in the flags field of all the TX send ring control blocks.
1594          * These are located in NIC memory.
1595          */
1596         vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1597         for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
1598                 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1599                     BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
1600                 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1601                 vrcb += sizeof(struct bge_rcb);
1602         }
1603
1604         /* Configure TX RCB 0 (we use only the first ring) */
1605         vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1606         BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr);
1607         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1608         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1609         RCB_WRITE_4(sc, vrcb, bge_nicaddr,
1610             BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1611         if (!(BGE_IS_5705_PLUS(sc)))
1612                 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1613                     BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
1614
1615         /* Disable all unused RX return rings */
1616         vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1617         for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
1618                 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0);
1619                 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0);
1620                 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1621                     BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
1622                     BGE_RCB_FLAG_RING_DISABLED));
1623                 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1624                 bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
1625                     (i * (sizeof(uint64_t))), 0);
1626                 vrcb += sizeof(struct bge_rcb);
1627         }
1628
1629         /* Initialize RX ring indexes */
1630         bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1631         bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1632         bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1633
1634         /*
1635          * Set up RX return ring 0
1636          * Note that the NIC address for RX return rings is 0x00000000.
1637          * The return rings live entirely within the host, so the
1638          * nicaddr field in the RCB isn't used.
1639          */
1640         vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1641         BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr);
1642         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1643         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1644         RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0x00000000);
1645         RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1646             BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));  
1647
1648         /* Set random backoff seed for TX */
1649         CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1650             IF_LLADDR(sc->bge_ifp)[0] + IF_LLADDR(sc->bge_ifp)[1] +
1651             IF_LLADDR(sc->bge_ifp)[2] + IF_LLADDR(sc->bge_ifp)[3] +
1652             IF_LLADDR(sc->bge_ifp)[4] + IF_LLADDR(sc->bge_ifp)[5] +
1653             BGE_TX_BACKOFF_SEED_MASK);
1654
1655         /* Set inter-packet gap */
1656         CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1657
1658         /*
1659          * Specify which ring to use for packets that don't match
1660          * any RX rules.
1661          */
1662         CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1663
1664         /*
1665          * Configure number of RX lists. One interrupt distribution
1666          * list, sixteen active lists, one bad frames class.
1667          */
1668         CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1669
1670         /* Inialize RX list placement stats mask. */
1671         CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1672         CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1673
1674         /* Disable host coalescing until we get it set up */
1675         CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1676
1677         /* Poll to make sure it's shut down. */
1678         for (i = 0; i < BGE_TIMEOUT; i++) {
1679                 DELAY(10);
1680                 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1681                         break;
1682         }
1683
1684         if (i == BGE_TIMEOUT) {
1685                 device_printf(sc->bge_dev,
1686                     "host coalescing engine failed to idle\n");
1687                 return (ENXIO);
1688         }
1689
1690         /* Set up host coalescing defaults */
1691         CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1692         CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1693         CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1694         CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1695         if (!(BGE_IS_5705_PLUS(sc))) {
1696                 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1697                 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1698         }
1699         CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 1);
1700         CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 1);
1701
1702         /* Set up address of statistics block */
1703         if (!(BGE_IS_5705_PLUS(sc))) {
1704                 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI,
1705                     BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr));
1706                 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
1707                     BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr));
1708                 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1709                 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1710                 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1711         }
1712
1713         /* Set up address of status block */
1714         CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI,
1715             BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr));
1716         CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
1717             BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr));
1718         sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx = 0;
1719         sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx = 0;
1720
1721         /* Turn on host coalescing state machine */
1722         CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
1723
1724         /* Turn on RX BD completion state machine and enable attentions */
1725         CSR_WRITE_4(sc, BGE_RBDC_MODE,
1726             BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
1727
1728         /* Turn on RX list placement state machine */
1729         CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1730
1731         /* Turn on RX list selector state machine. */
1732         if (!(BGE_IS_5705_PLUS(sc)))
1733                 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1734
1735         /* Turn on DMA, clear stats */
1736         CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB |
1737             BGE_MACMODE_RXDMA_ENB | BGE_MACMODE_RX_STATS_CLEAR |
1738             BGE_MACMODE_TX_STATS_CLEAR | BGE_MACMODE_RX_STATS_ENB |
1739             BGE_MACMODE_TX_STATS_ENB | BGE_MACMODE_FRMHDR_DMA_ENB |
1740             ((sc->bge_flags & BGE_FLAG_TBI) ?
1741             BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
1742
1743         /* Set misc. local control, enable interrupts on attentions */
1744         CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
1745
1746 #ifdef notdef
1747         /* Assert GPIO pins for PHY reset */
1748         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0 |
1749             BGE_MLC_MISCIO_OUT1 | BGE_MLC_MISCIO_OUT2);
1750         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0 |
1751             BGE_MLC_MISCIO_OUTEN1 | BGE_MLC_MISCIO_OUTEN2);
1752 #endif
1753
1754         /* Turn on DMA completion state machine */
1755         if (!(BGE_IS_5705_PLUS(sc)))
1756                 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1757
1758         val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
1759
1760         /* Enable host coalescing bug fix. */
1761         if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
1762             sc->bge_asicrev == BGE_ASICREV_BCM5787)
1763                 val |= 1 << 29;
1764
1765         /* Turn on write DMA state machine */
1766         CSR_WRITE_4(sc, BGE_WDMA_MODE, val);
1767         DELAY(40);
1768
1769         /* Turn on read DMA state machine */
1770         val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
1771         if (sc->bge_flags & BGE_FLAG_PCIE)
1772                 val |= BGE_RDMAMODE_FIFO_LONG_BURST;
1773         CSR_WRITE_4(sc, BGE_RDMA_MODE, val);
1774         DELAY(40);
1775
1776         /* Turn on RX data completion state machine */
1777         CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1778
1779         /* Turn on RX BD initiator state machine */
1780         CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1781
1782         /* Turn on RX data and RX BD initiator state machine */
1783         CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1784
1785         /* Turn on Mbuf cluster free state machine */
1786         if (!(BGE_IS_5705_PLUS(sc)))
1787                 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1788
1789         /* Turn on send BD completion state machine */
1790         CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1791
1792         /* Turn on send data completion state machine */
1793         CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
1794
1795         /* Turn on send data initiator state machine */
1796         CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1797
1798         /* Turn on send BD initiator state machine */
1799         CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1800
1801         /* Turn on send BD selector state machine */
1802         CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1803
1804         CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1805         CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1806             BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
1807
1808         /* ack/clear link change events */
1809         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
1810             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
1811             BGE_MACSTAT_LINK_CHANGED);
1812         CSR_WRITE_4(sc, BGE_MI_STS, 0);
1813
1814         /* Enable PHY auto polling (for MII/GMII only) */
1815         if (sc->bge_flags & BGE_FLAG_TBI) {
1816                 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1817         } else {
1818                 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL | (10 << 16));
1819                 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
1820                     sc->bge_chipid != BGE_CHIPID_BCM5700_B2)
1821                         CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1822                             BGE_EVTENB_MI_INTERRUPT);
1823         }
1824
1825         /*
1826          * Clear any pending link state attention.
1827          * Otherwise some link state change events may be lost until attention
1828          * is cleared by bge_intr() -> bge_link_upd() sequence.
1829          * It's not necessary on newer BCM chips - perhaps enabling link
1830          * state change attentions implies clearing pending attention.
1831          */
1832         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
1833             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
1834             BGE_MACSTAT_LINK_CHANGED);
1835
1836         /* Enable link state change attentions. */
1837         BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1838
1839         return (0);
1840 }
1841
1842 const struct bge_revision *
1843 bge_lookup_rev(uint32_t chipid)
1844 {
1845         const struct bge_revision *br;
1846
1847         for (br = bge_revisions; br->br_name != NULL; br++) {
1848                 if (br->br_chipid == chipid)
1849                         return (br);
1850         }
1851
1852         for (br = bge_majorrevs; br->br_name != NULL; br++) {
1853                 if (br->br_chipid == BGE_ASICREV(chipid))
1854                         return (br);
1855         }
1856
1857         return (NULL);
1858 }
1859
1860 const struct bge_vendor *
1861 bge_lookup_vendor(uint16_t vid)
1862 {
1863         const struct bge_vendor *v;
1864
1865         for (v = bge_vendors; v->v_name != NULL; v++)
1866                 if (v->v_id == vid)
1867                         return (v);
1868                 
1869         panic("%s: unknown vendor %d", __func__, vid);
1870         return (NULL);
1871 }
1872
1873 /*
1874  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
1875  * against our list and return its name if we find a match.
1876  *
1877  * Note that since the Broadcom controller contains VPD support, we
1878  * try to get the device name string from the controller itself instead
1879  * of the compiled-in string. It guarantees we'll always announce the
1880  * right product name. We fall back to the compiled-in string when
1881  * VPD is unavailable or corrupt.
1882  */
1883 static int
1884 bge_probe(device_t dev)
1885 {
1886         const struct bge_type *t = bge_devs;
1887         struct bge_softc *sc = device_get_softc(dev);
1888         uint16_t vid, did;
1889
1890         sc->bge_dev = dev;
1891         vid = pci_get_vendor(dev);
1892         did = pci_get_device(dev);
1893         while(t->bge_vid != 0) {
1894                 if ((vid == t->bge_vid) && (did == t->bge_did)) {
1895                         char model[64], buf[96];
1896                         const struct bge_revision *br;
1897                         const struct bge_vendor *v;
1898                         uint32_t id;
1899
1900                         id = pci_read_config(dev, BGE_PCI_MISC_CTL, 4) &
1901                             BGE_PCIMISCCTL_ASICREV;
1902                         br = bge_lookup_rev(id);
1903                         v = bge_lookup_vendor(vid);
1904                         {
1905 #if __FreeBSD_version > 700024
1906                                 const char *pname;
1907
1908                                 if (bge_has_eaddr(sc) &&
1909                                     pci_get_vpd_ident(dev, &pname) == 0)
1910                                         snprintf(model, 64, "%s", pname);
1911                                 else
1912 #endif
1913                                         snprintf(model, 64, "%s %s",
1914                                             v->v_name,
1915                                             br != NULL ? br->br_name :
1916                                             "NetXtreme Ethernet Controller");
1917                         }
1918                         snprintf(buf, 96, "%s, %sASIC rev. %#04x", model,
1919                             br != NULL ? "" : "unknown ", id >> 16);
1920                         device_set_desc_copy(dev, buf);
1921                         if (pci_get_subvendor(dev) == DELL_VENDORID)
1922                                 sc->bge_flags |= BGE_FLAG_NO_3LED;
1923                         if (did == BCOM_DEVICEID_BCM5755M)
1924                                 sc->bge_flags |= BGE_FLAG_ADJUST_TRIM;
1925                         return (0);
1926                 }
1927                 t++;
1928         }
1929
1930         return (ENXIO);
1931 }
1932
1933 static void
1934 bge_dma_free(struct bge_softc *sc)
1935 {
1936         int i;
1937
1938         /* Destroy DMA maps for RX buffers. */
1939         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1940                 if (sc->bge_cdata.bge_rx_std_dmamap[i])
1941                         bus_dmamap_destroy(sc->bge_cdata.bge_mtag,
1942                             sc->bge_cdata.bge_rx_std_dmamap[i]);
1943         }
1944
1945         /* Destroy DMA maps for jumbo RX buffers. */
1946         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1947                 if (sc->bge_cdata.bge_rx_jumbo_dmamap[i])
1948                         bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
1949                             sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
1950         }
1951
1952         /* Destroy DMA maps for TX buffers. */
1953         for (i = 0; i < BGE_TX_RING_CNT; i++) {
1954                 if (sc->bge_cdata.bge_tx_dmamap[i])
1955                         bus_dmamap_destroy(sc->bge_cdata.bge_mtag,
1956                             sc->bge_cdata.bge_tx_dmamap[i]);
1957         }
1958
1959         if (sc->bge_cdata.bge_mtag)
1960                 bus_dma_tag_destroy(sc->bge_cdata.bge_mtag);
1961
1962
1963         /* Destroy standard RX ring. */
1964         if (sc->bge_cdata.bge_rx_std_ring_map)
1965                 bus_dmamap_unload(sc->bge_cdata.bge_rx_std_ring_tag,
1966                     sc->bge_cdata.bge_rx_std_ring_map);
1967         if (sc->bge_cdata.bge_rx_std_ring_map && sc->bge_ldata.bge_rx_std_ring)
1968                 bus_dmamem_free(sc->bge_cdata.bge_rx_std_ring_tag,
1969                     sc->bge_ldata.bge_rx_std_ring,
1970                     sc->bge_cdata.bge_rx_std_ring_map);
1971
1972         if (sc->bge_cdata.bge_rx_std_ring_tag)
1973                 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_std_ring_tag);
1974
1975         /* Destroy jumbo RX ring. */
1976         if (sc->bge_cdata.bge_rx_jumbo_ring_map)
1977                 bus_dmamap_unload(sc->bge_cdata.bge_rx_jumbo_ring_tag,
1978                     sc->bge_cdata.bge_rx_jumbo_ring_map);
1979
1980         if (sc->bge_cdata.bge_rx_jumbo_ring_map &&
1981             sc->bge_ldata.bge_rx_jumbo_ring)
1982                 bus_dmamem_free(sc->bge_cdata.bge_rx_jumbo_ring_tag,
1983                     sc->bge_ldata.bge_rx_jumbo_ring,
1984                     sc->bge_cdata.bge_rx_jumbo_ring_map);
1985
1986         if (sc->bge_cdata.bge_rx_jumbo_ring_tag)
1987                 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_jumbo_ring_tag);
1988
1989         /* Destroy RX return ring. */
1990         if (sc->bge_cdata.bge_rx_return_ring_map)
1991                 bus_dmamap_unload(sc->bge_cdata.bge_rx_return_ring_tag,
1992                     sc->bge_cdata.bge_rx_return_ring_map);
1993
1994         if (sc->bge_cdata.bge_rx_return_ring_map &&
1995             sc->bge_ldata.bge_rx_return_ring)
1996                 bus_dmamem_free(sc->bge_cdata.bge_rx_return_ring_tag,
1997                     sc->bge_ldata.bge_rx_return_ring,
1998                     sc->bge_cdata.bge_rx_return_ring_map);
1999
2000         if (sc->bge_cdata.bge_rx_return_ring_tag)
2001                 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_return_ring_tag);
2002
2003         /* Destroy TX ring. */
2004         if (sc->bge_cdata.bge_tx_ring_map)
2005                 bus_dmamap_unload(sc->bge_cdata.bge_tx_ring_tag,
2006                     sc->bge_cdata.bge_tx_ring_map);
2007
2008         if (sc->bge_cdata.bge_tx_ring_map && sc->bge_ldata.bge_tx_ring)
2009                 bus_dmamem_free(sc->bge_cdata.bge_tx_ring_tag,
2010                     sc->bge_ldata.bge_tx_ring,
2011                     sc->bge_cdata.bge_tx_ring_map);
2012
2013         if (sc->bge_cdata.bge_tx_ring_tag)
2014                 bus_dma_tag_destroy(sc->bge_cdata.bge_tx_ring_tag);
2015
2016         /* Destroy status block. */
2017         if (sc->bge_cdata.bge_status_map)
2018                 bus_dmamap_unload(sc->bge_cdata.bge_status_tag,
2019                     sc->bge_cdata.bge_status_map);
2020
2021         if (sc->bge_cdata.bge_status_map && sc->bge_ldata.bge_status_block)
2022                 bus_dmamem_free(sc->bge_cdata.bge_status_tag,
2023                     sc->bge_ldata.bge_status_block,
2024                     sc->bge_cdata.bge_status_map);
2025
2026         if (sc->bge_cdata.bge_status_tag)
2027                 bus_dma_tag_destroy(sc->bge_cdata.bge_status_tag);
2028
2029         /* Destroy statistics block. */
2030         if (sc->bge_cdata.bge_stats_map)
2031                 bus_dmamap_unload(sc->bge_cdata.bge_stats_tag,
2032                     sc->bge_cdata.bge_stats_map);
2033
2034         if (sc->bge_cdata.bge_stats_map && sc->bge_ldata.bge_stats)
2035                 bus_dmamem_free(sc->bge_cdata.bge_stats_tag,
2036                     sc->bge_ldata.bge_stats,
2037                     sc->bge_cdata.bge_stats_map);
2038
2039         if (sc->bge_cdata.bge_stats_tag)
2040                 bus_dma_tag_destroy(sc->bge_cdata.bge_stats_tag);
2041
2042         /* Destroy the parent tag. */
2043         if (sc->bge_cdata.bge_parent_tag)
2044                 bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag);
2045 }
2046
2047 static int
2048 bge_dma_alloc(device_t dev)
2049 {
2050         struct bge_dmamap_arg ctx;
2051         struct bge_softc *sc;
2052         int i, error;
2053
2054         sc = device_get_softc(dev);
2055
2056         /*
2057          * Allocate the parent bus DMA tag appropriate for PCI.
2058          */
2059         error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev),
2060             1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2061             NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
2062             0, NULL, NULL, &sc->bge_cdata.bge_parent_tag);
2063
2064         if (error != 0) {
2065                 device_printf(sc->bge_dev,
2066                     "could not allocate parent dma tag\n");
2067                 return (ENOMEM);
2068         }
2069
2070         /*
2071          * Create tag for mbufs.
2072          */
2073         error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 1,
2074             0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2075             NULL, MCLBYTES * BGE_NSEG_NEW, BGE_NSEG_NEW, MCLBYTES,
2076             BUS_DMA_ALLOCNOW, NULL, NULL, &sc->bge_cdata.bge_mtag);
2077
2078         if (error) {
2079                 device_printf(sc->bge_dev, "could not allocate dma tag\n");
2080                 return (ENOMEM);
2081         }
2082
2083         /* Create DMA maps for RX buffers. */
2084         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
2085                 error = bus_dmamap_create(sc->bge_cdata.bge_mtag, 0,
2086                             &sc->bge_cdata.bge_rx_std_dmamap[i]);
2087                 if (error) {
2088                         device_printf(sc->bge_dev,
2089                             "can't create DMA map for RX\n");
2090                         return (ENOMEM);
2091                 }
2092         }
2093
2094         /* Create DMA maps for TX buffers. */
2095         for (i = 0; i < BGE_TX_RING_CNT; i++) {
2096                 error = bus_dmamap_create(sc->bge_cdata.bge_mtag, 0,
2097                             &sc->bge_cdata.bge_tx_dmamap[i]);
2098                 if (error) {
2099                         device_printf(sc->bge_dev,
2100                             "can't create DMA map for RX\n");
2101                         return (ENOMEM);
2102                 }
2103         }
2104
2105         /* Create tag for standard RX ring. */
2106         error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2107             PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2108             NULL, BGE_STD_RX_RING_SZ, 1, BGE_STD_RX_RING_SZ, 0,
2109             NULL, NULL, &sc->bge_cdata.bge_rx_std_ring_tag);
2110
2111         if (error) {
2112                 device_printf(sc->bge_dev, "could not allocate dma tag\n");
2113                 return (ENOMEM);
2114         }
2115
2116         /* Allocate DMA'able memory for standard RX ring. */
2117         error = bus_dmamem_alloc(sc->bge_cdata.bge_rx_std_ring_tag,
2118             (void **)&sc->bge_ldata.bge_rx_std_ring, BUS_DMA_NOWAIT,
2119             &sc->bge_cdata.bge_rx_std_ring_map);
2120         if (error)
2121                 return (ENOMEM);
2122
2123         bzero((char *)sc->bge_ldata.bge_rx_std_ring, BGE_STD_RX_RING_SZ);
2124
2125         /* Load the address of the standard RX ring. */
2126         ctx.bge_maxsegs = 1;
2127         ctx.sc = sc;
2128
2129         error = bus_dmamap_load(sc->bge_cdata.bge_rx_std_ring_tag,
2130             sc->bge_cdata.bge_rx_std_ring_map, sc->bge_ldata.bge_rx_std_ring,
2131             BGE_STD_RX_RING_SZ, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
2132
2133         if (error)
2134                 return (ENOMEM);
2135
2136         sc->bge_ldata.bge_rx_std_ring_paddr = ctx.bge_busaddr;
2137
2138         /* Create tags for jumbo mbufs. */
2139         if (BGE_IS_JUMBO_CAPABLE(sc)) {
2140                 error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2141                     1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2142                     NULL, MJUM9BYTES, BGE_NSEG_JUMBO, PAGE_SIZE,
2143                     0, NULL, NULL, &sc->bge_cdata.bge_mtag_jumbo);
2144                 if (error) {
2145                         device_printf(sc->bge_dev,
2146                             "could not allocate jumbo dma tag\n");
2147                         return (ENOMEM);
2148                 }
2149
2150                 /* Create tag for jumbo RX ring. */
2151                 error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2152                     PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2153                     NULL, BGE_JUMBO_RX_RING_SZ, 1, BGE_JUMBO_RX_RING_SZ, 0,
2154                     NULL, NULL, &sc->bge_cdata.bge_rx_jumbo_ring_tag);
2155
2156                 if (error) {
2157                         device_printf(sc->bge_dev,
2158                             "could not allocate jumbo ring dma tag\n");
2159                         return (ENOMEM);
2160                 }
2161
2162                 /* Allocate DMA'able memory for jumbo RX ring. */
2163                 error = bus_dmamem_alloc(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2164                     (void **)&sc->bge_ldata.bge_rx_jumbo_ring,
2165                     BUS_DMA_NOWAIT | BUS_DMA_ZERO,
2166                     &sc->bge_cdata.bge_rx_jumbo_ring_map);
2167                 if (error)
2168                         return (ENOMEM);
2169
2170                 /* Load the address of the jumbo RX ring. */
2171                 ctx.bge_maxsegs = 1;
2172                 ctx.sc = sc;
2173
2174                 error = bus_dmamap_load(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2175                     sc->bge_cdata.bge_rx_jumbo_ring_map,
2176                     sc->bge_ldata.bge_rx_jumbo_ring, BGE_JUMBO_RX_RING_SZ,
2177                     bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
2178
2179                 if (error)
2180                         return (ENOMEM);
2181
2182                 sc->bge_ldata.bge_rx_jumbo_ring_paddr = ctx.bge_busaddr;
2183
2184                 /* Create DMA maps for jumbo RX buffers. */
2185                 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
2186                         error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
2187                                     0, &sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
2188                         if (error) {
2189                                 device_printf(sc->bge_dev,
2190                                     "can't create DMA map for jumbo RX\n");
2191                                 return (ENOMEM);
2192                         }
2193                 }
2194
2195         }
2196
2197         /* Create tag for RX return ring. */
2198         error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2199             PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2200             NULL, BGE_RX_RTN_RING_SZ(sc), 1, BGE_RX_RTN_RING_SZ(sc), 0,
2201             NULL, NULL, &sc->bge_cdata.bge_rx_return_ring_tag);
2202
2203         if (error) {
2204                 device_printf(sc->bge_dev, "could not allocate dma tag\n");
2205                 return (ENOMEM);
2206         }
2207
2208         /* Allocate DMA'able memory for RX return ring. */
2209         error = bus_dmamem_alloc(sc->bge_cdata.bge_rx_return_ring_tag,
2210             (void **)&sc->bge_ldata.bge_rx_return_ring, BUS_DMA_NOWAIT,
2211             &sc->bge_cdata.bge_rx_return_ring_map);
2212         if (error)
2213                 return (ENOMEM);
2214
2215         bzero((char *)sc->bge_ldata.bge_rx_return_ring,
2216             BGE_RX_RTN_RING_SZ(sc));
2217
2218         /* Load the address of the RX return ring. */
2219         ctx.bge_maxsegs = 1;
2220         ctx.sc = sc;
2221
2222         error = bus_dmamap_load(sc->bge_cdata.bge_rx_return_ring_tag,
2223             sc->bge_cdata.bge_rx_return_ring_map,
2224             sc->bge_ldata.bge_rx_return_ring, BGE_RX_RTN_RING_SZ(sc),
2225             bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
2226
2227         if (error)
2228                 return (ENOMEM);
2229
2230         sc->bge_ldata.bge_rx_return_ring_paddr = ctx.bge_busaddr;
2231
2232         /* Create tag for TX ring. */
2233         error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2234             PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2235             NULL, BGE_TX_RING_SZ, 1, BGE_TX_RING_SZ, 0, NULL, NULL,
2236             &sc->bge_cdata.bge_tx_ring_tag);
2237
2238         if (error) {
2239                 device_printf(sc->bge_dev, "could not allocate dma tag\n");
2240                 return (ENOMEM);
2241         }
2242
2243         /* Allocate DMA'able memory for TX ring. */
2244         error = bus_dmamem_alloc(sc->bge_cdata.bge_tx_ring_tag,
2245             (void **)&sc->bge_ldata.bge_tx_ring, BUS_DMA_NOWAIT,
2246             &sc->bge_cdata.bge_tx_ring_map);
2247         if (error)
2248                 return (ENOMEM);
2249
2250         bzero((char *)sc->bge_ldata.bge_tx_ring, BGE_TX_RING_SZ);
2251
2252         /* Load the address of the TX ring. */
2253         ctx.bge_maxsegs = 1;
2254         ctx.sc = sc;
2255
2256         error = bus_dmamap_load(sc->bge_cdata.bge_tx_ring_tag,
2257             sc->bge_cdata.bge_tx_ring_map, sc->bge_ldata.bge_tx_ring,
2258             BGE_TX_RING_SZ, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
2259
2260         if (error)
2261                 return (ENOMEM);
2262
2263         sc->bge_ldata.bge_tx_ring_paddr = ctx.bge_busaddr;
2264
2265         /* Create tag for status block. */
2266         error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2267             PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2268             NULL, BGE_STATUS_BLK_SZ, 1, BGE_STATUS_BLK_SZ, 0,
2269             NULL, NULL, &sc->bge_cdata.bge_status_tag);
2270
2271         if (error) {
2272                 device_printf(sc->bge_dev, "could not allocate dma tag\n");
2273                 return (ENOMEM);
2274         }
2275
2276         /* Allocate DMA'able memory for status block. */
2277         error = bus_dmamem_alloc(sc->bge_cdata.bge_status_tag,
2278             (void **)&sc->bge_ldata.bge_status_block, BUS_DMA_NOWAIT,
2279             &sc->bge_cdata.bge_status_map);
2280         if (error)
2281                 return (ENOMEM);
2282
2283         bzero((char *)sc->bge_ldata.bge_status_block, BGE_STATUS_BLK_SZ);
2284
2285         /* Load the address of the status block. */
2286         ctx.sc = sc;
2287         ctx.bge_maxsegs = 1;
2288
2289         error = bus_dmamap_load(sc->bge_cdata.bge_status_tag,
2290             sc->bge_cdata.bge_status_map, sc->bge_ldata.bge_status_block,
2291             BGE_STATUS_BLK_SZ, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
2292
2293         if (error)
2294                 return (ENOMEM);
2295
2296         sc->bge_ldata.bge_status_block_paddr = ctx.bge_busaddr;
2297
2298         /* Create tag for statistics block. */
2299         error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2300             PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2301             NULL, BGE_STATS_SZ, 1, BGE_STATS_SZ, 0, NULL, NULL,
2302             &sc->bge_cdata.bge_stats_tag);
2303
2304         if (error) {
2305                 device_printf(sc->bge_dev, "could not allocate dma tag\n");
2306                 return (ENOMEM);
2307         }
2308
2309         /* Allocate DMA'able memory for statistics block. */
2310         error = bus_dmamem_alloc(sc->bge_cdata.bge_stats_tag,
2311             (void **)&sc->bge_ldata.bge_stats, BUS_DMA_NOWAIT,
2312             &sc->bge_cdata.bge_stats_map);
2313         if (error)
2314                 return (ENOMEM);
2315
2316         bzero((char *)sc->bge_ldata.bge_stats, BGE_STATS_SZ);
2317
2318         /* Load the address of the statstics block. */
2319         ctx.sc = sc;
2320         ctx.bge_maxsegs = 1;
2321
2322         error = bus_dmamap_load(sc->bge_cdata.bge_stats_tag,
2323             sc->bge_cdata.bge_stats_map, sc->bge_ldata.bge_stats,
2324             BGE_STATS_SZ, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
2325
2326         if (error)
2327                 return (ENOMEM);
2328
2329         sc->bge_ldata.bge_stats_paddr = ctx.bge_busaddr;
2330
2331         return (0);
2332 }
2333
2334 #if __FreeBSD_version > 602105
2335 /*
2336  * Return true if this device has more than one port.
2337  */
2338 static int
2339 bge_has_multiple_ports(struct bge_softc *sc)
2340 {
2341         device_t dev = sc->bge_dev;
2342         u_int b, d, f, fscan, s;
2343
2344         d = pci_get_domain(dev);
2345         b = pci_get_bus(dev);
2346         s = pci_get_slot(dev);
2347         f = pci_get_function(dev);
2348         for (fscan = 0; fscan <= PCI_FUNCMAX; fscan++)
2349                 if (fscan != f && pci_find_dbsf(d, b, s, fscan) != NULL)
2350                         return (1);
2351         return (0);
2352 }
2353
2354 /*
2355  * Return true if MSI can be used with this device.
2356  */
2357 static int
2358 bge_can_use_msi(struct bge_softc *sc)
2359 {
2360         int can_use_msi = 0;
2361
2362         switch (sc->bge_asicrev) {
2363         case BGE_ASICREV_BCM5714_A0:
2364         case BGE_ASICREV_BCM5714:
2365                 /*
2366                  * Apparently, MSI doesn't work when these chips are
2367                  * configured in single-port mode.
2368                  */
2369                 if (bge_has_multiple_ports(sc))
2370                         can_use_msi = 1;
2371                 break;
2372         case BGE_ASICREV_BCM5750:
2373                 if (sc->bge_chiprev != BGE_CHIPREV_5750_AX &&
2374                     sc->bge_chiprev != BGE_CHIPREV_5750_BX)
2375                         can_use_msi = 1;
2376                 break;
2377         default:
2378                 if (BGE_IS_575X_PLUS(sc))
2379                         can_use_msi = 1;
2380         }
2381         return (can_use_msi);
2382 }
2383 #endif
2384
2385 static int
2386 bge_attach(device_t dev)
2387 {
2388         struct ifnet *ifp;
2389         struct bge_softc *sc;
2390         uint32_t hwcfg = 0, misccfg;
2391         u_char eaddr[ETHER_ADDR_LEN];
2392         int error, reg, rid, trys;
2393
2394         sc = device_get_softc(dev);
2395         sc->bge_dev = dev;
2396
2397         /*
2398          * Map control/status registers.
2399          */
2400         pci_enable_busmaster(dev);
2401
2402         rid = BGE_PCI_BAR0;
2403         sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
2404             RF_ACTIVE | PCI_RF_DENSE);
2405
2406         if (sc->bge_res == NULL) {
2407                 device_printf (sc->bge_dev, "couldn't map memory\n");
2408                 error = ENXIO;
2409                 goto fail;
2410         }
2411
2412         /* Save various chip information. */
2413         sc->bge_chipid =
2414             pci_read_config(dev, BGE_PCI_MISC_CTL, 4) &
2415             BGE_PCIMISCCTL_ASICREV;
2416         sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
2417         sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
2418
2419         /*
2420          * Don't enable Ethernet@WireSpeed for the 5700, 5906, or the
2421          * 5705 A0 and A1 chips.
2422          */
2423         if (sc->bge_asicrev != BGE_ASICREV_BCM5700 &&
2424             sc->bge_asicrev != BGE_ASICREV_BCM5906 &&
2425             sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
2426             sc->bge_chipid != BGE_CHIPID_BCM5705_A1)
2427                 sc->bge_flags |= BGE_FLAG_WIRESPEED;
2428
2429         if (bge_has_eaddr(sc))
2430                 sc->bge_flags |= BGE_FLAG_EADDR;
2431
2432         /* Save chipset family. */
2433         switch (sc->bge_asicrev) {
2434         case BGE_ASICREV_BCM5700:
2435         case BGE_ASICREV_BCM5701:
2436         case BGE_ASICREV_BCM5703:
2437         case BGE_ASICREV_BCM5704:
2438                 sc->bge_flags |= BGE_FLAG_5700_FAMILY | BGE_FLAG_JUMBO;
2439                 break;
2440         case BGE_ASICREV_BCM5714_A0:
2441         case BGE_ASICREV_BCM5780:
2442         case BGE_ASICREV_BCM5714:
2443                 sc->bge_flags |= BGE_FLAG_5714_FAMILY /* | BGE_FLAG_JUMBO */;
2444                 /* FALLTHRU */
2445         case BGE_ASICREV_BCM5750:
2446         case BGE_ASICREV_BCM5752:
2447         case BGE_ASICREV_BCM5755:
2448         case BGE_ASICREV_BCM5787:
2449         case BGE_ASICREV_BCM5906:
2450                 sc->bge_flags |= BGE_FLAG_575X_PLUS;
2451                 /* FALLTHRU */
2452         case BGE_ASICREV_BCM5705:
2453                 sc->bge_flags |= BGE_FLAG_5705_PLUS;
2454                 break;
2455         }
2456
2457         /* Set various bug flags. */
2458         if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
2459             sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
2460                 sc->bge_flags |= BGE_FLAG_CRC_BUG;
2461         if (sc->bge_chiprev == BGE_CHIPREV_5703_AX ||
2462             sc->bge_chiprev == BGE_CHIPREV_5704_AX)
2463                 sc->bge_flags |= BGE_FLAG_ADC_BUG;
2464         if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
2465                 sc->bge_flags |= BGE_FLAG_5704_A0_BUG;
2466         if (BGE_IS_5705_PLUS(sc) &&
2467             !(sc->bge_flags & BGE_FLAG_ADJUST_TRIM)) {
2468                 if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
2469                     sc->bge_asicrev == BGE_ASICREV_BCM5787) {
2470                         if (sc->bge_chipid != BGE_CHIPID_BCM5722_A0)
2471                                 sc->bge_flags |= BGE_FLAG_JITTER_BUG;
2472                 } else if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
2473                         sc->bge_flags |= BGE_FLAG_BER_BUG;
2474         }
2475
2476
2477         /*
2478          * We could possibly check for BCOM_DEVICEID_BCM5788 in bge_probe()
2479          * but I do not know the DEVICEID for the 5788M.
2480          */
2481         misccfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID;
2482         if (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
2483             misccfg == BGE_MISCCFG_BOARD_ID_5788M)
2484                 sc->bge_flags |= BGE_FLAG_5788;
2485
2486         /*
2487          * Check if this is a PCI-X or PCI Express device.
2488          */
2489 #if __FreeBSD_version > 602101
2490         if (pci_find_extcap(dev, PCIY_EXPRESS, &reg) == 0) {
2491                 /*
2492                  * Found a PCI Express capabilities register, this
2493                  * must be a PCI Express device.
2494                  */
2495                 if (reg != 0) {
2496                         sc->bge_flags |= BGE_FLAG_PCIE;
2497 #else
2498         if (BGE_IS_5705_PLUS(sc)) {
2499                 reg = pci_read_config(dev, BGE_PCIE_CAPID_REG, 4);
2500                 if ((reg & 0xFF) == BGE_PCIE_CAPID) {
2501                         sc->bge_flags |= BGE_FLAG_PCIE;
2502                         reg = BGE_PCIE_CAPID;
2503 #endif
2504                         bge_set_max_readrq(sc, reg);
2505                 }
2506         } else {
2507                 /*
2508                  * Check if the device is in PCI-X Mode.
2509                  * (This bit is not valid on PCI Express controllers.)
2510                  */
2511                 if ((pci_read_config(dev, BGE_PCI_PCISTATE, 4) &
2512                     BGE_PCISTATE_PCI_BUSMODE) == 0)
2513                         sc->bge_flags |= BGE_FLAG_PCIX;
2514         }
2515
2516 #if __FreeBSD_version > 602105
2517         {
2518                 int msicount;
2519
2520                 /*
2521                  * Allocate the interrupt, using MSI if possible.  These devices
2522                  * support 8 MSI messages, but only the first one is used in
2523                  * normal operation.
2524                  */
2525                 if (bge_can_use_msi(sc)) {
2526                         msicount = pci_msi_count(dev);
2527                         if (msicount > 1)
2528                                 msicount = 1;
2529                 } else
2530                         msicount = 0;
2531                 if (msicount == 1 && pci_alloc_msi(dev, &msicount) == 0) {
2532                         rid = 1;
2533                         sc->bge_flags |= BGE_FLAG_MSI;
2534                 } else
2535                         rid = 0;
2536         }
2537 #else
2538         rid = 0;
2539 #endif
2540
2541         sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
2542             RF_SHAREABLE | RF_ACTIVE);
2543
2544         if (sc->bge_irq == NULL) {
2545                 device_printf(sc->bge_dev, "couldn't map interrupt\n");
2546                 error = ENXIO;
2547                 goto fail;
2548         }
2549
2550         if (bootverbose)
2551                 device_printf(dev,
2552                     "CHIP ID 0x%08x; ASIC REV 0x%02x; CHIP REV 0x%02x; %s\n",
2553                     sc->bge_chipid, sc->bge_asicrev, sc->bge_chiprev,
2554                     (sc->bge_flags & BGE_FLAG_PCIX) ? "PCI-X" :
2555                     ((sc->bge_flags & BGE_FLAG_PCIE) ? "PCI-E" : "PCI"));
2556
2557         BGE_LOCK_INIT(sc, device_get_nameunit(dev));
2558
2559         /* Try to reset the chip. */
2560         if (bge_reset(sc)) {
2561                 device_printf(sc->bge_dev, "chip reset failed\n");
2562                 error = ENXIO;
2563                 goto fail;
2564         }
2565
2566         sc->bge_asf_mode = 0;
2567         if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG)
2568             == BGE_MAGIC_NUMBER)) {
2569                 if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG)
2570                     & BGE_HWCFG_ASF) {
2571                         sc->bge_asf_mode |= ASF_ENABLE;
2572                         sc->bge_asf_mode |= ASF_STACKUP;
2573                         if (sc->bge_asicrev == BGE_ASICREV_BCM5750) {
2574                                 sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
2575                         }
2576                 }
2577         }
2578
2579         /* Try to reset the chip again the nice way. */
2580         bge_stop_fw(sc);
2581         bge_sig_pre_reset(sc, BGE_RESET_STOP);
2582         if (bge_reset(sc)) {
2583                 device_printf(sc->bge_dev, "chip reset failed\n");
2584                 error = ENXIO;
2585                 goto fail;
2586         }
2587
2588         bge_sig_legacy(sc, BGE_RESET_STOP);
2589         bge_sig_post_reset(sc, BGE_RESET_STOP);
2590
2591         if (bge_chipinit(sc)) {
2592                 device_printf(sc->bge_dev, "chip initialization failed\n");
2593                 error = ENXIO;
2594                 goto fail;
2595         }
2596
2597         error = bge_get_eaddr(sc, eaddr);
2598         if (error) {
2599                 device_printf(sc->bge_dev,
2600                     "failed to read station address\n");
2601                 error = ENXIO;
2602                 goto fail;
2603         }
2604
2605         /* 5705 limits RX return ring to 512 entries. */
2606         if (BGE_IS_5705_PLUS(sc))
2607                 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
2608         else
2609                 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
2610
2611         if (bge_dma_alloc(dev)) {
2612                 device_printf(sc->bge_dev,
2613                     "failed to allocate DMA resources\n");
2614                 error = ENXIO;
2615                 goto fail;
2616         }
2617
2618         /* Set default tuneable values. */
2619         sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
2620         sc->bge_rx_coal_ticks = 150;
2621         sc->bge_tx_coal_ticks = 150;
2622         sc->bge_rx_max_coal_bds = 10;
2623         sc->bge_tx_max_coal_bds = 10;
2624
2625         /* Set up ifnet structure */
2626         ifp = sc->bge_ifp = if_alloc(IFT_ETHER);
2627         if (ifp == NULL) {
2628                 device_printf(sc->bge_dev, "failed to if_alloc()\n");
2629                 error = ENXIO;
2630                 goto fail;
2631         }
2632         ifp->if_softc = sc;
2633         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2634         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2635         ifp->if_ioctl = bge_ioctl;
2636         ifp->if_start = bge_start;
2637         ifp->if_init = bge_init;
2638         ifp->if_mtu = ETHERMTU;
2639         ifp->if_snd.ifq_drv_maxlen = BGE_TX_RING_CNT - 1;
2640         IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
2641         IFQ_SET_READY(&ifp->if_snd);
2642         ifp->if_hwassist = BGE_CSUM_FEATURES;
2643         ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING |
2644             IFCAP_VLAN_MTU;
2645 #ifdef IFCAP_VLAN_HWCSUM
2646         ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
2647 #endif
2648         ifp->if_capenable = ifp->if_capabilities;
2649 #ifdef DEVICE_POLLING
2650         ifp->if_capabilities |= IFCAP_POLLING;
2651 #endif
2652
2653         /*
2654          * 5700 B0 chips do not support checksumming correctly due
2655          * to hardware bugs.
2656          */
2657         if (sc->bge_chipid == BGE_CHIPID_BCM5700_B0) {
2658                 ifp->if_capabilities &= ~IFCAP_HWCSUM;
2659                 ifp->if_capenable &= IFCAP_HWCSUM;
2660                 ifp->if_hwassist = 0;
2661         }
2662
2663         /*
2664          * Figure out what sort of media we have by checking the
2665          * hardware config word in the first 32k of NIC internal memory,
2666          * or fall back to examining the EEPROM if necessary.
2667          * Note: on some BCM5700 cards, this value appears to be unset.
2668          * If that's the case, we have to rely on identifying the NIC
2669          * by its PCI subsystem ID, as we do below for the SysKonnect
2670          * SK-9D41.
2671          */
2672         if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER)
2673                 hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
2674         else if ((sc->bge_flags & BGE_FLAG_EADDR) &&
2675             (sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
2676                 if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET,
2677                     sizeof(hwcfg))) {
2678                         device_printf(sc->bge_dev, "failed to read EEPROM\n");
2679                         error = ENXIO;
2680                         goto fail;
2681                 }
2682                 hwcfg = ntohl(hwcfg);
2683         }
2684
2685         if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
2686                 sc->bge_flags |= BGE_FLAG_TBI;
2687
2688         /* The SysKonnect SK-9D41 is a 1000baseSX card. */
2689         if ((pci_read_config(dev, BGE_PCI_SUBSYS, 4) >> 16) == SK_SUBSYSID_9D41)
2690                 sc->bge_flags |= BGE_FLAG_TBI;
2691
2692         if (sc->bge_flags & BGE_FLAG_TBI) {
2693                 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
2694                     bge_ifmedia_sts);
2695                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX, 0, NULL);
2696                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX | IFM_FDX,
2697                     0, NULL);
2698                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
2699                 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
2700                 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
2701         } else {
2702                 /*
2703                  * Do transceiver setup and tell the firmware the
2704                  * driver is down so we can try to get access the
2705                  * probe if ASF is running.  Retry a couple of times
2706                  * if we get a conflict with the ASF firmware accessing
2707                  * the PHY.
2708                  */
2709                 trys = 0;
2710                 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2711 again:
2712                 bge_asf_driver_up(sc);
2713
2714                 if (mii_phy_probe(dev, &sc->bge_miibus,
2715                     bge_ifmedia_upd, bge_ifmedia_sts)) {
2716                         if (trys++ < 4) {
2717                                 device_printf(sc->bge_dev, "Try again\n");
2718                                 bge_miibus_writereg(sc->bge_dev, 1, MII_BMCR,
2719                                     BMCR_RESET);
2720                                 goto again;
2721                         }
2722
2723                         device_printf(sc->bge_dev, "MII without any PHY!\n");
2724                         error = ENXIO;
2725                         goto fail;
2726                 }
2727
2728                 /*
2729                  * Now tell the firmware we are going up after probing the PHY
2730                  */
2731                 if (sc->bge_asf_mode & ASF_STACKUP)
2732                         BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2733         }
2734
2735         /*
2736          * When using the BCM5701 in PCI-X mode, data corruption has
2737          * been observed in the first few bytes of some received packets.
2738          * Aligning the packet buffer in memory eliminates the corruption.
2739          * Unfortunately, this misaligns the packet payloads.  On platforms
2740          * which do not support unaligned accesses, we will realign the
2741          * payloads by copying the received packets.
2742          */
2743         if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
2744             sc->bge_flags & BGE_FLAG_PCIX)
2745                 sc->bge_flags |= BGE_FLAG_RX_ALIGNBUG;
2746
2747         /*
2748          * Call MI attach routine.
2749          */
2750         ether_ifattach(ifp, eaddr);
2751         callout_init_mtx(&sc->bge_stat_ch, &sc->bge_mtx, 0);
2752
2753         /*
2754          * Hookup IRQ last.
2755          */
2756 #if __FreeBSD_version > 700030
2757         error = bus_setup_intr(dev, sc->bge_irq, INTR_TYPE_NET | INTR_MPSAFE,
2758            NULL, bge_intr, sc, &sc->bge_intrhand);
2759 #else
2760         error = bus_setup_intr(dev, sc->bge_irq, INTR_TYPE_NET | INTR_MPSAFE,
2761            bge_intr, sc, &sc->bge_intrhand);
2762 #endif
2763
2764         if (error) {
2765                 bge_detach(dev);
2766                 device_printf(sc->bge_dev, "couldn't set up irq\n");
2767         }
2768
2769         bge_add_sysctls(sc);
2770
2771         return (0);
2772
2773 fail:
2774         bge_release_resources(sc);
2775
2776         return (error);
2777 }
2778
2779 static int
2780 bge_detach(device_t dev)
2781 {
2782         struct bge_softc *sc;
2783         struct ifnet *ifp;
2784
2785         sc = device_get_softc(dev);
2786         ifp = sc->bge_ifp;
2787
2788 #ifdef DEVICE_POLLING
2789         if (ifp->if_capenable & IFCAP_POLLING)
2790                 ether_poll_deregister(ifp);
2791 #endif
2792
2793         BGE_LOCK(sc);
2794         bge_stop(sc);
2795         bge_reset(sc);
2796         BGE_UNLOCK(sc);
2797
2798         callout_drain(&sc->bge_stat_ch);
2799
2800         ether_ifdetach(ifp);
2801
2802         if (sc->bge_flags & BGE_FLAG_TBI) {
2803                 ifmedia_removeall(&sc->bge_ifmedia);
2804         } else {
2805                 bus_generic_detach(dev);
2806                 device_delete_child(dev, sc->bge_miibus);
2807         }
2808
2809         bge_release_resources(sc);
2810
2811         return (0);
2812 }
2813
2814 static void
2815 bge_release_resources(struct bge_softc *sc)
2816 {
2817         device_t dev;
2818
2819         dev = sc->bge_dev;
2820
2821         if (sc->bge_intrhand != NULL)
2822                 bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
2823
2824         if (sc->bge_irq != NULL)
2825                 bus_release_resource(dev, SYS_RES_IRQ,
2826                     sc->bge_flags & BGE_FLAG_MSI ? 1 : 0, sc->bge_irq);
2827
2828 #if __FreeBSD_version > 602105
2829         if (sc->bge_flags & BGE_FLAG_MSI)
2830                 pci_release_msi(dev);
2831 #endif
2832
2833         if (sc->bge_res != NULL)
2834                 bus_release_resource(dev, SYS_RES_MEMORY,
2835                     BGE_PCI_BAR0, sc->bge_res);
2836
2837         if (sc->bge_ifp != NULL)
2838                 if_free(sc->bge_ifp);
2839
2840         bge_dma_free(sc);
2841
2842         if (mtx_initialized(&sc->bge_mtx))      /* XXX */
2843                 BGE_LOCK_DESTROY(sc);
2844 }
2845
2846 static int
2847 bge_reset(struct bge_softc *sc)
2848 {
2849         device_t dev;
2850         uint32_t cachesize, command, pcistate, reset, val;
2851         void (*write_op)(struct bge_softc *, int, int);
2852         int i;
2853
2854         dev = sc->bge_dev;
2855
2856         if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
2857             (sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
2858                 if (sc->bge_flags & BGE_FLAG_PCIE)
2859                         write_op = bge_writemem_direct;
2860                 else
2861                         write_op = bge_writemem_ind;
2862         } else
2863                 write_op = bge_writereg_ind;
2864
2865         /* Save some important PCI state. */
2866         cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
2867         command = pci_read_config(dev, BGE_PCI_CMD, 4);
2868         pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
2869
2870         pci_write_config(dev, BGE_PCI_MISC_CTL,
2871             BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
2872             BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
2873
2874         /* Disable fastboot on controllers that support it. */
2875         if (sc->bge_asicrev == BGE_ASICREV_BCM5752 ||
2876             sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
2877             sc->bge_asicrev == BGE_ASICREV_BCM5787) {
2878                 if (bootverbose)
2879                         device_printf(sc->bge_dev, "Disabling fastboot\n");
2880                 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0);
2881         }
2882
2883         /*
2884          * Write the magic number to SRAM at offset 0xB50.
2885          * When firmware finishes its initialization it will
2886          * write ~BGE_MAGIC_NUMBER to the same location.
2887          */
2888         bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
2889
2890         reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
2891
2892         /* XXX: Broadcom Linux driver. */
2893         if (sc->bge_flags & BGE_FLAG_PCIE) {
2894                 if (CSR_READ_4(sc, 0x7E2C) == 0x60)     /* PCIE 1.0 */
2895                         CSR_WRITE_4(sc, 0x7E2C, 0x20);
2896                 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
2897                         /* Prevent PCIE link training during global reset */
2898                         CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
2899                         reset |= 1 << 29;
2900                 }
2901         }
2902
2903         /* 
2904          * Set GPHY Power Down Override to leave GPHY
2905          * powered up in D0 uninitialized.
2906          */
2907         if (BGE_IS_5705_PLUS(sc))
2908                 reset |= 0x04000000;
2909
2910         /* Issue global reset */
2911         write_op(sc, BGE_MISC_CFG, reset);
2912
2913         if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2914                 val = CSR_READ_4(sc, BGE_VCPU_STATUS);
2915                 CSR_WRITE_4(sc, BGE_VCPU_STATUS,
2916                     val | BGE_VCPU_STATUS_DRV_RESET);
2917                 val = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
2918                 CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
2919                     val & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
2920         }
2921
2922         DELAY(1000);
2923
2924         /* XXX: Broadcom Linux driver. */
2925         if (sc->bge_flags & BGE_FLAG_PCIE) {
2926                 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
2927                         DELAY(500000); /* wait for link training to complete */
2928                         val = pci_read_config(dev, 0xC4, 4);
2929                         pci_write_config(dev, 0xC4, val | (1 << 15), 4);
2930                 }
2931                 /*
2932                  * Set PCIE max payload size to 128 bytes and clear error
2933                  * status.
2934                  */
2935                 pci_write_config(dev, 0xD8, 0xF5000, 4);
2936         }
2937
2938         /* Reset some of the PCI state that got zapped by reset. */
2939         pci_write_config(dev, BGE_PCI_MISC_CTL,
2940             BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
2941             BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
2942         pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
2943         pci_write_config(dev, BGE_PCI_CMD, command, 4);
2944         write_op(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
2945
2946         /* Re-enable MSI, if neccesary, and enable the memory arbiter. */
2947         if (BGE_IS_5714_FAMILY(sc)) {
2948                 /* This chip disables MSI on reset. */
2949                 if (sc->bge_flags & BGE_FLAG_MSI) {
2950                         val = pci_read_config(dev, BGE_PCI_MSI_CTL, 2);
2951                         pci_write_config(dev, BGE_PCI_MSI_CTL,
2952                             val | PCIM_MSICTRL_MSI_ENABLE, 2);
2953                         val = CSR_READ_4(sc, BGE_MSI_MODE);
2954                         CSR_WRITE_4(sc, BGE_MSI_MODE,
2955                             val | BGE_MSIMODE_ENABLE);
2956                 }
2957                 val = CSR_READ_4(sc, BGE_MARB_MODE);
2958                 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
2959         } else
2960                 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2961
2962         if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2963                 for (i = 0; i < BGE_TIMEOUT; i++) {
2964                         val = CSR_READ_4(sc, BGE_VCPU_STATUS);
2965                         if (val & BGE_VCPU_STATUS_INIT_DONE)
2966                                 break;
2967                         DELAY(100);
2968                 }
2969                 if (i == BGE_TIMEOUT) {
2970                         device_printf(sc->bge_dev, "reset timed out\n");
2971                         return (1);
2972                 }
2973         } else {
2974                 /*
2975                  * Poll until we see the 1's complement of the magic number.
2976                  * This indicates that the firmware initialization is complete.
2977                  * We expect this to fail if no chip containing the Ethernet
2978                  * address is fitted though.
2979                  */
2980                 for (i = 0; i < BGE_TIMEOUT; i++) {
2981                         DELAY(10);
2982                         val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
2983                         if (val == ~BGE_MAGIC_NUMBER)
2984                                 break;
2985                 }
2986
2987                 if ((sc->bge_flags & BGE_FLAG_EADDR) && i == BGE_TIMEOUT)
2988                         device_printf(sc->bge_dev, "firmware handshake timed out, "
2989                             "found 0x%08x\n", val);
2990         }
2991
2992         /*
2993          * XXX Wait for the value of the PCISTATE register to
2994          * return to its original pre-reset state. This is a
2995          * fairly good indicator of reset completion. If we don't
2996          * wait for the reset to fully complete, trying to read
2997          * from the device's non-PCI registers may yield garbage
2998          * results.
2999          */
3000         for (i = 0; i < BGE_TIMEOUT; i++) {
3001                 if (pci_read_config(dev, BGE_PCI_PCISTATE, 4) == pcistate)
3002                         break;
3003                 DELAY(10);
3004         }
3005
3006         if (sc->bge_flags & BGE_FLAG_PCIE) {
3007                 reset = bge_readmem_ind(sc, 0x7C00);
3008                 bge_writemem_ind(sc, 0x7C00, reset | (1 << 25));
3009         }
3010
3011         /* Fix up byte swapping. */
3012         CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
3013             BGE_MODECTL_BYTESWAP_DATA);
3014
3015         /* Tell the ASF firmware we are up */
3016         if (sc->bge_asf_mode & ASF_STACKUP)
3017                 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3018
3019         CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
3020
3021         /*
3022          * The 5704 in TBI mode apparently needs some special
3023          * adjustment to insure the SERDES drive level is set
3024          * to 1.2V.
3025          */
3026         if (sc->bge_asicrev == BGE_ASICREV_BCM5704 &&
3027             sc->bge_flags & BGE_FLAG_TBI) {
3028                 val = CSR_READ_4(sc, BGE_SERDES_CFG);
3029                 val = (val & ~0xFFF) | 0x880;
3030                 CSR_WRITE_4(sc, BGE_SERDES_CFG, val);
3031         }
3032
3033         /* XXX: Broadcom Linux driver. */
3034         if (sc->bge_flags & BGE_FLAG_PCIE &&
3035             sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
3036                 val = CSR_READ_4(sc, 0x7C00);
3037                 CSR_WRITE_4(sc, 0x7C00, val | (1 << 25));
3038         }
3039         DELAY(10000);
3040
3041         return(0);
3042 }
3043
3044 /*
3045  * Frame reception handling. This is called if there's a frame
3046  * on the receive return list.
3047  *
3048  * Note: we have to be able to handle two possibilities here:
3049  * 1) the frame is from the jumbo receive ring
3050  * 2) the frame is from the standard receive ring
3051  */
3052
3053 static void
3054 bge_rxeof(struct bge_softc *sc)
3055 {
3056         struct ifnet *ifp;
3057         int stdcnt = 0, jumbocnt = 0;
3058
3059         BGE_LOCK_ASSERT(sc);
3060
3061         /* Nothing to do. */
3062         if (sc->bge_rx_saved_considx ==
3063             sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx)
3064                 return;
3065
3066         ifp = sc->bge_ifp;
3067
3068         bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
3069             sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_POSTREAD);
3070         bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
3071             sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_POSTREAD);
3072         if (BGE_IS_JUMBO_CAPABLE(sc))
3073                 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
3074                     sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_POSTREAD);
3075
3076         while(sc->bge_rx_saved_considx !=
3077             sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx) {
3078                 struct bge_rx_bd        *cur_rx;
3079                 uint32_t                rxidx;
3080                 struct mbuf             *m = NULL;
3081                 uint16_t                vlan_tag = 0;
3082                 int                     have_tag = 0;
3083
3084 #ifdef DEVICE_POLLING
3085                 if (ifp->if_capenable & IFCAP_POLLING) {
3086                         if (sc->rxcycles <= 0)
3087                                 break;
3088                         sc->rxcycles--;
3089                 }
3090 #endif
3091
3092                 cur_rx =
3093             &sc->bge_ldata.bge_rx_return_ring[sc->bge_rx_saved_considx];
3094
3095                 rxidx = cur_rx->bge_idx;
3096                 BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
3097
3098                 if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING &&
3099                     cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
3100                         have_tag = 1;
3101                         vlan_tag = cur_rx->bge_vlan_tag;
3102                 }
3103
3104                 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
3105                         BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
3106                         bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
3107                             sc->bge_cdata.bge_rx_jumbo_dmamap[rxidx],
3108                             BUS_DMASYNC_POSTREAD);
3109                         bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
3110                             sc->bge_cdata.bge_rx_jumbo_dmamap[rxidx]);
3111                         m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
3112                         sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
3113                         jumbocnt++;
3114                         if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3115                                 ifp->if_ierrors++;
3116                                 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
3117                                 continue;
3118                         }
3119                         if (bge_newbuf_jumbo(sc,
3120                             sc->bge_jumbo, NULL) == ENOBUFS) {
3121                                 ifp->if_ierrors++;
3122                                 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
3123                                 continue;
3124                         }
3125                 } else {
3126                         BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
3127                         bus_dmamap_sync(sc->bge_cdata.bge_mtag,
3128                             sc->bge_cdata.bge_rx_std_dmamap[rxidx],
3129                             BUS_DMASYNC_POSTREAD);
3130                         bus_dmamap_unload(sc->bge_cdata.bge_mtag,
3131                             sc->bge_cdata.bge_rx_std_dmamap[rxidx]);
3132                         m = sc->bge_cdata.bge_rx_std_chain[rxidx];
3133                         sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
3134                         stdcnt++;
3135                         if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3136                                 ifp->if_ierrors++;
3137                                 bge_newbuf_std(sc, sc->bge_std, m);
3138                                 continue;
3139                         }
3140                         if (bge_newbuf_std(sc, sc->bge_std,
3141                             NULL) == ENOBUFS) {
3142                                 ifp->if_ierrors++;
3143                                 bge_newbuf_std(sc, sc->bge_std, m);
3144                                 continue;
3145                         }
3146                 }
3147
3148                 ifp->if_ipackets++;
3149 #ifndef __NO_STRICT_ALIGNMENT
3150                 /*
3151                  * For architectures with strict alignment we must make sure
3152                  * the payload is aligned.
3153                  */
3154                 if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) {
3155                         bcopy(m->m_data, m->m_data + ETHER_ALIGN,
3156                             cur_rx->bge_len);
3157                         m->m_data += ETHER_ALIGN;
3158                 }
3159 #endif
3160                 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
3161                 m->m_pkthdr.rcvif = ifp;
3162
3163                 if (ifp->if_capenable & IFCAP_RXCSUM) {
3164                         if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
3165                                 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
3166                                 if ((cur_rx->bge_ip_csum ^ 0xFFFF) == 0)
3167                                         m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3168                         }
3169                         if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
3170                             m->m_pkthdr.len >= ETHER_MIN_NOPAD) {
3171                                 m->m_pkthdr.csum_data =
3172                                     cur_rx->bge_tcp_udp_csum;
3173                                 m->m_pkthdr.csum_flags |=
3174                                     CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
3175                         }
3176                 }
3177
3178                 /*
3179                  * If we received a packet with a vlan tag,
3180                  * attach that information to the packet.
3181                  */
3182                 if (have_tag) {
3183 #if __FreeBSD_version > 700022
3184                         m->m_pkthdr.ether_vtag = vlan_tag;
3185                         m->m_flags |= M_VLANTAG;
3186 #else
3187                         VLAN_INPUT_TAG_NEW(ifp, m, vlan_tag);
3188                         if (m == NULL)
3189                                 continue;
3190 #endif
3191                 }
3192
3193                 BGE_UNLOCK(sc);
3194                 (*ifp->if_input)(ifp, m);
3195                 BGE_LOCK(sc);
3196         }
3197
3198         if (stdcnt > 0)
3199                 bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
3200                     sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
3201
3202         if (BGE_IS_JUMBO_CAPABLE(sc) && jumbocnt > 0)
3203                 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
3204                     sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
3205
3206         bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
3207         if (stdcnt)
3208                 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
3209         if (jumbocnt)
3210                 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
3211 #ifdef notyet
3212         /*
3213          * This register wraps very quickly under heavy packet drops.
3214          * If you need correct statistics, you can enable this check.
3215          */
3216         if (BGE_IS_5705_PLUS(sc))
3217                 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
3218 #endif
3219 }
3220
3221 static void
3222 bge_txeof(struct bge_softc *sc)
3223 {
3224         struct bge_tx_bd *cur_tx = NULL;
3225         struct ifnet *ifp;
3226
3227         BGE_LOCK_ASSERT(sc);
3228
3229         /* Nothing to do. */
3230         if (sc->bge_tx_saved_considx ==
3231             sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx)
3232                 return;
3233
3234         ifp = sc->bge_ifp;
3235
3236         bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
3237             sc->bge_cdata.bge_tx_ring_map,
3238             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3239         /*
3240          * Go through our tx ring and free mbufs for those
3241          * frames that have been sent.
3242          */
3243         while (sc->bge_tx_saved_considx !=
3244             sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx) {
3245                 uint32_t                idx = 0;
3246
3247                 idx = sc->bge_tx_saved_considx;
3248                 cur_tx = &sc->bge_ldata.bge_tx_ring[idx];
3249                 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
3250                         ifp->if_opackets++;
3251                 if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
3252                         bus_dmamap_sync(sc->bge_cdata.bge_mtag,
3253                             sc->bge_cdata.bge_tx_dmamap[idx],
3254                             BUS_DMASYNC_POSTWRITE);
3255                         bus_dmamap_unload(sc->bge_cdata.bge_mtag,
3256                             sc->bge_cdata.bge_tx_dmamap[idx]);
3257                         m_freem(sc->bge_cdata.bge_tx_chain[idx]);
3258                         sc->bge_cdata.bge_tx_chain[idx] = NULL;
3259                 }
3260                 sc->bge_txcnt--;
3261                 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
3262         }
3263
3264         if (cur_tx != NULL)
3265                 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3266         if (sc->bge_txcnt == 0)
3267                 sc->bge_timer = 0;
3268 }
3269
3270 #ifdef DEVICE_POLLING
3271 static void
3272 bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
3273 {
3274         struct bge_softc *sc = ifp->if_softc;
3275         uint32_t statusword;
3276         
3277         BGE_LOCK(sc);
3278         if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3279                 BGE_UNLOCK(sc);
3280                 return;
3281         }
3282
3283         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
3284             sc->bge_cdata.bge_status_map, BUS_DMASYNC_POSTREAD);
3285
3286         statusword = atomic_readandclear_32(
3287             &sc->bge_ldata.bge_status_block->bge_status);
3288
3289         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
3290             sc->bge_cdata.bge_status_map, BUS_DMASYNC_PREREAD);
3291
3292         /* Note link event. It will be processed by POLL_AND_CHECK_STATUS. */
3293         if (statusword & BGE_STATFLAG_LINKSTATE_CHANGED)
3294                 sc->bge_link_evt++;
3295
3296         if (cmd == POLL_AND_CHECK_STATUS)
3297                 if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
3298                     sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
3299                     sc->bge_link_evt || (sc->bge_flags & BGE_FLAG_TBI))
3300                         bge_link_upd(sc);
3301
3302         sc->rxcycles = count;
3303         bge_rxeof(sc);
3304         bge_txeof(sc);
3305         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3306                 bge_start_locked(ifp);
3307
3308         BGE_UNLOCK(sc);
3309 }
3310 #endif /* DEVICE_POLLING */
3311
3312 static void
3313 bge_intr(void *xsc)
3314 {
3315         struct bge_softc *sc;
3316         struct ifnet *ifp;
3317         uint32_t statusword;
3318
3319         sc = xsc;
3320
3321         BGE_LOCK(sc);
3322
3323         ifp = sc->bge_ifp;
3324
3325 #ifdef DEVICE_POLLING
3326         if (ifp->if_capenable & IFCAP_POLLING) {
3327                 BGE_UNLOCK(sc);
3328                 return;
3329         }
3330 #endif
3331
3332         /*
3333          * Ack the interrupt by writing something to BGE_MBX_IRQ0_LO.  Don't
3334          * disable interrupts by writing nonzero like we used to, since with
3335          * our current organization this just gives complications and
3336          * pessimizations for re-enabling interrupts.  We used to have races
3337          * instead of the necessary complications.  Disabling interrupts
3338          * would just reduce the chance of a status update while we are
3339          * running (by switching to the interrupt-mode coalescence
3340          * parameters), but this chance is already very low so it is more
3341          * efficient to get another interrupt than prevent it.
3342          *
3343          * We do the ack first to ensure another interrupt if there is a
3344          * status update after the ack.  We don't check for the status
3345          * changing later because it is more efficient to get another
3346          * interrupt than prevent it, not quite as above (not checking is
3347          * a smaller optimization than not toggling the interrupt enable,
3348          * since checking doesn't involve PCI accesses and toggling require
3349          * the status check).  So toggling would probably be a pessimization
3350          * even with MSI.  It would only be needed for using a task queue.
3351          */
3352         bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
3353
3354         /*
3355          * Do the mandatory PCI flush as well as get the link status.
3356          */
3357         statusword = CSR_READ_4(sc, BGE_MAC_STS) & BGE_MACSTAT_LINK_CHANGED;
3358
3359         /* Make sure the descriptor ring indexes are coherent. */
3360         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
3361             sc->bge_cdata.bge_status_map, BUS_DMASYNC_POSTREAD);
3362         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
3363             sc->bge_cdata.bge_status_map, BUS_DMASYNC_PREREAD);
3364
3365         if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
3366             sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
3367             statusword || sc->bge_link_evt)
3368                 bge_link_upd(sc);
3369
3370         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3371                 /* Check RX return ring producer/consumer. */
3372                 bge_rxeof(sc);
3373
3374                 /* Check TX ring producer/consumer. */
3375                 bge_txeof(sc);
3376         }
3377
3378         if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
3379             !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3380                 bge_start_locked(ifp);
3381
3382         BGE_UNLOCK(sc);
3383 }
3384
3385 static void
3386 bge_asf_driver_up(struct bge_softc *sc)
3387 {
3388         if (sc->bge_asf_mode & ASF_STACKUP) {
3389                 /* Send ASF heartbeat aprox. every 2s */
3390                 if (sc->bge_asf_count)
3391                         sc->bge_asf_count --;
3392                 else {
3393                         sc->bge_asf_count = 5;
3394                         bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM_FW,
3395                             BGE_FW_DRV_ALIVE);
3396                         bge_writemem_ind(sc, BGE_SOFTWARE_GENNCOMM_FW_LEN, 4);
3397                         bge_writemem_ind(sc, BGE_SOFTWARE_GENNCOMM_FW_DATA, 3);
3398                         CSR_WRITE_4(sc, BGE_CPU_EVENT,
3399                             CSR_READ_4(sc, BGE_CPU_EVENT) | (1 << 14));
3400                 }
3401         }
3402 }
3403
3404 static void
3405 bge_tick(void *xsc)
3406 {
3407         struct bge_softc *sc = xsc;
3408         struct mii_data *mii = NULL;
3409
3410         BGE_LOCK_ASSERT(sc);
3411
3412         /* Synchronize with possible callout reset/stop. */
3413         if (callout_pending(&sc->bge_stat_ch) ||
3414             !callout_active(&sc->bge_stat_ch))
3415                 return;
3416
3417         if (BGE_IS_5705_PLUS(sc))
3418                 bge_stats_update_regs(sc);
3419         else
3420                 bge_stats_update(sc);
3421
3422         if ((sc->bge_flags & BGE_FLAG_TBI) == 0) {
3423                 mii = device_get_softc(sc->bge_miibus);
3424                 /*
3425                  * Do not touch PHY if we have link up. This could break
3426                  * IPMI/ASF mode or produce extra input errors
3427                  * (extra errors was reported for bcm5701 & bcm5704).
3428                  */
3429                 if (!sc->bge_link)
3430                         mii_tick(mii);
3431         } else {
3432                 /*
3433                  * Since in TBI mode auto-polling can't be used we should poll
3434                  * link status manually. Here we register pending link event
3435                  * and trigger interrupt.
3436                  */
3437 #ifdef DEVICE_POLLING
3438                 /* In polling mode we poll link state in bge_poll(). */
3439                 if (!(sc->bge_ifp->if_capenable & IFCAP_POLLING))
3440 #endif
3441                 {
3442                 sc->bge_link_evt++;
3443                 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
3444                     sc->bge_flags & BGE_FLAG_5788)
3445                         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
3446                 else
3447                         BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
3448                 }
3449         }
3450
3451         bge_asf_driver_up(sc);
3452         bge_watchdog(sc);
3453
3454         callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
3455 }
3456
3457 static void
3458 bge_stats_update_regs(struct bge_softc *sc)
3459 {
3460         struct ifnet *ifp;
3461
3462         ifp = sc->bge_ifp;
3463
3464         ifp->if_collisions += CSR_READ_4(sc, BGE_MAC_STATS +
3465             offsetof(struct bge_mac_stats_regs, etherStatsCollisions));
3466
3467         ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
3468 }
3469
3470 static void
3471 bge_stats_update(struct bge_softc *sc)
3472 {
3473         struct ifnet *ifp;
3474         bus_size_t stats;
3475         uint32_t cnt;   /* current register value */
3476
3477         ifp = sc->bge_ifp;
3478
3479         stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
3480
3481 #define READ_STAT(sc, stats, stat) \
3482         CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
3483
3484         cnt = READ_STAT(sc, stats, txstats.etherStatsCollisions.bge_addr_lo);
3485         ifp->if_collisions += (uint32_t)(cnt - sc->bge_tx_collisions);
3486         sc->bge_tx_collisions = cnt;
3487
3488         cnt = READ_STAT(sc, stats, ifInDiscards.bge_addr_lo);
3489         ifp->if_ierrors += (uint32_t)(cnt - sc->bge_rx_discards);
3490         sc->bge_rx_discards = cnt;
3491
3492         cnt = READ_STAT(sc, stats, txstats.ifOutDiscards.bge_addr_lo);
3493         ifp->if_oerrors += (uint32_t)(cnt - sc->bge_tx_discards);
3494         sc->bge_tx_discards = cnt;
3495
3496 #undef  READ_STAT
3497 }
3498
3499 /*
3500  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
3501  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
3502  * but when such padded frames employ the bge IP/TCP checksum offload,
3503  * the hardware checksum assist gives incorrect results (possibly
3504  * from incorporating its own padding into the UDP/TCP checksum; who knows).
3505  * If we pad such runts with zeros, the onboard checksum comes out correct.
3506  */
3507 static __inline int
3508 bge_cksum_pad(struct mbuf *m)
3509 {
3510         int padlen = ETHER_MIN_NOPAD - m->m_pkthdr.len;
3511         struct mbuf *last;
3512
3513         /* If there's only the packet-header and we can pad there, use it. */
3514         if (m->m_pkthdr.len == m->m_len && M_WRITABLE(m) &&
3515             M_TRAILINGSPACE(m) >= padlen) {
3516                 last = m;
3517         } else {
3518                 /*
3519                  * Walk packet chain to find last mbuf. We will either
3520                  * pad there, or append a new mbuf and pad it.
3521                  */
3522                 for (last = m; last->m_next != NULL; last = last->m_next);
3523                 if (!(M_WRITABLE(last) && M_TRAILINGSPACE(last) >= padlen)) {
3524                         /* Allocate new empty mbuf, pad it. Compact later. */
3525                         struct mbuf *n;
3526
3527                         MGET(n, M_DONTWAIT, MT_DATA);
3528                         if (n == NULL)
3529                                 return (ENOBUFS);
3530                         n->m_len = 0;
3531                         last->m_next = n;
3532                         last = n;
3533                 }
3534         }
3535         
3536         /* Now zero the pad area, to avoid the bge cksum-assist bug. */
3537         memset(mtod(last, caddr_t) + last->m_len, 0, padlen);
3538         last->m_len += padlen;
3539         m->m_pkthdr.len += padlen;
3540
3541         return (0);
3542 }
3543
3544 /*
3545  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
3546  * pointers to descriptors.
3547  */
3548 static int
3549 bge_encap(struct bge_softc *sc, struct mbuf **m_head, uint32_t *txidx)
3550 {
3551         bus_dma_segment_t       segs[BGE_NSEG_NEW];
3552         bus_dmamap_t            map;
3553         struct bge_tx_bd        *d;
3554         struct mbuf             *m = *m_head;
3555         uint32_t                idx = *txidx;
3556         uint16_t                csum_flags;
3557         int                     nsegs, i, error;
3558
3559         csum_flags = 0;
3560         if (m->m_pkthdr.csum_flags) {
3561                 if (m->m_pkthdr.csum_flags & CSUM_IP)
3562                         csum_flags |= BGE_TXBDFLAG_IP_CSUM;
3563                 if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)) {
3564                         csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
3565                         if (m->m_pkthdr.len < ETHER_MIN_NOPAD &&
3566                             (error = bge_cksum_pad(m)) != 0) {
3567                                 m_freem(m);
3568                                 *m_head = NULL;
3569                                 return (error);
3570                         }
3571                 }
3572                 if (m->m_flags & M_LASTFRAG)
3573                         csum_flags |= BGE_TXBDFLAG_IP_FRAG_END;
3574                 else if (m->m_flags & M_FRAG)
3575                         csum_flags |= BGE_TXBDFLAG_IP_FRAG;
3576         }
3577
3578         map = sc->bge_cdata.bge_tx_dmamap[idx];
3579         error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_mtag, map, m, segs,
3580             &nsegs, BUS_DMA_NOWAIT);
3581         if (error == EFBIG) {
3582                 m = m_collapse(m, M_DONTWAIT, BGE_NSEG_NEW);
3583                 if (m == NULL) {
3584                         m_freem(*m_head);
3585                         *m_head = NULL;
3586                         return (ENOBUFS);
3587                 }
3588                 *m_head = m;
3589                 error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_mtag, map, m,
3590                     segs, &nsegs, BUS_DMA_NOWAIT);
3591                 if (error) {
3592                         m_freem(m);
3593                         *m_head = NULL;
3594                         return (error);
3595                 }
3596         } else if (error != 0)
3597                 return (error);
3598
3599         /*
3600          * Sanity check: avoid coming within 16 descriptors
3601          * of the end of the ring.
3602          */
3603         if (nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
3604                 bus_dmamap_unload(sc->bge_cdata.bge_mtag, map);
3605                 return (ENOBUFS);
3606         }
3607
3608         bus_dmamap_sync(sc->bge_cdata.bge_mtag, map, BUS_DMASYNC_PREWRITE);
3609
3610         for (i = 0; ; i++) {
3611                 d = &sc->bge_ldata.bge_tx_ring[idx];
3612                 d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
3613                 d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
3614                 d->bge_len = segs[i].ds_len;
3615                 d->bge_flags = csum_flags;
3616                 if (i == nsegs - 1)
3617                         break;
3618                 BGE_INC(idx, BGE_TX_RING_CNT);
3619         }
3620
3621         /* Mark the last segment as end of packet... */
3622         d->bge_flags |= BGE_TXBDFLAG_END;
3623
3624         /* ... and put VLAN tag into first segment.  */
3625         d = &sc->bge_ldata.bge_tx_ring[*txidx];
3626 #if __FreeBSD_version > 700022
3627         if (m->m_flags & M_VLANTAG) {
3628                 d->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
3629                 d->bge_vlan_tag = m->m_pkthdr.ether_vtag;
3630         } else
3631                 d->bge_vlan_tag = 0;
3632 #else
3633         {
3634                 struct m_tag            *mtag;
3635
3636                 if ((mtag = VLAN_OUTPUT_TAG(sc->bge_ifp, m)) != NULL) {
3637                         d->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
3638                         d->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
3639                 } else
3640                         d->bge_vlan_tag = 0;
3641         }
3642 #endif
3643
3644         /*
3645          * Insure that the map for this transmission
3646          * is placed at the array index of the last descriptor
3647          * in this chain.
3648          */
3649         sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx];
3650         sc->bge_cdata.bge_tx_dmamap[idx] = map;
3651         sc->bge_cdata.bge_tx_chain[idx] = m;
3652         sc->bge_txcnt += nsegs;
3653
3654         BGE_INC(idx, BGE_TX_RING_CNT);
3655         *txidx = idx;
3656
3657         return (0);
3658 }
3659
3660 /*
3661  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3662  * to the mbuf data regions directly in the transmit descriptors.
3663  */
3664 static void
3665 bge_start_locked(struct ifnet *ifp)
3666 {
3667         struct bge_softc *sc;
3668         struct mbuf *m_head = NULL;
3669         uint32_t prodidx;
3670         int count = 0;
3671
3672         sc = ifp->if_softc;
3673
3674         if (!sc->bge_link || IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3675                 return;
3676
3677         prodidx = sc->bge_tx_prodidx;
3678
3679         while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
3680                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
3681                 if (m_head == NULL)
3682                         break;
3683
3684                 /*
3685                  * XXX
3686                  * The code inside the if() block is never reached since we
3687                  * must mark CSUM_IP_FRAGS in our if_hwassist to start getting
3688                  * requests to checksum TCP/UDP in a fragmented packet.
3689                  *
3690                  * XXX
3691                  * safety overkill.  If this is a fragmented packet chain
3692                  * with delayed TCP/UDP checksums, then only encapsulate
3693                  * it if we have enough descriptors to handle the entire
3694                  * chain at once.
3695                  * (paranoia -- may not actually be needed)
3696                  */
3697                 if (m_head->m_flags & M_FIRSTFRAG &&
3698                     m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
3699                         if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
3700                             m_head->m_pkthdr.csum_data + 16) {
3701                                 IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
3702                                 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3703                                 break;
3704                         }
3705                 }
3706
3707                 /*
3708                  * Pack the data into the transmit ring. If we
3709                  * don't have room, set the OACTIVE flag and wait
3710                  * for the NIC to drain the ring.
3711                  */
3712                 if (bge_encap(sc, &m_head, &prodidx)) {
3713                         if (m_head == NULL)
3714                                 break;
3715                         IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
3716                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3717                         break;
3718                 }
3719                 ++count;
3720
3721                 /*
3722                  * If there's a BPF listener, bounce a copy of this frame
3723                  * to him.
3724                  */
3725 #ifdef ETHER_BPF_MTAP
3726                 ETHER_BPF_MTAP(ifp, m_head);
3727 #else
3728                 BPF_MTAP(ifp, m_head);
3729 #endif
3730         }
3731
3732         if (count == 0)
3733                 /* No packets were dequeued. */
3734                 return;
3735
3736         /* Transmit. */
3737         bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3738         /* 5700 b2 errata */
3739         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
3740                 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3741
3742         sc->bge_tx_prodidx = prodidx;
3743
3744         /*
3745          * Set a timeout in case the chip goes out to lunch.
3746          */
3747         sc->bge_timer = 5;
3748 }
3749
3750 /*
3751  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3752  * to the mbuf data regions directly in the transmit descriptors.
3753  */
3754 static void
3755 bge_start(struct ifnet *ifp)
3756 {
3757         struct bge_softc *sc;
3758
3759         sc = ifp->if_softc;
3760         BGE_LOCK(sc);
3761         bge_start_locked(ifp);
3762         BGE_UNLOCK(sc);
3763 }
3764
3765 static void
3766 bge_init_locked(struct bge_softc *sc)
3767 {
3768         struct ifnet *ifp;
3769         uint16_t *m;
3770
3771         BGE_LOCK_ASSERT(sc);
3772
3773         ifp = sc->bge_ifp;
3774
3775         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3776                 return;
3777
3778         /* Cancel pending I/O and flush buffers. */
3779         bge_stop(sc);
3780
3781         bge_stop_fw(sc);
3782         bge_sig_pre_reset(sc, BGE_RESET_START);
3783         bge_reset(sc);
3784         bge_sig_legacy(sc, BGE_RESET_START);
3785         bge_sig_post_reset(sc, BGE_RESET_START);
3786
3787         bge_chipinit(sc);
3788
3789         /*
3790          * Init the various state machines, ring
3791          * control blocks and firmware.
3792          */
3793         if (bge_blockinit(sc)) {
3794                 device_printf(sc->bge_dev, "initialization failure\n");
3795                 return;
3796         }
3797
3798         ifp = sc->bge_ifp;
3799
3800         /* Specify MTU. */
3801         CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
3802             ETHER_HDR_LEN + ETHER_CRC_LEN +
3803             (ifp->if_capenable & IFCAP_VLAN_MTU ? ETHER_VLAN_ENCAP_LEN : 0));
3804
3805         /* Load our MAC address. */
3806         m = (uint16_t *)IF_LLADDR(sc->bge_ifp);
3807         CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
3808         CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
3809
3810         /* Program promiscuous mode. */
3811         bge_setpromisc(sc);
3812
3813         /* Program multicast filter. */
3814         bge_setmulti(sc);
3815
3816         /* Program VLAN tag stripping. */
3817         bge_setvlan(sc);
3818
3819         /* Init RX ring. */
3820         bge_init_rx_ring_std(sc);
3821
3822         /*
3823          * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
3824          * memory to insure that the chip has in fact read the first
3825          * entry of the ring.
3826          */
3827         if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
3828                 uint32_t                v, i;
3829                 for (i = 0; i < 10; i++) {
3830                         DELAY(20);
3831                         v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
3832                         if (v == (MCLBYTES - ETHER_ALIGN))
3833                                 break;
3834                 }
3835                 if (i == 10)
3836                         device_printf (sc->bge_dev,
3837                             "5705 A0 chip failed to load RX ring\n");
3838         }
3839
3840         /* Init jumbo RX ring. */
3841         if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
3842                 bge_init_rx_ring_jumbo(sc);
3843
3844         /* Init our RX return ring index. */
3845         sc->bge_rx_saved_considx = 0;
3846
3847         /* Init our RX/TX stat counters. */
3848         sc->bge_rx_discards = sc->bge_tx_discards = sc->bge_tx_collisions = 0;
3849
3850         /* Init TX ring. */
3851         bge_init_tx_ring(sc);
3852
3853         /* Turn on transmitter. */
3854         BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
3855
3856         /* Turn on receiver. */
3857         BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3858
3859         /* Tell firmware we're alive. */
3860         BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3861
3862 #ifdef DEVICE_POLLING
3863         /* Disable interrupts if we are polling. */
3864         if (ifp->if_capenable & IFCAP_POLLING) {
3865                 BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
3866                     BGE_PCIMISCCTL_MASK_PCI_INTR);
3867                 bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
3868         } else
3869 #endif
3870
3871         /* Enable host interrupts. */
3872         {
3873         BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
3874         BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
3875         bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
3876         }
3877         
3878         bge_ifmedia_upd_locked(ifp);
3879
3880         ifp->if_drv_flags |= IFF_DRV_RUNNING;
3881         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3882
3883         callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
3884 }
3885
3886 static void
3887 bge_init(void *xsc)
3888 {
3889         struct bge_softc *sc = xsc;
3890
3891         BGE_LOCK(sc);
3892         bge_init_locked(sc);
3893         BGE_UNLOCK(sc);
3894 }
3895
3896 /*
3897  * Set media options.
3898  */
3899 static int
3900 bge_ifmedia_upd(struct ifnet *ifp)
3901 {
3902         struct bge_softc *sc = ifp->if_softc;
3903         int res;
3904
3905         BGE_LOCK(sc);
3906         res = bge_ifmedia_upd_locked(ifp);
3907         BGE_UNLOCK(sc);
3908
3909         return (res);
3910 }
3911
3912 static int
3913 bge_ifmedia_upd_locked(struct ifnet *ifp)
3914 {
3915         struct bge_softc *sc = ifp->if_softc;
3916         struct mii_data *mii;
3917         struct mii_softc *miisc;
3918         struct ifmedia *ifm;
3919
3920         BGE_LOCK_ASSERT(sc);
3921
3922         ifm = &sc->bge_ifmedia;
3923
3924         /* If this is a 1000baseX NIC, enable the TBI port. */
3925         if (sc->bge_flags & BGE_FLAG_TBI) {
3926                 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
3927                         return (EINVAL);
3928                 switch(IFM_SUBTYPE(ifm->ifm_media)) {
3929                 case IFM_AUTO:
3930                         /*
3931                          * The BCM5704 ASIC appears to have a special
3932                          * mechanism for programming the autoneg
3933                          * advertisement registers in TBI mode.
3934                          */
3935                         if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
3936                                 uint32_t sgdig;
3937                                 sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
3938                                 if (sgdig & BGE_SGDIGSTS_DONE) {
3939                                         CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
3940                                         sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
3941                                         sgdig |= BGE_SGDIGCFG_AUTO |
3942                                             BGE_SGDIGCFG_PAUSE_CAP |
3943                                             BGE_SGDIGCFG_ASYM_PAUSE;
3944                                         CSR_WRITE_4(sc, BGE_SGDIG_CFG,
3945                                             sgdig | BGE_SGDIGCFG_SEND);
3946                                         DELAY(5);
3947                                         CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
3948                                 }
3949                         }
3950                         break;
3951                 case IFM_1000_SX:
3952                         if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3953                                 BGE_CLRBIT(sc, BGE_MAC_MODE,
3954                                     BGE_MACMODE_HALF_DUPLEX);
3955                         } else {
3956                                 BGE_SETBIT(sc, BGE_MAC_MODE,
3957                                     BGE_MACMODE_HALF_DUPLEX);
3958                         }
3959                         break;
3960                 default:
3961                         return (EINVAL);
3962                 }
3963                 return (0);
3964         }
3965
3966         sc->bge_link_evt++;
3967         mii = device_get_softc(sc->bge_miibus);
3968         if (mii->mii_instance)
3969                 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
3970                         mii_phy_reset(miisc);
3971         mii_mediachg(mii);
3972
3973         /*
3974          * Force an interrupt so that we will call bge_link_upd
3975          * if needed and clear any pending link state attention.
3976          * Without this we are not getting any further interrupts
3977          * for link state changes and thus will not UP the link and
3978          * not be able to send in bge_start_locked. The only
3979          * way to get things working was to receive a packet and
3980          * get an RX intr.
3981          * bge_tick should help for fiber cards and we might not
3982          * need to do this here if BGE_FLAG_TBI is set but as
3983          * we poll for fiber anyway it should not harm.
3984          */
3985         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
3986             sc->bge_flags & BGE_FLAG_5788)
3987                 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
3988         else
3989                 BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
3990
3991         return (0);
3992 }
3993
3994 /*
3995  * Report current media status.
3996  */
3997 static void
3998 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3999 {
4000         struct bge_softc *sc = ifp->if_softc;
4001         struct mii_data *mii;
4002
4003         BGE_LOCK(sc);
4004
4005         if (sc->bge_flags & BGE_FLAG_TBI) {
4006                 ifmr->ifm_status = IFM_AVALID;
4007                 ifmr->ifm_active = IFM_ETHER;
4008                 if (CSR_READ_4(sc, BGE_MAC_STS) &
4009                     BGE_MACSTAT_TBI_PCS_SYNCHED)
4010                         ifmr->ifm_status |= IFM_ACTIVE;
4011                 else {
4012                         ifmr->ifm_active |= IFM_NONE;
4013                         BGE_UNLOCK(sc);
4014                         return;
4015                 }
4016                 ifmr->ifm_active |= IFM_1000_SX;
4017                 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
4018                         ifmr->ifm_active |= IFM_HDX;
4019                 else
4020                         ifmr->ifm_active |= IFM_FDX;
4021                 BGE_UNLOCK(sc);
4022                 return;
4023         }
4024
4025         mii = device_get_softc(sc->bge_miibus);
4026         mii_pollstat(mii);
4027         ifmr->ifm_active = mii->mii_media_active;
4028         ifmr->ifm_status = mii->mii_media_status;
4029
4030         BGE_UNLOCK(sc);
4031 }
4032
4033 static int
4034 bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
4035 {
4036         struct bge_softc *sc = ifp->if_softc;
4037         struct ifreq *ifr = (struct ifreq *) data;
4038         struct mii_data *mii;
4039         int flags, mask, error = 0;
4040
4041         switch (command) {
4042         case SIOCSIFMTU:
4043                 if (ifr->ifr_mtu < ETHERMIN ||
4044                     ((BGE_IS_JUMBO_CAPABLE(sc)) &&
4045                     ifr->ifr_mtu > BGE_JUMBO_MTU) ||
4046                     ((!BGE_IS_JUMBO_CAPABLE(sc)) &&
4047                     ifr->ifr_mtu > ETHERMTU))
4048                         error = EINVAL;
4049                 else if (ifp->if_mtu != ifr->ifr_mtu) {
4050                         ifp->if_mtu = ifr->ifr_mtu;
4051                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
4052                         bge_init(sc);
4053                 }
4054                 break;
4055         case SIOCSIFFLAGS:
4056                 BGE_LOCK(sc);
4057                 if (ifp->if_flags & IFF_UP) {
4058                         /*
4059                          * If only the state of the PROMISC flag changed,
4060                          * then just use the 'set promisc mode' command
4061                          * instead of reinitializing the entire NIC. Doing
4062                          * a full re-init means reloading the firmware and
4063                          * waiting for it to start up, which may take a
4064                          * second or two.  Similarly for ALLMULTI.
4065                          */
4066                         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4067                                 flags = ifp->if_flags ^ sc->bge_if_flags;
4068                                 if (flags & IFF_PROMISC)
4069                                         bge_setpromisc(sc);
4070                                 if (flags & IFF_ALLMULTI)
4071                                         bge_setmulti(sc);
4072                         } else
4073                                 bge_init_locked(sc);
4074                 } else {
4075                         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4076                                 bge_stop(sc);
4077                         }
4078                 }
4079                 sc->bge_if_flags = ifp->if_flags;
4080                 BGE_UNLOCK(sc);
4081                 error = 0;
4082                 break;
4083         case SIOCADDMULTI:
4084         case SIOCDELMULTI:
4085                 if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4086                         BGE_LOCK(sc);
4087                         bge_setmulti(sc);
4088                         BGE_UNLOCK(sc);
4089                         error = 0;
4090                 }
4091                 break;
4092         case SIOCSIFMEDIA:
4093         case SIOCGIFMEDIA:
4094                 if (sc->bge_flags & BGE_FLAG_TBI) {
4095                         error = ifmedia_ioctl(ifp, ifr,
4096                             &sc->bge_ifmedia, command);
4097                 } else {
4098                         mii = device_get_softc(sc->bge_miibus);
4099                         error = ifmedia_ioctl(ifp, ifr,
4100                             &mii->mii_media, command);
4101                 }
4102                 break;
4103         case SIOCSIFCAP:
4104                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
4105 #ifdef DEVICE_POLLING
4106                 if (mask & IFCAP_POLLING) {
4107                         if (ifr->ifr_reqcap & IFCAP_POLLING) {
4108                                 error = ether_poll_register(bge_poll, ifp);
4109                                 if (error)
4110                                         return (error);
4111                                 BGE_LOCK(sc);
4112                                 BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
4113                                     BGE_PCIMISCCTL_MASK_PCI_INTR);
4114                                 bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
4115                                 ifp->if_capenable |= IFCAP_POLLING;
4116                                 BGE_UNLOCK(sc);
4117                         } else {
4118                                 error = ether_poll_deregister(ifp);
4119                                 /* Enable interrupt even in error case */
4120                                 BGE_LOCK(sc);
4121                                 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL,
4122                                     BGE_PCIMISCCTL_MASK_PCI_INTR);
4123                                 bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
4124                                 ifp->if_capenable &= ~IFCAP_POLLING;
4125                                 BGE_UNLOCK(sc);
4126                         }
4127                 }
4128 #endif
4129                 if (mask & IFCAP_HWCSUM) {
4130                         ifp->if_capenable ^= IFCAP_HWCSUM;
4131                         if (IFCAP_HWCSUM & ifp->if_capenable &&
4132                             IFCAP_HWCSUM & ifp->if_capabilities)
4133                                 ifp->if_hwassist = BGE_CSUM_FEATURES;
4134                         else
4135                                 ifp->if_hwassist = 0;
4136 #ifdef VLAN_CAPABILITIES
4137                         VLAN_CAPABILITIES(ifp);
4138 #endif
4139                 }
4140
4141                 if (mask & IFCAP_VLAN_MTU) {
4142                         ifp->if_capenable ^= IFCAP_VLAN_MTU;
4143                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
4144                         bge_init(sc);
4145                 }
4146
4147                 if (mask & IFCAP_VLAN_HWTAGGING) {
4148                         ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
4149                         BGE_LOCK(sc);
4150                         bge_setvlan(sc);
4151                         BGE_UNLOCK(sc);
4152 #ifdef VLAN_CAPABILITIES
4153                         VLAN_CAPABILITIES(ifp);
4154 #endif
4155                 }
4156
4157                 break;
4158         default:
4159                 error = ether_ioctl(ifp, command, data);
4160                 break;
4161         }
4162
4163         return (error);
4164 }
4165
4166 static void
4167 bge_watchdog(struct bge_softc *sc)
4168 {
4169         struct ifnet *ifp;
4170
4171         BGE_LOCK_ASSERT(sc);
4172
4173         if (sc->bge_timer == 0 || --sc->bge_timer)
4174                 return;
4175
4176         ifp = sc->bge_ifp;
4177
4178         if_printf(ifp, "watchdog timeout -- resetting\n");
4179
4180         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
4181         bge_init_locked(sc);
4182
4183         ifp->if_oerrors++;
4184 }
4185
4186 /*
4187  * Stop the adapter and free any mbufs allocated to the
4188  * RX and TX lists.
4189  */
4190 static void
4191 bge_stop(struct bge_softc *sc)
4192 {
4193         struct ifnet *ifp;
4194         struct ifmedia_entry *ifm;
4195         struct mii_data *mii = NULL;
4196         int mtmp, itmp;
4197
4198         BGE_LOCK_ASSERT(sc);
4199
4200         ifp = sc->bge_ifp;
4201
4202         if ((sc->bge_flags & BGE_FLAG_TBI) == 0)
4203                 mii = device_get_softc(sc->bge_miibus);
4204
4205         callout_stop(&sc->bge_stat_ch);
4206
4207         /*
4208          * Disable all of the receiver blocks.
4209          */
4210         BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
4211         BGE_CLRBIT(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
4212         BGE_CLRBIT(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
4213         if (!(BGE_IS_5705_PLUS(sc)))
4214                 BGE_CLRBIT(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
4215         BGE_CLRBIT(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
4216         BGE_CLRBIT(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
4217         BGE_CLRBIT(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
4218
4219         /*
4220          * Disable all of the transmit blocks.
4221          */
4222         BGE_CLRBIT(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
4223         BGE_CLRBIT(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
4224         BGE_CLRBIT(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
4225         BGE_CLRBIT(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
4226         BGE_CLRBIT(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
4227         if (!(BGE_IS_5705_PLUS(sc)))
4228                 BGE_CLRBIT(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
4229         BGE_CLRBIT(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
4230
4231         /*
4232          * Shut down all of the memory managers and related
4233          * state machines.
4234          */
4235         BGE_CLRBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
4236         BGE_CLRBIT(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
4237         if (!(BGE_IS_5705_PLUS(sc)))
4238                 BGE_CLRBIT(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
4239         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
4240         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
4241         if (!(BGE_IS_5705_PLUS(sc))) {
4242                 BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
4243                 BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4244         }
4245
4246         /* Disable host interrupts. */
4247         BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
4248         bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
4249
4250         /*
4251          * Tell firmware we're shutting down.
4252          */
4253
4254         bge_stop_fw(sc);
4255         bge_sig_pre_reset(sc, BGE_RESET_STOP);
4256         bge_reset(sc);
4257         bge_sig_legacy(sc, BGE_RESET_STOP);
4258         bge_sig_post_reset(sc, BGE_RESET_STOP);
4259
4260         /* 
4261          * Keep the ASF firmware running if up.
4262          */
4263         if (sc->bge_asf_mode & ASF_STACKUP)
4264                 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4265         else
4266                 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4267
4268         /* Free the RX lists. */
4269         bge_free_rx_ring_std(sc);
4270
4271         /* Free jumbo RX list. */
4272         if (BGE_IS_JUMBO_CAPABLE(sc))
4273                 bge_free_rx_ring_jumbo(sc);
4274
4275         /* Free TX buffers. */
4276         bge_free_tx_ring(sc);
4277
4278         /*
4279          * Isolate/power down the PHY, but leave the media selection
4280          * unchanged so that things will be put back to normal when
4281          * we bring the interface back up.
4282          */
4283         if ((sc->bge_flags & BGE_FLAG_TBI) == 0) {
4284                 itmp = ifp->if_flags;
4285                 ifp->if_flags |= IFF_UP;
4286                 /*
4287                  * If we are called from bge_detach(), mii is already NULL.
4288                  */
4289                 if (mii != NULL) {
4290                         ifm = mii->mii_media.ifm_cur;
4291                         mtmp = ifm->ifm_media;
4292                         ifm->ifm_media = IFM_ETHER | IFM_NONE;
4293                         mii_mediachg(mii);
4294                         ifm->ifm_media = mtmp;
4295                 }
4296                 ifp->if_flags = itmp;
4297         }
4298
4299         sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
4300
4301         /* Clear MAC's link state (PHY may still have link UP). */
4302         if (bootverbose && sc->bge_link)
4303                 if_printf(sc->bge_ifp, "link DOWN\n");
4304         sc->bge_link = 0;
4305
4306         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
4307 }
4308
4309 /*
4310  * Stop all chip I/O so that the kernel's probe routines don't
4311  * get confused by errant DMAs when rebooting.
4312  */
4313 static int
4314 bge_shutdown(device_t dev)
4315 {
4316         struct bge_softc *sc;
4317
4318         sc = device_get_softc(dev);
4319         BGE_LOCK(sc);
4320         bge_stop(sc);
4321         bge_reset(sc);
4322         BGE_UNLOCK(sc);
4323
4324         return (0);
4325 }
4326
4327 static int
4328 bge_suspend(device_t dev)
4329 {
4330         struct bge_softc *sc;
4331
4332         sc = device_get_softc(dev);
4333         BGE_LOCK(sc);
4334         bge_stop(sc);
4335         BGE_UNLOCK(sc);
4336
4337         return (0);
4338 }
4339
4340 static int
4341 bge_resume(device_t dev)
4342 {
4343         struct bge_softc *sc;
4344         struct ifnet *ifp;
4345
4346         sc = device_get_softc(dev);
4347         BGE_LOCK(sc);
4348         ifp = sc->bge_ifp;
4349         if (ifp->if_flags & IFF_UP) {
4350                 bge_init_locked(sc);
4351                 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
4352                         bge_start_locked(ifp);
4353         }
4354         BGE_UNLOCK(sc);
4355
4356         return (0);
4357 }
4358
4359 static void
4360 bge_link_upd(struct bge_softc *sc)
4361 {
4362         struct mii_data *mii;
4363         uint32_t link, status;
4364
4365         BGE_LOCK_ASSERT(sc);
4366
4367         /* Clear 'pending link event' flag. */
4368         sc->bge_link_evt = 0;
4369
4370         /*
4371          * Process link state changes.
4372          * Grrr. The link status word in the status block does
4373          * not work correctly on the BCM5700 rev AX and BX chips,
4374          * according to all available information. Hence, we have
4375          * to enable MII interrupts in order to properly obtain
4376          * async link changes. Unfortunately, this also means that
4377          * we have to read the MAC status register to detect link
4378          * changes, thereby adding an additional register access to
4379          * the interrupt handler.
4380          *
4381          * XXX: perhaps link state detection procedure used for
4382          * BGE_CHIPID_BCM5700_B2 can be used for others BCM5700 revisions.
4383          */
4384
4385         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
4386             sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
4387                 status = CSR_READ_4(sc, BGE_MAC_STS);
4388                 if (status & BGE_MACSTAT_MI_INTERRUPT) {
4389                         mii = device_get_softc(sc->bge_miibus);
4390                         mii_pollstat(mii);
4391                         if (!sc->bge_link &&
4392                             mii->mii_media_status & IFM_ACTIVE &&
4393                             IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
4394                                 sc->bge_link++;
4395                                 if (bootverbose)
4396                                         if_printf(sc->bge_ifp, "link UP\n");
4397                         } else if (sc->bge_link &&
4398                             (!(mii->mii_media_status & IFM_ACTIVE) ||
4399                             IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
4400                                 sc->bge_link = 0;
4401                                 if (bootverbose)
4402                                         if_printf(sc->bge_ifp, "link DOWN\n");
4403                         }
4404
4405                         /* Clear the interrupt. */
4406                         CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
4407                             BGE_EVTENB_MI_INTERRUPT);
4408                         bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
4409                         bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR,
4410                             BRGPHY_INTRS);
4411                 }
4412                 return;
4413         }
4414
4415         if (sc->bge_flags & BGE_FLAG_TBI) {
4416                 status = CSR_READ_4(sc, BGE_MAC_STS);
4417                 if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
4418                         if (!sc->bge_link) {
4419                                 sc->bge_link++;
4420                                 if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
4421                                         BGE_CLRBIT(sc, BGE_MAC_MODE,
4422                                             BGE_MACMODE_TBI_SEND_CFGS);
4423                                 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
4424                                 if (bootverbose)
4425                                         if_printf(sc->bge_ifp, "link UP\n");
4426                                 if_link_state_change(sc->bge_ifp,
4427                                     LINK_STATE_UP);
4428                         }
4429                 } else if (sc->bge_link) {
4430                         sc->bge_link = 0;
4431                         if (bootverbose)
4432                                 if_printf(sc->bge_ifp, "link DOWN\n");
4433                         if_link_state_change(sc->bge_ifp, LINK_STATE_DOWN);
4434                 }
4435         } else if (CSR_READ_4(sc, BGE_MI_MODE) & BGE_MIMODE_AUTOPOLL) {
4436                 /*
4437                  * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED bit
4438                  * in status word always set. Workaround this bug by reading
4439                  * PHY link status directly.
4440                  */
4441                 link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK) ? 1 : 0;
4442
4443                 if (link != sc->bge_link ||
4444                     sc->bge_asicrev == BGE_ASICREV_BCM5700) {
4445                         mii = device_get_softc(sc->bge_miibus);
4446                         mii_pollstat(mii);
4447                         if (!sc->bge_link &&
4448                             mii->mii_media_status & IFM_ACTIVE &&
4449                             IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
4450                                 sc->bge_link++;
4451                                 if (bootverbose)
4452                                         if_printf(sc->bge_ifp, "link UP\n");
4453                         } else if (sc->bge_link &&
4454                             (!(mii->mii_media_status & IFM_ACTIVE) ||
4455                             IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
4456                                 sc->bge_link = 0;
4457                                 if (bootverbose)
4458                                         if_printf(sc->bge_ifp, "link DOWN\n");
4459                         }
4460                 }
4461         } else {
4462                 /*
4463                  * Discard link events for MII/GMII controllers
4464                  * if MI auto-polling is disabled.
4465                  */
4466         }
4467
4468         /* Clear the attention. */
4469         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
4470             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
4471             BGE_MACSTAT_LINK_CHANGED);
4472 }
4473
4474 #define BGE_SYSCTL_STAT(sc, ctx, desc, parent, node, oid) \
4475         SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, oid, CTLTYPE_UINT|CTLFLAG_RD, \
4476             sc, offsetof(struct bge_stats, node), bge_sysctl_stats, "IU", \
4477             desc)
4478
4479 static void
4480 bge_add_sysctls(struct bge_softc *sc)
4481 {
4482         struct sysctl_ctx_list *ctx;
4483         struct sysctl_oid_list *children, *schildren;
4484         struct sysctl_oid *tree;
4485
4486         ctx = device_get_sysctl_ctx(sc->bge_dev);
4487         children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bge_dev));
4488
4489 #ifdef BGE_REGISTER_DEBUG
4490         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "debug_info",
4491             CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_debug_info, "I",
4492             "Debug Information");
4493
4494         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reg_read",
4495             CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_reg_read, "I",
4496             "Register Read");
4497
4498         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mem_read",
4499             CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_mem_read, "I",
4500             "Memory Read");
4501
4502 #endif
4503
4504         if (BGE_IS_5705_PLUS(sc))
4505                 return;
4506
4507         tree = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "stats", CTLFLAG_RD,
4508             NULL, "BGE Statistics");
4509         schildren = children = SYSCTL_CHILDREN(tree);
4510         BGE_SYSCTL_STAT(sc, ctx, "Frames Dropped Due To Filters",
4511             children, COSFramesDroppedDueToFilters,
4512             "FramesDroppedDueToFilters");
4513         BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write Queue Full",
4514             children, nicDmaWriteQueueFull, "DmaWriteQueueFull");
4515         BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write High Priority Queue Full",
4516             children, nicDmaWriteHighPriQueueFull, "DmaWriteHighPriQueueFull");
4517         BGE_SYSCTL_STAT(sc, ctx, "NIC No More RX Buffer Descriptors",
4518             children, nicNoMoreRxBDs, "NoMoreRxBDs");
4519         BGE_SYSCTL_STAT(sc, ctx, "Discarded Input Frames",
4520             children, ifInDiscards, "InputDiscards");
4521         BGE_SYSCTL_STAT(sc, ctx, "Input Errors",
4522             children, ifInErrors, "InputErrors");
4523         BGE_SYSCTL_STAT(sc, ctx, "NIC Recv Threshold Hit",
4524             children, nicRecvThresholdHit, "RecvThresholdHit");
4525         BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read Queue Full",
4526             children, nicDmaReadQueueFull, "DmaReadQueueFull");
4527         BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read High Priority Queue Full",
4528             children, nicDmaReadHighPriQueueFull, "DmaReadHighPriQueueFull");
4529         BGE_SYSCTL_STAT(sc, ctx, "NIC Send Data Complete Queue Full",
4530             children, nicSendDataCompQueueFull, "SendDataCompQueueFull");
4531         BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Set Send Producer Index",
4532             children, nicRingSetSendProdIndex, "RingSetSendProdIndex");
4533         BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Status Update",
4534             children, nicRingStatusUpdate, "RingStatusUpdate");
4535         BGE_SYSCTL_STAT(sc, ctx, "NIC Interrupts",
4536             children, nicInterrupts, "Interrupts");
4537         BGE_SYSCTL_STAT(sc, ctx, "NIC Avoided Interrupts",
4538             children, nicAvoidedInterrupts, "AvoidedInterrupts");
4539         BGE_SYSCTL_STAT(sc, ctx, "NIC Send Threshold Hit",
4540             children, nicSendThresholdHit, "SendThresholdHit");
4541
4542         tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "rx", CTLFLAG_RD,
4543             NULL, "BGE RX Statistics");
4544         children = SYSCTL_CHILDREN(tree);
4545         BGE_SYSCTL_STAT(sc, ctx, "Inbound Octets",
4546             children, rxstats.ifHCInOctets, "Octets");
4547         BGE_SYSCTL_STAT(sc, ctx, "Fragments",
4548             children, rxstats.etherStatsFragments, "Fragments");
4549         BGE_SYSCTL_STAT(sc, ctx, "Inbound Unicast Packets",
4550             children, rxstats.ifHCInUcastPkts, "UcastPkts");
4551         BGE_SYSCTL_STAT(sc, ctx, "Inbound Multicast Packets",
4552             children, rxstats.ifHCInMulticastPkts, "MulticastPkts");
4553         BGE_SYSCTL_STAT(sc, ctx, "FCS Errors",
4554             children, rxstats.dot3StatsFCSErrors, "FCSErrors");
4555         BGE_SYSCTL_STAT(sc, ctx, "Alignment Errors",
4556             children, rxstats.dot3StatsAlignmentErrors, "AlignmentErrors");
4557         BGE_SYSCTL_STAT(sc, ctx, "XON Pause Frames Received",
4558             children, rxstats.xonPauseFramesReceived, "xonPauseFramesReceived");
4559         BGE_SYSCTL_STAT(sc, ctx, "XOFF Pause Frames Received",
4560             children, rxstats.xoffPauseFramesReceived,
4561             "xoffPauseFramesReceived");
4562         BGE_SYSCTL_STAT(sc, ctx, "MAC Control Frames Received",
4563             children, rxstats.macControlFramesReceived,
4564             "ControlFramesReceived");
4565         BGE_SYSCTL_STAT(sc, ctx, "XOFF State Entered",
4566             children, rxstats.xoffStateEntered, "xoffStateEntered");
4567         BGE_SYSCTL_STAT(sc, ctx, "Frames Too Long",
4568             children, rxstats.dot3StatsFramesTooLong, "FramesTooLong");
4569         BGE_SYSCTL_STAT(sc, ctx, "Jabbers",
4570             children, rxstats.etherStatsJabbers, "Jabbers");
4571         BGE_SYSCTL_STAT(sc, ctx, "Undersized Packets",
4572             children, rxstats.etherStatsUndersizePkts, "UndersizePkts");
4573         BGE_SYSCTL_STAT(sc, ctx, "Inbound Range Length Errors",
4574             children, rxstats.inRangeLengthError, "inRangeLengthError");
4575         BGE_SYSCTL_STAT(sc, ctx, "Outbound Range Length Errors",
4576             children, rxstats.outRangeLengthError, "outRangeLengthError");
4577
4578         tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "tx", CTLFLAG_RD,
4579             NULL, "BGE TX Statistics");
4580         children = SYSCTL_CHILDREN(tree);
4581         BGE_SYSCTL_STAT(sc, ctx, "Outbound Octets",
4582             children, txstats.ifHCOutOctets, "Octets");
4583         BGE_SYSCTL_STAT(sc, ctx, "TX Collisions",
4584             children, txstats.etherStatsCollisions, "Collisions");
4585         BGE_SYSCTL_STAT(sc, ctx, "XON Sent",
4586             children, txstats.outXonSent, "XonSent");
4587         BGE_SYSCTL_STAT(sc, ctx, "XOFF Sent",
4588             children, txstats.outXoffSent, "XoffSent");
4589         BGE_SYSCTL_STAT(sc, ctx, "Flow Control Done",
4590             children, txstats.flowControlDone, "flowControlDone");
4591         BGE_SYSCTL_STAT(sc, ctx, "Internal MAC TX errors",
4592             children, txstats.dot3StatsInternalMacTransmitErrors,
4593             "InternalMacTransmitErrors");
4594         BGE_SYSCTL_STAT(sc, ctx, "Single Collision Frames",
4595             children, txstats.dot3StatsSingleCollisionFrames,
4596             "SingleCollisionFrames");
4597         BGE_SYSCTL_STAT(sc, ctx, "Multiple Collision Frames",
4598             children, txstats.dot3StatsMultipleCollisionFrames,
4599             "MultipleCollisionFrames");
4600         BGE_SYSCTL_STAT(sc, ctx, "Deferred Transmissions", 
4601             children, txstats.dot3StatsDeferredTransmissions,
4602             "DeferredTransmissions");
4603         BGE_SYSCTL_STAT(sc, ctx, "Excessive Collisions",
4604             children, txstats.dot3StatsExcessiveCollisions,
4605             "ExcessiveCollisions");
4606         BGE_SYSCTL_STAT(sc, ctx, "Late Collisions",
4607             children, txstats.dot3StatsLateCollisions,
4608             "LateCollisions");
4609         BGE_SYSCTL_STAT(sc, ctx, "Outbound Unicast Packets", 
4610             children, txstats.ifHCOutUcastPkts, "UcastPkts");
4611         BGE_SYSCTL_STAT(sc, ctx, "Outbound Multicast Packets",
4612             children, txstats.ifHCOutMulticastPkts, "MulticastPkts");
4613         BGE_SYSCTL_STAT(sc, ctx, "Outbound Broadcast Packets",
4614             children, txstats.ifHCOutBroadcastPkts, "BroadcastPkts");
4615         BGE_SYSCTL_STAT(sc, ctx, "Carrier Sense Errors",
4616             children, txstats.dot3StatsCarrierSenseErrors,
4617             "CarrierSenseErrors");
4618         BGE_SYSCTL_STAT(sc, ctx, "Outbound Discards",
4619             children, txstats.ifOutDiscards, "Discards");
4620         BGE_SYSCTL_STAT(sc, ctx, "Outbound Errors",
4621             children, txstats.ifOutErrors, "Errors");
4622 }
4623
4624 static int
4625 bge_sysctl_stats(SYSCTL_HANDLER_ARGS)
4626 {
4627         struct bge_softc *sc;
4628         uint32_t result;
4629         int offset;
4630
4631         sc = (struct bge_softc *)arg1;
4632         offset = arg2;
4633         result = CSR_READ_4(sc, BGE_MEMWIN_START + BGE_STATS_BLOCK + offset +
4634             offsetof(bge_hostaddr, bge_addr_lo));
4635         return (sysctl_handle_int(oidp, &result, 0, req));
4636 }
4637
4638 #ifdef BGE_REGISTER_DEBUG
4639 static int
4640 bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
4641 {
4642         struct bge_softc *sc;
4643         uint16_t *sbdata;
4644         int error;
4645         int result;
4646         int i, j;
4647
4648         result = -1;
4649         error = sysctl_handle_int(oidp, &result, 0, req);
4650         if (error || (req->newptr == NULL))
4651                 return (error);
4652
4653         if (result == 1) {
4654                 sc = (struct bge_softc *)arg1;
4655
4656                 sbdata = (uint16_t *)sc->bge_ldata.bge_status_block;
4657                 printf("Status Block:\n");
4658                 for (i = 0x0; i < (BGE_STATUS_BLK_SZ / 4); ) {
4659                         printf("%06x:", i);
4660                         for (j = 0; j < 8; j++) {
4661                                 printf(" %04x", sbdata[i]);
4662                                 i += 4;
4663                         }
4664                         printf("\n");
4665                 }
4666
4667                 printf("Registers:\n");
4668                 for (i = 0x800; i < 0xA00; ) {
4669                         printf("%06x:", i);
4670                         for (j = 0; j < 8; j++) {
4671                                 printf(" %08x", CSR_READ_4(sc, i));
4672                                 i += 4;
4673                         }
4674                         printf("\n");
4675                 }
4676
4677                 printf("Hardware Flags:\n");
4678                 if (BGE_IS_575X_PLUS(sc))
4679                         printf(" - 575X Plus\n");
4680                 if (BGE_IS_5705_PLUS(sc))
4681                         printf(" - 5705 Plus\n");
4682                 if (BGE_IS_5714_FAMILY(sc))
4683                         printf(" - 5714 Family\n");
4684                 if (BGE_IS_5700_FAMILY(sc))
4685                         printf(" - 5700 Family\n");
4686                 if (sc->bge_flags & BGE_FLAG_JUMBO)
4687                         printf(" - Supports Jumbo Frames\n");
4688                 if (sc->bge_flags & BGE_FLAG_PCIX)
4689                         printf(" - PCI-X Bus\n");
4690                 if (sc->bge_flags & BGE_FLAG_PCIE)
4691                         printf(" - PCI Express Bus\n");
4692                 if (sc->bge_flags & BGE_FLAG_NO_3LED)
4693                         printf(" - No 3 LEDs\n");
4694                 if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG)
4695                         printf(" - RX Alignment Bug\n");
4696         }
4697
4698         return (error);
4699 }
4700
4701 static int
4702 bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS)
4703 {
4704         struct bge_softc *sc;
4705         int error;
4706         uint16_t result;
4707         uint32_t val;
4708
4709         result = -1;
4710         error = sysctl_handle_int(oidp, &result, 0, req);
4711         if (error || (req->newptr == NULL))
4712                 return (error);
4713
4714         if (result < 0x8000) {
4715                 sc = (struct bge_softc *)arg1;
4716                 val = CSR_READ_4(sc, result);
4717                 printf("reg 0x%06X = 0x%08X\n", result, val);
4718         }
4719
4720         return (error);
4721 }
4722
4723 static int
4724 bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS)
4725 {
4726         struct bge_softc *sc;
4727         int error;
4728         uint16_t result;
4729         uint32_t val;
4730
4731         result = -1;
4732         error = sysctl_handle_int(oidp, &result, 0, req);
4733         if (error || (req->newptr == NULL))
4734                 return (error);
4735
4736         if (result < 0x8000) {
4737                 sc = (struct bge_softc *)arg1;
4738                 val = bge_readmem_ind(sc, result);
4739                 printf("mem 0x%06X = 0x%08X\n", result, val);
4740         }
4741
4742         return (error);
4743 }
4744 #endif
4745
4746 static int
4747 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
4748 {
4749
4750         if (sc->bge_flags & BGE_FLAG_EADDR)
4751                 return (1);
4752
4753 #ifdef __sparc64__
4754         OF_getetheraddr(sc->bge_dev, ether_addr);
4755         return (0);
4756 #endif
4757         return (1);
4758 }
4759
4760 static int
4761 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
4762 {
4763         uint32_t mac_addr;
4764
4765         mac_addr = bge_readmem_ind(sc, 0x0c14);
4766         if ((mac_addr >> 16) == 0x484b) {
4767                 ether_addr[0] = (uint8_t)(mac_addr >> 8);
4768                 ether_addr[1] = (uint8_t)mac_addr;
4769                 mac_addr = bge_readmem_ind(sc, 0x0c18);
4770                 ether_addr[2] = (uint8_t)(mac_addr >> 24);
4771                 ether_addr[3] = (uint8_t)(mac_addr >> 16);
4772                 ether_addr[4] = (uint8_t)(mac_addr >> 8);
4773                 ether_addr[5] = (uint8_t)mac_addr;
4774                 return (0);
4775         }
4776         return (1);
4777 }
4778
4779 static int
4780 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
4781 {
4782         int mac_offset = BGE_EE_MAC_OFFSET;
4783
4784         if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
4785                 mac_offset = BGE_EE_MAC_OFFSET_5906;
4786
4787         return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
4788             ETHER_ADDR_LEN));
4789 }
4790
4791 static int
4792 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
4793 {
4794
4795         if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
4796                 return (1);
4797
4798         return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
4799            ETHER_ADDR_LEN));
4800 }
4801
4802 static int
4803 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
4804 {
4805         static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
4806                 /* NOTE: Order is critical */
4807                 bge_get_eaddr_fw,
4808                 bge_get_eaddr_mem,
4809                 bge_get_eaddr_nvram,
4810                 bge_get_eaddr_eeprom,
4811                 NULL
4812         };
4813         const bge_eaddr_fcn_t *func;
4814
4815         for (func = bge_eaddr_funcs; *func != NULL; ++func) {
4816                 if ((*func)(sc, eaddr) == 0)
4817                         break;
4818         }
4819         return (*func == NULL ? ENXIO : 0);
4820 }