]> CyberLeo.Net >> Repos - FreeBSD/releng/7.2.git/blob - sys/dev/glxsb/glxsb.c
Create releng/7.2 from stable/7 in preparation for 7.2-RELEASE.
[FreeBSD/releng/7.2.git] / sys / dev / glxsb / glxsb.c
1 /* $OpenBSD: glxsb.c,v 1.7 2007/02/12 14:31:45 tom Exp $ */
2
3 /*
4  * Copyright (c) 2006 Tom Cosgrove <tom@openbsd.org>
5  * Copyright (c) 2003, 2004 Theo de Raadt
6  * Copyright (c) 2003 Jason Wright
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20
21 /*
22  * Driver for the security block on the AMD Geode LX processors
23  * http://www.amd.com/files/connectivitysolutions/geode/geode_lx/33234d_lx_ds.pdf
24  */
25
26 #include <sys/cdefs.h>
27 __FBSDID("$FreeBSD$");
28
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/bus.h>
32 #include <sys/errno.h>
33 #include <sys/kernel.h>
34 #include <sys/lock.h>
35 #include <sys/malloc.h>
36 #include <sys/mbuf.h>
37 #include <sys/module.h>
38 #include <sys/mutex.h>
39 #include <sys/proc.h>
40 #include <sys/random.h>
41 #include <sys/rman.h>
42 #include <sys/rwlock.h>
43 #include <sys/sysctl.h>
44 #include <sys/taskqueue.h>
45
46 #include <machine/bus.h>
47 #include <machine/cpufunc.h>
48 #include <machine/resource.h>
49
50 #include <dev/pci/pcivar.h>
51 #include <dev/pci/pcireg.h>
52
53 #include <opencrypto/cryptodev.h>
54 #include <opencrypto/cryptosoft.h>
55 #include <opencrypto/xform.h>
56
57 #include "cryptodev_if.h"
58 #include "glxsb.h"
59
60 #define PCI_VENDOR_AMD                  0x1022  /* AMD */
61 #define PCI_PRODUCT_AMD_GEODE_LX_CRYPTO 0x2082  /* Geode LX Crypto */
62
63 #define SB_GLD_MSR_CAP          0x58002000      /* RO - Capabilities */
64 #define SB_GLD_MSR_CONFIG       0x58002001      /* RW - Master Config */
65 #define SB_GLD_MSR_SMI          0x58002002      /* RW - SMI */
66 #define SB_GLD_MSR_ERROR        0x58002003      /* RW - Error */
67 #define SB_GLD_MSR_PM           0x58002004      /* RW - Power Mgmt */
68 #define SB_GLD_MSR_DIAG         0x58002005      /* RW - Diagnostic */
69 #define SB_GLD_MSR_CTRL         0x58002006      /* RW - Security Block Cntrl */
70
71                                                 /* For GLD_MSR_CTRL: */
72 #define SB_GMC_DIV0             0x0000          /* AES update divisor values */
73 #define SB_GMC_DIV1             0x0001
74 #define SB_GMC_DIV2             0x0002
75 #define SB_GMC_DIV3             0x0003
76 #define SB_GMC_DIV_MASK         0x0003
77 #define SB_GMC_SBI              0x0004          /* AES swap bits */
78 #define SB_GMC_SBY              0x0008          /* AES swap bytes */
79 #define SB_GMC_TW               0x0010          /* Time write (EEPROM) */
80 #define SB_GMC_T_SEL0           0x0000          /* RNG post-proc: none */
81 #define SB_GMC_T_SEL1           0x0100          /* RNG post-proc: LFSR */
82 #define SB_GMC_T_SEL2           0x0200          /* RNG post-proc: whitener */
83 #define SB_GMC_T_SEL3           0x0300          /* RNG LFSR+whitener */
84 #define SB_GMC_T_SEL_MASK       0x0300
85 #define SB_GMC_T_NE             0x0400          /* Noise (generator) Enable */
86 #define SB_GMC_T_TM             0x0800          /* RNG test mode */
87                                                 /*     (deterministic) */
88
89 /* Security Block configuration/control registers (offsets from base) */
90 #define SB_CTL_A                0x0000          /* RW - SB Control A */
91 #define SB_CTL_B                0x0004          /* RW - SB Control B */
92 #define SB_AES_INT              0x0008          /* RW - SB AES Interrupt */
93 #define SB_SOURCE_A             0x0010          /* RW - Source A */
94 #define SB_DEST_A               0x0014          /* RW - Destination A */
95 #define SB_LENGTH_A             0x0018          /* RW - Length A */
96 #define SB_SOURCE_B             0x0020          /* RW - Source B */
97 #define SB_DEST_B               0x0024          /* RW - Destination B */
98 #define SB_LENGTH_B             0x0028          /* RW - Length B */
99 #define SB_WKEY                 0x0030          /* WO - Writable Key 0-3 */
100 #define SB_WKEY_0               0x0030          /* WO - Writable Key 0 */
101 #define SB_WKEY_1               0x0034          /* WO - Writable Key 1 */
102 #define SB_WKEY_2               0x0038          /* WO - Writable Key 2 */
103 #define SB_WKEY_3               0x003C          /* WO - Writable Key 3 */
104 #define SB_CBC_IV               0x0040          /* RW - CBC IV 0-3 */
105 #define SB_CBC_IV_0             0x0040          /* RW - CBC IV 0 */
106 #define SB_CBC_IV_1             0x0044          /* RW - CBC IV 1 */
107 #define SB_CBC_IV_2             0x0048          /* RW - CBC IV 2 */
108 #define SB_CBC_IV_3             0x004C          /* RW - CBC IV 3 */
109 #define SB_RANDOM_NUM           0x0050          /* RW - Random Number */
110 #define SB_RANDOM_NUM_STATUS    0x0054          /* RW - Random Number Status */
111 #define SB_EEPROM_COMM          0x0800          /* RW - EEPROM Command */
112 #define SB_EEPROM_ADDR          0x0804          /* RW - EEPROM Address */
113 #define SB_EEPROM_DATA          0x0808          /* RW - EEPROM Data */
114 #define SB_EEPROM_SEC_STATE     0x080C          /* RW - EEPROM Security State */
115
116                                                 /* For SB_CTL_A and _B */
117 #define SB_CTL_ST               0x0001          /* Start operation (enc/dec) */
118 #define SB_CTL_ENC              0x0002          /* Encrypt (0 is decrypt) */
119 #define SB_CTL_DEC              0x0000          /* Decrypt */
120 #define SB_CTL_WK               0x0004          /* Use writable key (we set) */
121 #define SB_CTL_DC               0x0008          /* Destination coherent */
122 #define SB_CTL_SC               0x0010          /* Source coherent */
123 #define SB_CTL_CBC              0x0020          /* CBC (0 is ECB) */
124
125                                                 /* For SB_AES_INT */
126 #define SB_AI_DISABLE_AES_A     0x0001          /* Disable AES A compl int */
127 #define SB_AI_ENABLE_AES_A      0x0000          /* Enable AES A compl int */
128 #define SB_AI_DISABLE_AES_B     0x0002          /* Disable AES B compl int */
129 #define SB_AI_ENABLE_AES_B      0x0000          /* Enable AES B compl int */
130 #define SB_AI_DISABLE_EEPROM    0x0004          /* Disable EEPROM op comp int */
131 #define SB_AI_ENABLE_EEPROM     0x0000          /* Enable EEPROM op compl int */
132 #define SB_AI_AES_A_COMPLETE   0x10000          /* AES A operation complete */
133 #define SB_AI_AES_B_COMPLETE   0x20000          /* AES B operation complete */
134 #define SB_AI_EEPROM_COMPLETE  0x40000          /* EEPROM operation complete */
135
136 #define SB_AI_CLEAR_INTR \
137         (SB_AI_DISABLE_AES_A | SB_AI_DISABLE_AES_B |\
138         SB_AI_DISABLE_EEPROM | SB_AI_AES_A_COMPLETE |\
139         SB_AI_AES_B_COMPLETE | SB_AI_EEPROM_COMPLETE)
140
141 #define SB_RNS_TRNG_VALID       0x0001          /* in SB_RANDOM_NUM_STATUS */
142
143 #define SB_MEM_SIZE             0x0810          /* Size of memory block */
144
145 #define SB_AES_ALIGN            0x0010          /* Source and dest buffers */
146                                                 /* must be 16-byte aligned */
147 #define SB_AES_BLOCK_SIZE       0x0010
148
149 /*
150  * The Geode LX security block AES acceleration doesn't perform scatter-
151  * gather: it just takes source and destination addresses.  Therefore the
152  * plain- and ciphertexts need to be contiguous.  To this end, we allocate
153  * a buffer for both, and accept the overhead of copying in and out.  If
154  * the number of bytes in one operation is bigger than allowed for by the
155  * buffer (buffer is twice the size of the max length, as it has both input
156  * and output) then we have to perform multiple encryptions/decryptions.
157  */
158
159 #define GLXSB_MAX_AES_LEN       16384
160
161 MALLOC_DEFINE(M_GLXSB, "glxsb_data", "Glxsb Data");
162
163 struct glxsb_dma_map {
164         bus_dmamap_t            dma_map;        /* DMA map */
165         bus_dma_segment_t       dma_seg;        /* segments */
166         int                     dma_nsegs;      /* #segments */
167         int                     dma_size;       /* size */
168         caddr_t                 dma_vaddr;      /* virtual address */
169         bus_addr_t              dma_paddr;      /* physical address */
170 };
171
172 struct glxsb_taskop {
173         struct glxsb_session    *to_ses;        /* crypto session */
174         struct cryptop          *to_crp;        /* cryptop to perfom */
175         struct cryptodesc       *to_enccrd;     /* enccrd to perform */
176         struct cryptodesc       *to_maccrd;     /* maccrd to perform */
177 };
178
179 struct glxsb_softc {
180         device_t                sc_dev;         /* device backpointer */
181         struct resource         *sc_sr;         /* resource */
182         int                     sc_rid;         /* resource rid */
183         struct callout          sc_rngco;       /* RNG callout */
184         int                     sc_rnghz;       /* RNG callout ticks */
185         bus_dma_tag_t           sc_dmat;        /* DMA tag */
186         struct glxsb_dma_map    sc_dma;         /* DMA map */
187         int32_t                 sc_cid;         /* crypto tag */
188         uint32_t                sc_sid;         /* session id */
189         TAILQ_HEAD(ses_head, glxsb_session)
190                                 sc_sessions;    /* crypto sessions */
191         struct rwlock           sc_sessions_lock;/* sessions lock */
192         struct mtx              sc_task_mtx;    /* task mutex */
193         struct taskqueue        *sc_tq;         /* task queue */
194         struct task             sc_cryptotask;  /* task */
195         struct glxsb_taskop     sc_to;          /* task's crypto operation */
196         int                     sc_task_count;  /* tasks count */
197 };
198
199 static int glxsb_probe(device_t);
200 static int glxsb_attach(device_t);
201 static int glxsb_detach(device_t);
202
203 static void glxsb_dmamap_cb(void *, bus_dma_segment_t *, int, int);
204 static int  glxsb_dma_alloc(struct glxsb_softc *);
205 static void glxsb_dma_pre_op(struct glxsb_softc *, struct glxsb_dma_map *);
206 static void glxsb_dma_post_op(struct glxsb_softc *, struct glxsb_dma_map *);
207 static void glxsb_dma_free(struct glxsb_softc *, struct glxsb_dma_map *);
208
209 static void glxsb_rnd(void *);
210 static int  glxsb_crypto_setup(struct glxsb_softc *);
211 static int  glxsb_crypto_newsession(device_t, uint32_t *, struct cryptoini *);
212 static int  glxsb_crypto_freesession(device_t, uint64_t);
213 static int  glxsb_aes(struct glxsb_softc *, uint32_t, uint32_t,
214         uint32_t, void *, int, void *);
215
216 static int  glxsb_crypto_encdec(struct cryptop *, struct cryptodesc *,
217         struct glxsb_session *, struct glxsb_softc *);
218
219 static void glxsb_crypto_task(void *, int);
220 static int  glxsb_crypto_process(device_t, struct cryptop *, int);
221
222 static device_method_t glxsb_methods[] = {
223         /* device interface */
224         DEVMETHOD(device_probe,         glxsb_probe),
225         DEVMETHOD(device_attach,        glxsb_attach),
226         DEVMETHOD(device_detach,        glxsb_detach),
227
228         /* crypto device methods */
229         DEVMETHOD(cryptodev_newsession,         glxsb_crypto_newsession),
230         DEVMETHOD(cryptodev_freesession,        glxsb_crypto_freesession),
231         DEVMETHOD(cryptodev_process,            glxsb_crypto_process),
232
233         {0,0}
234 };
235
236 static driver_t glxsb_driver = {
237         "glxsb",
238         glxsb_methods,
239         sizeof(struct glxsb_softc)
240 };
241
242 static devclass_t glxsb_devclass;
243
244 DRIVER_MODULE(glxsb, pci, glxsb_driver, glxsb_devclass, 0, 0);
245 MODULE_VERSION(glxsb, 1);
246 MODULE_DEPEND(glxsb, crypto, 1, 1, 1);
247
248 static int
249 glxsb_probe(device_t dev)
250 {
251
252         if (pci_get_vendor(dev) == PCI_VENDOR_AMD &&
253             pci_get_device(dev) == PCI_PRODUCT_AMD_GEODE_LX_CRYPTO) {
254                 device_set_desc(dev,
255                     "AMD Geode LX Security Block (AES-128-CBC, RNG)");
256                 return (BUS_PROBE_DEFAULT);
257         }
258
259         return (ENXIO);
260 }
261
262 static int
263 glxsb_attach(device_t dev)
264 {
265         struct glxsb_softc *sc = device_get_softc(dev);
266         uint64_t msr;
267
268         sc->sc_dev = dev;
269         msr = rdmsr(SB_GLD_MSR_CAP);
270
271         if ((msr & 0xFFFF00) != 0x130400) {
272                 device_printf(dev, "unknown ID 0x%x\n",
273                     (int)((msr & 0xFFFF00) >> 16));
274                 return (ENXIO);
275         }
276
277         pci_enable_busmaster(dev);
278
279         /* Map in the security block configuration/control registers */
280         sc->sc_rid = PCIR_BAR(0);
281         sc->sc_sr = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->sc_rid,
282             RF_ACTIVE);
283         if (sc->sc_sr == NULL) {
284                 device_printf(dev, "cannot map register space\n");
285                 return (ENXIO);
286         }
287
288         /*
289          * Configure the Security Block.
290          *
291          * We want to enable the noise generator (T_NE), and enable the
292          * linear feedback shift register and whitener post-processing
293          * (T_SEL = 3).  Also ensure that test mode (deterministic values)
294          * is disabled.
295          */
296         msr = rdmsr(SB_GLD_MSR_CTRL);
297         msr &= ~(SB_GMC_T_TM | SB_GMC_T_SEL_MASK);
298         msr |= SB_GMC_T_NE | SB_GMC_T_SEL3;
299 #if 0
300         msr |= SB_GMC_SBI | SB_GMC_SBY;         /* for AES, if necessary */
301 #endif
302         wrmsr(SB_GLD_MSR_CTRL, msr);
303
304         /* Disable interrupts */
305         bus_write_4(sc->sc_sr, SB_AES_INT, SB_AI_CLEAR_INTR);
306
307         /* Allocate a contiguous DMA-able buffer to work in */
308         if (glxsb_dma_alloc(sc) != 0)
309                 goto fail0;
310
311         /* Initialize our task queue */
312         sc->sc_tq = taskqueue_create("glxsb_taskq", M_NOWAIT | M_ZERO,
313             taskqueue_thread_enqueue, &sc->sc_tq);
314         if (sc->sc_tq == NULL) {
315                 device_printf(dev, "cannot create task queue\n");
316                 goto fail0;
317         }
318         if (taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq",
319             device_get_nameunit(dev)) != 0) {
320                 device_printf(dev, "cannot start task queue\n");
321                 goto fail1;
322         }
323         TASK_INIT(&sc->sc_cryptotask, 0, glxsb_crypto_task, sc);
324
325         /* Initialize crypto */
326         if (glxsb_crypto_setup(sc) != 0)
327                 goto fail1;
328
329         /* Install a periodic collector for the "true" (AMD's word) RNG */
330         if (hz > 100)
331                 sc->sc_rnghz = hz / 100;
332         else
333                 sc->sc_rnghz = 1;
334         callout_init(&sc->sc_rngco, CALLOUT_MPSAFE);
335         glxsb_rnd(sc);
336
337         return (0);
338
339 fail1:
340         taskqueue_free(sc->sc_tq);
341 fail0:
342         bus_release_resource(dev, SYS_RES_MEMORY, sc->sc_rid, sc->sc_sr);
343         return (ENXIO);
344 }
345
346 static int
347 glxsb_detach(device_t dev)
348 {
349         struct glxsb_softc *sc = device_get_softc(dev);
350         struct glxsb_session *ses;
351
352         rw_wlock(&sc->sc_sessions_lock);
353         TAILQ_FOREACH(ses, &sc->sc_sessions, ses_next) {
354                 if (ses->ses_used) {
355                         rw_wunlock(&sc->sc_sessions_lock);
356                         device_printf(dev,
357                                 "cannot detach, sessions still active.\n");
358                         return (EBUSY);
359                 }
360         }
361         while ((ses = TAILQ_FIRST(&sc->sc_sessions)) != NULL) {
362                 TAILQ_REMOVE(&sc->sc_sessions, ses, ses_next);
363                 free(ses, M_GLXSB);
364         }
365         rw_wunlock(&sc->sc_sessions_lock);
366         crypto_unregister_all(sc->sc_cid);
367         callout_drain(&sc->sc_rngco);
368         taskqueue_drain(sc->sc_tq, &sc->sc_cryptotask);
369         bus_generic_detach(dev);
370         glxsb_dma_free(sc, &sc->sc_dma);
371         bus_release_resource(dev, SYS_RES_MEMORY, sc->sc_rid, sc->sc_sr);
372         taskqueue_free(sc->sc_tq);
373         rw_destroy(&sc->sc_sessions_lock);
374         mtx_destroy(&sc->sc_task_mtx);
375         return (0);
376 }
377
378 /*
379  *      callback for bus_dmamap_load()
380  */
381 static void
382 glxsb_dmamap_cb(void *arg, bus_dma_segment_t *seg, int nseg, int error)
383 {
384
385         bus_addr_t *paddr = (bus_addr_t*) arg;
386         *paddr = seg[0].ds_addr;
387 }
388
389 static int
390 glxsb_dma_alloc(struct glxsb_softc *sc)
391 {
392         struct glxsb_dma_map *dma = &sc->sc_dma;
393         int rc;
394
395         dma->dma_nsegs = 1;
396         dma->dma_size = GLXSB_MAX_AES_LEN * 2;
397
398         /* Setup DMA descriptor area */
399         rc = bus_dma_tag_create(NULL,                   /* parent */
400                                 SB_AES_ALIGN, 0,        /* alignments, bounds */
401                                 BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
402                                 BUS_SPACE_MAXADDR,      /* highaddr */
403                                 NULL, NULL,             /* filter, filterarg */
404                                 dma->dma_size,          /* maxsize */
405                                 dma->dma_nsegs,         /* nsegments */
406                                 dma->dma_size,          /* maxsegsize */
407                                 BUS_DMA_ALLOCNOW,       /* flags */
408                                 NULL, NULL,             /* lockfunc, lockarg */
409                                 &sc->sc_dmat);
410         if (rc != 0) {
411                 device_printf(sc->sc_dev,
412                     "cannot allocate DMA tag (%d)\n", rc);
413                 return (rc);
414         }
415
416         rc = bus_dmamem_alloc(sc->sc_dmat, (void **)&dma->dma_vaddr,
417             BUS_DMA_NOWAIT, &dma->dma_map);
418         if (rc != 0) {
419                 device_printf(sc->sc_dev,
420                     "cannot allocate DMA memory of %d bytes (%d)\n",
421                         dma->dma_size, rc);
422                 goto fail0;
423         }
424
425         rc = bus_dmamap_load(sc->sc_dmat, dma->dma_map, dma->dma_vaddr,
426             dma->dma_size, glxsb_dmamap_cb, &dma->dma_paddr, BUS_DMA_NOWAIT);
427         if (rc != 0) {
428                 device_printf(sc->sc_dev,
429                     "cannot load DMA memory for %d bytes (%d)\n",
430                    dma->dma_size, rc);
431                 goto fail1;
432         }
433
434         return (0);
435
436 fail1:
437         bus_dmamem_free(sc->sc_dmat, dma->dma_vaddr, dma->dma_map);
438 fail0:
439         bus_dma_tag_destroy(sc->sc_dmat);
440         return (rc);
441 }
442
443 static void
444 glxsb_dma_pre_op(struct glxsb_softc *sc, struct glxsb_dma_map *dma)
445 {
446
447         bus_dmamap_sync(sc->sc_dmat, dma->dma_map,
448             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
449 }
450
451 static void
452 glxsb_dma_post_op(struct glxsb_softc *sc, struct glxsb_dma_map *dma)
453 {
454
455         bus_dmamap_sync(sc->sc_dmat, dma->dma_map,
456             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
457 }
458
459 static void
460 glxsb_dma_free(struct glxsb_softc *sc, struct glxsb_dma_map *dma)
461 {
462
463         bus_dmamap_unload(sc->sc_dmat, dma->dma_map);
464         bus_dmamem_free(sc->sc_dmat, dma->dma_vaddr, dma->dma_map);
465         bus_dma_tag_destroy(sc->sc_dmat);
466 }
467
468 static void
469 glxsb_rnd(void *v)
470 {
471         struct glxsb_softc *sc = v;
472         uint32_t status, value;
473
474         status = bus_read_4(sc->sc_sr, SB_RANDOM_NUM_STATUS);
475         if (status & SB_RNS_TRNG_VALID) {
476                 value = bus_read_4(sc->sc_sr, SB_RANDOM_NUM);
477                 /* feed with one uint32 */
478                 random_harvest(&value, 4, 32, 0, RANDOM_PURE);
479         }
480
481         callout_reset(&sc->sc_rngco, sc->sc_rnghz, glxsb_rnd, sc);
482 }
483
484 static int
485 glxsb_crypto_setup(struct glxsb_softc *sc)
486 {
487
488         sc->sc_cid = crypto_get_driverid(sc->sc_dev, CRYPTOCAP_F_HARDWARE);
489
490         if (sc->sc_cid < 0) {
491                 device_printf(sc->sc_dev, "cannot get crypto driver id\n");
492                 return (ENOMEM);
493         }
494
495         TAILQ_INIT(&sc->sc_sessions);
496         sc->sc_sid = 1;
497         rw_init(&sc->sc_sessions_lock, "glxsb_sessions_lock");
498         mtx_init(&sc->sc_task_mtx, "glxsb_crypto_mtx", NULL, MTX_DEF);
499
500         if (crypto_register(sc->sc_cid, CRYPTO_AES_CBC, 0, 0) != 0)
501                 goto crypto_fail;
502         if (crypto_register(sc->sc_cid, CRYPTO_NULL_HMAC, 0, 0) != 0)
503                 goto crypto_fail;
504         if (crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC, 0, 0) != 0)
505                 goto crypto_fail;
506         if (crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC, 0, 0) != 0)
507                 goto crypto_fail;
508         if (crypto_register(sc->sc_cid, CRYPTO_RIPEMD160_HMAC, 0, 0) != 0)
509                 goto crypto_fail;
510         if (crypto_register(sc->sc_cid, CRYPTO_SHA2_256_HMAC, 0, 0) != 0)
511                 goto crypto_fail;
512         if (crypto_register(sc->sc_cid, CRYPTO_SHA2_384_HMAC, 0, 0) != 0)
513                 goto crypto_fail;
514         if (crypto_register(sc->sc_cid, CRYPTO_SHA2_512_HMAC, 0, 0) != 0)
515                 goto crypto_fail;
516
517         return (0);
518
519 crypto_fail:
520         device_printf(sc->sc_dev, "cannot register crypto\n");
521         crypto_unregister_all(sc->sc_cid);
522         rw_destroy(&sc->sc_sessions_lock);
523         mtx_destroy(&sc->sc_task_mtx);
524         return (ENOMEM);
525 }
526
527 static int
528 glxsb_crypto_newsession(device_t dev, uint32_t *sidp, struct cryptoini *cri)
529 {
530         struct glxsb_softc *sc = device_get_softc(dev);
531         struct glxsb_session *ses = NULL;
532         struct cryptoini *encini, *macini;
533         int error;
534
535         if (sc == NULL || sidp == NULL || cri == NULL)
536                 return (EINVAL);
537
538         encini = macini = NULL;
539         for (; cri != NULL; cri = cri->cri_next) {
540                 switch(cri->cri_alg) {
541                 case CRYPTO_NULL_HMAC:
542                 case CRYPTO_MD5_HMAC:
543                 case CRYPTO_SHA1_HMAC:
544                 case CRYPTO_RIPEMD160_HMAC:
545                 case CRYPTO_SHA2_256_HMAC:
546                 case CRYPTO_SHA2_384_HMAC:
547                 case CRYPTO_SHA2_512_HMAC:
548                         if (macini != NULL)
549                                 return (EINVAL);
550                         macini = cri;
551                         break;
552                 case CRYPTO_AES_CBC:
553                         if (encini != NULL)
554                                 return (EINVAL);
555                         encini = cri;
556                         break;
557                 default:
558                         return (EINVAL);
559                 }
560         }
561
562         /*
563          * We only support HMAC algorithms to be able to work with
564          * ipsec(4), so if we are asked only for authentication without
565          * encryption, don't pretend we can accellerate it.
566          */
567         if (encini == NULL)
568                 return (EINVAL);
569
570         /*
571          * Look for a free session
572          *
573          * Free sessions goes first, so if first session is used, we need to
574          * allocate one.
575          */
576
577         rw_wlock(&sc->sc_sessions_lock);
578         ses = TAILQ_FIRST(&sc->sc_sessions);
579         if (ses == NULL || ses->ses_used) {
580                 ses = malloc(sizeof(*ses), M_GLXSB, M_NOWAIT | M_ZERO);
581                 if (ses == NULL) {
582                         rw_wunlock(&sc->sc_sessions_lock);
583                         return (ENOMEM);
584                 }
585                 ses->ses_id = sc->sc_sid++;
586         } else {
587                 TAILQ_REMOVE(&sc->sc_sessions, ses, ses_next);
588         }
589         ses->ses_used = 1;
590         TAILQ_INSERT_TAIL(&sc->sc_sessions, ses, ses_next);
591         rw_wunlock(&sc->sc_sessions_lock);
592
593         if (encini->cri_alg == CRYPTO_AES_CBC) {
594                 if (encini->cri_klen != 128) {
595                         glxsb_crypto_freesession(sc->sc_dev, ses->ses_id);
596                         return (EINVAL);
597                 }
598                 arc4rand(ses->ses_iv, sizeof(ses->ses_iv), 0);
599                 ses->ses_klen = encini->cri_klen;
600
601                 /* Copy the key (Geode LX wants the primary key only) */
602                 bcopy(encini->cri_key, ses->ses_key, sizeof(ses->ses_key));
603         }
604
605         if (macini != NULL) {
606                 error = glxsb_hash_setup(ses, macini);
607                 if (error != 0) {
608                         glxsb_crypto_freesession(sc->sc_dev, ses->ses_id);
609                         return (error);
610                 }
611         }
612
613         *sidp = ses->ses_id;
614         return (0);
615 }
616
617 static int
618 glxsb_crypto_freesession(device_t dev, uint64_t tid)
619 {
620         struct glxsb_softc *sc = device_get_softc(dev);
621         struct glxsb_session *ses = NULL;
622         uint32_t sid = ((uint32_t)tid) & 0xffffffff;
623
624         if (sc == NULL)
625                 return (EINVAL);
626
627         rw_wlock(&sc->sc_sessions_lock);
628         TAILQ_FOREACH_REVERSE(ses, &sc->sc_sessions, ses_head, ses_next) {
629                 if (ses->ses_id == sid)
630                         break;
631         }
632         if (ses == NULL) {
633                 rw_wunlock(&sc->sc_sessions_lock);
634                 return (EINVAL);
635         }
636         TAILQ_REMOVE(&sc->sc_sessions, ses, ses_next);
637         glxsb_hash_free(ses);
638         bzero(ses, sizeof(*ses));
639         ses->ses_used = 0;
640         ses->ses_id = sid;
641         TAILQ_INSERT_HEAD(&sc->sc_sessions, ses, ses_next);
642         rw_wunlock(&sc->sc_sessions_lock);
643
644         return (0);
645 }
646
647 static int
648 glxsb_aes(struct glxsb_softc *sc, uint32_t control, uint32_t psrc,
649     uint32_t pdst, void *key, int len, void *iv)
650 {
651         uint32_t status;
652         int i;
653
654         if (len & 0xF) {
655                 device_printf(sc->sc_dev,
656                     "len must be a multiple of 16 (not %d)\n", len);
657                 return (EINVAL);
658         }
659
660         /* Set the source */
661         bus_write_4(sc->sc_sr, SB_SOURCE_A, psrc);
662
663         /* Set the destination address */
664         bus_write_4(sc->sc_sr, SB_DEST_A, pdst);
665
666         /* Set the data length */
667         bus_write_4(sc->sc_sr, SB_LENGTH_A, len);
668
669         /* Set the IV */
670         if (iv != NULL) {
671                 bus_write_region_4(sc->sc_sr, SB_CBC_IV, iv, 4);
672                 control |= SB_CTL_CBC;
673         }
674
675         /* Set the key */
676         bus_write_region_4(sc->sc_sr, SB_WKEY, key, 4);
677
678         /* Ask the security block to do it */
679         bus_write_4(sc->sc_sr, SB_CTL_A,
680             control | SB_CTL_WK | SB_CTL_DC | SB_CTL_SC | SB_CTL_ST);
681
682         /*
683          * Now wait until it is done.
684          *
685          * We do a busy wait.  Obviously the number of iterations of
686          * the loop required to perform the AES operation depends upon
687          * the number of bytes to process.
688          *
689          * On a 500 MHz Geode LX we see
690          *
691          *      length (bytes)  typical max iterations
692          *          16             12
693          *          64             22
694          *         256             59
695          *        1024            212
696          *        8192          1,537
697          *
698          * Since we have a maximum size of operation defined in
699          * GLXSB_MAX_AES_LEN, we use this constant to decide how long
700          * to wait.  Allow an order of magnitude longer than it should
701          * really take, just in case.
702          */
703
704         for (i = 0; i < GLXSB_MAX_AES_LEN * 10; i++) {
705                 status = bus_read_4(sc->sc_sr, SB_CTL_A);
706                 if ((status & SB_CTL_ST) == 0)          /* Done */
707                         return (0);
708         }
709
710         device_printf(sc->sc_dev, "operation failed to complete\n");
711         return (EIO);
712 }
713
714 static int
715 glxsb_crypto_encdec(struct cryptop *crp, struct cryptodesc *crd,
716     struct glxsb_session *ses, struct glxsb_softc *sc)
717 {
718         char *op_src, *op_dst;
719         uint32_t op_psrc, op_pdst;
720         uint8_t op_iv[SB_AES_BLOCK_SIZE], *piv;
721         int error;
722         int len, tlen, xlen;
723         int offset;
724         uint32_t control;
725
726         if (crd == NULL || (crd->crd_len % SB_AES_BLOCK_SIZE) != 0)
727                 return (EINVAL);
728
729         /* How much of our buffer will we need to use? */
730         xlen = crd->crd_len > GLXSB_MAX_AES_LEN ?
731             GLXSB_MAX_AES_LEN : crd->crd_len;
732
733         /*
734          * XXX Check if we can have input == output on Geode LX.
735          * XXX In the meantime, use two separate (adjacent) buffers.
736          */
737         op_src = sc->sc_dma.dma_vaddr;
738         op_dst = (char *)sc->sc_dma.dma_vaddr + xlen;
739
740         op_psrc = sc->sc_dma.dma_paddr;
741         op_pdst = sc->sc_dma.dma_paddr + xlen;
742
743         if (crd->crd_flags & CRD_F_ENCRYPT) {
744                 control = SB_CTL_ENC;
745                 if (crd->crd_flags & CRD_F_IV_EXPLICIT)
746                         bcopy(crd->crd_iv, op_iv, sizeof(op_iv));
747                 else
748                         bcopy(ses->ses_iv, op_iv, sizeof(op_iv));
749
750                 if ((crd->crd_flags & CRD_F_IV_PRESENT) == 0) {
751                         crypto_copyback(crp->crp_flags, crp->crp_buf,
752                             crd->crd_inject, sizeof(op_iv), op_iv);
753                 }
754         } else {
755                 control = SB_CTL_DEC;
756                 if (crd->crd_flags & CRD_F_IV_EXPLICIT)
757                         bcopy(crd->crd_iv, op_iv, sizeof(op_iv));
758                 else {
759                         crypto_copydata(crp->crp_flags, crp->crp_buf,
760                             crd->crd_inject, sizeof(op_iv), op_iv);
761                 }
762         }
763
764         offset = 0;
765         tlen = crd->crd_len;
766         piv = op_iv;
767
768         /* Process the data in GLXSB_MAX_AES_LEN chunks */
769         while (tlen > 0) {
770                 len = (tlen > GLXSB_MAX_AES_LEN) ? GLXSB_MAX_AES_LEN : tlen;
771                 crypto_copydata(crp->crp_flags, crp->crp_buf,
772                     crd->crd_skip + offset, len, op_src);
773
774                 glxsb_dma_pre_op(sc, &sc->sc_dma);
775
776                 error = glxsb_aes(sc, control, op_psrc, op_pdst, ses->ses_key,
777                     len, op_iv);
778
779                 glxsb_dma_post_op(sc, &sc->sc_dma);
780                 if (error != 0)
781                         return (error);
782
783                 crypto_copyback(crp->crp_flags, crp->crp_buf,
784                     crd->crd_skip + offset, len, op_dst);
785
786                 offset += len;
787                 tlen -= len;
788
789                 if (tlen <= 0) {        /* Ideally, just == 0 */
790                         /* Finished - put the IV in session IV */
791                         piv = ses->ses_iv;
792                 }
793
794                 /*
795                  * Copy out last block for use as next iteration/session IV.
796                  *
797                  * piv is set to op_iv[] before the loop starts, but is
798                  * set to ses->ses_iv if we're going to exit the loop this
799                  * time.
800                  */
801                 if (crd->crd_flags & CRD_F_ENCRYPT)
802                         bcopy(op_dst + len - sizeof(op_iv), piv, sizeof(op_iv));
803                 else {
804                         /* Decryption, only need this if another iteration */
805                         if (tlen > 0) {
806                                 bcopy(op_src + len - sizeof(op_iv), piv,
807                                     sizeof(op_iv));
808                         }
809                 }
810         } /* while */
811
812         /* All AES processing has now been done. */
813         bzero(sc->sc_dma.dma_vaddr, xlen * 2);
814
815         return (0);
816 }
817
818 static void
819 glxsb_crypto_task(void *arg, int pending)
820 {
821         struct glxsb_softc *sc = arg;
822         struct glxsb_session *ses;
823         struct cryptop *crp;
824         struct cryptodesc *enccrd, *maccrd;
825         int error;
826
827         maccrd = sc->sc_to.to_maccrd;
828         enccrd = sc->sc_to.to_enccrd;
829         crp = sc->sc_to.to_crp;
830         ses = sc->sc_to.to_ses;
831
832         /* Perform data authentication if requested before encryption */
833         if (maccrd != NULL && maccrd->crd_next == enccrd) {
834                 error = glxsb_hash_process(ses, maccrd, crp);
835                 if (error != 0)
836                         goto out;
837         }
838
839         error = glxsb_crypto_encdec(crp, enccrd, ses, sc);
840         if (error != 0)
841                 goto out;
842
843         /* Perform data authentication if requested after encryption */
844         if (maccrd != NULL && enccrd->crd_next == maccrd) {
845                 error = glxsb_hash_process(ses, maccrd, crp);
846                 if (error != 0)
847                         goto out;
848         }
849 out:
850         mtx_lock(&sc->sc_task_mtx);
851         sc->sc_task_count--;
852         mtx_unlock(&sc->sc_task_mtx);
853
854         crp->crp_etype = error;
855         crypto_unblock(sc->sc_cid, CRYPTO_SYMQ);
856         crypto_done(crp);
857 }
858
859 static int
860 glxsb_crypto_process(device_t dev, struct cryptop *crp, int hint)
861 {
862         struct glxsb_softc *sc = device_get_softc(dev);
863         struct glxsb_session *ses;
864         struct cryptodesc *crd, *enccrd, *maccrd;
865         uint32_t sid;
866         int error = 0;
867
868         enccrd = maccrd = NULL;
869
870         if (crp == NULL ||
871             crp->crp_callback == NULL || crp->crp_desc == NULL) {
872                 error = EINVAL;
873                 goto fail;
874         }
875
876         for (crd = crp->crp_desc; crd != NULL; crd = crd->crd_next) {
877                 switch (crd->crd_alg) {
878                 case CRYPTO_NULL_HMAC:
879                 case CRYPTO_MD5_HMAC:
880                 case CRYPTO_SHA1_HMAC:
881                 case CRYPTO_RIPEMD160_HMAC:
882                 case CRYPTO_SHA2_256_HMAC:
883                 case CRYPTO_SHA2_384_HMAC:
884                 case CRYPTO_SHA2_512_HMAC:
885                         if (maccrd != NULL) {
886                                 error = EINVAL;
887                                 goto fail;
888                         }
889                         maccrd = crd;
890                         break;
891                 case CRYPTO_AES_CBC:
892                         if (enccrd != NULL) {
893                                 error = EINVAL;
894                                 goto fail;
895                         }
896                         enccrd = crd;
897                         break;
898                 default:
899                         error = EINVAL;
900                         goto fail;
901                 }
902         }
903
904         if (enccrd == NULL || enccrd->crd_len % AES_BLOCK_LEN != 0) {
905                 error = EINVAL;
906                 goto fail;
907         }
908
909         sid = crp->crp_sid & 0xffffffff;
910         rw_rlock(&sc->sc_sessions_lock);
911         TAILQ_FOREACH_REVERSE(ses, &sc->sc_sessions, ses_head, ses_next) {
912                 if (ses->ses_id == sid)
913                         break;
914         }
915         rw_runlock(&sc->sc_sessions_lock);
916         if (ses == NULL || !ses->ses_used) {
917                 error = EINVAL;
918                 goto fail;
919         }
920
921         mtx_lock(&sc->sc_task_mtx);
922         if (sc->sc_task_count != 0) {
923                 mtx_unlock(&sc->sc_task_mtx);
924                 return (ERESTART);
925         }
926         sc->sc_task_count++;
927
928         sc->sc_to.to_maccrd = maccrd;
929         sc->sc_to.to_enccrd = enccrd;
930         sc->sc_to.to_crp = crp;
931         sc->sc_to.to_ses = ses;
932         mtx_unlock(&sc->sc_task_mtx);
933
934         taskqueue_enqueue(sc->sc_tq, &sc->sc_cryptotask);
935         return(0);
936
937 fail:
938         crp->crp_etype = error;
939         crypto_done(crp);
940         return (error);
941 }