]> CyberLeo.Net >> Repos - FreeBSD/releng/7.2.git/blob - sys/dev/sk/if_sk.c
Create releng/7.2 from stable/7 in preparation for 7.2-RELEASE.
[FreeBSD/releng/7.2.git] / sys / dev / sk / if_sk.c
1 /*      $OpenBSD: if_sk.c,v 2.33 2003/08/12 05:23:06 nate Exp $ */
2
3 /*-
4  * Copyright (c) 1997, 1998, 1999, 2000
5  *      Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *      This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 /*-
35  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
36  *
37  * Permission to use, copy, modify, and distribute this software for any
38  * purpose with or without fee is hereby granted, provided that the above
39  * copyright notice and this permission notice appear in all copies.
40  *
41  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
42  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
43  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
44  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
45  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
46  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
47  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
48  */
49
50 #include <sys/cdefs.h>
51 __FBSDID("$FreeBSD$");
52
53 /*
54  * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
55  * the SK-984x series adapters, both single port and dual port.
56  * References:
57  *      The XaQti XMAC II datasheet,
58  *  http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
59  *      The SysKonnect GEnesis manual, http://www.syskonnect.com
60  *
61  * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
62  * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
63  * convenience to others until Vitesse corrects this problem:
64  *
65  * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
66  *
67  * Written by Bill Paul <wpaul@ee.columbia.edu>
68  * Department of Electrical Engineering
69  * Columbia University, New York City
70  */
71 /*
72  * The SysKonnect gigabit ethernet adapters consist of two main
73  * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
74  * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
75  * components and a PHY while the GEnesis controller provides a PCI
76  * interface with DMA support. Each card may have between 512K and
77  * 2MB of SRAM on board depending on the configuration.
78  *
79  * The SysKonnect GEnesis controller can have either one or two XMAC
80  * chips connected to it, allowing single or dual port NIC configurations.
81  * SysKonnect has the distinction of being the only vendor on the market
82  * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
83  * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
84  * XMAC registers. This driver takes advantage of these features to allow
85  * both XMACs to operate as independent interfaces.
86  */
87
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/bus.h>
91 #include <sys/endian.h>
92 #include <sys/mbuf.h>
93 #include <sys/malloc.h>
94 #include <sys/kernel.h>
95 #include <sys/module.h>
96 #include <sys/socket.h>
97 #include <sys/sockio.h>
98 #include <sys/queue.h>
99 #include <sys/sysctl.h>
100
101 #include <net/bpf.h>
102 #include <net/ethernet.h>
103 #include <net/if.h>
104 #include <net/if_arp.h>
105 #include <net/if_dl.h>
106 #include <net/if_media.h>
107 #include <net/if_types.h>
108 #include <net/if_vlan_var.h>
109
110 #include <netinet/in.h>
111 #include <netinet/in_systm.h>
112 #include <netinet/ip.h>
113
114 #include <machine/bus.h>
115 #include <machine/in_cksum.h>
116 #include <machine/resource.h>
117 #include <sys/rman.h>
118
119 #include <dev/mii/mii.h>
120 #include <dev/mii/miivar.h>
121 #include <dev/mii/brgphyreg.h>
122
123 #include <dev/pci/pcireg.h>
124 #include <dev/pci/pcivar.h>
125
126 #if 0
127 #define SK_USEIOSPACE
128 #endif
129
130 #include <dev/sk/if_skreg.h>
131 #include <dev/sk/xmaciireg.h>
132 #include <dev/sk/yukonreg.h>
133
134 MODULE_DEPEND(sk, pci, 1, 1, 1);
135 MODULE_DEPEND(sk, ether, 1, 1, 1);
136 MODULE_DEPEND(sk, miibus, 1, 1, 1);
137
138 /* "device miibus" required.  See GENERIC if you get errors here. */
139 #include "miibus_if.h"
140
141 #ifndef lint
142 static const char rcsid[] =
143   "$FreeBSD$";
144 #endif
145
146 static struct sk_type sk_devs[] = {
147         {
148                 VENDORID_SK,
149                 DEVICEID_SK_V1,
150                 "SysKonnect Gigabit Ethernet (V1.0)"
151         },
152         {
153                 VENDORID_SK,
154                 DEVICEID_SK_V2,
155                 "SysKonnect Gigabit Ethernet (V2.0)"
156         },
157         {
158                 VENDORID_MARVELL,
159                 DEVICEID_SK_V2,
160                 "Marvell Gigabit Ethernet"
161         },
162         {
163                 VENDORID_MARVELL,
164                 DEVICEID_BELKIN_5005,
165                 "Belkin F5D5005 Gigabit Ethernet"
166         },
167         {
168                 VENDORID_3COM,
169                 DEVICEID_3COM_3C940,
170                 "3Com 3C940 Gigabit Ethernet"
171         },
172         {
173                 VENDORID_LINKSYS,
174                 DEVICEID_LINKSYS_EG1032,
175                 "Linksys EG1032 Gigabit Ethernet"
176         },
177         {
178                 VENDORID_DLINK,
179                 DEVICEID_DLINK_DGE530T_A1,
180                 "D-Link DGE-530T Gigabit Ethernet"
181         },
182         {
183                 VENDORID_DLINK,
184                 DEVICEID_DLINK_DGE530T_B1,
185                 "D-Link DGE-530T Gigabit Ethernet"
186         },
187         { 0, 0, NULL }
188 };
189
190 static int skc_probe(device_t);
191 static int skc_attach(device_t);
192 static int skc_detach(device_t);
193 static int skc_shutdown(device_t);
194 static int skc_suspend(device_t);
195 static int skc_resume(device_t);
196 static int sk_detach(device_t);
197 static int sk_probe(device_t);
198 static int sk_attach(device_t);
199 static void sk_tick(void *);
200 static void sk_yukon_tick(void *);
201 static void sk_intr(void *);
202 static void sk_intr_xmac(struct sk_if_softc *);
203 static void sk_intr_bcom(struct sk_if_softc *);
204 static void sk_intr_yukon(struct sk_if_softc *);
205 static __inline void sk_rxcksum(struct ifnet *, struct mbuf *, u_int32_t);
206 static __inline int sk_rxvalid(struct sk_softc *, u_int32_t, u_int32_t);
207 static void sk_rxeof(struct sk_if_softc *);
208 static void sk_jumbo_rxeof(struct sk_if_softc *);
209 static void sk_txeof(struct sk_if_softc *);
210 static void sk_txcksum(struct ifnet *, struct mbuf *, struct sk_tx_desc *);
211 static int sk_encap(struct sk_if_softc *, struct mbuf **);
212 static void sk_start(struct ifnet *);
213 static void sk_start_locked(struct ifnet *);
214 static int sk_ioctl(struct ifnet *, u_long, caddr_t);
215 static void sk_init(void *);
216 static void sk_init_locked(struct sk_if_softc *);
217 static void sk_init_xmac(struct sk_if_softc *);
218 static void sk_init_yukon(struct sk_if_softc *);
219 static void sk_stop(struct sk_if_softc *);
220 static void sk_watchdog(void *);
221 static int sk_ifmedia_upd(struct ifnet *);
222 static void sk_ifmedia_sts(struct ifnet *, struct ifmediareq *);
223 static void sk_reset(struct sk_softc *);
224 static __inline void sk_discard_rxbuf(struct sk_if_softc *, int);
225 static __inline void sk_discard_jumbo_rxbuf(struct sk_if_softc *, int);
226 static int sk_newbuf(struct sk_if_softc *, int);
227 static int sk_jumbo_newbuf(struct sk_if_softc *, int);
228 static void sk_dmamap_cb(void *, bus_dma_segment_t *, int, int);
229 static int sk_dma_alloc(struct sk_if_softc *);
230 static int sk_dma_jumbo_alloc(struct sk_if_softc *);
231 static void sk_dma_free(struct sk_if_softc *);
232 static void sk_dma_jumbo_free(struct sk_if_softc *);
233 static int sk_init_rx_ring(struct sk_if_softc *);
234 static int sk_init_jumbo_rx_ring(struct sk_if_softc *);
235 static void sk_init_tx_ring(struct sk_if_softc *);
236 static u_int32_t sk_win_read_4(struct sk_softc *, int);
237 static u_int16_t sk_win_read_2(struct sk_softc *, int);
238 static u_int8_t sk_win_read_1(struct sk_softc *, int);
239 static void sk_win_write_4(struct sk_softc *, int, u_int32_t);
240 static void sk_win_write_2(struct sk_softc *, int, u_int32_t);
241 static void sk_win_write_1(struct sk_softc *, int, u_int32_t);
242
243 static int sk_miibus_readreg(device_t, int, int);
244 static int sk_miibus_writereg(device_t, int, int, int);
245 static void sk_miibus_statchg(device_t);
246
247 static int sk_xmac_miibus_readreg(struct sk_if_softc *, int, int);
248 static int sk_xmac_miibus_writereg(struct sk_if_softc *, int, int,
249                                                 int);
250 static void sk_xmac_miibus_statchg(struct sk_if_softc *);
251
252 static int sk_marv_miibus_readreg(struct sk_if_softc *, int, int);
253 static int sk_marv_miibus_writereg(struct sk_if_softc *, int, int,
254                                                 int);
255 static void sk_marv_miibus_statchg(struct sk_if_softc *);
256
257 static uint32_t sk_xmchash(const uint8_t *);
258 static uint32_t sk_gmchash(const uint8_t *);
259 static void sk_setfilt(struct sk_if_softc *, u_int16_t *, int);
260 static void sk_setmulti(struct sk_if_softc *);
261 static void sk_setpromisc(struct sk_if_softc *);
262
263 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high);
264 static int sysctl_hw_sk_int_mod(SYSCTL_HANDLER_ARGS);
265
266 /* Tunables. */
267 static int jumbo_disable = 0;
268 TUNABLE_INT("hw.skc.jumbo_disable", &jumbo_disable);
269  
270 /*
271  * It seems that SK-NET GENESIS supports very simple checksum offload
272  * capability for Tx and I believe it can generate 0 checksum value for
273  * UDP packets in Tx as the hardware can't differenciate UDP packets from
274  * TCP packets. 0 chcecksum value for UDP packet is an invalid one as it
275  * means sender didn't perforam checksum computation. For the safety I
276  * disabled UDP checksum offload capability at the moment. Alternatively
277  * we can intrduce a LINK0/LINK1 flag as hme(4) did in its Tx checksum
278  * offload routine.
279  */
280 #define SK_CSUM_FEATURES        (CSUM_TCP)
281
282 /*
283  * Note that we have newbus methods for both the GEnesis controller
284  * itself and the XMAC(s). The XMACs are children of the GEnesis, and
285  * the miibus code is a child of the XMACs. We need to do it this way
286  * so that the miibus drivers can access the PHY registers on the
287  * right PHY. It's not quite what I had in mind, but it's the only
288  * design that achieves the desired effect.
289  */
290 static device_method_t skc_methods[] = {
291         /* Device interface */
292         DEVMETHOD(device_probe,         skc_probe),
293         DEVMETHOD(device_attach,        skc_attach),
294         DEVMETHOD(device_detach,        skc_detach),
295         DEVMETHOD(device_suspend,       skc_suspend),
296         DEVMETHOD(device_resume,        skc_resume),
297         DEVMETHOD(device_shutdown,      skc_shutdown),
298
299         /* bus interface */
300         DEVMETHOD(bus_print_child,      bus_generic_print_child),
301         DEVMETHOD(bus_driver_added,     bus_generic_driver_added),
302
303         { 0, 0 }
304 };
305
306 static driver_t skc_driver = {
307         "skc",
308         skc_methods,
309         sizeof(struct sk_softc)
310 };
311
312 static devclass_t skc_devclass;
313
314 static device_method_t sk_methods[] = {
315         /* Device interface */
316         DEVMETHOD(device_probe,         sk_probe),
317         DEVMETHOD(device_attach,        sk_attach),
318         DEVMETHOD(device_detach,        sk_detach),
319         DEVMETHOD(device_shutdown,      bus_generic_shutdown),
320
321         /* bus interface */
322         DEVMETHOD(bus_print_child,      bus_generic_print_child),
323         DEVMETHOD(bus_driver_added,     bus_generic_driver_added),
324
325         /* MII interface */
326         DEVMETHOD(miibus_readreg,       sk_miibus_readreg),
327         DEVMETHOD(miibus_writereg,      sk_miibus_writereg),
328         DEVMETHOD(miibus_statchg,       sk_miibus_statchg),
329
330         { 0, 0 }
331 };
332
333 static driver_t sk_driver = {
334         "sk",
335         sk_methods,
336         sizeof(struct sk_if_softc)
337 };
338
339 static devclass_t sk_devclass;
340
341 DRIVER_MODULE(skc, pci, skc_driver, skc_devclass, 0, 0);
342 DRIVER_MODULE(sk, skc, sk_driver, sk_devclass, 0, 0);
343 DRIVER_MODULE(miibus, sk, miibus_driver, miibus_devclass, 0, 0);
344
345 static struct resource_spec sk_res_spec_io[] = {
346         { SYS_RES_IOPORT,       PCIR_BAR(1),    RF_ACTIVE },
347         { SYS_RES_IRQ,          0,              RF_ACTIVE | RF_SHAREABLE },
348         { -1,                   0,              0 }
349 };
350
351 static struct resource_spec sk_res_spec_mem[] = {
352         { SYS_RES_MEMORY,       PCIR_BAR(0),    RF_ACTIVE },
353         { SYS_RES_IRQ,          0,              RF_ACTIVE | RF_SHAREABLE },
354         { -1,                   0,              0 }
355 };
356
357 #define SK_SETBIT(sc, reg, x)           \
358         CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
359
360 #define SK_CLRBIT(sc, reg, x)           \
361         CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
362
363 #define SK_WIN_SETBIT_4(sc, reg, x)     \
364         sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) | x)
365
366 #define SK_WIN_CLRBIT_4(sc, reg, x)     \
367         sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) & ~x)
368
369 #define SK_WIN_SETBIT_2(sc, reg, x)     \
370         sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) | x)
371
372 #define SK_WIN_CLRBIT_2(sc, reg, x)     \
373         sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) & ~x)
374
375 static u_int32_t
376 sk_win_read_4(sc, reg)
377         struct sk_softc         *sc;
378         int                     reg;
379 {
380 #ifdef SK_USEIOSPACE
381         CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
382         return(CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg)));
383 #else
384         return(CSR_READ_4(sc, reg));
385 #endif
386 }
387
388 static u_int16_t
389 sk_win_read_2(sc, reg)
390         struct sk_softc         *sc;
391         int                     reg;
392 {
393 #ifdef SK_USEIOSPACE
394         CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
395         return(CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg)));
396 #else
397         return(CSR_READ_2(sc, reg));
398 #endif
399 }
400
401 static u_int8_t
402 sk_win_read_1(sc, reg)
403         struct sk_softc         *sc;
404         int                     reg;
405 {
406 #ifdef SK_USEIOSPACE
407         CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
408         return(CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg)));
409 #else
410         return(CSR_READ_1(sc, reg));
411 #endif
412 }
413
414 static void
415 sk_win_write_4(sc, reg, val)
416         struct sk_softc         *sc;
417         int                     reg;
418         u_int32_t               val;
419 {
420 #ifdef SK_USEIOSPACE
421         CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
422         CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), val);
423 #else
424         CSR_WRITE_4(sc, reg, val);
425 #endif
426         return;
427 }
428
429 static void
430 sk_win_write_2(sc, reg, val)
431         struct sk_softc         *sc;
432         int                     reg;
433         u_int32_t               val;
434 {
435 #ifdef SK_USEIOSPACE
436         CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
437         CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), val);
438 #else
439         CSR_WRITE_2(sc, reg, val);
440 #endif
441         return;
442 }
443
444 static void
445 sk_win_write_1(sc, reg, val)
446         struct sk_softc         *sc;
447         int                     reg;
448         u_int32_t               val;
449 {
450 #ifdef SK_USEIOSPACE
451         CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
452         CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), val);
453 #else
454         CSR_WRITE_1(sc, reg, val);
455 #endif
456         return;
457 }
458
459 static int
460 sk_miibus_readreg(dev, phy, reg)
461         device_t                dev;
462         int                     phy, reg;
463 {
464         struct sk_if_softc      *sc_if;
465         int                     v;
466
467         sc_if = device_get_softc(dev);
468
469         SK_IF_MII_LOCK(sc_if);
470         switch(sc_if->sk_softc->sk_type) {
471         case SK_GENESIS:
472                 v = sk_xmac_miibus_readreg(sc_if, phy, reg);
473                 break;
474         case SK_YUKON:
475         case SK_YUKON_LITE:
476         case SK_YUKON_LP:
477                 v = sk_marv_miibus_readreg(sc_if, phy, reg);
478                 break;
479         default:
480                 v = 0;
481                 break;
482         }
483         SK_IF_MII_UNLOCK(sc_if);
484
485         return (v);
486 }
487
488 static int
489 sk_miibus_writereg(dev, phy, reg, val)
490         device_t                dev;
491         int                     phy, reg, val;
492 {
493         struct sk_if_softc      *sc_if;
494         int                     v;
495
496         sc_if = device_get_softc(dev);
497
498         SK_IF_MII_LOCK(sc_if);
499         switch(sc_if->sk_softc->sk_type) {
500         case SK_GENESIS:
501                 v = sk_xmac_miibus_writereg(sc_if, phy, reg, val);
502                 break;
503         case SK_YUKON:
504         case SK_YUKON_LITE:
505         case SK_YUKON_LP:
506                 v = sk_marv_miibus_writereg(sc_if, phy, reg, val);
507                 break;
508         default:
509                 v = 0;
510                 break;
511         }
512         SK_IF_MII_UNLOCK(sc_if);
513
514         return (v);
515 }
516
517 static void
518 sk_miibus_statchg(dev)
519         device_t                dev;
520 {
521         struct sk_if_softc      *sc_if;
522
523         sc_if = device_get_softc(dev);
524
525         SK_IF_MII_LOCK(sc_if);
526         switch(sc_if->sk_softc->sk_type) {
527         case SK_GENESIS:
528                 sk_xmac_miibus_statchg(sc_if);
529                 break;
530         case SK_YUKON:
531         case SK_YUKON_LITE:
532         case SK_YUKON_LP:
533                 sk_marv_miibus_statchg(sc_if);
534                 break;
535         }
536         SK_IF_MII_UNLOCK(sc_if);
537
538         return;
539 }
540
541 static int
542 sk_xmac_miibus_readreg(sc_if, phy, reg)
543         struct sk_if_softc      *sc_if;
544         int                     phy, reg;
545 {
546         int                     i;
547
548         if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
549                 return(0);
550
551         SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
552         SK_XM_READ_2(sc_if, XM_PHY_DATA);
553         if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
554                 for (i = 0; i < SK_TIMEOUT; i++) {
555                         DELAY(1);
556                         if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
557                             XM_MMUCMD_PHYDATARDY)
558                                 break;
559                 }
560
561                 if (i == SK_TIMEOUT) {
562                         if_printf(sc_if->sk_ifp, "phy failed to come ready\n");
563                         return(0);
564                 }
565         }
566         DELAY(1);
567         i = SK_XM_READ_2(sc_if, XM_PHY_DATA);
568
569         return(i);
570 }
571
572 static int
573 sk_xmac_miibus_writereg(sc_if, phy, reg, val)
574         struct sk_if_softc      *sc_if;
575         int                     phy, reg, val;
576 {
577         int                     i;
578
579         SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
580         for (i = 0; i < SK_TIMEOUT; i++) {
581                 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
582                         break;
583         }
584
585         if (i == SK_TIMEOUT) {
586                 if_printf(sc_if->sk_ifp, "phy failed to come ready\n");
587                 return (ETIMEDOUT);
588         }
589
590         SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
591         for (i = 0; i < SK_TIMEOUT; i++) {
592                 DELAY(1);
593                 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
594                         break;
595         }
596         if (i == SK_TIMEOUT)
597                 if_printf(sc_if->sk_ifp, "phy write timed out\n");
598
599         return(0);
600 }
601
602 static void
603 sk_xmac_miibus_statchg(sc_if)
604         struct sk_if_softc      *sc_if;
605 {
606         struct mii_data         *mii;
607
608         mii = device_get_softc(sc_if->sk_miibus);
609
610         /*
611          * If this is a GMII PHY, manually set the XMAC's
612          * duplex mode accordingly.
613          */
614         if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
615                 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
616                         SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
617                 } else {
618                         SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
619                 }
620         }
621 }
622
623 static int
624 sk_marv_miibus_readreg(sc_if, phy, reg)
625         struct sk_if_softc      *sc_if;
626         int                     phy, reg;
627 {
628         u_int16_t               val;
629         int                     i;
630
631         if (phy != 0 ||
632             (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
633              sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
634                 return(0);
635         }
636
637         SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
638                       YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
639
640         for (i = 0; i < SK_TIMEOUT; i++) {
641                 DELAY(1);
642                 val = SK_YU_READ_2(sc_if, YUKON_SMICR);
643                 if (val & YU_SMICR_READ_VALID)
644                         break;
645         }
646
647         if (i == SK_TIMEOUT) {
648                 if_printf(sc_if->sk_ifp, "phy failed to come ready\n");
649                 return(0);
650         }
651
652         val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
653
654         return(val);
655 }
656
657 static int
658 sk_marv_miibus_writereg(sc_if, phy, reg, val)
659         struct sk_if_softc      *sc_if;
660         int                     phy, reg, val;
661 {
662         int                     i;
663
664         SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
665         SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
666                       YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
667
668         for (i = 0; i < SK_TIMEOUT; i++) {
669                 DELAY(1);
670                 if ((SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY) == 0)
671                         break;
672         }
673         if (i == SK_TIMEOUT)
674                 if_printf(sc_if->sk_ifp, "phy write timeout\n");
675
676         return(0);
677 }
678
679 static void
680 sk_marv_miibus_statchg(sc_if)
681         struct sk_if_softc      *sc_if;
682 {
683         return;
684 }
685
686 #define HASH_BITS               6
687
688 static u_int32_t
689 sk_xmchash(addr)
690         const uint8_t *addr;
691 {
692         uint32_t crc;
693
694         /* Compute CRC for the address value. */
695         crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
696
697         return (~crc & ((1 << HASH_BITS) - 1));
698 }
699
700 /* gmchash is just a big endian crc */
701 static u_int32_t
702 sk_gmchash(addr)
703         const uint8_t *addr;
704 {
705         uint32_t crc;
706
707         /* Compute CRC for the address value. */
708         crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
709
710         return (crc & ((1 << HASH_BITS) - 1));
711 }
712
713 static void
714 sk_setfilt(sc_if, addr, slot)
715         struct sk_if_softc      *sc_if;
716         u_int16_t               *addr;
717         int                     slot;
718 {
719         int                     base;
720
721         base = XM_RXFILT_ENTRY(slot);
722
723         SK_XM_WRITE_2(sc_if, base, addr[0]);
724         SK_XM_WRITE_2(sc_if, base + 2, addr[1]);
725         SK_XM_WRITE_2(sc_if, base + 4, addr[2]);
726
727         return;
728 }
729
730 static void
731 sk_setmulti(sc_if)
732         struct sk_if_softc      *sc_if;
733 {
734         struct sk_softc         *sc = sc_if->sk_softc;
735         struct ifnet            *ifp = sc_if->sk_ifp;
736         u_int32_t               hashes[2] = { 0, 0 };
737         int                     h = 0, i;
738         struct ifmultiaddr      *ifma;
739         u_int16_t               dummy[] = { 0, 0, 0 };
740         u_int16_t               maddr[(ETHER_ADDR_LEN+1)/2];
741
742         SK_IF_LOCK_ASSERT(sc_if);
743
744         /* First, zot all the existing filters. */
745         switch(sc->sk_type) {
746         case SK_GENESIS:
747                 for (i = 1; i < XM_RXFILT_MAX; i++)
748                         sk_setfilt(sc_if, dummy, i);
749
750                 SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
751                 SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
752                 break;
753         case SK_YUKON:
754         case SK_YUKON_LITE:
755         case SK_YUKON_LP:
756                 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
757                 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
758                 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
759                 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
760                 break;
761         }
762
763         /* Now program new ones. */
764         if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
765                 hashes[0] = 0xFFFFFFFF;
766                 hashes[1] = 0xFFFFFFFF;
767         } else {
768                 i = 1;
769                 IF_ADDR_LOCK(ifp);
770                 TAILQ_FOREACH_REVERSE(ifma, &ifp->if_multiaddrs, ifmultihead, ifma_link) {
771                         if (ifma->ifma_addr->sa_family != AF_LINK)
772                                 continue;
773                         /*
774                          * Program the first XM_RXFILT_MAX multicast groups
775                          * into the perfect filter. For all others,
776                          * use the hash table.
777                          */
778                         if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
779                                 bcopy(LLADDR(
780                                     (struct sockaddr_dl *)ifma->ifma_addr),
781                                     maddr, ETHER_ADDR_LEN);
782                                 sk_setfilt(sc_if, maddr, i);
783                                 i++;
784                                 continue;
785                         }
786
787                         switch(sc->sk_type) {
788                         case SK_GENESIS:
789                                 bcopy(LLADDR(
790                                     (struct sockaddr_dl *)ifma->ifma_addr),
791                                     maddr, ETHER_ADDR_LEN);
792                                 h = sk_xmchash((const uint8_t *)maddr);
793                                 break;
794                         case SK_YUKON:
795                         case SK_YUKON_LITE:
796                         case SK_YUKON_LP:
797                                 bcopy(LLADDR(
798                                     (struct sockaddr_dl *)ifma->ifma_addr),
799                                     maddr, ETHER_ADDR_LEN);
800                                 h = sk_gmchash((const uint8_t *)maddr);
801                                 break;
802                         }
803                         if (h < 32)
804                                 hashes[0] |= (1 << h);
805                         else
806                                 hashes[1] |= (1 << (h - 32));
807                 }
808                 IF_ADDR_UNLOCK(ifp);
809         }
810
811         switch(sc->sk_type) {
812         case SK_GENESIS:
813                 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
814                                XM_MODE_RX_USE_PERFECT);
815                 SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
816                 SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
817                 break;
818         case SK_YUKON:
819         case SK_YUKON_LITE:
820         case SK_YUKON_LP:
821                 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
822                 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
823                 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
824                 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
825                 break;
826         }
827
828         return;
829 }
830
831 static void
832 sk_setpromisc(sc_if)
833         struct sk_if_softc      *sc_if;
834 {
835         struct sk_softc         *sc = sc_if->sk_softc;
836         struct ifnet            *ifp = sc_if->sk_ifp;
837
838         SK_IF_LOCK_ASSERT(sc_if);
839
840         switch(sc->sk_type) {
841         case SK_GENESIS:
842                 if (ifp->if_flags & IFF_PROMISC) {
843                         SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
844                 } else {
845                         SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
846                 }
847                 break;
848         case SK_YUKON:
849         case SK_YUKON_LITE:
850         case SK_YUKON_LP:
851                 if (ifp->if_flags & IFF_PROMISC) {
852                         SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
853                             YU_RCR_UFLEN | YU_RCR_MUFLEN);
854                 } else {
855                         SK_YU_SETBIT_2(sc_if, YUKON_RCR,
856                             YU_RCR_UFLEN | YU_RCR_MUFLEN);
857                 }
858                 break;
859         }
860
861         return;
862 }
863
864 static int
865 sk_init_rx_ring(sc_if)
866         struct sk_if_softc      *sc_if;
867 {
868         struct sk_ring_data     *rd;
869         bus_addr_t              addr;
870         u_int32_t               csum_start;
871         int                     i;
872
873         sc_if->sk_cdata.sk_rx_cons = 0;
874
875         csum_start = (ETHER_HDR_LEN + sizeof(struct ip))  << 16 |
876             ETHER_HDR_LEN;
877         rd = &sc_if->sk_rdata;
878         bzero(rd->sk_rx_ring, sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
879         for (i = 0; i < SK_RX_RING_CNT; i++) {
880                 if (sk_newbuf(sc_if, i) != 0)
881                         return (ENOBUFS);
882                 if (i == (SK_RX_RING_CNT - 1))
883                         addr = SK_RX_RING_ADDR(sc_if, 0);
884                 else
885                         addr = SK_RX_RING_ADDR(sc_if, i + 1);
886                 rd->sk_rx_ring[i].sk_next = htole32(SK_ADDR_LO(addr));
887                 rd->sk_rx_ring[i].sk_csum_start = htole32(csum_start);
888         }
889
890         bus_dmamap_sync(sc_if->sk_cdata.sk_rx_ring_tag,
891             sc_if->sk_cdata.sk_rx_ring_map,
892             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
893
894         return(0);
895 }
896
897 static int
898 sk_init_jumbo_rx_ring(sc_if)
899         struct sk_if_softc      *sc_if;
900 {
901         struct sk_ring_data     *rd;
902         bus_addr_t              addr;
903         u_int32_t               csum_start;
904         int                     i;
905
906         sc_if->sk_cdata.sk_jumbo_rx_cons = 0;
907
908         csum_start = ((ETHER_HDR_LEN + sizeof(struct ip)) << 16) |
909             ETHER_HDR_LEN;
910         rd = &sc_if->sk_rdata;
911         bzero(rd->sk_jumbo_rx_ring,
912             sizeof(struct sk_rx_desc) * SK_JUMBO_RX_RING_CNT);
913         for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
914                 if (sk_jumbo_newbuf(sc_if, i) != 0)
915                         return (ENOBUFS);
916                 if (i == (SK_JUMBO_RX_RING_CNT - 1))
917                         addr = SK_JUMBO_RX_RING_ADDR(sc_if, 0);
918                 else
919                         addr = SK_JUMBO_RX_RING_ADDR(sc_if, i + 1);
920                 rd->sk_jumbo_rx_ring[i].sk_next = htole32(SK_ADDR_LO(addr));
921                 rd->sk_jumbo_rx_ring[i].sk_csum_start = htole32(csum_start);
922         }
923
924         bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
925             sc_if->sk_cdata.sk_jumbo_rx_ring_map,
926             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
927
928         return (0);
929 }
930
931 static void
932 sk_init_tx_ring(sc_if)
933         struct sk_if_softc      *sc_if;
934 {
935         struct sk_ring_data     *rd;
936         struct sk_txdesc        *txd;
937         bus_addr_t              addr;
938         int                     i;
939
940         STAILQ_INIT(&sc_if->sk_cdata.sk_txfreeq);
941         STAILQ_INIT(&sc_if->sk_cdata.sk_txbusyq);
942
943         sc_if->sk_cdata.sk_tx_prod = 0;
944         sc_if->sk_cdata.sk_tx_cons = 0;
945         sc_if->sk_cdata.sk_tx_cnt = 0;
946
947         rd = &sc_if->sk_rdata;
948         bzero(rd->sk_tx_ring, sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
949         for (i = 0; i < SK_TX_RING_CNT; i++) {
950                 if (i == (SK_TX_RING_CNT - 1))
951                         addr = SK_TX_RING_ADDR(sc_if, 0);
952                 else
953                         addr = SK_TX_RING_ADDR(sc_if, i + 1);
954                 rd->sk_tx_ring[i].sk_next = htole32(SK_ADDR_LO(addr));
955                 txd = &sc_if->sk_cdata.sk_txdesc[i];
956                 STAILQ_INSERT_TAIL(&sc_if->sk_cdata.sk_txfreeq, txd, tx_q);
957         }
958
959         bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
960             sc_if->sk_cdata.sk_tx_ring_map,
961             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
962 }
963
964 static __inline void
965 sk_discard_rxbuf(sc_if, idx)
966         struct sk_if_softc      *sc_if;
967         int                     idx;
968 {
969         struct sk_rx_desc       *r;
970         struct sk_rxdesc        *rxd;
971         struct mbuf             *m;
972
973
974         r = &sc_if->sk_rdata.sk_rx_ring[idx];
975         rxd = &sc_if->sk_cdata.sk_rxdesc[idx];
976         m = rxd->rx_m;
977         r->sk_ctl = htole32(m->m_len | SK_RXSTAT | SK_OPCODE_CSUM);
978 }
979
980 static __inline void
981 sk_discard_jumbo_rxbuf(sc_if, idx)
982         struct sk_if_softc      *sc_if;
983         int                     idx;
984 {
985         struct sk_rx_desc       *r;
986         struct sk_rxdesc        *rxd;
987         struct mbuf             *m;
988
989         r = &sc_if->sk_rdata.sk_jumbo_rx_ring[idx];
990         rxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[idx];
991         m = rxd->rx_m;
992         r->sk_ctl = htole32(m->m_len | SK_RXSTAT | SK_OPCODE_CSUM);
993 }
994
995 static int
996 sk_newbuf(sc_if, idx)
997         struct sk_if_softc      *sc_if;
998         int                     idx;
999 {
1000         struct sk_rx_desc       *r;
1001         struct sk_rxdesc        *rxd;
1002         struct mbuf             *m;
1003         bus_dma_segment_t       segs[1];
1004         bus_dmamap_t            map;
1005         int                     nsegs;
1006
1007         m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1008         if (m == NULL)
1009                 return (ENOBUFS);
1010         m->m_len = m->m_pkthdr.len = MCLBYTES;
1011         m_adj(m, ETHER_ALIGN);
1012
1013         if (bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_rx_tag,
1014             sc_if->sk_cdata.sk_rx_sparemap, m, segs, &nsegs, 0) != 0) {
1015                 m_freem(m);
1016                 return (ENOBUFS);
1017         }
1018         KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1019
1020         rxd = &sc_if->sk_cdata.sk_rxdesc[idx];
1021         if (rxd->rx_m != NULL) {
1022                 bus_dmamap_sync(sc_if->sk_cdata.sk_rx_tag, rxd->rx_dmamap,
1023                     BUS_DMASYNC_POSTREAD);
1024                 bus_dmamap_unload(sc_if->sk_cdata.sk_rx_tag, rxd->rx_dmamap);
1025         }
1026         map = rxd->rx_dmamap;
1027         rxd->rx_dmamap = sc_if->sk_cdata.sk_rx_sparemap;
1028         sc_if->sk_cdata.sk_rx_sparemap = map;
1029         bus_dmamap_sync(sc_if->sk_cdata.sk_rx_tag, rxd->rx_dmamap,
1030             BUS_DMASYNC_PREREAD);
1031         rxd->rx_m = m;
1032         r = &sc_if->sk_rdata.sk_rx_ring[idx];
1033         r->sk_data_lo = htole32(SK_ADDR_LO(segs[0].ds_addr));
1034         r->sk_data_hi = htole32(SK_ADDR_HI(segs[0].ds_addr));
1035         r->sk_ctl = htole32(segs[0].ds_len | SK_RXSTAT | SK_OPCODE_CSUM);
1036
1037         return (0);
1038 }
1039
1040 static int
1041 sk_jumbo_newbuf(sc_if, idx)
1042         struct sk_if_softc      *sc_if;
1043         int                     idx;
1044 {
1045         struct sk_rx_desc       *r;
1046         struct sk_rxdesc        *rxd;
1047         struct mbuf             *m;
1048         bus_dma_segment_t       segs[1];
1049         bus_dmamap_t            map;
1050         int                     nsegs;
1051
1052         m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
1053         if (m == NULL)
1054                 return (ENOBUFS);
1055         if ((m->m_flags & M_EXT) == 0) {
1056                 m_freem(m);
1057                 return (ENOBUFS);
1058         }
1059         m->m_pkthdr.len = m->m_len = MJUM9BYTES;
1060         /*
1061          * Adjust alignment so packet payload begins on a
1062          * longword boundary. Mandatory for Alpha, useful on
1063          * x86 too.
1064          */
1065         m_adj(m, ETHER_ALIGN);
1066
1067         if (bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_jumbo_rx_tag,
1068             sc_if->sk_cdata.sk_jumbo_rx_sparemap, m, segs, &nsegs, 0) != 0) {
1069                 m_freem(m);
1070                 return (ENOBUFS);
1071         }
1072         KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1073
1074         rxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[idx];
1075         if (rxd->rx_m != NULL) {
1076                 bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_tag, rxd->rx_dmamap,
1077                     BUS_DMASYNC_POSTREAD);
1078                 bus_dmamap_unload(sc_if->sk_cdata.sk_jumbo_rx_tag,
1079                     rxd->rx_dmamap);
1080         }
1081         map = rxd->rx_dmamap;
1082         rxd->rx_dmamap = sc_if->sk_cdata.sk_jumbo_rx_sparemap;
1083         sc_if->sk_cdata.sk_jumbo_rx_sparemap = map;
1084         bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_tag, rxd->rx_dmamap,
1085             BUS_DMASYNC_PREREAD);
1086         rxd->rx_m = m;
1087         r = &sc_if->sk_rdata.sk_jumbo_rx_ring[idx];
1088         r->sk_data_lo = htole32(SK_ADDR_LO(segs[0].ds_addr));
1089         r->sk_data_hi = htole32(SK_ADDR_HI(segs[0].ds_addr));
1090         r->sk_ctl = htole32(segs[0].ds_len | SK_RXSTAT | SK_OPCODE_CSUM);
1091
1092         return (0);
1093 }
1094
1095 /*
1096  * Set media options.
1097  */
1098 static int
1099 sk_ifmedia_upd(ifp)
1100         struct ifnet            *ifp;
1101 {
1102         struct sk_if_softc      *sc_if = ifp->if_softc;
1103         struct mii_data         *mii;
1104
1105         mii = device_get_softc(sc_if->sk_miibus);
1106         sk_init(sc_if);
1107         mii_mediachg(mii);
1108
1109         return(0);
1110 }
1111
1112 /*
1113  * Report current media status.
1114  */
1115 static void
1116 sk_ifmedia_sts(ifp, ifmr)
1117         struct ifnet            *ifp;
1118         struct ifmediareq       *ifmr;
1119 {
1120         struct sk_if_softc      *sc_if;
1121         struct mii_data         *mii;
1122
1123         sc_if = ifp->if_softc;
1124         mii = device_get_softc(sc_if->sk_miibus);
1125
1126         mii_pollstat(mii);
1127         ifmr->ifm_active = mii->mii_media_active;
1128         ifmr->ifm_status = mii->mii_media_status;
1129
1130         return;
1131 }
1132
1133 static int
1134 sk_ioctl(ifp, command, data)
1135         struct ifnet            *ifp;
1136         u_long                  command;
1137         caddr_t                 data;
1138 {
1139         struct sk_if_softc      *sc_if = ifp->if_softc;
1140         struct ifreq            *ifr = (struct ifreq *) data;
1141         int                     error, mask;
1142         struct mii_data         *mii;
1143
1144         error = 0;
1145         switch(command) {
1146         case SIOCSIFMTU:
1147                 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > SK_JUMBO_MTU)
1148                         error = EINVAL;
1149                 else if (ifp->if_mtu != ifr->ifr_mtu) {
1150                         if (sc_if->sk_jumbo_disable != 0 &&
1151                             ifr->ifr_mtu > SK_MAX_FRAMELEN)
1152                                 error = EINVAL;
1153                         else {
1154                                 SK_IF_LOCK(sc_if);
1155                                 ifp->if_mtu = ifr->ifr_mtu;
1156                                 if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1157                                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1158                                         sk_init_locked(sc_if);
1159                                 }
1160                                 SK_IF_UNLOCK(sc_if);
1161                         }
1162                 }
1163                 break;
1164         case SIOCSIFFLAGS:
1165                 SK_IF_LOCK(sc_if);
1166                 if (ifp->if_flags & IFF_UP) {
1167                         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1168                                 if ((ifp->if_flags ^ sc_if->sk_if_flags)
1169                                     & IFF_PROMISC) {
1170                                         sk_setpromisc(sc_if);
1171                                         sk_setmulti(sc_if);
1172                                 }
1173                         } else
1174                                 sk_init_locked(sc_if);
1175                 } else {
1176                         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1177                                 sk_stop(sc_if);
1178                 }
1179                 sc_if->sk_if_flags = ifp->if_flags;
1180                 SK_IF_UNLOCK(sc_if);
1181                 break;
1182         case SIOCADDMULTI:
1183         case SIOCDELMULTI:
1184                 SK_IF_LOCK(sc_if);
1185                 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1186                         sk_setmulti(sc_if);
1187                 SK_IF_UNLOCK(sc_if);
1188                 break;
1189         case SIOCGIFMEDIA:
1190         case SIOCSIFMEDIA:
1191                 mii = device_get_softc(sc_if->sk_miibus);
1192                 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1193                 break;
1194         case SIOCSIFCAP:
1195                 SK_IF_LOCK(sc_if);
1196                 if (sc_if->sk_softc->sk_type == SK_GENESIS) {
1197                         SK_IF_UNLOCK(sc_if);
1198                         break;
1199                 }
1200                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1201                 if (mask & IFCAP_HWCSUM) {
1202                         ifp->if_capenable ^= IFCAP_HWCSUM;
1203                         if (IFCAP_HWCSUM & ifp->if_capenable &&
1204                             IFCAP_HWCSUM & ifp->if_capabilities)
1205                                 ifp->if_hwassist = SK_CSUM_FEATURES;
1206                         else
1207                                 ifp->if_hwassist = 0;
1208                 }
1209                 SK_IF_UNLOCK(sc_if);
1210                 break;
1211         default:
1212                 error = ether_ioctl(ifp, command, data);
1213                 break;
1214         }
1215
1216         return (error);
1217 }
1218
1219 /*
1220  * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
1221  * IDs against our list and return a device name if we find a match.
1222  */
1223 static int
1224 skc_probe(dev)
1225         device_t                dev;
1226 {
1227         struct sk_type          *t = sk_devs;
1228
1229         while(t->sk_name != NULL) {
1230                 if ((pci_get_vendor(dev) == t->sk_vid) &&
1231                     (pci_get_device(dev) == t->sk_did)) {
1232                         /*
1233                          * Only attach to rev. 2 of the Linksys EG1032 adapter.
1234                          * Rev. 3 is supported by re(4).
1235                          */
1236                         if ((t->sk_vid == VENDORID_LINKSYS) &&
1237                                 (t->sk_did == DEVICEID_LINKSYS_EG1032) &&
1238                                 (pci_get_subdevice(dev) !=
1239                                  SUBDEVICEID_LINKSYS_EG1032_REV2)) {
1240                                 t++;
1241                                 continue;
1242                         }
1243                         device_set_desc(dev, t->sk_name);
1244                         return (BUS_PROBE_DEFAULT);
1245                 }
1246                 t++;
1247         }
1248
1249         return(ENXIO);
1250 }
1251
1252 /*
1253  * Force the GEnesis into reset, then bring it out of reset.
1254  */
1255 static void
1256 sk_reset(sc)
1257         struct sk_softc         *sc;
1258 {
1259
1260         CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1261         CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1262         if (SK_YUKON_FAMILY(sc->sk_type))
1263                 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1264
1265         DELAY(1000);
1266         CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1267         DELAY(2);
1268         CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1269         if (SK_YUKON_FAMILY(sc->sk_type))
1270                 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1271
1272         if (sc->sk_type == SK_GENESIS) {
1273                 /* Configure packet arbiter */
1274                 sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1275                 sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1276                 sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1277                 sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1278                 sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1279         }
1280
1281         /* Enable RAM interface */
1282         sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1283
1284         /*
1285          * Configure interrupt moderation. The moderation timer
1286          * defers interrupts specified in the interrupt moderation
1287          * timer mask based on the timeout specified in the interrupt
1288          * moderation timer init register. Each bit in the timer
1289          * register represents one tick, so to specify a timeout in
1290          * microseconds, we have to multiply by the correct number of
1291          * ticks-per-microsecond.
1292          */
1293         switch (sc->sk_type) {
1294         case SK_GENESIS:
1295                 sc->sk_int_ticks = SK_IMTIMER_TICKS_GENESIS;
1296                 break;
1297         default:
1298                 sc->sk_int_ticks = SK_IMTIMER_TICKS_YUKON;
1299                 break;
1300         }
1301         if (bootverbose)
1302                 device_printf(sc->sk_dev, "interrupt moderation is %d us\n",
1303                     sc->sk_int_mod);
1304         sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod,
1305             sc->sk_int_ticks));
1306         sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
1307             SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
1308         sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1309
1310         return;
1311 }
1312
1313 static int
1314 sk_probe(dev)
1315         device_t                dev;
1316 {
1317         struct sk_softc         *sc;
1318
1319         sc = device_get_softc(device_get_parent(dev));
1320
1321         /*
1322          * Not much to do here. We always know there will be
1323          * at least one XMAC present, and if there are two,
1324          * skc_attach() will create a second device instance
1325          * for us.
1326          */
1327         switch (sc->sk_type) {
1328         case SK_GENESIS:
1329                 device_set_desc(dev, "XaQti Corp. XMAC II");
1330                 break;
1331         case SK_YUKON:
1332         case SK_YUKON_LITE:
1333         case SK_YUKON_LP:
1334                 device_set_desc(dev, "Marvell Semiconductor, Inc. Yukon");
1335                 break;
1336         }
1337
1338         return (BUS_PROBE_DEFAULT);
1339 }
1340
1341 /*
1342  * Each XMAC chip is attached as a separate logical IP interface.
1343  * Single port cards will have only one logical interface of course.
1344  */
1345 static int
1346 sk_attach(dev)
1347         device_t                dev;
1348 {
1349         struct sk_softc         *sc;
1350         struct sk_if_softc      *sc_if;
1351         struct ifnet            *ifp;
1352         int                     i, port, error;
1353         u_char                  eaddr[6];
1354
1355         if (dev == NULL)
1356                 return(EINVAL);
1357
1358         error = 0;
1359         sc_if = device_get_softc(dev);
1360         sc = device_get_softc(device_get_parent(dev));
1361         port = *(int *)device_get_ivars(dev);
1362
1363         sc_if->sk_if_dev = dev;
1364         sc_if->sk_port = port;
1365         sc_if->sk_softc = sc;
1366         sc->sk_if[port] = sc_if;
1367         if (port == SK_PORT_A)
1368                 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1369         if (port == SK_PORT_B)
1370                 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1371
1372         callout_init_mtx(&sc_if->sk_tick_ch, &sc_if->sk_softc->sk_mtx, 0);
1373         callout_init_mtx(&sc_if->sk_watchdog_ch, &sc_if->sk_softc->sk_mtx, 0);
1374
1375         if (sk_dma_alloc(sc_if) != 0) {
1376                 error = ENOMEM;
1377                 goto fail;
1378         }
1379         sk_dma_jumbo_alloc(sc_if);
1380
1381         ifp = sc_if->sk_ifp = if_alloc(IFT_ETHER);
1382         if (ifp == NULL) {
1383                 device_printf(sc_if->sk_if_dev, "can not if_alloc()\n");
1384                 error = ENOSPC;
1385                 goto fail;
1386         }
1387         ifp->if_softc = sc_if;
1388         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1389         ifp->if_mtu = ETHERMTU;
1390         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1391         /*
1392          * SK_GENESIS has a bug in checksum offload - From linux.
1393          */
1394         if (sc_if->sk_softc->sk_type != SK_GENESIS) {
1395                 ifp->if_capabilities = IFCAP_HWCSUM;
1396                 ifp->if_hwassist = SK_CSUM_FEATURES;
1397         } else {
1398                 ifp->if_capabilities = 0;
1399                 ifp->if_hwassist = 0;
1400         }
1401         ifp->if_capenable = ifp->if_capabilities;
1402         ifp->if_ioctl = sk_ioctl;
1403         ifp->if_start = sk_start;
1404         ifp->if_timer = 0;
1405         ifp->if_watchdog = NULL;
1406         ifp->if_init = sk_init;
1407         IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
1408         ifp->if_snd.ifq_drv_maxlen = SK_TX_RING_CNT - 1;
1409         IFQ_SET_READY(&ifp->if_snd);
1410
1411         /*
1412          * Get station address for this interface. Note that
1413          * dual port cards actually come with three station
1414          * addresses: one for each port, plus an extra. The
1415          * extra one is used by the SysKonnect driver software
1416          * as a 'virtual' station address for when both ports
1417          * are operating in failover mode. Currently we don't
1418          * use this extra address.
1419          */
1420         SK_IF_LOCK(sc_if);
1421         for (i = 0; i < ETHER_ADDR_LEN; i++)
1422                 eaddr[i] =
1423                     sk_win_read_1(sc, SK_MAC0_0 + (port * 8) + i);
1424
1425         /*
1426          * Set up RAM buffer addresses. The NIC will have a certain
1427          * amount of SRAM on it, somewhere between 512K and 2MB. We
1428          * need to divide this up a) between the transmitter and
1429          * receiver and b) between the two XMACs, if this is a
1430          * dual port NIC. Our algotithm is to divide up the memory
1431          * evenly so that everyone gets a fair share.
1432          *
1433          * Just to be contrary, Yukon2 appears to have separate memory
1434          * for each MAC.
1435          */
1436         if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1437                 u_int32_t               chunk, val;
1438
1439                 chunk = sc->sk_ramsize / 2;
1440                 val = sc->sk_rboff / sizeof(u_int64_t);
1441                 sc_if->sk_rx_ramstart = val;
1442                 val += (chunk / sizeof(u_int64_t));
1443                 sc_if->sk_rx_ramend = val - 1;
1444                 sc_if->sk_tx_ramstart = val;
1445                 val += (chunk / sizeof(u_int64_t));
1446                 sc_if->sk_tx_ramend = val - 1;
1447         } else {
1448                 u_int32_t               chunk, val;
1449
1450                 chunk = sc->sk_ramsize / 4;
1451                 val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1452                     sizeof(u_int64_t);
1453                 sc_if->sk_rx_ramstart = val;
1454                 val += (chunk / sizeof(u_int64_t));
1455                 sc_if->sk_rx_ramend = val - 1;
1456                 sc_if->sk_tx_ramstart = val;
1457                 val += (chunk / sizeof(u_int64_t));
1458                 sc_if->sk_tx_ramend = val - 1;
1459         }
1460
1461         /* Read and save PHY type and set PHY address */
1462         sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1463         if (!SK_YUKON_FAMILY(sc->sk_type)) {
1464                 switch(sc_if->sk_phytype) {
1465                 case SK_PHYTYPE_XMAC:
1466                         sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1467                         break;
1468                 case SK_PHYTYPE_BCOM:
1469                         sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1470                         break;
1471                 default:
1472                         device_printf(sc->sk_dev, "unsupported PHY type: %d\n",
1473                             sc_if->sk_phytype);
1474                         error = ENODEV;
1475                         SK_IF_UNLOCK(sc_if);
1476                         goto fail;
1477                 }
1478         } else {
1479                 if (sc_if->sk_phytype < SK_PHYTYPE_MARV_COPPER &&
1480                     sc->sk_pmd != 'S') {
1481                         /* not initialized, punt */
1482                         sc_if->sk_phytype = SK_PHYTYPE_MARV_COPPER;
1483                         sc->sk_coppertype = 1;
1484                 }
1485
1486                 sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1487
1488                 if (!(sc->sk_coppertype))
1489                         sc_if->sk_phytype = SK_PHYTYPE_MARV_FIBER;
1490         }
1491
1492         /*
1493          * Call MI attach routine.  Can't hold locks when calling into ether_*.
1494          */
1495         SK_IF_UNLOCK(sc_if);
1496         ether_ifattach(ifp, eaddr);
1497         SK_IF_LOCK(sc_if);
1498
1499         /*
1500          * The hardware should be ready for VLAN_MTU by default:
1501          * XMAC II has 0x8100 in VLAN Tag Level 1 register initially;
1502          * YU_SMR_MFL_VLAN is set by this driver in Yukon.
1503          *
1504          */
1505         ifp->if_capabilities |= IFCAP_VLAN_MTU;
1506         ifp->if_capenable |= IFCAP_VLAN_MTU;
1507         /*
1508          * Tell the upper layer(s) we support long frames.
1509          * Must appear after the call to ether_ifattach() because
1510          * ether_ifattach() sets ifi_hdrlen to the default value.
1511          */
1512         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1513
1514         /*
1515          * Do miibus setup.
1516          */
1517         switch (sc->sk_type) {
1518         case SK_GENESIS:
1519                 sk_init_xmac(sc_if);
1520                 break;
1521         case SK_YUKON:
1522         case SK_YUKON_LITE:
1523         case SK_YUKON_LP:
1524                 sk_init_yukon(sc_if);
1525                 break;
1526         }
1527
1528         SK_IF_UNLOCK(sc_if);
1529         if (mii_phy_probe(dev, &sc_if->sk_miibus,
1530             sk_ifmedia_upd, sk_ifmedia_sts)) {
1531                 device_printf(sc_if->sk_if_dev, "no PHY found!\n");
1532                 ether_ifdetach(ifp);
1533                 error = ENXIO;
1534                 goto fail;
1535         }
1536
1537 fail:
1538         if (error) {
1539                 /* Access should be ok even though lock has been dropped */
1540                 sc->sk_if[port] = NULL;
1541                 sk_detach(dev);
1542         }
1543
1544         return(error);
1545 }
1546
1547 /*
1548  * Attach the interface. Allocate softc structures, do ifmedia
1549  * setup and ethernet/BPF attach.
1550  */
1551 static int
1552 skc_attach(dev)
1553         device_t                dev;
1554 {
1555         struct sk_softc         *sc;
1556         int                     error = 0, *port;
1557         uint8_t                 skrs;
1558         const char              *pname = NULL;
1559         char                    *revstr;
1560
1561         sc = device_get_softc(dev);
1562         sc->sk_dev = dev;
1563
1564         mtx_init(&sc->sk_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1565             MTX_DEF);
1566         mtx_init(&sc->sk_mii_mtx, "sk_mii_mutex", NULL, MTX_DEF);
1567         /*
1568          * Map control/status registers.
1569          */
1570         pci_enable_busmaster(dev);
1571
1572         /* Allocate resources */
1573 #ifdef SK_USEIOSPACE
1574         sc->sk_res_spec = sk_res_spec_io;
1575 #else
1576         sc->sk_res_spec = sk_res_spec_mem;
1577 #endif
1578         error = bus_alloc_resources(dev, sc->sk_res_spec, sc->sk_res);
1579         if (error) {
1580                 if (sc->sk_res_spec == sk_res_spec_mem)
1581                         sc->sk_res_spec = sk_res_spec_io;
1582                 else
1583                         sc->sk_res_spec = sk_res_spec_mem;
1584                 error = bus_alloc_resources(dev, sc->sk_res_spec, sc->sk_res);
1585                 if (error) {
1586                         device_printf(dev, "couldn't allocate %s resources\n",
1587                             sc->sk_res_spec == sk_res_spec_mem ? "memory" :
1588                             "I/O");
1589                         goto fail;
1590                 }
1591         }
1592
1593         sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1594         sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4) & 0xf;
1595
1596         /* Bail out if chip is not recognized. */
1597         if (sc->sk_type != SK_GENESIS && !SK_YUKON_FAMILY(sc->sk_type)) {
1598                 device_printf(dev, "unknown device: chipver=%02x, rev=%x\n",
1599                     sc->sk_type, sc->sk_rev);
1600                 error = ENXIO;
1601                 goto fail;
1602         }
1603
1604         SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
1605                 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
1606                 OID_AUTO, "int_mod", CTLTYPE_INT|CTLFLAG_RW,
1607                 &sc->sk_int_mod, 0, sysctl_hw_sk_int_mod, "I",
1608                 "SK interrupt moderation");
1609
1610         /* Pull in device tunables. */
1611         sc->sk_int_mod = SK_IM_DEFAULT;
1612         error = resource_int_value(device_get_name(dev), device_get_unit(dev),
1613                 "int_mod", &sc->sk_int_mod);
1614         if (error == 0) {
1615                 if (sc->sk_int_mod < SK_IM_MIN ||
1616                     sc->sk_int_mod > SK_IM_MAX) {
1617                         device_printf(dev, "int_mod value out of range; "
1618                             "using default: %d\n", SK_IM_DEFAULT);
1619                         sc->sk_int_mod = SK_IM_DEFAULT;
1620                 }
1621         }
1622
1623         /* Reset the adapter. */
1624         sk_reset(sc);
1625
1626         skrs = sk_win_read_1(sc, SK_EPROM0);
1627         if (sc->sk_type == SK_GENESIS) {
1628                 /* Read and save RAM size and RAMbuffer offset */
1629                 switch(skrs) {
1630                 case SK_RAMSIZE_512K_64:
1631                         sc->sk_ramsize = 0x80000;
1632                         sc->sk_rboff = SK_RBOFF_0;
1633                         break;
1634                 case SK_RAMSIZE_1024K_64:
1635                         sc->sk_ramsize = 0x100000;
1636                         sc->sk_rboff = SK_RBOFF_80000;
1637                         break;
1638                 case SK_RAMSIZE_1024K_128:
1639                         sc->sk_ramsize = 0x100000;
1640                         sc->sk_rboff = SK_RBOFF_0;
1641                         break;
1642                 case SK_RAMSIZE_2048K_128:
1643                         sc->sk_ramsize = 0x200000;
1644                         sc->sk_rboff = SK_RBOFF_0;
1645                         break;
1646                 default:
1647                         device_printf(dev, "unknown ram size: %d\n", skrs);
1648                         error = ENXIO;
1649                         goto fail;
1650                 }
1651         } else { /* SK_YUKON_FAMILY */
1652                 if (skrs == 0x00)
1653                         sc->sk_ramsize = 0x20000;
1654                 else
1655                         sc->sk_ramsize = skrs * (1<<12);
1656                 sc->sk_rboff = SK_RBOFF_0;
1657         }
1658
1659         /* Read and save physical media type */
1660          sc->sk_pmd = sk_win_read_1(sc, SK_PMDTYPE);
1661
1662          if (sc->sk_pmd == 'T' || sc->sk_pmd == '1')
1663                  sc->sk_coppertype = 1;
1664          else
1665                  sc->sk_coppertype = 0;
1666
1667         /* Determine whether to name it with VPD PN or just make it up.
1668          * Marvell Yukon VPD PN seems to freqently be bogus. */
1669         switch (pci_get_device(dev)) {
1670         case DEVICEID_SK_V1:
1671         case DEVICEID_BELKIN_5005:
1672         case DEVICEID_3COM_3C940:
1673         case DEVICEID_LINKSYS_EG1032:
1674         case DEVICEID_DLINK_DGE530T_A1:
1675         case DEVICEID_DLINK_DGE530T_B1:
1676                 /* Stay with VPD PN. */
1677                 (void) pci_get_vpd_ident(dev, &pname);
1678                 break;
1679         case DEVICEID_SK_V2:
1680                 /* YUKON VPD PN might bear no resemblance to reality. */
1681                 switch (sc->sk_type) {
1682                 case SK_GENESIS:
1683                         /* Stay with VPD PN. */
1684                         (void) pci_get_vpd_ident(dev, &pname);
1685                         break;
1686                 case SK_YUKON:
1687                         pname = "Marvell Yukon Gigabit Ethernet";
1688                         break;
1689                 case SK_YUKON_LITE:
1690                         pname = "Marvell Yukon Lite Gigabit Ethernet";
1691                         break;
1692                 case SK_YUKON_LP:
1693                         pname = "Marvell Yukon LP Gigabit Ethernet";
1694                         break;
1695                 default:
1696                         pname = "Marvell Yukon (Unknown) Gigabit Ethernet";
1697                         break;
1698                 }
1699
1700                 /* Yukon Lite Rev. A0 needs special test. */
1701                 if (sc->sk_type == SK_YUKON || sc->sk_type == SK_YUKON_LP) {
1702                         u_int32_t far;
1703                         u_int8_t testbyte;
1704
1705                         /* Save flash address register before testing. */
1706                         far = sk_win_read_4(sc, SK_EP_ADDR);
1707
1708                         sk_win_write_1(sc, SK_EP_ADDR+0x03, 0xff);
1709                         testbyte = sk_win_read_1(sc, SK_EP_ADDR+0x03);
1710
1711                         if (testbyte != 0x00) {
1712                                 /* Yukon Lite Rev. A0 detected. */
1713                                 sc->sk_type = SK_YUKON_LITE;
1714                                 sc->sk_rev = SK_YUKON_LITE_REV_A0;
1715                                 /* Restore flash address register. */
1716                                 sk_win_write_4(sc, SK_EP_ADDR, far);
1717                         }
1718                 }
1719                 break;
1720         default:
1721                 device_printf(dev, "unknown device: vendor=%04x, device=%04x, "
1722                         "chipver=%02x, rev=%x\n",
1723                         pci_get_vendor(dev), pci_get_device(dev),
1724                         sc->sk_type, sc->sk_rev);
1725                 error = ENXIO;
1726                 goto fail;
1727         }
1728
1729         if (sc->sk_type == SK_YUKON_LITE) {
1730                 switch (sc->sk_rev) {
1731                 case SK_YUKON_LITE_REV_A0:
1732                         revstr = "A0";
1733                         break;
1734                 case SK_YUKON_LITE_REV_A1:
1735                         revstr = "A1";
1736                         break;
1737                 case SK_YUKON_LITE_REV_A3:
1738                         revstr = "A3";
1739                         break;
1740                 default:
1741                         revstr = "";
1742                         break;
1743                 }
1744         } else {
1745                 revstr = "";
1746         }
1747
1748         /* Announce the product name and more VPD data if there. */
1749         if (pname != NULL)
1750                 device_printf(dev, "%s rev. %s(0x%x)\n",
1751                         pname, revstr, sc->sk_rev);
1752
1753         if (bootverbose) {
1754                 device_printf(dev, "chip ver  = 0x%02x\n", sc->sk_type);
1755                 device_printf(dev, "chip rev  = 0x%02x\n", sc->sk_rev);
1756                 device_printf(dev, "SK_EPROM0 = 0x%02x\n", skrs);
1757                 device_printf(dev, "SRAM size = 0x%06x\n", sc->sk_ramsize);
1758         }
1759
1760         sc->sk_devs[SK_PORT_A] = device_add_child(dev, "sk", -1);
1761         if (sc->sk_devs[SK_PORT_A] == NULL) {
1762                 device_printf(dev, "failed to add child for PORT_A\n");
1763                 error = ENXIO;
1764                 goto fail;
1765         }
1766         port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
1767         if (port == NULL) {
1768                 device_printf(dev, "failed to allocate memory for "
1769                     "ivars of PORT_A\n");
1770                 error = ENXIO;
1771                 goto fail;
1772         }
1773         *port = SK_PORT_A;
1774         device_set_ivars(sc->sk_devs[SK_PORT_A], port);
1775
1776         if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1777                 sc->sk_devs[SK_PORT_B] = device_add_child(dev, "sk", -1);
1778                 if (sc->sk_devs[SK_PORT_B] == NULL) {
1779                         device_printf(dev, "failed to add child for PORT_B\n");
1780                         error = ENXIO;
1781                         goto fail;
1782                 }
1783                 port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
1784                 if (port == NULL) {
1785                         device_printf(dev, "failed to allocate memory for "
1786                             "ivars of PORT_B\n");
1787                         error = ENXIO;
1788                         goto fail;
1789                 }
1790                 *port = SK_PORT_B;
1791                 device_set_ivars(sc->sk_devs[SK_PORT_B], port);
1792         }
1793
1794         /* Turn on the 'driver is loaded' LED. */
1795         CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1796
1797         error = bus_generic_attach(dev);
1798         if (error) {
1799                 device_printf(dev, "failed to attach port(s)\n");
1800                 goto fail;
1801         }
1802
1803         /* Hook interrupt last to avoid having to lock softc */
1804         error = bus_setup_intr(dev, sc->sk_res[1], INTR_TYPE_NET|INTR_MPSAFE,
1805             NULL, sk_intr, sc, &sc->sk_intrhand);
1806
1807         if (error) {
1808                 device_printf(dev, "couldn't set up irq\n");
1809                 goto fail;
1810         }
1811
1812 fail:
1813         if (error)
1814                 skc_detach(dev);
1815
1816         return(error);
1817 }
1818
1819 /*
1820  * Shutdown hardware and free up resources. This can be called any
1821  * time after the mutex has been initialized. It is called in both
1822  * the error case in attach and the normal detach case so it needs
1823  * to be careful about only freeing resources that have actually been
1824  * allocated.
1825  */
1826 static int
1827 sk_detach(dev)
1828         device_t                dev;
1829 {
1830         struct sk_if_softc      *sc_if;
1831         struct ifnet            *ifp;
1832
1833         sc_if = device_get_softc(dev);
1834         KASSERT(mtx_initialized(&sc_if->sk_softc->sk_mtx),
1835             ("sk mutex not initialized in sk_detach"));
1836         SK_IF_LOCK(sc_if);
1837
1838         ifp = sc_if->sk_ifp;
1839         /* These should only be active if attach_xmac succeeded */
1840         if (device_is_attached(dev)) {
1841                 sk_stop(sc_if);
1842                 /* Can't hold locks while calling detach */
1843                 SK_IF_UNLOCK(sc_if);
1844                 callout_drain(&sc_if->sk_tick_ch);
1845                 callout_drain(&sc_if->sk_watchdog_ch);
1846                 ether_ifdetach(ifp);
1847                 SK_IF_LOCK(sc_if);
1848         }
1849         if (ifp)
1850                 if_free(ifp);
1851         /*
1852          * We're generally called from skc_detach() which is using
1853          * device_delete_child() to get to here. It's already trashed
1854          * miibus for us, so don't do it here or we'll panic.
1855          */
1856         /*
1857         if (sc_if->sk_miibus != NULL)
1858                 device_delete_child(dev, sc_if->sk_miibus);
1859         */
1860         bus_generic_detach(dev);
1861         sk_dma_jumbo_free(sc_if);
1862         sk_dma_free(sc_if);
1863         SK_IF_UNLOCK(sc_if);
1864
1865         return(0);
1866 }
1867
1868 static int
1869 skc_detach(dev)
1870         device_t                dev;
1871 {
1872         struct sk_softc         *sc;
1873
1874         sc = device_get_softc(dev);
1875         KASSERT(mtx_initialized(&sc->sk_mtx), ("sk mutex not initialized"));
1876
1877         if (device_is_alive(dev)) {
1878                 if (sc->sk_devs[SK_PORT_A] != NULL) {
1879                         free(device_get_ivars(sc->sk_devs[SK_PORT_A]), M_DEVBUF);
1880                         device_delete_child(dev, sc->sk_devs[SK_PORT_A]);
1881                 }
1882                 if (sc->sk_devs[SK_PORT_B] != NULL) {
1883                         free(device_get_ivars(sc->sk_devs[SK_PORT_B]), M_DEVBUF);
1884                         device_delete_child(dev, sc->sk_devs[SK_PORT_B]);
1885                 }
1886                 bus_generic_detach(dev);
1887         }
1888
1889         if (sc->sk_intrhand)
1890                 bus_teardown_intr(dev, sc->sk_res[1], sc->sk_intrhand);
1891         bus_release_resources(dev, sc->sk_res_spec, sc->sk_res);
1892
1893         mtx_destroy(&sc->sk_mii_mtx);
1894         mtx_destroy(&sc->sk_mtx);
1895
1896         return(0);
1897 }
1898
1899 struct sk_dmamap_arg {
1900         bus_addr_t      sk_busaddr;
1901 };
1902
1903 static void
1904 sk_dmamap_cb(arg, segs, nseg, error)
1905         void                    *arg;
1906         bus_dma_segment_t       *segs;
1907         int                     nseg;
1908         int                     error;
1909 {
1910         struct sk_dmamap_arg    *ctx;
1911
1912         if (error != 0)
1913                 return;
1914
1915         ctx = arg;
1916         ctx->sk_busaddr = segs[0].ds_addr;
1917 }
1918
1919 /*
1920  * Allocate jumbo buffer storage. The SysKonnect adapters support
1921  * "jumbograms" (9K frames), although SysKonnect doesn't currently
1922  * use them in their drivers. In order for us to use them, we need
1923  * large 9K receive buffers, however standard mbuf clusters are only
1924  * 2048 bytes in size. Consequently, we need to allocate and manage
1925  * our own jumbo buffer pool. Fortunately, this does not require an
1926  * excessive amount of additional code.
1927  */
1928 static int
1929 sk_dma_alloc(sc_if)
1930         struct sk_if_softc      *sc_if;
1931 {
1932         struct sk_dmamap_arg    ctx;
1933         struct sk_txdesc        *txd;
1934         struct sk_rxdesc        *rxd;
1935         int                     error, i;
1936
1937         /* create parent tag */
1938         /*
1939          * XXX
1940          * This driver should use BUS_SPACE_MAXADDR for lowaddr argument
1941          * in bus_dma_tag_create(9) as the NIC would support DAC mode.
1942          * However bz@ reported that it does not work on amd64 with > 4GB
1943          * RAM. Until we have more clues of the breakage, disable DAC mode
1944          * by limiting DMA address to be in 32bit address space.
1945          */
1946         error = bus_dma_tag_create(
1947                     bus_get_dma_tag(sc_if->sk_if_dev),/* parent */
1948                     1, 0,                       /* algnmnt, boundary */
1949                     BUS_SPACE_MAXADDR_32BIT,    /* lowaddr */
1950                     BUS_SPACE_MAXADDR,          /* highaddr */
1951                     NULL, NULL,                 /* filter, filterarg */
1952                     BUS_SPACE_MAXSIZE_32BIT,    /* maxsize */
1953                     0,                          /* nsegments */
1954                     BUS_SPACE_MAXSIZE_32BIT,    /* maxsegsize */
1955                     0,                          /* flags */
1956                     NULL, NULL,                 /* lockfunc, lockarg */
1957                     &sc_if->sk_cdata.sk_parent_tag);
1958         if (error != 0) {
1959                 device_printf(sc_if->sk_if_dev,
1960                     "failed to create parent DMA tag\n");
1961                 goto fail;
1962         }
1963
1964         /* create tag for Tx ring */
1965         error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
1966                     SK_RING_ALIGN, 0,           /* algnmnt, boundary */
1967                     BUS_SPACE_MAXADDR_32BIT,    /* lowaddr */
1968                     BUS_SPACE_MAXADDR,          /* highaddr */
1969                     NULL, NULL,                 /* filter, filterarg */
1970                     SK_TX_RING_SZ,              /* maxsize */
1971                     1,                          /* nsegments */
1972                     SK_TX_RING_SZ,              /* maxsegsize */
1973                     0,                          /* flags */
1974                     NULL, NULL,                 /* lockfunc, lockarg */
1975                     &sc_if->sk_cdata.sk_tx_ring_tag);
1976         if (error != 0) {
1977                 device_printf(sc_if->sk_if_dev,
1978                     "failed to allocate Tx ring DMA tag\n");
1979                 goto fail;
1980         }
1981
1982         /* create tag for Rx ring */
1983         error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
1984                     SK_RING_ALIGN, 0,           /* algnmnt, boundary */
1985                     BUS_SPACE_MAXADDR_32BIT,    /* lowaddr */
1986                     BUS_SPACE_MAXADDR,          /* highaddr */
1987                     NULL, NULL,                 /* filter, filterarg */
1988                     SK_RX_RING_SZ,              /* maxsize */
1989                     1,                          /* nsegments */
1990                     SK_RX_RING_SZ,              /* maxsegsize */
1991                     0,                          /* flags */
1992                     NULL, NULL,                 /* lockfunc, lockarg */
1993                     &sc_if->sk_cdata.sk_rx_ring_tag);
1994         if (error != 0) {
1995                 device_printf(sc_if->sk_if_dev,
1996                     "failed to allocate Rx ring DMA tag\n");
1997                 goto fail;
1998         }
1999
2000         /* create tag for Tx buffers */
2001         error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
2002                     1, 0,                       /* algnmnt, boundary */
2003                     BUS_SPACE_MAXADDR,          /* lowaddr */
2004                     BUS_SPACE_MAXADDR,          /* highaddr */
2005                     NULL, NULL,                 /* filter, filterarg */
2006                     MCLBYTES * SK_MAXTXSEGS,    /* maxsize */
2007                     SK_MAXTXSEGS,               /* nsegments */
2008                     MCLBYTES,                   /* maxsegsize */
2009                     0,                          /* flags */
2010                     NULL, NULL,                 /* lockfunc, lockarg */
2011                     &sc_if->sk_cdata.sk_tx_tag);
2012         if (error != 0) {
2013                 device_printf(sc_if->sk_if_dev,
2014                     "failed to allocate Tx DMA tag\n");
2015                 goto fail;
2016         }
2017
2018         /* create tag for Rx buffers */
2019         error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
2020                     1, 0,                       /* algnmnt, boundary */
2021                     BUS_SPACE_MAXADDR,          /* lowaddr */
2022                     BUS_SPACE_MAXADDR,          /* highaddr */
2023                     NULL, NULL,                 /* filter, filterarg */
2024                     MCLBYTES,                   /* maxsize */
2025                     1,                          /* nsegments */
2026                     MCLBYTES,                   /* maxsegsize */
2027                     0,                          /* flags */
2028                     NULL, NULL,                 /* lockfunc, lockarg */
2029                     &sc_if->sk_cdata.sk_rx_tag);
2030         if (error != 0) {
2031                 device_printf(sc_if->sk_if_dev,
2032                     "failed to allocate Rx DMA tag\n");
2033                 goto fail;
2034         }
2035
2036         /* allocate DMA'able memory and load the DMA map for Tx ring */
2037         error = bus_dmamem_alloc(sc_if->sk_cdata.sk_tx_ring_tag,
2038             (void **)&sc_if->sk_rdata.sk_tx_ring, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
2039             &sc_if->sk_cdata.sk_tx_ring_map);
2040         if (error != 0) {
2041                 device_printf(sc_if->sk_if_dev,
2042                     "failed to allocate DMA'able memory for Tx ring\n");
2043                 goto fail;
2044         }
2045
2046         ctx.sk_busaddr = 0;
2047         error = bus_dmamap_load(sc_if->sk_cdata.sk_tx_ring_tag,
2048             sc_if->sk_cdata.sk_tx_ring_map, sc_if->sk_rdata.sk_tx_ring,
2049             SK_TX_RING_SZ, sk_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
2050         if (error != 0) {
2051                 device_printf(sc_if->sk_if_dev,
2052                     "failed to load DMA'able memory for Tx ring\n");
2053                 goto fail;
2054         }
2055         sc_if->sk_rdata.sk_tx_ring_paddr = ctx.sk_busaddr;
2056
2057         /* allocate DMA'able memory and load the DMA map for Rx ring */
2058         error = bus_dmamem_alloc(sc_if->sk_cdata.sk_rx_ring_tag,
2059             (void **)&sc_if->sk_rdata.sk_rx_ring, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
2060             &sc_if->sk_cdata.sk_rx_ring_map);
2061         if (error != 0) {
2062                 device_printf(sc_if->sk_if_dev,
2063                     "failed to allocate DMA'able memory for Rx ring\n");
2064                 goto fail;
2065         }
2066
2067         ctx.sk_busaddr = 0;
2068         error = bus_dmamap_load(sc_if->sk_cdata.sk_rx_ring_tag,
2069             sc_if->sk_cdata.sk_rx_ring_map, sc_if->sk_rdata.sk_rx_ring,
2070             SK_RX_RING_SZ, sk_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
2071         if (error != 0) {
2072                 device_printf(sc_if->sk_if_dev,
2073                     "failed to load DMA'able memory for Rx ring\n");
2074                 goto fail;
2075         }
2076         sc_if->sk_rdata.sk_rx_ring_paddr = ctx.sk_busaddr;
2077
2078         /* create DMA maps for Tx buffers */
2079         for (i = 0; i < SK_TX_RING_CNT; i++) {
2080                 txd = &sc_if->sk_cdata.sk_txdesc[i];
2081                 txd->tx_m = NULL;
2082                 txd->tx_dmamap = NULL;
2083                 error = bus_dmamap_create(sc_if->sk_cdata.sk_tx_tag, 0,
2084                     &txd->tx_dmamap);
2085                 if (error != 0) {
2086                         device_printf(sc_if->sk_if_dev,
2087                             "failed to create Tx dmamap\n");
2088                         goto fail;
2089                 }
2090         }
2091
2092         /* create DMA maps for Rx buffers */
2093         if ((error = bus_dmamap_create(sc_if->sk_cdata.sk_rx_tag, 0,
2094             &sc_if->sk_cdata.sk_rx_sparemap)) != 0) {
2095                 device_printf(sc_if->sk_if_dev,
2096                     "failed to create spare Rx dmamap\n");
2097                 goto fail;
2098         }
2099         for (i = 0; i < SK_RX_RING_CNT; i++) {
2100                 rxd = &sc_if->sk_cdata.sk_rxdesc[i];
2101                 rxd->rx_m = NULL;
2102                 rxd->rx_dmamap = NULL;
2103                 error = bus_dmamap_create(sc_if->sk_cdata.sk_rx_tag, 0,
2104                     &rxd->rx_dmamap);
2105                 if (error != 0) {
2106                         device_printf(sc_if->sk_if_dev,
2107                             "failed to create Rx dmamap\n");
2108                         goto fail;
2109                 }
2110         }
2111
2112 fail:
2113         return (error);
2114 }
2115
2116 static int
2117 sk_dma_jumbo_alloc(sc_if)
2118         struct sk_if_softc      *sc_if;
2119 {
2120         struct sk_dmamap_arg    ctx;
2121         struct sk_rxdesc        *jrxd;
2122         int                     error, i;
2123
2124         if (jumbo_disable != 0) {
2125                 device_printf(sc_if->sk_if_dev, "disabling jumbo frame support\n");
2126                 sc_if->sk_jumbo_disable = 1;
2127                 return (0);
2128         }
2129         /* create tag for jumbo Rx ring */
2130         error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
2131                     SK_RING_ALIGN, 0,           /* algnmnt, boundary */
2132                     BUS_SPACE_MAXADDR_32BIT,    /* lowaddr */
2133                     BUS_SPACE_MAXADDR,          /* highaddr */
2134                     NULL, NULL,                 /* filter, filterarg */
2135                     SK_JUMBO_RX_RING_SZ,        /* maxsize */
2136                     1,                          /* nsegments */
2137                     SK_JUMBO_RX_RING_SZ,        /* maxsegsize */
2138                     0,                          /* flags */
2139                     NULL, NULL,                 /* lockfunc, lockarg */
2140                     &sc_if->sk_cdata.sk_jumbo_rx_ring_tag);
2141         if (error != 0) {
2142                 device_printf(sc_if->sk_if_dev,
2143                     "failed to allocate jumbo Rx ring DMA tag\n");
2144                 goto jumbo_fail;
2145         }
2146
2147         /* create tag for jumbo Rx buffers */
2148         error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
2149                     1, 0,                       /* algnmnt, boundary */
2150                     BUS_SPACE_MAXADDR,          /* lowaddr */
2151                     BUS_SPACE_MAXADDR,          /* highaddr */
2152                     NULL, NULL,                 /* filter, filterarg */
2153                     MJUM9BYTES,                 /* maxsize */
2154                     1,                          /* nsegments */
2155                     MJUM9BYTES,                 /* maxsegsize */
2156                     0,                          /* flags */
2157                     NULL, NULL,                 /* lockfunc, lockarg */
2158                     &sc_if->sk_cdata.sk_jumbo_rx_tag);
2159         if (error != 0) {
2160                 device_printf(sc_if->sk_if_dev,
2161                     "failed to allocate jumbo Rx DMA tag\n");
2162                 goto jumbo_fail;
2163         }
2164
2165         /* allocate DMA'able memory and load the DMA map for jumbo Rx ring */
2166         error = bus_dmamem_alloc(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2167             (void **)&sc_if->sk_rdata.sk_jumbo_rx_ring,
2168             BUS_DMA_NOWAIT|BUS_DMA_ZERO, &sc_if->sk_cdata.sk_jumbo_rx_ring_map);
2169         if (error != 0) {
2170                 device_printf(sc_if->sk_if_dev,
2171                     "failed to allocate DMA'able memory for jumbo Rx ring\n");
2172                 goto jumbo_fail;
2173         }
2174
2175         ctx.sk_busaddr = 0;
2176         error = bus_dmamap_load(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2177             sc_if->sk_cdata.sk_jumbo_rx_ring_map,
2178             sc_if->sk_rdata.sk_jumbo_rx_ring, SK_JUMBO_RX_RING_SZ, sk_dmamap_cb,
2179             &ctx, BUS_DMA_NOWAIT);
2180         if (error != 0) {
2181                 device_printf(sc_if->sk_if_dev,
2182                     "failed to load DMA'able memory for jumbo Rx ring\n");
2183                 goto jumbo_fail;
2184         }
2185         sc_if->sk_rdata.sk_jumbo_rx_ring_paddr = ctx.sk_busaddr;
2186
2187         /* create DMA maps for jumbo Rx buffers */
2188         if ((error = bus_dmamap_create(sc_if->sk_cdata.sk_jumbo_rx_tag, 0,
2189             &sc_if->sk_cdata.sk_jumbo_rx_sparemap)) != 0) {
2190                 device_printf(sc_if->sk_if_dev,
2191                     "failed to create spare jumbo Rx dmamap\n");
2192                 goto jumbo_fail;
2193         }
2194         for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
2195                 jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[i];
2196                 jrxd->rx_m = NULL;
2197                 jrxd->rx_dmamap = NULL;
2198                 error = bus_dmamap_create(sc_if->sk_cdata.sk_jumbo_rx_tag, 0,
2199                     &jrxd->rx_dmamap);
2200                 if (error != 0) {
2201                         device_printf(sc_if->sk_if_dev,
2202                             "failed to create jumbo Rx dmamap\n");
2203                         goto jumbo_fail;
2204                 }
2205         }
2206
2207         return (0);
2208
2209 jumbo_fail:
2210         sk_dma_jumbo_free(sc_if);
2211         device_printf(sc_if->sk_if_dev, "disabling jumbo frame support due to "
2212             "resource shortage\n");
2213         sc_if->sk_jumbo_disable = 1;
2214         return (0);
2215 }
2216
2217 static void
2218 sk_dma_free(sc_if)
2219         struct sk_if_softc      *sc_if;
2220 {
2221         struct sk_txdesc        *txd;
2222         struct sk_rxdesc        *rxd;
2223         int                     i;
2224
2225         /* Tx ring */
2226         if (sc_if->sk_cdata.sk_tx_ring_tag) {
2227                 if (sc_if->sk_cdata.sk_tx_ring_map)
2228                         bus_dmamap_unload(sc_if->sk_cdata.sk_tx_ring_tag,
2229                             sc_if->sk_cdata.sk_tx_ring_map);
2230                 if (sc_if->sk_cdata.sk_tx_ring_map &&
2231                     sc_if->sk_rdata.sk_tx_ring)
2232                         bus_dmamem_free(sc_if->sk_cdata.sk_tx_ring_tag,
2233                             sc_if->sk_rdata.sk_tx_ring,
2234                             sc_if->sk_cdata.sk_tx_ring_map);
2235                 sc_if->sk_rdata.sk_tx_ring = NULL;
2236                 sc_if->sk_cdata.sk_tx_ring_map = NULL;
2237                 bus_dma_tag_destroy(sc_if->sk_cdata.sk_tx_ring_tag);
2238                 sc_if->sk_cdata.sk_tx_ring_tag = NULL;
2239         }
2240         /* Rx ring */
2241         if (sc_if->sk_cdata.sk_rx_ring_tag) {
2242                 if (sc_if->sk_cdata.sk_rx_ring_map)
2243                         bus_dmamap_unload(sc_if->sk_cdata.sk_rx_ring_tag,
2244                             sc_if->sk_cdata.sk_rx_ring_map);
2245                 if (sc_if->sk_cdata.sk_rx_ring_map &&
2246                     sc_if->sk_rdata.sk_rx_ring)
2247                         bus_dmamem_free(sc_if->sk_cdata.sk_rx_ring_tag,
2248                             sc_if->sk_rdata.sk_rx_ring,
2249                             sc_if->sk_cdata.sk_rx_ring_map);
2250                 sc_if->sk_rdata.sk_rx_ring = NULL;
2251                 sc_if->sk_cdata.sk_rx_ring_map = NULL;
2252                 bus_dma_tag_destroy(sc_if->sk_cdata.sk_rx_ring_tag);
2253                 sc_if->sk_cdata.sk_rx_ring_tag = NULL;
2254         }
2255         /* Tx buffers */
2256         if (sc_if->sk_cdata.sk_tx_tag) {
2257                 for (i = 0; i < SK_TX_RING_CNT; i++) {
2258                         txd = &sc_if->sk_cdata.sk_txdesc[i];
2259                         if (txd->tx_dmamap) {
2260                                 bus_dmamap_destroy(sc_if->sk_cdata.sk_tx_tag,
2261                                     txd->tx_dmamap);
2262                                 txd->tx_dmamap = NULL;
2263                         }
2264                 }
2265                 bus_dma_tag_destroy(sc_if->sk_cdata.sk_tx_tag);
2266                 sc_if->sk_cdata.sk_tx_tag = NULL;
2267         }
2268         /* Rx buffers */
2269         if (sc_if->sk_cdata.sk_rx_tag) {
2270                 for (i = 0; i < SK_RX_RING_CNT; i++) {
2271                         rxd = &sc_if->sk_cdata.sk_rxdesc[i];
2272                         if (rxd->rx_dmamap) {
2273                                 bus_dmamap_destroy(sc_if->sk_cdata.sk_rx_tag,
2274                                     rxd->rx_dmamap);
2275                                 rxd->rx_dmamap = NULL;
2276                         }
2277                 }
2278                 if (sc_if->sk_cdata.sk_rx_sparemap) {
2279                         bus_dmamap_destroy(sc_if->sk_cdata.sk_rx_tag,
2280                             sc_if->sk_cdata.sk_rx_sparemap);
2281                         sc_if->sk_cdata.sk_rx_sparemap = NULL;
2282                 }
2283                 bus_dma_tag_destroy(sc_if->sk_cdata.sk_rx_tag);
2284                 sc_if->sk_cdata.sk_rx_tag = NULL;
2285         }
2286
2287         if (sc_if->sk_cdata.sk_parent_tag) {
2288                 bus_dma_tag_destroy(sc_if->sk_cdata.sk_parent_tag);
2289                 sc_if->sk_cdata.sk_parent_tag = NULL;
2290         }
2291 }
2292
2293 static void
2294 sk_dma_jumbo_free(sc_if)
2295         struct sk_if_softc      *sc_if;
2296 {
2297         struct sk_rxdesc        *jrxd;
2298         int                     i;
2299
2300         /* jumbo Rx ring */
2301         if (sc_if->sk_cdata.sk_jumbo_rx_ring_tag) {
2302                 if (sc_if->sk_cdata.sk_jumbo_rx_ring_map)
2303                         bus_dmamap_unload(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2304                             sc_if->sk_cdata.sk_jumbo_rx_ring_map);
2305                 if (sc_if->sk_cdata.sk_jumbo_rx_ring_map &&
2306                     sc_if->sk_rdata.sk_jumbo_rx_ring)
2307                         bus_dmamem_free(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2308                             sc_if->sk_rdata.sk_jumbo_rx_ring,
2309                             sc_if->sk_cdata.sk_jumbo_rx_ring_map);
2310                 sc_if->sk_rdata.sk_jumbo_rx_ring = NULL;
2311                 sc_if->sk_cdata.sk_jumbo_rx_ring_map = NULL;
2312                 bus_dma_tag_destroy(sc_if->sk_cdata.sk_jumbo_rx_ring_tag);
2313                 sc_if->sk_cdata.sk_jumbo_rx_ring_tag = NULL;
2314         }
2315
2316         /* jumbo Rx buffers */
2317         if (sc_if->sk_cdata.sk_jumbo_rx_tag) {
2318                 for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
2319                         jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[i];
2320                         if (jrxd->rx_dmamap) {
2321                                 bus_dmamap_destroy(
2322                                     sc_if->sk_cdata.sk_jumbo_rx_tag,
2323                                     jrxd->rx_dmamap);
2324                                 jrxd->rx_dmamap = NULL;
2325                         }
2326                 }
2327                 if (sc_if->sk_cdata.sk_jumbo_rx_sparemap) {
2328                         bus_dmamap_destroy(sc_if->sk_cdata.sk_jumbo_rx_tag,
2329                             sc_if->sk_cdata.sk_jumbo_rx_sparemap);
2330                         sc_if->sk_cdata.sk_jumbo_rx_sparemap = NULL;
2331                 }
2332                 bus_dma_tag_destroy(sc_if->sk_cdata.sk_jumbo_rx_tag);
2333                 sc_if->sk_cdata.sk_jumbo_rx_tag = NULL;
2334         }
2335 }
2336
2337 static void
2338 sk_txcksum(ifp, m, f)
2339         struct ifnet            *ifp;
2340         struct mbuf             *m;
2341         struct sk_tx_desc       *f;
2342 {
2343         struct ip               *ip;
2344         u_int16_t               offset;
2345         u_int8_t                *p;
2346
2347         offset = sizeof(struct ip) + ETHER_HDR_LEN;
2348         for(; m && m->m_len == 0; m = m->m_next)
2349                 ;
2350         if (m == NULL || m->m_len < ETHER_HDR_LEN) {
2351                 if_printf(ifp, "%s: m_len < ETHER_HDR_LEN\n", __func__);
2352                 /* checksum may be corrupted */
2353                 goto sendit;
2354         }
2355         if (m->m_len < ETHER_HDR_LEN + sizeof(u_int32_t)) {
2356                 if (m->m_len != ETHER_HDR_LEN) {
2357                         if_printf(ifp, "%s: m_len != ETHER_HDR_LEN\n",
2358                             __func__);
2359                         /* checksum may be corrupted */
2360                         goto sendit;
2361                 }
2362                 for(m = m->m_next; m && m->m_len == 0; m = m->m_next)
2363                         ;
2364                 if (m == NULL) {
2365                         offset = sizeof(struct ip) + ETHER_HDR_LEN;
2366                         /* checksum may be corrupted */
2367                         goto sendit;
2368                 }
2369                 ip = mtod(m, struct ip *);
2370         } else {
2371                 p = mtod(m, u_int8_t *);
2372                 p += ETHER_HDR_LEN;
2373                 ip = (struct ip *)p;
2374         }
2375         offset = (ip->ip_hl << 2) + ETHER_HDR_LEN;
2376
2377 sendit:
2378         f->sk_csum_startval = 0;
2379         f->sk_csum_start = htole32(((offset + m->m_pkthdr.csum_data) & 0xffff) |
2380             (offset << 16));
2381 }
2382
2383 static int
2384 sk_encap(sc_if, m_head)
2385         struct sk_if_softc      *sc_if;
2386         struct mbuf             **m_head;
2387 {
2388         struct sk_txdesc        *txd;
2389         struct sk_tx_desc       *f = NULL;
2390         struct mbuf             *m;
2391         bus_dma_segment_t       txsegs[SK_MAXTXSEGS];
2392         u_int32_t               cflags, frag, si, sk_ctl;
2393         int                     error, i, nseg;
2394
2395         SK_IF_LOCK_ASSERT(sc_if);
2396
2397         if ((txd = STAILQ_FIRST(&sc_if->sk_cdata.sk_txfreeq)) == NULL)
2398                 return (ENOBUFS);
2399
2400         error = bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_tx_tag,
2401             txd->tx_dmamap, *m_head, txsegs, &nseg, 0);
2402         if (error == EFBIG) {
2403                 m = m_defrag(*m_head, M_DONTWAIT);
2404                 if (m == NULL) {
2405                         m_freem(*m_head);
2406                         *m_head = NULL;
2407                         return (ENOMEM);
2408                 }
2409                 *m_head = m;
2410                 error = bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_tx_tag,
2411                     txd->tx_dmamap, *m_head, txsegs, &nseg, 0);
2412                 if (error != 0) {
2413                         m_freem(*m_head);
2414                         *m_head = NULL;
2415                         return (error);
2416                 }
2417         } else if (error != 0)
2418                 return (error);
2419         if (nseg == 0) {
2420                 m_freem(*m_head);
2421                 *m_head = NULL;
2422                 return (EIO);
2423         }
2424         if (sc_if->sk_cdata.sk_tx_cnt + nseg >= SK_TX_RING_CNT) {
2425                 bus_dmamap_unload(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap);
2426                 return (ENOBUFS);
2427         }
2428
2429         m = *m_head;
2430         if ((m->m_pkthdr.csum_flags & sc_if->sk_ifp->if_hwassist) != 0)
2431                 cflags = SK_OPCODE_CSUM;
2432         else
2433                 cflags = SK_OPCODE_DEFAULT;
2434         si = frag = sc_if->sk_cdata.sk_tx_prod;
2435         for (i = 0; i < nseg; i++) {
2436                 f = &sc_if->sk_rdata.sk_tx_ring[frag];
2437                 f->sk_data_lo = htole32(SK_ADDR_LO(txsegs[i].ds_addr));
2438                 f->sk_data_hi = htole32(SK_ADDR_HI(txsegs[i].ds_addr));
2439                 sk_ctl = txsegs[i].ds_len | cflags;
2440                 if (i == 0) {
2441                         if (cflags == SK_OPCODE_CSUM)
2442                                 sk_txcksum(sc_if->sk_ifp, m, f);
2443                         sk_ctl |= SK_TXCTL_FIRSTFRAG;
2444                 } else
2445                         sk_ctl |= SK_TXCTL_OWN;
2446                 f->sk_ctl = htole32(sk_ctl);
2447                 sc_if->sk_cdata.sk_tx_cnt++;
2448                 SK_INC(frag, SK_TX_RING_CNT);
2449         }
2450         sc_if->sk_cdata.sk_tx_prod = frag;
2451
2452         /* set EOF on the last desciptor */
2453         frag = (frag + SK_TX_RING_CNT - 1) % SK_TX_RING_CNT;
2454         f = &sc_if->sk_rdata.sk_tx_ring[frag];
2455         f->sk_ctl |= htole32(SK_TXCTL_LASTFRAG | SK_TXCTL_EOF_INTR);
2456
2457         /* turn the first descriptor ownership to NIC */
2458         f = &sc_if->sk_rdata.sk_tx_ring[si];
2459         f->sk_ctl |= htole32(SK_TXCTL_OWN);
2460
2461         STAILQ_REMOVE_HEAD(&sc_if->sk_cdata.sk_txfreeq, tx_q);
2462         STAILQ_INSERT_TAIL(&sc_if->sk_cdata.sk_txbusyq, txd, tx_q);
2463         txd->tx_m = m;
2464
2465         /* sync descriptors */
2466         bus_dmamap_sync(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap,
2467             BUS_DMASYNC_PREWRITE);
2468         bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
2469             sc_if->sk_cdata.sk_tx_ring_map,
2470             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2471
2472         return (0);
2473 }
2474
2475 static void
2476 sk_start(ifp)
2477         struct ifnet            *ifp;
2478 {
2479         struct sk_if_softc *sc_if;
2480
2481         sc_if = ifp->if_softc;
2482
2483         SK_IF_LOCK(sc_if);
2484         sk_start_locked(ifp);
2485         SK_IF_UNLOCK(sc_if);
2486
2487         return;
2488 }
2489
2490 static void
2491 sk_start_locked(ifp)
2492         struct ifnet            *ifp;
2493 {
2494         struct sk_softc         *sc;
2495         struct sk_if_softc      *sc_if;
2496         struct mbuf             *m_head;
2497         int                     enq;
2498
2499         sc_if = ifp->if_softc;
2500         sc = sc_if->sk_softc;
2501
2502         SK_IF_LOCK_ASSERT(sc_if);
2503
2504         for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
2505             sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 1; ) {
2506                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2507                 if (m_head == NULL)
2508                         break;
2509
2510                 /*
2511                  * Pack the data into the transmit ring. If we
2512                  * don't have room, set the OACTIVE flag and wait
2513                  * for the NIC to drain the ring.
2514                  */
2515                 if (sk_encap(sc_if, &m_head)) {
2516                         if (m_head == NULL)
2517                                 break;
2518                         IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2519                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2520                         break;
2521                 }
2522
2523                 enq++;
2524                 /*
2525                  * If there's a BPF listener, bounce a copy of this frame
2526                  * to him.
2527                  */
2528                 BPF_MTAP(ifp, m_head);
2529         }
2530
2531         if (enq > 0) {
2532                 /* Transmit */
2533                 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2534
2535                 /* Set a timeout in case the chip goes out to lunch. */
2536                 sc_if->sk_watchdog_timer = 5;
2537         }
2538 }
2539
2540
2541 static void
2542 sk_watchdog(arg)
2543         void                    *arg;
2544 {
2545         struct sk_if_softc      *sc_if;
2546         struct ifnet            *ifp;
2547
2548         ifp = arg;
2549         sc_if = ifp->if_softc;
2550
2551         SK_IF_LOCK_ASSERT(sc_if);
2552
2553         if (sc_if->sk_watchdog_timer == 0 || --sc_if->sk_watchdog_timer)
2554                 goto done;
2555
2556         /*
2557          * Reclaim first as there is a possibility of losing Tx completion
2558          * interrupts.
2559          */
2560         sk_txeof(sc_if);
2561         if (sc_if->sk_cdata.sk_tx_cnt != 0) {
2562                 if_printf(sc_if->sk_ifp, "watchdog timeout\n");
2563                 ifp->if_oerrors++;
2564                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2565                 sk_init_locked(sc_if);
2566         }
2567
2568 done:
2569         callout_reset(&sc_if->sk_watchdog_ch, hz, sk_watchdog, ifp);
2570
2571         return;
2572 }
2573
2574 static int
2575 skc_shutdown(dev)
2576         device_t                dev;
2577 {
2578         struct sk_softc         *sc;
2579
2580         sc = device_get_softc(dev);
2581         SK_LOCK(sc);
2582
2583         /* Turn off the 'driver is loaded' LED. */
2584         CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2585
2586         /*
2587          * Reset the GEnesis controller. Doing this should also
2588          * assert the resets on the attached XMAC(s).
2589          */
2590         sk_reset(sc);
2591         SK_UNLOCK(sc);
2592
2593         return (0);
2594 }
2595
2596 static int
2597 skc_suspend(dev)
2598         device_t                dev;
2599 {
2600         struct sk_softc         *sc;
2601         struct sk_if_softc      *sc_if0, *sc_if1;
2602         struct ifnet            *ifp0 = NULL, *ifp1 = NULL;
2603
2604         sc = device_get_softc(dev);
2605
2606         SK_LOCK(sc);
2607
2608         sc_if0 = sc->sk_if[SK_PORT_A];
2609         sc_if1 = sc->sk_if[SK_PORT_B];
2610         if (sc_if0 != NULL)
2611                 ifp0 = sc_if0->sk_ifp;
2612         if (sc_if1 != NULL)
2613                 ifp1 = sc_if1->sk_ifp;
2614         if (ifp0 != NULL)
2615                 sk_stop(sc_if0);
2616         if (ifp1 != NULL)
2617                 sk_stop(sc_if1);
2618         sc->sk_suspended = 1;
2619
2620         SK_UNLOCK(sc);
2621
2622         return (0);
2623 }
2624
2625 static int
2626 skc_resume(dev)
2627         device_t                dev;
2628 {
2629         struct sk_softc         *sc;
2630         struct sk_if_softc      *sc_if0, *sc_if1;
2631         struct ifnet            *ifp0 = NULL, *ifp1 = NULL;
2632
2633         sc = device_get_softc(dev);
2634
2635         SK_LOCK(sc);
2636
2637         sc_if0 = sc->sk_if[SK_PORT_A];
2638         sc_if1 = sc->sk_if[SK_PORT_B];
2639         if (sc_if0 != NULL)
2640                 ifp0 = sc_if0->sk_ifp;
2641         if (sc_if1 != NULL)
2642                 ifp1 = sc_if1->sk_ifp;
2643         if (ifp0 != NULL && ifp0->if_flags & IFF_UP)
2644                 sk_init_locked(sc_if0);
2645         if (ifp1 != NULL && ifp1->if_flags & IFF_UP)
2646                 sk_init_locked(sc_if1);
2647         sc->sk_suspended = 0;
2648
2649         SK_UNLOCK(sc);
2650
2651         return (0);
2652 }
2653
2654 /*
2655  * According to the data sheet from SK-NET GENESIS the hardware can compute
2656  * two Rx checksums at the same time(Each checksum start position is
2657  * programmed in Rx descriptors). However it seems that TCP/UDP checksum
2658  * does not work at least on my Yukon hardware. I tried every possible ways
2659  * to get correct checksum value but couldn't get correct one. So TCP/UDP
2660  * checksum offload was disabled at the moment and only IP checksum offload
2661  * was enabled.
2662  * As nomral IP header size is 20 bytes I can't expect it would give an
2663  * increase in throughput. However it seems it doesn't hurt performance in
2664  * my testing. If there is a more detailed information for checksum secret
2665  * of the hardware in question please contact yongari@FreeBSD.org to add
2666  * TCP/UDP checksum offload support.
2667  */
2668 static __inline void
2669 sk_rxcksum(ifp, m, csum)
2670         struct ifnet            *ifp;
2671         struct mbuf             *m;
2672         u_int32_t               csum;
2673 {
2674         struct ether_header     *eh;
2675         struct ip               *ip;
2676         int32_t                 hlen, len, pktlen;
2677         u_int16_t               csum1, csum2, ipcsum;
2678
2679         pktlen = m->m_pkthdr.len;
2680         if (pktlen < sizeof(struct ether_header) + sizeof(struct ip))
2681                 return;
2682         eh = mtod(m, struct ether_header *);
2683         if (eh->ether_type != htons(ETHERTYPE_IP))
2684                 return;
2685         ip = (struct ip *)(eh + 1);
2686         if (ip->ip_v != IPVERSION)
2687                 return;
2688         hlen = ip->ip_hl << 2;
2689         pktlen -= sizeof(struct ether_header);
2690         if (hlen < sizeof(struct ip))
2691                 return;
2692         if (ntohs(ip->ip_len) < hlen)
2693                 return;
2694         if (ntohs(ip->ip_len) != pktlen)
2695                 return;
2696
2697         csum1 = htons(csum & 0xffff);
2698         csum2 = htons((csum >> 16) & 0xffff);
2699         ipcsum = in_addword(csum1, ~csum2 & 0xffff);
2700         /* checksum fixup for IP options */
2701         len = hlen - sizeof(struct ip);
2702         if (len > 0) {
2703                 /*
2704                  * If the second checksum value is correct we can compute IP
2705                  * checksum with simple math. Unfortunately the second checksum
2706                  * value is wrong so we can't verify the checksum from the
2707                  * value(It seems there is some magic here to get correct
2708                  * value). If the second checksum value is correct it also
2709                  * means we can get TCP/UDP checksum) here. However, it still
2710                  * needs pseudo header checksum calculation due to hardware
2711                  * limitations.
2712                  */
2713                 return;
2714         }
2715         m->m_pkthdr.csum_flags = CSUM_IP_CHECKED;
2716         if (ipcsum == 0xffff)
2717                 m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2718 }
2719
2720 static __inline int
2721 sk_rxvalid(sc, stat, len)
2722         struct sk_softc         *sc;
2723         u_int32_t               stat, len;
2724 {
2725
2726         if (sc->sk_type == SK_GENESIS) {
2727                 if ((stat & XM_RXSTAT_ERRFRAME) == XM_RXSTAT_ERRFRAME ||
2728                     XM_RXSTAT_BYTES(stat) != len)
2729                         return (0);
2730         } else {
2731                 if ((stat & (YU_RXSTAT_CRCERR | YU_RXSTAT_LONGERR |
2732                     YU_RXSTAT_MIIERR | YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC |
2733                     YU_RXSTAT_JABBER)) != 0 ||
2734                     (stat & YU_RXSTAT_RXOK) != YU_RXSTAT_RXOK ||
2735                     YU_RXSTAT_BYTES(stat) != len)
2736                         return (0);
2737         }
2738
2739         return (1);
2740 }
2741
2742 static void
2743 sk_rxeof(sc_if)
2744         struct sk_if_softc      *sc_if;
2745 {
2746         struct sk_softc         *sc;
2747         struct mbuf             *m;
2748         struct ifnet            *ifp;
2749         struct sk_rx_desc       *cur_rx;
2750         struct sk_rxdesc        *rxd;
2751         int                     cons, prog;
2752         u_int32_t               csum, rxstat, sk_ctl;
2753
2754         sc = sc_if->sk_softc;
2755         ifp = sc_if->sk_ifp;
2756
2757         SK_IF_LOCK_ASSERT(sc_if);
2758
2759         bus_dmamap_sync(sc_if->sk_cdata.sk_rx_ring_tag,
2760             sc_if->sk_cdata.sk_rx_ring_map, BUS_DMASYNC_POSTREAD);
2761
2762         prog = 0;
2763         for (cons = sc_if->sk_cdata.sk_rx_cons; prog < SK_RX_RING_CNT;
2764             prog++, SK_INC(cons, SK_RX_RING_CNT)) {
2765                 cur_rx = &sc_if->sk_rdata.sk_rx_ring[cons];
2766                 sk_ctl = le32toh(cur_rx->sk_ctl);
2767                 if ((sk_ctl & SK_RXCTL_OWN) != 0)
2768                         break;
2769                 rxd = &sc_if->sk_cdata.sk_rxdesc[cons];
2770                 rxstat = le32toh(cur_rx->sk_xmac_rxstat);
2771
2772                 if ((sk_ctl & (SK_RXCTL_STATUS_VALID | SK_RXCTL_FIRSTFRAG |
2773                     SK_RXCTL_LASTFRAG)) != (SK_RXCTL_STATUS_VALID |
2774                     SK_RXCTL_FIRSTFRAG | SK_RXCTL_LASTFRAG) ||
2775                     SK_RXBYTES(sk_ctl) < SK_MIN_FRAMELEN ||
2776                     SK_RXBYTES(sk_ctl) > SK_MAX_FRAMELEN ||
2777                     sk_rxvalid(sc, rxstat, SK_RXBYTES(sk_ctl)) == 0) {
2778                         ifp->if_ierrors++;
2779                         sk_discard_rxbuf(sc_if, cons);
2780                         continue;
2781                 }
2782
2783                 m = rxd->rx_m;
2784                 csum = le32toh(cur_rx->sk_csum);
2785                 if (sk_newbuf(sc_if, cons) != 0) {
2786                         ifp->if_iqdrops++;
2787                         /* reuse old buffer */
2788                         sk_discard_rxbuf(sc_if, cons);
2789                         continue;
2790                 }
2791                 m->m_pkthdr.rcvif = ifp;
2792                 m->m_pkthdr.len = m->m_len = SK_RXBYTES(sk_ctl);
2793                 ifp->if_ipackets++;
2794                 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2795                         sk_rxcksum(ifp, m, csum);
2796                 SK_IF_UNLOCK(sc_if);
2797                 (*ifp->if_input)(ifp, m);
2798                 SK_IF_LOCK(sc_if);
2799         }
2800
2801         if (prog > 0) {
2802                 sc_if->sk_cdata.sk_rx_cons = cons;
2803                 bus_dmamap_sync(sc_if->sk_cdata.sk_rx_ring_tag,
2804                     sc_if->sk_cdata.sk_rx_ring_map,
2805                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2806         }
2807 }
2808
2809 static void
2810 sk_jumbo_rxeof(sc_if)
2811         struct sk_if_softc      *sc_if;
2812 {
2813         struct sk_softc         *sc;
2814         struct mbuf             *m;
2815         struct ifnet            *ifp;
2816         struct sk_rx_desc       *cur_rx;
2817         struct sk_rxdesc        *jrxd;
2818         int                     cons, prog;
2819         u_int32_t               csum, rxstat, sk_ctl;
2820
2821         sc = sc_if->sk_softc;
2822         ifp = sc_if->sk_ifp;
2823
2824         SK_IF_LOCK_ASSERT(sc_if);
2825
2826         bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2827             sc_if->sk_cdata.sk_jumbo_rx_ring_map, BUS_DMASYNC_POSTREAD);
2828
2829         prog = 0;
2830         for (cons = sc_if->sk_cdata.sk_jumbo_rx_cons;
2831             prog < SK_JUMBO_RX_RING_CNT;
2832             prog++, SK_INC(cons, SK_JUMBO_RX_RING_CNT)) {
2833                 cur_rx = &sc_if->sk_rdata.sk_jumbo_rx_ring[cons];
2834                 sk_ctl = le32toh(cur_rx->sk_ctl);
2835                 if ((sk_ctl & SK_RXCTL_OWN) != 0)
2836                         break;
2837                 jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[cons];
2838                 rxstat = le32toh(cur_rx->sk_xmac_rxstat);
2839
2840                 if ((sk_ctl & (SK_RXCTL_STATUS_VALID | SK_RXCTL_FIRSTFRAG |
2841                     SK_RXCTL_LASTFRAG)) != (SK_RXCTL_STATUS_VALID |
2842                     SK_RXCTL_FIRSTFRAG | SK_RXCTL_LASTFRAG) ||
2843                     SK_RXBYTES(sk_ctl) < SK_MIN_FRAMELEN ||
2844                     SK_RXBYTES(sk_ctl) > SK_JUMBO_FRAMELEN ||
2845                     sk_rxvalid(sc, rxstat, SK_RXBYTES(sk_ctl)) == 0) {
2846                         ifp->if_ierrors++;
2847                         sk_discard_jumbo_rxbuf(sc_if, cons);
2848                         continue;
2849                 }
2850
2851                 m = jrxd->rx_m;
2852                 csum = le32toh(cur_rx->sk_csum);
2853                 if (sk_jumbo_newbuf(sc_if, cons) != 0) {
2854                         ifp->if_iqdrops++;
2855                         /* reuse old buffer */
2856                         sk_discard_jumbo_rxbuf(sc_if, cons);
2857                         continue;
2858                 }
2859                 m->m_pkthdr.rcvif = ifp;
2860                 m->m_pkthdr.len = m->m_len = SK_RXBYTES(sk_ctl);
2861                 ifp->if_ipackets++;
2862                 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2863                         sk_rxcksum(ifp, m, csum);
2864                 SK_IF_UNLOCK(sc_if);
2865                 (*ifp->if_input)(ifp, m);
2866                 SK_IF_LOCK(sc_if);
2867         }
2868
2869         if (prog > 0) {
2870                 sc_if->sk_cdata.sk_jumbo_rx_cons = cons;
2871                 bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2872                     sc_if->sk_cdata.sk_jumbo_rx_ring_map,
2873                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2874         }
2875 }
2876
2877 static void
2878 sk_txeof(sc_if)
2879         struct sk_if_softc      *sc_if;
2880 {
2881         struct sk_softc         *sc;
2882         struct sk_txdesc        *txd;
2883         struct sk_tx_desc       *cur_tx;
2884         struct ifnet            *ifp;
2885         u_int32_t               idx, sk_ctl;
2886
2887         sc = sc_if->sk_softc;
2888         ifp = sc_if->sk_ifp;
2889
2890         txd = STAILQ_FIRST(&sc_if->sk_cdata.sk_txbusyq);
2891         if (txd == NULL)
2892                 return;
2893         bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
2894             sc_if->sk_cdata.sk_tx_ring_map, BUS_DMASYNC_POSTREAD);
2895         /*
2896          * Go through our tx ring and free mbufs for those
2897          * frames that have been sent.
2898          */
2899         for (idx = sc_if->sk_cdata.sk_tx_cons;; SK_INC(idx, SK_TX_RING_CNT)) {
2900                 if (sc_if->sk_cdata.sk_tx_cnt <= 0)
2901                         break;
2902                 cur_tx = &sc_if->sk_rdata.sk_tx_ring[idx];
2903                 sk_ctl = le32toh(cur_tx->sk_ctl);
2904                 if (sk_ctl & SK_TXCTL_OWN)
2905                         break;
2906                 sc_if->sk_cdata.sk_tx_cnt--;
2907                 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2908                 if ((sk_ctl & SK_TXCTL_LASTFRAG) == 0)
2909                         continue;
2910                 bus_dmamap_sync(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap,
2911                     BUS_DMASYNC_POSTWRITE);
2912                 bus_dmamap_unload(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap);
2913
2914                 ifp->if_opackets++;
2915                 m_freem(txd->tx_m);
2916                 txd->tx_m = NULL;
2917                 STAILQ_REMOVE_HEAD(&sc_if->sk_cdata.sk_txbusyq, tx_q);
2918                 STAILQ_INSERT_TAIL(&sc_if->sk_cdata.sk_txfreeq, txd, tx_q);
2919                 txd = STAILQ_FIRST(&sc_if->sk_cdata.sk_txbusyq);
2920         }
2921         sc_if->sk_cdata.sk_tx_cons = idx;
2922         sc_if->sk_watchdog_timer = sc_if->sk_cdata.sk_tx_cnt > 0 ? 5 : 0;
2923
2924         bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
2925             sc_if->sk_cdata.sk_tx_ring_map,
2926             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2927 }
2928
2929 static void
2930 sk_tick(xsc_if)
2931         void                    *xsc_if;
2932 {
2933         struct sk_if_softc      *sc_if;
2934         struct mii_data         *mii;
2935         struct ifnet            *ifp;
2936         int                     i;
2937
2938         sc_if = xsc_if;
2939         ifp = sc_if->sk_ifp;
2940         mii = device_get_softc(sc_if->sk_miibus);
2941
2942         if (!(ifp->if_flags & IFF_UP))
2943                 return;
2944
2945         if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2946                 sk_intr_bcom(sc_if);
2947                 return;
2948         }
2949
2950         /*
2951          * According to SysKonnect, the correct way to verify that
2952          * the link has come back up is to poll bit 0 of the GPIO
2953          * register three times. This pin has the signal from the
2954          * link_sync pin connected to it; if we read the same link
2955          * state 3 times in a row, we know the link is up.
2956          */
2957         for (i = 0; i < 3; i++) {
2958                 if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
2959                         break;
2960         }
2961
2962         if (i != 3) {
2963                 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2964                 return;
2965         }
2966
2967         /* Turn the GP0 interrupt back on. */
2968         SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2969         SK_XM_READ_2(sc_if, XM_ISR);
2970         mii_tick(mii);
2971         callout_stop(&sc_if->sk_tick_ch);
2972 }
2973
2974 static void
2975 sk_yukon_tick(xsc_if)
2976         void                    *xsc_if;
2977 {
2978         struct sk_if_softc      *sc_if;
2979         struct mii_data         *mii;
2980
2981         sc_if = xsc_if;
2982         mii = device_get_softc(sc_if->sk_miibus);
2983
2984         mii_tick(mii);
2985         callout_reset(&sc_if->sk_tick_ch, hz, sk_yukon_tick, sc_if);
2986 }
2987
2988 static void
2989 sk_intr_bcom(sc_if)
2990         struct sk_if_softc      *sc_if;
2991 {
2992         struct mii_data         *mii;
2993         struct ifnet            *ifp;
2994         int                     status;
2995         mii = device_get_softc(sc_if->sk_miibus);
2996         ifp = sc_if->sk_ifp;
2997
2998         SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2999
3000         /*
3001          * Read the PHY interrupt register to make sure
3002          * we clear any pending interrupts.
3003          */
3004         status = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
3005
3006         if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3007                 sk_init_xmac(sc_if);
3008                 return;
3009         }
3010
3011         if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
3012                 int                     lstat;
3013                 lstat = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM,
3014                     BRGPHY_MII_AUXSTS);
3015
3016                 if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
3017                         mii_mediachg(mii);
3018                         /* Turn off the link LED. */
3019                         SK_IF_WRITE_1(sc_if, 0,
3020                             SK_LINKLED1_CTL, SK_LINKLED_OFF);
3021                         sc_if->sk_link = 0;
3022                 } else if (status & BRGPHY_ISR_LNK_CHG) {
3023                         sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
3024                             BRGPHY_MII_IMR, 0xFF00);
3025                         mii_tick(mii);
3026                         sc_if->sk_link = 1;
3027                         /* Turn on the link LED. */
3028                         SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
3029                             SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
3030                             SK_LINKLED_BLINK_OFF);
3031                 } else {
3032                         mii_tick(mii);
3033                         callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
3034                 }
3035         }
3036
3037         SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
3038
3039         return;
3040 }
3041
3042 static void
3043 sk_intr_xmac(sc_if)
3044         struct sk_if_softc      *sc_if;
3045 {
3046         struct sk_softc         *sc;
3047         u_int16_t               status;
3048
3049         sc = sc_if->sk_softc;
3050         status = SK_XM_READ_2(sc_if, XM_ISR);
3051
3052         /*
3053          * Link has gone down. Start MII tick timeout to
3054          * watch for link resync.
3055          */
3056         if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
3057                 if (status & XM_ISR_GP0_SET) {
3058                         SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
3059                         callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
3060                 }
3061
3062                 if (status & XM_ISR_AUTONEG_DONE) {
3063                         callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
3064                 }
3065         }
3066
3067         if (status & XM_IMR_TX_UNDERRUN)
3068                 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
3069
3070         if (status & XM_IMR_RX_OVERRUN)
3071                 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
3072
3073         status = SK_XM_READ_2(sc_if, XM_ISR);
3074
3075         return;
3076 }
3077
3078 static void
3079 sk_intr_yukon(sc_if)
3080         struct sk_if_softc      *sc_if;
3081 {
3082         u_int8_t status;
3083
3084         status = SK_IF_READ_1(sc_if, 0, SK_GMAC_ISR);
3085         /* RX overrun */
3086         if ((status & SK_GMAC_INT_RX_OVER) != 0) {
3087                 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
3088                     SK_RFCTL_RX_FIFO_OVER);
3089         }
3090         /* TX underrun */
3091         if ((status & SK_GMAC_INT_TX_UNDER) != 0) {
3092                 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
3093                     SK_TFCTL_TX_FIFO_UNDER);
3094         }
3095 }
3096
3097 static void
3098 sk_intr(xsc)
3099         void                    *xsc;
3100 {
3101         struct sk_softc         *sc = xsc;
3102         struct sk_if_softc      *sc_if0, *sc_if1;
3103         struct ifnet            *ifp0 = NULL, *ifp1 = NULL;
3104         u_int32_t               status;
3105
3106         SK_LOCK(sc);
3107
3108         status = CSR_READ_4(sc, SK_ISSR);
3109         if (status == 0 || status == 0xffffffff || sc->sk_suspended)
3110                 goto done_locked;
3111
3112         sc_if0 = sc->sk_if[SK_PORT_A];
3113         sc_if1 = sc->sk_if[SK_PORT_B];
3114
3115         if (sc_if0 != NULL)
3116                 ifp0 = sc_if0->sk_ifp;
3117         if (sc_if1 != NULL)
3118                 ifp1 = sc_if1->sk_ifp;
3119
3120         for (; (status &= sc->sk_intrmask) != 0;) {
3121                 /* Handle receive interrupts first. */
3122                 if (status & SK_ISR_RX1_EOF) {
3123                         if (ifp0->if_mtu > SK_MAX_FRAMELEN)
3124                                 sk_jumbo_rxeof(sc_if0);
3125                         else
3126                                 sk_rxeof(sc_if0);
3127                         CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
3128                             SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
3129                 }
3130                 if (status & SK_ISR_RX2_EOF) {
3131                         if (ifp1->if_mtu > SK_MAX_FRAMELEN)
3132                                 sk_jumbo_rxeof(sc_if1);
3133                         else
3134                                 sk_rxeof(sc_if1);
3135                         CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
3136                             SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
3137                 }
3138
3139                 /* Then transmit interrupts. */
3140                 if (status & SK_ISR_TX1_S_EOF) {
3141                         sk_txeof(sc_if0);
3142                         CSR_WRITE_4(sc, SK_BMU_TXS_CSR0, SK_TXBMU_CLR_IRQ_EOF);
3143                 }
3144                 if (status & SK_ISR_TX2_S_EOF) {
3145                         sk_txeof(sc_if1);
3146                         CSR_WRITE_4(sc, SK_BMU_TXS_CSR1, SK_TXBMU_CLR_IRQ_EOF);
3147                 }
3148
3149                 /* Then MAC interrupts. */
3150                 if (status & SK_ISR_MAC1 &&
3151                     ifp0->if_drv_flags & IFF_DRV_RUNNING) {
3152                         if (sc->sk_type == SK_GENESIS)
3153                                 sk_intr_xmac(sc_if0);
3154                         else
3155                                 sk_intr_yukon(sc_if0);
3156                 }
3157
3158                 if (status & SK_ISR_MAC2 &&
3159                     ifp1->if_drv_flags & IFF_DRV_RUNNING) {
3160                         if (sc->sk_type == SK_GENESIS)
3161                                 sk_intr_xmac(sc_if1);
3162                         else
3163                                 sk_intr_yukon(sc_if1);
3164                 }
3165
3166                 if (status & SK_ISR_EXTERNAL_REG) {
3167                         if (ifp0 != NULL &&
3168                             sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
3169                                 sk_intr_bcom(sc_if0);
3170                         if (ifp1 != NULL &&
3171                             sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
3172                                 sk_intr_bcom(sc_if1);
3173                 }
3174                 status = CSR_READ_4(sc, SK_ISSR);
3175         }
3176
3177         CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
3178
3179         if (ifp0 != NULL && !IFQ_DRV_IS_EMPTY(&ifp0->if_snd))
3180                 sk_start_locked(ifp0);
3181         if (ifp1 != NULL && !IFQ_DRV_IS_EMPTY(&ifp1->if_snd))
3182                 sk_start_locked(ifp1);
3183
3184 done_locked:
3185         SK_UNLOCK(sc);
3186 }
3187
3188 static void
3189 sk_init_xmac(sc_if)
3190         struct sk_if_softc      *sc_if;
3191 {
3192         struct sk_softc         *sc;
3193         struct ifnet            *ifp;
3194         u_int16_t               eaddr[(ETHER_ADDR_LEN+1)/2];
3195         struct sk_bcom_hack     bhack[] = {
3196         { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
3197         { 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
3198         { 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
3199         { 0, 0 } };
3200
3201         SK_IF_LOCK_ASSERT(sc_if);
3202
3203         sc = sc_if->sk_softc;
3204         ifp = sc_if->sk_ifp;
3205
3206         /* Unreset the XMAC. */
3207         SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
3208         DELAY(1000);
3209
3210         /* Reset the XMAC's internal state. */
3211         SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
3212
3213         /* Save the XMAC II revision */
3214         sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
3215
3216         /*
3217          * Perform additional initialization for external PHYs,
3218          * namely for the 1000baseTX cards that use the XMAC's
3219          * GMII mode.
3220          */
3221         if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
3222                 int                     i = 0;
3223                 u_int32_t               val;
3224
3225                 /* Take PHY out of reset. */
3226                 val = sk_win_read_4(sc, SK_GPIO);
3227                 if (sc_if->sk_port == SK_PORT_A)
3228                         val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
3229                 else
3230                         val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
3231                 sk_win_write_4(sc, SK_GPIO, val);
3232
3233                 /* Enable GMII mode on the XMAC. */
3234                 SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
3235
3236                 sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
3237                     BRGPHY_MII_BMCR, BRGPHY_BMCR_RESET);
3238                 DELAY(10000);
3239                 sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
3240                     BRGPHY_MII_IMR, 0xFFF0);
3241
3242                 /*
3243                  * Early versions of the BCM5400 apparently have
3244                  * a bug that requires them to have their reserved
3245                  * registers initialized to some magic values. I don't
3246                  * know what the numbers do, I'm just the messenger.
3247                  */
3248                 if (sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, 0x03)
3249                     == 0x6041) {
3250                         while(bhack[i].reg) {
3251                                 sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
3252                                     bhack[i].reg, bhack[i].val);
3253                                 i++;
3254                         }
3255                 }
3256         }
3257
3258         /* Set station address */
3259         bcopy(IF_LLADDR(sc_if->sk_ifp), eaddr, ETHER_ADDR_LEN);
3260         SK_XM_WRITE_2(sc_if, XM_PAR0, eaddr[0]);
3261         SK_XM_WRITE_2(sc_if, XM_PAR1, eaddr[1]);
3262         SK_XM_WRITE_2(sc_if, XM_PAR2, eaddr[2]);
3263         SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
3264
3265         if (ifp->if_flags & IFF_BROADCAST) {
3266                 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
3267         } else {
3268                 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
3269         }
3270
3271         /* We don't need the FCS appended to the packet. */
3272         SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
3273
3274         /* We want short frames padded to 60 bytes. */
3275         SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
3276
3277         /*
3278          * Enable the reception of all error frames. This is is
3279          * a necessary evil due to the design of the XMAC. The
3280          * XMAC's receive FIFO is only 8K in size, however jumbo
3281          * frames can be up to 9000 bytes in length. When bad
3282          * frame filtering is enabled, the XMAC's RX FIFO operates
3283          * in 'store and forward' mode. For this to work, the
3284          * entire frame has to fit into the FIFO, but that means
3285          * that jumbo frames larger than 8192 bytes will be
3286          * truncated. Disabling all bad frame filtering causes
3287          * the RX FIFO to operate in streaming mode, in which
3288          * case the XMAC will start transfering frames out of the
3289          * RX FIFO as soon as the FIFO threshold is reached.
3290          */
3291         if (ifp->if_mtu > SK_MAX_FRAMELEN) {
3292                 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
3293                     XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
3294                     XM_MODE_RX_INRANGELEN);
3295                 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
3296         } else
3297                 SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
3298
3299         /*
3300          * Bump up the transmit threshold. This helps hold off transmit
3301          * underruns when we're blasting traffic from both ports at once.
3302          */
3303         SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
3304
3305         /* Set promiscuous mode */
3306         sk_setpromisc(sc_if);
3307
3308         /* Set multicast filter */
3309         sk_setmulti(sc_if);
3310
3311         /* Clear and enable interrupts */
3312         SK_XM_READ_2(sc_if, XM_ISR);
3313         if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
3314                 SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
3315         else
3316                 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
3317
3318         /* Configure MAC arbiter */
3319         switch(sc_if->sk_xmac_rev) {
3320         case XM_XMAC_REV_B2:
3321                 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
3322                 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
3323                 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
3324                 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
3325                 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
3326                 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
3327                 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
3328                 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
3329                 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
3330                 break;
3331         case XM_XMAC_REV_C1:
3332                 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
3333                 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
3334                 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
3335                 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
3336                 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
3337                 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
3338                 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
3339                 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
3340                 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
3341                 break;
3342         default:
3343                 break;
3344         }
3345         sk_win_write_2(sc, SK_MACARB_CTL,
3346             SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
3347
3348         sc_if->sk_link = 1;
3349
3350         return;
3351 }
3352
3353 static void
3354 sk_init_yukon(sc_if)
3355         struct sk_if_softc      *sc_if;
3356 {
3357         u_int32_t               phy, v;
3358         u_int16_t               reg;
3359         struct sk_softc         *sc;
3360         struct ifnet            *ifp;
3361         int                     i;
3362
3363         SK_IF_LOCK_ASSERT(sc_if);
3364
3365         sc = sc_if->sk_softc;
3366         ifp = sc_if->sk_ifp;
3367
3368         if (sc->sk_type == SK_YUKON_LITE &&
3369             sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
3370                 /*
3371                  * Workaround code for COMA mode, set PHY reset.
3372                  * Otherwise it will not correctly take chip out of
3373                  * powerdown (coma)
3374                  */
3375                 v = sk_win_read_4(sc, SK_GPIO);
3376                 v |= SK_GPIO_DIR9 | SK_GPIO_DAT9;
3377                 sk_win_write_4(sc, SK_GPIO, v);
3378         }
3379
3380         /* GMAC and GPHY Reset */
3381         SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
3382         SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
3383         DELAY(1000);
3384
3385         if (sc->sk_type == SK_YUKON_LITE &&
3386             sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
3387                 /*
3388                  * Workaround code for COMA mode, clear PHY reset
3389                  */
3390                 v = sk_win_read_4(sc, SK_GPIO);
3391                 v |= SK_GPIO_DIR9;
3392                 v &= ~SK_GPIO_DAT9;
3393                 sk_win_write_4(sc, SK_GPIO, v);
3394         }
3395
3396         phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
3397                 SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
3398
3399         if (sc->sk_coppertype)
3400                 phy |= SK_GPHY_COPPER;
3401         else
3402                 phy |= SK_GPHY_FIBER;
3403
3404         SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
3405         DELAY(1000);
3406         SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
3407         SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
3408                       SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
3409
3410         /* unused read of the interrupt source register */
3411         SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
3412
3413         reg = SK_YU_READ_2(sc_if, YUKON_PAR);
3414
3415         /* MIB Counter Clear Mode set */
3416         reg |= YU_PAR_MIB_CLR;
3417         SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
3418
3419         /* MIB Counter Clear Mode clear */
3420         reg &= ~YU_PAR_MIB_CLR;
3421         SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
3422
3423         /* receive control reg */
3424         SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
3425
3426         /* transmit parameter register */
3427         SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
3428                       YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
3429
3430         /* serial mode register */
3431         reg = YU_SMR_DATA_BLIND(0x1c) | YU_SMR_MFL_VLAN | YU_SMR_IPG_DATA(0x1e);
3432         if (ifp->if_mtu > SK_MAX_FRAMELEN)
3433                 reg |= YU_SMR_MFL_JUMBO;
3434         SK_YU_WRITE_2(sc_if, YUKON_SMR, reg);
3435
3436         /* Setup Yukon's address */
3437         for (i = 0; i < 3; i++) {
3438                 /* Write Source Address 1 (unicast filter) */
3439                 SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
3440                               IF_LLADDR(sc_if->sk_ifp)[i * 2] |
3441                               IF_LLADDR(sc_if->sk_ifp)[i * 2 + 1] << 8);
3442         }
3443
3444         for (i = 0; i < 3; i++) {
3445                 reg = sk_win_read_2(sc_if->sk_softc,
3446                                     SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
3447                 SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
3448         }
3449
3450         /* Set promiscuous mode */
3451         sk_setpromisc(sc_if);
3452
3453         /* Set multicast filter */
3454         sk_setmulti(sc_if);
3455
3456         /* enable interrupt mask for counter overflows */
3457         SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
3458         SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
3459         SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
3460
3461         /* Configure RX MAC FIFO Flush Mask */
3462         v = YU_RXSTAT_FOFL | YU_RXSTAT_CRCERR | YU_RXSTAT_MIIERR |
3463             YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | YU_RXSTAT_RUNT |
3464             YU_RXSTAT_JABBER;
3465         SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_MASK, v);
3466
3467         /* Disable RX MAC FIFO Flush for YUKON-Lite Rev. A0 only */
3468         if (sc->sk_type == SK_YUKON_LITE && sc->sk_rev == SK_YUKON_LITE_REV_A0)
3469                 v = SK_TFCTL_OPERATION_ON;
3470         else
3471                 v = SK_TFCTL_OPERATION_ON | SK_RFCTL_FIFO_FLUSH_ON;
3472         /* Configure RX MAC FIFO */
3473         SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
3474         SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_CTRL_TEST, v);
3475
3476         /* Increase flush threshould to 64 bytes */
3477         SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_THRESHOLD,
3478             SK_RFCTL_FIFO_THRESHOLD + 1);
3479
3480         /* Configure TX MAC FIFO */
3481         SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
3482         SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
3483 }
3484
3485 /*
3486  * Note that to properly initialize any part of the GEnesis chip,
3487  * you first have to take it out of reset mode.
3488  */
3489 static void
3490 sk_init(xsc)
3491         void                    *xsc;
3492 {
3493         struct sk_if_softc      *sc_if = xsc;
3494
3495         SK_IF_LOCK(sc_if);
3496         sk_init_locked(sc_if);
3497         SK_IF_UNLOCK(sc_if);
3498
3499         return;
3500 }
3501
3502 static void
3503 sk_init_locked(sc_if)
3504         struct sk_if_softc      *sc_if;
3505 {
3506         struct sk_softc         *sc;
3507         struct ifnet            *ifp;
3508         struct mii_data         *mii;
3509         u_int16_t               reg;
3510         u_int32_t               imr;
3511         int                     error;
3512
3513         SK_IF_LOCK_ASSERT(sc_if);
3514
3515         ifp = sc_if->sk_ifp;
3516         sc = sc_if->sk_softc;
3517         mii = device_get_softc(sc_if->sk_miibus);
3518
3519         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3520                 return;
3521
3522         /* Cancel pending I/O and free all RX/TX buffers. */
3523         sk_stop(sc_if);
3524
3525         if (sc->sk_type == SK_GENESIS) {
3526                 /* Configure LINK_SYNC LED */
3527                 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
3528                 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
3529                         SK_LINKLED_LINKSYNC_ON);
3530
3531                 /* Configure RX LED */
3532                 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
3533                         SK_RXLEDCTL_COUNTER_START);
3534
3535                 /* Configure TX LED */
3536                 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
3537                         SK_TXLEDCTL_COUNTER_START);
3538         }
3539
3540         /*
3541          * Configure descriptor poll timer
3542          *
3543          * SK-NET GENESIS data sheet says that possibility of losing Start
3544          * transmit command due to CPU/cache related interim storage problems
3545          * under certain conditions. The document recommends a polling
3546          * mechanism to send a Start transmit command to initiate transfer
3547          * of ready descriptors regulary. To cope with this issue sk(4) now
3548          * enables descriptor poll timer to initiate descriptor processing
3549          * periodically as defined by SK_DPT_TIMER_MAX. However sk(4) still
3550          * issue SK_TXBMU_TX_START to Tx BMU to get fast execution of Tx
3551          * command instead of waiting for next descriptor polling time.
3552          * The same rule may apply to Rx side too but it seems that is not
3553          * needed at the moment.
3554          * Since sk(4) uses descriptor polling as a last resort there is no
3555          * need to set smaller polling time than maximum allowable one.
3556          */
3557         SK_IF_WRITE_4(sc_if, 0, SK_DPT_INIT, SK_DPT_TIMER_MAX);
3558
3559         /* Configure I2C registers */
3560
3561         /* Configure XMAC(s) */
3562         switch (sc->sk_type) {
3563         case SK_GENESIS:
3564                 sk_init_xmac(sc_if);
3565                 break;
3566         case SK_YUKON:
3567         case SK_YUKON_LITE:
3568         case SK_YUKON_LP:
3569                 sk_init_yukon(sc_if);
3570                 break;
3571         }
3572         mii_mediachg(mii);
3573
3574         if (sc->sk_type == SK_GENESIS) {
3575                 /* Configure MAC FIFOs */
3576                 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
3577                 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
3578                 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
3579
3580                 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
3581                 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
3582                 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
3583         }
3584
3585         /* Configure transmit arbiter(s) */
3586         SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
3587             SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
3588
3589         /* Configure RAMbuffers */
3590         SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
3591         SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
3592         SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
3593         SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
3594         SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
3595         SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
3596
3597         SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
3598         SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
3599         SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
3600         SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
3601         SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
3602         SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
3603         SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
3604
3605         /* Configure BMUs */
3606         SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
3607         if (ifp->if_mtu > SK_MAX_FRAMELEN) {
3608                 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
3609                     SK_ADDR_LO(SK_JUMBO_RX_RING_ADDR(sc_if, 0)));
3610                 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI,
3611                     SK_ADDR_HI(SK_JUMBO_RX_RING_ADDR(sc_if, 0)));
3612         } else {
3613                 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
3614                     SK_ADDR_LO(SK_RX_RING_ADDR(sc_if, 0)));
3615                 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI,
3616                     SK_ADDR_HI(SK_RX_RING_ADDR(sc_if, 0)));
3617         }
3618
3619         SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
3620         SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
3621             SK_ADDR_LO(SK_TX_RING_ADDR(sc_if, 0)));
3622         SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI,
3623             SK_ADDR_HI(SK_TX_RING_ADDR(sc_if, 0)));
3624
3625         /* Init descriptors */
3626         if (ifp->if_mtu > SK_MAX_FRAMELEN)
3627                 error = sk_init_jumbo_rx_ring(sc_if);
3628         else
3629                 error = sk_init_rx_ring(sc_if);
3630         if (error != 0) {
3631                 device_printf(sc_if->sk_if_dev,
3632                     "initialization failed: no memory for rx buffers\n");
3633                 sk_stop(sc_if);
3634                 return;
3635         }
3636         sk_init_tx_ring(sc_if);
3637
3638         /* Set interrupt moderation if changed via sysctl. */
3639         imr = sk_win_read_4(sc, SK_IMTIMERINIT);
3640         if (imr != SK_IM_USECS(sc->sk_int_mod, sc->sk_int_ticks)) {
3641                 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod,
3642                     sc->sk_int_ticks));
3643                 if (bootverbose)
3644                         device_printf(sc_if->sk_if_dev,
3645                             "interrupt moderation is %d us.\n",
3646                             sc->sk_int_mod);
3647         }
3648
3649         /* Configure interrupt handling */
3650         CSR_READ_4(sc, SK_ISSR);
3651         if (sc_if->sk_port == SK_PORT_A)
3652                 sc->sk_intrmask |= SK_INTRS1;
3653         else
3654                 sc->sk_intrmask |= SK_INTRS2;
3655
3656         sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
3657
3658         CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
3659
3660         /* Start BMUs. */
3661         SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
3662
3663         switch(sc->sk_type) {
3664         case SK_GENESIS:
3665                 /* Enable XMACs TX and RX state machines */
3666                 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
3667                 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
3668                 break;
3669         case SK_YUKON:
3670         case SK_YUKON_LITE:
3671         case SK_YUKON_LP:
3672                 reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
3673                 reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
3674 #if 0
3675                 /* XXX disable 100Mbps and full duplex mode? */
3676                 reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_DIS);
3677 #endif
3678                 SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
3679         }
3680
3681         /* Activate descriptor polling timer */
3682         SK_IF_WRITE_4(sc_if, 0, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_START);
3683         /* start transfer of Tx descriptors */
3684         CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
3685
3686         ifp->if_drv_flags |= IFF_DRV_RUNNING;
3687         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3688
3689         switch (sc->sk_type) {
3690         case SK_YUKON:
3691         case SK_YUKON_LITE:
3692         case SK_YUKON_LP:
3693                 callout_reset(&sc_if->sk_tick_ch, hz, sk_yukon_tick, sc_if);
3694                 break;
3695         }
3696
3697         callout_reset(&sc_if->sk_watchdog_ch, hz, sk_watchdog, ifp);
3698
3699         return;
3700 }
3701
3702 static void
3703 sk_stop(sc_if)
3704         struct sk_if_softc      *sc_if;
3705 {
3706         int                     i;
3707         struct sk_softc         *sc;
3708         struct sk_txdesc        *txd;
3709         struct sk_rxdesc        *rxd;
3710         struct sk_rxdesc        *jrxd;
3711         struct ifnet            *ifp;
3712         u_int32_t               val;
3713
3714         SK_IF_LOCK_ASSERT(sc_if);
3715         sc = sc_if->sk_softc;
3716         ifp = sc_if->sk_ifp;
3717
3718         callout_stop(&sc_if->sk_tick_ch);
3719         callout_stop(&sc_if->sk_watchdog_ch);
3720
3721         /* stop Tx descriptor polling timer */
3722         SK_IF_WRITE_4(sc_if, 0, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_STOP);
3723         /* stop transfer of Tx descriptors */
3724         CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_STOP);
3725         for (i = 0; i < SK_TIMEOUT; i++) {
3726                 val = CSR_READ_4(sc, sc_if->sk_tx_bmu);
3727                 if ((val & SK_TXBMU_TX_STOP) == 0)
3728                         break;
3729                 DELAY(1);
3730         }
3731         if (i == SK_TIMEOUT)
3732                 device_printf(sc_if->sk_if_dev,
3733                     "can not stop transfer of Tx descriptor\n");
3734         /* stop transfer of Rx descriptors */
3735         SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_STOP);
3736         for (i = 0; i < SK_TIMEOUT; i++) {
3737                 val = SK_IF_READ_4(sc_if, 0, SK_RXQ1_BMU_CSR);
3738                 if ((val & SK_RXBMU_RX_STOP) == 0)
3739                         break;
3740                 DELAY(1);
3741         }
3742         if (i == SK_TIMEOUT)
3743                 device_printf(sc_if->sk_if_dev,
3744                     "can not stop transfer of Rx descriptor\n");
3745
3746         if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
3747                 /* Put PHY back into reset. */
3748                 val = sk_win_read_4(sc, SK_GPIO);
3749                 if (sc_if->sk_port == SK_PORT_A) {
3750                         val |= SK_GPIO_DIR0;
3751                         val &= ~SK_GPIO_DAT0;
3752                 } else {
3753                         val |= SK_GPIO_DIR2;
3754                         val &= ~SK_GPIO_DAT2;
3755                 }
3756                 sk_win_write_4(sc, SK_GPIO, val);
3757         }
3758
3759         /* Turn off various components of this interface. */
3760         SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
3761         switch (sc->sk_type) {
3762         case SK_GENESIS:
3763                 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_RESET);
3764                 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
3765                 break;
3766         case SK_YUKON:
3767         case SK_YUKON_LITE:
3768         case SK_YUKON_LP:
3769                 SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
3770                 SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
3771                 break;
3772         }
3773         SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
3774         SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
3775         SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
3776         SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
3777         SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
3778         SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
3779         SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
3780         SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
3781         SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
3782
3783         /* Disable interrupts */
3784         if (sc_if->sk_port == SK_PORT_A)
3785                 sc->sk_intrmask &= ~SK_INTRS1;
3786         else
3787                 sc->sk_intrmask &= ~SK_INTRS2;
3788         CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
3789
3790         SK_XM_READ_2(sc_if, XM_ISR);
3791         SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
3792
3793         /* Free RX and TX mbufs still in the queues. */
3794         for (i = 0; i < SK_RX_RING_CNT; i++) {
3795                 rxd = &sc_if->sk_cdata.sk_rxdesc[i];
3796                 if (rxd->rx_m != NULL) {
3797                         bus_dmamap_sync(sc_if->sk_cdata.sk_rx_tag,
3798                             rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3799                         bus_dmamap_unload(sc_if->sk_cdata.sk_rx_tag,
3800                             rxd->rx_dmamap);
3801                         m_freem(rxd->rx_m);
3802                         rxd->rx_m = NULL;
3803                 }
3804         }
3805         for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
3806                 jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[i];
3807                 if (jrxd->rx_m != NULL) {
3808                         bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_tag,
3809                             jrxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3810                         bus_dmamap_unload(sc_if->sk_cdata.sk_jumbo_rx_tag,
3811                             jrxd->rx_dmamap);
3812                         m_freem(jrxd->rx_m);
3813                         jrxd->rx_m = NULL;
3814                 }
3815         }
3816         for (i = 0; i < SK_TX_RING_CNT; i++) {
3817                 txd = &sc_if->sk_cdata.sk_txdesc[i];
3818                 if (txd->tx_m != NULL) {
3819                         bus_dmamap_sync(sc_if->sk_cdata.sk_tx_tag,
3820                             txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
3821                         bus_dmamap_unload(sc_if->sk_cdata.sk_tx_tag,
3822                             txd->tx_dmamap);
3823                         m_freem(txd->tx_m);
3824                         txd->tx_m = NULL;
3825                 }
3826         }
3827
3828         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING|IFF_DRV_OACTIVE);
3829
3830         return;
3831 }
3832
3833 static int
3834 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3835 {
3836         int error, value;
3837
3838         if (!arg1)
3839                 return (EINVAL);
3840         value = *(int *)arg1;
3841         error = sysctl_handle_int(oidp, &value, 0, req);
3842         if (error || !req->newptr)
3843                 return (error);
3844         if (value < low || value > high)
3845                 return (EINVAL);
3846         *(int *)arg1 = value;
3847         return (0);
3848 }
3849
3850 static int
3851 sysctl_hw_sk_int_mod(SYSCTL_HANDLER_ARGS)
3852 {
3853         return (sysctl_int_range(oidp, arg1, arg2, req, SK_IM_MIN, SK_IM_MAX));
3854 }