]> CyberLeo.Net >> Repos - FreeBSD/releng/7.2.git/blob - sys/dev/ti/if_ti.c
Create releng/7.2 from stable/7 in preparation for 7.2-RELEASE.
[FreeBSD/releng/7.2.git] / sys / dev / ti / if_ti.c
1 /*-
2  * Copyright (c) 1997, 1998, 1999
3  *      Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *      This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32
33 /*
34  * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
35  * Manuals, sample driver and firmware source kits are available
36  * from http://www.alteon.com/support/openkits.
37  *
38  * Written by Bill Paul <wpaul@ctr.columbia.edu>
39  * Electrical Engineering Department
40  * Columbia University, New York City
41  */
42
43 /*
44  * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
45  * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
46  * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
47  * Tigon supports hardware IP, TCP and UCP checksumming, multicast
48  * filtering and jumbo (9014 byte) frames. The hardware is largely
49  * controlled by firmware, which must be loaded into the NIC during
50  * initialization.
51  *
52  * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
53  * revision, which supports new features such as extended commands,
54  * extended jumbo receive ring desciptors and a mini receive ring.
55  *
56  * Alteon Networks is to be commended for releasing such a vast amount
57  * of development material for the Tigon NIC without requiring an NDA
58  * (although they really should have done it a long time ago). With
59  * any luck, the other vendors will finally wise up and follow Alteon's
60  * stellar example.
61  *
62  * The firmware for the Tigon 1 and 2 NICs is compiled directly into
63  * this driver by #including it as a C header file. This bloats the
64  * driver somewhat, but it's the easiest method considering that the
65  * driver code and firmware code need to be kept in sync. The source
66  * for the firmware is not provided with the FreeBSD distribution since
67  * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
68  *
69  * The following people deserve special thanks:
70  * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
71  *   for testing
72  * - Raymond Lee of Netgear, for providing a pair of Netgear
73  *   GA620 Tigon 2 boards for testing
74  * - Ulf Zimmermann, for bringing the GA260 to my attention and
75  *   convincing me to write this driver.
76  * - Andrew Gallatin for providing FreeBSD/Alpha support.
77  */
78
79 #include <sys/cdefs.h>
80 __FBSDID("$FreeBSD$");
81
82 #include "opt_ti.h"
83
84 #include <sys/param.h>
85 #include <sys/systm.h>
86 #include <sys/sockio.h>
87 #include <sys/mbuf.h>
88 #include <sys/malloc.h>
89 #include <sys/kernel.h>
90 #include <sys/module.h>
91 #include <sys/socket.h>
92 #include <sys/queue.h>
93 #include <sys/conf.h>
94 #include <sys/sf_buf.h>
95
96 #include <net/if.h>
97 #include <net/if_arp.h>
98 #include <net/ethernet.h>
99 #include <net/if_dl.h>
100 #include <net/if_media.h>
101 #include <net/if_types.h>
102 #include <net/if_vlan_var.h>
103
104 #include <net/bpf.h>
105
106 #include <netinet/in_systm.h>
107 #include <netinet/in.h>
108 #include <netinet/ip.h>
109
110 #include <machine/bus.h>
111 #include <machine/resource.h>
112 #include <sys/bus.h>
113 #include <sys/rman.h>
114
115 /* #define TI_PRIVATE_JUMBOS */
116 #ifndef TI_PRIVATE_JUMBOS
117 #include <vm/vm.h>
118 #include <vm/vm_page.h>
119 #endif
120
121 #include <dev/pci/pcireg.h>
122 #include <dev/pci/pcivar.h>
123
124 #include <sys/tiio.h>
125 #include <dev/ti/if_tireg.h>
126 #include <dev/ti/ti_fw.h>
127 #include <dev/ti/ti_fw2.h>
128
129 #define TI_CSUM_FEATURES        (CSUM_IP | CSUM_TCP | CSUM_UDP | CSUM_IP_FRAGS)
130 /*
131  * We can only turn on header splitting if we're using extended receive
132  * BDs.
133  */
134 #if defined(TI_JUMBO_HDRSPLIT) && defined(TI_PRIVATE_JUMBOS)
135 #error "options TI_JUMBO_HDRSPLIT and TI_PRIVATE_JUMBOS are mutually exclusive"
136 #endif /* TI_JUMBO_HDRSPLIT && TI_JUMBO_HDRSPLIT */
137
138 typedef enum {
139         TI_SWAP_HTON,
140         TI_SWAP_NTOH
141 } ti_swap_type;
142
143
144 /*
145  * Various supported device vendors/types and their names.
146  */
147
148 static struct ti_type ti_devs[] = {
149         { ALT_VENDORID, ALT_DEVICEID_ACENIC,
150                 "Alteon AceNIC 1000baseSX Gigabit Ethernet" },
151         { ALT_VENDORID, ALT_DEVICEID_ACENIC_COPPER,
152                 "Alteon AceNIC 1000baseT Gigabit Ethernet" },
153         { TC_VENDORID,  TC_DEVICEID_3C985,
154                 "3Com 3c985-SX Gigabit Ethernet" },
155         { NG_VENDORID, NG_DEVICEID_GA620,
156                 "Netgear GA620 1000baseSX Gigabit Ethernet" },
157         { NG_VENDORID, NG_DEVICEID_GA620T,
158                 "Netgear GA620 1000baseT Gigabit Ethernet" },
159         { SGI_VENDORID, SGI_DEVICEID_TIGON,
160                 "Silicon Graphics Gigabit Ethernet" },
161         { DEC_VENDORID, DEC_DEVICEID_FARALLON_PN9000SX,
162                 "Farallon PN9000SX Gigabit Ethernet" },
163         { 0, 0, NULL }
164 };
165
166
167 static  d_open_t        ti_open;
168 static  d_close_t       ti_close;
169 static  d_ioctl_t       ti_ioctl2;
170
171 static struct cdevsw ti_cdevsw = {
172         .d_version =    D_VERSION,
173         .d_flags =      0,
174         .d_open =       ti_open,
175         .d_close =      ti_close,
176         .d_ioctl =      ti_ioctl2,
177         .d_name =       "ti",
178 };
179
180 static int ti_probe(device_t);
181 static int ti_attach(device_t);
182 static int ti_detach(device_t);
183 static void ti_txeof(struct ti_softc *);
184 static void ti_rxeof(struct ti_softc *);
185
186 static void ti_stats_update(struct ti_softc *);
187 static int ti_encap(struct ti_softc *, struct mbuf **);
188
189 static void ti_intr(void *);
190 static void ti_start(struct ifnet *);
191 static void ti_start_locked(struct ifnet *);
192 static int ti_ioctl(struct ifnet *, u_long, caddr_t);
193 static void ti_init(void *);
194 static void ti_init_locked(void *);
195 static void ti_init2(struct ti_softc *);
196 static void ti_stop(struct ti_softc *);
197 static void ti_watchdog(struct ifnet *);
198 static int ti_shutdown(device_t);
199 static int ti_ifmedia_upd(struct ifnet *);
200 static void ti_ifmedia_sts(struct ifnet *, struct ifmediareq *);
201
202 static u_int32_t ti_eeprom_putbyte(struct ti_softc *, int);
203 static u_int8_t ti_eeprom_getbyte(struct ti_softc *, int, u_int8_t *);
204 static int ti_read_eeprom(struct ti_softc *, caddr_t, int, int);
205
206 static void ti_add_mcast(struct ti_softc *, struct ether_addr *);
207 static void ti_del_mcast(struct ti_softc *, struct ether_addr *);
208 static void ti_setmulti(struct ti_softc *);
209
210 static void ti_mem_read(struct ti_softc *, u_int32_t, u_int32_t, void *);
211 static void ti_mem_write(struct ti_softc *, u_int32_t, u_int32_t, void *);
212 static void ti_mem_zero(struct ti_softc *, u_int32_t, u_int32_t);
213 static int ti_copy_mem(struct ti_softc *, u_int32_t, u_int32_t, caddr_t, int, int);
214 static int ti_copy_scratch(struct ti_softc *, u_int32_t, u_int32_t, caddr_t,
215                 int, int, int);
216 static int ti_bcopy_swap(const void *, void *, size_t, ti_swap_type);
217 static void ti_loadfw(struct ti_softc *);
218 static void ti_cmd(struct ti_softc *, struct ti_cmd_desc *);
219 static void ti_cmd_ext(struct ti_softc *, struct ti_cmd_desc *, caddr_t, int);
220 static void ti_handle_events(struct ti_softc *);
221 static int ti_alloc_dmamaps(struct ti_softc *);
222 static void ti_free_dmamaps(struct ti_softc *);
223 static int ti_alloc_jumbo_mem(struct ti_softc *);
224 #ifdef TI_PRIVATE_JUMBOS
225 static void *ti_jalloc(struct ti_softc *);
226 static void ti_jfree(void *, void *);
227 #endif /* TI_PRIVATE_JUMBOS */
228 static int ti_newbuf_std(struct ti_softc *, int, struct mbuf *);
229 static int ti_newbuf_mini(struct ti_softc *, int, struct mbuf *);
230 static int ti_newbuf_jumbo(struct ti_softc *, int, struct mbuf *);
231 static int ti_init_rx_ring_std(struct ti_softc *);
232 static void ti_free_rx_ring_std(struct ti_softc *);
233 static int ti_init_rx_ring_jumbo(struct ti_softc *);
234 static void ti_free_rx_ring_jumbo(struct ti_softc *);
235 static int ti_init_rx_ring_mini(struct ti_softc *);
236 static void ti_free_rx_ring_mini(struct ti_softc *);
237 static void ti_free_tx_ring(struct ti_softc *);
238 static int ti_init_tx_ring(struct ti_softc *);
239
240 static int ti_64bitslot_war(struct ti_softc *);
241 static int ti_chipinit(struct ti_softc *);
242 static int ti_gibinit(struct ti_softc *);
243
244 #ifdef TI_JUMBO_HDRSPLIT
245 static __inline void ti_hdr_split       (struct mbuf *top, int hdr_len,
246                                              int pkt_len, int idx);
247 #endif /* TI_JUMBO_HDRSPLIT */
248
249 static device_method_t ti_methods[] = {
250         /* Device interface */
251         DEVMETHOD(device_probe,         ti_probe),
252         DEVMETHOD(device_attach,        ti_attach),
253         DEVMETHOD(device_detach,        ti_detach),
254         DEVMETHOD(device_shutdown,      ti_shutdown),
255         { 0, 0 }
256 };
257
258 static driver_t ti_driver = {
259         "ti",
260         ti_methods,
261         sizeof(struct ti_softc)
262 };
263
264 static devclass_t ti_devclass;
265
266 DRIVER_MODULE(ti, pci, ti_driver, ti_devclass, 0, 0);
267 MODULE_DEPEND(ti, pci, 1, 1, 1);
268 MODULE_DEPEND(ti, ether, 1, 1, 1);
269
270 /*
271  * Send an instruction or address to the EEPROM, check for ACK.
272  */
273 static u_int32_t ti_eeprom_putbyte(sc, byte)
274         struct ti_softc         *sc;
275         int                     byte;
276 {
277         int                     i, ack = 0;
278
279         /*
280          * Make sure we're in TX mode.
281          */
282         TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
283
284         /*
285          * Feed in each bit and stobe the clock.
286          */
287         for (i = 0x80; i; i >>= 1) {
288                 if (byte & i) {
289                         TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
290                 } else {
291                         TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
292                 }
293                 DELAY(1);
294                 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
295                 DELAY(1);
296                 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
297         }
298
299         /*
300          * Turn off TX mode.
301          */
302         TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
303
304         /*
305          * Check for ack.
306          */
307         TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
308         ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
309         TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
310
311         return (ack);
312 }
313
314 /*
315  * Read a byte of data stored in the EEPROM at address 'addr.'
316  * We have to send two address bytes since the EEPROM can hold
317  * more than 256 bytes of data.
318  */
319 static u_int8_t ti_eeprom_getbyte(sc, addr, dest)
320         struct ti_softc         *sc;
321         int                     addr;
322         u_int8_t                *dest;
323 {
324         int                     i;
325         u_int8_t                byte = 0;
326
327         EEPROM_START;
328
329         /*
330          * Send write control code to EEPROM.
331          */
332         if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
333                 device_printf(sc->ti_dev,
334                     "failed to send write command, status: %x\n",
335                     CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
336                 return (1);
337         }
338
339         /*
340          * Send first byte of address of byte we want to read.
341          */
342         if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
343                 device_printf(sc->ti_dev, "failed to send address, status: %x\n",
344                     CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
345                 return (1);
346         }
347         /*
348          * Send second byte address of byte we want to read.
349          */
350         if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
351                 device_printf(sc->ti_dev, "failed to send address, status: %x\n",
352                     CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
353                 return (1);
354         }
355
356         EEPROM_STOP;
357         EEPROM_START;
358         /*
359          * Send read control code to EEPROM.
360          */
361         if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
362                 device_printf(sc->ti_dev,
363                     "failed to send read command, status: %x\n",
364                     CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
365                 return (1);
366         }
367
368         /*
369          * Start reading bits from EEPROM.
370          */
371         TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
372         for (i = 0x80; i; i >>= 1) {
373                 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
374                 DELAY(1);
375                 if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
376                         byte |= i;
377                 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
378                 DELAY(1);
379         }
380
381         EEPROM_STOP;
382
383         /*
384          * No ACK generated for read, so just return byte.
385          */
386
387         *dest = byte;
388
389         return (0);
390 }
391
392 /*
393  * Read a sequence of bytes from the EEPROM.
394  */
395 static int
396 ti_read_eeprom(sc, dest, off, cnt)
397         struct ti_softc         *sc;
398         caddr_t                 dest;
399         int                     off;
400         int                     cnt;
401 {
402         int                     err = 0, i;
403         u_int8_t                byte = 0;
404
405         for (i = 0; i < cnt; i++) {
406                 err = ti_eeprom_getbyte(sc, off + i, &byte);
407                 if (err)
408                         break;
409                 *(dest + i) = byte;
410         }
411
412         return (err ? 1 : 0);
413 }
414
415 /*
416  * NIC memory read function.
417  * Can be used to copy data from NIC local memory.
418  */
419 static void
420 ti_mem_read(sc, addr, len, buf)
421         struct ti_softc         *sc;
422         u_int32_t               addr, len;
423         void                    *buf;
424 {
425         int                     segptr, segsize, cnt;
426         char                    *ptr;
427
428         segptr = addr;
429         cnt = len;
430         ptr = buf;
431
432         while (cnt) {
433                 if (cnt < TI_WINLEN)
434                         segsize = cnt;
435                 else
436                         segsize = TI_WINLEN - (segptr % TI_WINLEN);
437                 CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
438                 bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
439                     TI_WINDOW + (segptr & (TI_WINLEN - 1)), (u_int32_t *)ptr,
440                     segsize / 4);
441                 ptr += segsize;
442                 segptr += segsize;
443                 cnt -= segsize;
444         }
445 }
446
447
448 /*
449  * NIC memory write function.
450  * Can be used to copy data into NIC local memory.
451  */
452 static void
453 ti_mem_write(sc, addr, len, buf)
454         struct ti_softc         *sc;
455         u_int32_t               addr, len;
456         void                    *buf;
457 {
458         int                     segptr, segsize, cnt;
459         char                    *ptr;
460
461         segptr = addr;
462         cnt = len;
463         ptr = buf;
464
465         while (cnt) {
466                 if (cnt < TI_WINLEN)
467                         segsize = cnt;
468                 else
469                         segsize = TI_WINLEN - (segptr % TI_WINLEN);
470                 CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
471                 bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
472                     TI_WINDOW + (segptr & (TI_WINLEN - 1)), (u_int32_t *)ptr,
473                     segsize / 4);
474                 ptr += segsize;
475                 segptr += segsize;
476                 cnt -= segsize;
477         }
478 }
479
480 /*
481  * NIC memory read function.
482  * Can be used to clear a section of NIC local memory.
483  */
484 static void
485 ti_mem_zero(sc, addr, len)
486         struct ti_softc         *sc;
487         u_int32_t               addr, len;
488 {
489         int                     segptr, segsize, cnt;
490
491         segptr = addr;
492         cnt = len;
493
494         while (cnt) {
495                 if (cnt < TI_WINLEN)
496                         segsize = cnt;
497                 else
498                         segsize = TI_WINLEN - (segptr % TI_WINLEN);
499                 CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
500                 bus_space_set_region_4(sc->ti_btag, sc->ti_bhandle,
501                     TI_WINDOW + (segptr & (TI_WINLEN - 1)), 0, segsize / 4);
502                 segptr += segsize;
503                 cnt -= segsize;
504         }
505 }
506
507 static int
508 ti_copy_mem(sc, tigon_addr, len, buf, useraddr, readdata)
509         struct ti_softc         *sc;
510         u_int32_t               tigon_addr, len;
511         caddr_t                 buf;
512         int                     useraddr, readdata;
513 {
514         int             segptr, segsize, cnt;
515         caddr_t         ptr;
516         u_int32_t       origwin;
517         u_int8_t        tmparray[TI_WINLEN], tmparray2[TI_WINLEN];
518         int             resid, segresid;
519         int             first_pass;
520
521         TI_LOCK_ASSERT(sc);
522
523         /*
524          * At the moment, we don't handle non-aligned cases, we just bail.
525          * If this proves to be a problem, it will be fixed.
526          */
527         if ((readdata == 0)
528          && (tigon_addr & 0x3)) {
529                 device_printf(sc->ti_dev, "%s: tigon address %#x isn't "
530                     "word-aligned\n", __func__, tigon_addr);
531                 device_printf(sc->ti_dev, "%s: unaligned writes aren't "
532                     "yet supported\n", __func__);
533                 return (EINVAL);
534         }
535
536         segptr = tigon_addr & ~0x3;
537         segresid = tigon_addr - segptr;
538
539         /*
540          * This is the non-aligned amount left over that we'll need to
541          * copy.
542          */
543         resid = len & 0x3;
544
545         /* Add in the left over amount at the front of the buffer */
546         resid += segresid;
547
548         cnt = len & ~0x3;
549         /*
550          * If resid + segresid is >= 4, add multiples of 4 to the count and
551          * decrease the residual by that much.
552          */
553         cnt += resid & ~0x3;
554         resid -= resid & ~0x3;
555
556         ptr = buf;
557
558         first_pass = 1;
559
560         /*
561          * Save the old window base value.
562          */
563         origwin = CSR_READ_4(sc, TI_WINBASE);
564
565         while (cnt) {
566                 bus_size_t ti_offset;
567
568                 if (cnt < TI_WINLEN)
569                         segsize = cnt;
570                 else
571                         segsize = TI_WINLEN - (segptr % TI_WINLEN);
572                 CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
573
574                 ti_offset = TI_WINDOW + (segptr & (TI_WINLEN -1));
575
576                 if (readdata) {
577
578                         bus_space_read_region_4(sc->ti_btag,
579                                                 sc->ti_bhandle, ti_offset,
580                                                 (u_int32_t *)tmparray,
581                                                 segsize >> 2);
582                         if (useraddr) {
583                                 /*
584                                  * Yeah, this is a little on the kludgy
585                                  * side, but at least this code is only
586                                  * used for debugging.
587                                  */
588                                 ti_bcopy_swap(tmparray, tmparray2, segsize,
589                                               TI_SWAP_NTOH);
590
591                                 TI_UNLOCK(sc);
592                                 if (first_pass) {
593                                         copyout(&tmparray2[segresid], ptr,
594                                                 segsize - segresid);
595                                         first_pass = 0;
596                                 } else
597                                         copyout(tmparray2, ptr, segsize);
598                                 TI_LOCK(sc);
599                         } else {
600                                 if (first_pass) {
601
602                                         ti_bcopy_swap(tmparray, tmparray2,
603                                                       segsize, TI_SWAP_NTOH);
604                                         TI_UNLOCK(sc);
605                                         bcopy(&tmparray2[segresid], ptr,
606                                               segsize - segresid);
607                                         TI_LOCK(sc);
608                                         first_pass = 0;
609                                 } else
610                                         ti_bcopy_swap(tmparray, ptr, segsize,
611                                                       TI_SWAP_NTOH);
612                         }
613
614                 } else {
615                         if (useraddr) {
616                                 TI_UNLOCK(sc);
617                                 copyin(ptr, tmparray2, segsize);
618                                 TI_LOCK(sc);
619                                 ti_bcopy_swap(tmparray2, tmparray, segsize,
620                                               TI_SWAP_HTON);
621                         } else
622                                 ti_bcopy_swap(ptr, tmparray, segsize,
623                                               TI_SWAP_HTON);
624
625                         bus_space_write_region_4(sc->ti_btag,
626                                                  sc->ti_bhandle, ti_offset,
627                                                  (u_int32_t *)tmparray,
628                                                  segsize >> 2);
629                 }
630                 segptr += segsize;
631                 ptr += segsize;
632                 cnt -= segsize;
633         }
634
635         /*
636          * Handle leftover, non-word-aligned bytes.
637          */
638         if (resid != 0) {
639                 u_int32_t       tmpval, tmpval2;
640                 bus_size_t      ti_offset;
641
642                 /*
643                  * Set the segment pointer.
644                  */
645                 CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
646
647                 ti_offset = TI_WINDOW + (segptr & (TI_WINLEN - 1));
648
649                 /*
650                  * First, grab whatever is in our source/destination.
651                  * We'll obviously need this for reads, but also for
652                  * writes, since we'll be doing read/modify/write.
653                  */
654                 bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
655                                         ti_offset, &tmpval, 1);
656
657                 /*
658                  * Next, translate this from little-endian to big-endian
659                  * (at least on i386 boxes).
660                  */
661                 tmpval2 = ntohl(tmpval);
662
663                 if (readdata) {
664                         /*
665                          * If we're reading, just copy the leftover number
666                          * of bytes from the host byte order buffer to
667                          * the user's buffer.
668                          */
669                         if (useraddr) {
670                                 TI_UNLOCK(sc);
671                                 copyout(&tmpval2, ptr, resid);
672                                 TI_LOCK(sc);
673                         } else
674                                 bcopy(&tmpval2, ptr, resid);
675                 } else {
676                         /*
677                          * If we're writing, first copy the bytes to be
678                          * written into the network byte order buffer,
679                          * leaving the rest of the buffer with whatever was
680                          * originally in there.  Then, swap the bytes
681                          * around into host order and write them out.
682                          *
683                          * XXX KDM the read side of this has been verified
684                          * to work, but the write side of it has not been
685                          * verified.  So user beware.
686                          */
687                         if (useraddr) {
688                                 TI_UNLOCK(sc);
689                                 copyin(ptr, &tmpval2, resid);
690                                 TI_LOCK(sc);
691                         } else
692                                 bcopy(ptr, &tmpval2, resid);
693
694                         tmpval = htonl(tmpval2);
695
696                         bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
697                                                  ti_offset, &tmpval, 1);
698                 }
699         }
700
701         CSR_WRITE_4(sc, TI_WINBASE, origwin);
702
703         return (0);
704 }
705
706 static int
707 ti_copy_scratch(sc, tigon_addr, len, buf, useraddr, readdata, cpu)
708         struct ti_softc         *sc;
709         u_int32_t               tigon_addr, len;
710         caddr_t                 buf;
711         int                     useraddr, readdata;
712         int                     cpu;
713 {
714         u_int32_t       segptr;
715         int             cnt;
716         u_int32_t       tmpval, tmpval2;
717         caddr_t         ptr;
718
719         TI_LOCK_ASSERT(sc);
720
721         /*
722          * At the moment, we don't handle non-aligned cases, we just bail.
723          * If this proves to be a problem, it will be fixed.
724          */
725         if (tigon_addr & 0x3) {
726                 device_printf(sc->ti_dev, "%s: tigon address %#x "
727                     "isn't word-aligned\n", __func__, tigon_addr);
728                 return (EINVAL);
729         }
730
731         if (len & 0x3) {
732                 device_printf(sc->ti_dev, "%s: transfer length %d "
733                     "isn't word-aligned\n", __func__, len);
734                 return (EINVAL);
735         }
736
737         segptr = tigon_addr;
738         cnt = len;
739         ptr = buf;
740
741         while (cnt) {
742                 CSR_WRITE_4(sc, CPU_REG(TI_SRAM_ADDR, cpu), segptr);
743
744                 if (readdata) {
745                         tmpval2 = CSR_READ_4(sc, CPU_REG(TI_SRAM_DATA, cpu));
746
747                         tmpval = ntohl(tmpval2);
748
749                         /*
750                          * Note:  I've used this debugging interface
751                          * extensively with Alteon's 12.3.15 firmware,
752                          * compiled with GCC 2.7.2.1 and binutils 2.9.1.
753                          *
754                          * When you compile the firmware without
755                          * optimization, which is necessary sometimes in
756                          * order to properly step through it, you sometimes
757                          * read out a bogus value of 0xc0017c instead of
758                          * whatever was supposed to be in that scratchpad
759                          * location.  That value is on the stack somewhere,
760                          * but I've never been able to figure out what was
761                          * causing the problem.
762                          *
763                          * The address seems to pop up in random places,
764                          * often not in the same place on two subsequent
765                          * reads.
766                          *
767                          * In any case, the underlying data doesn't seem
768                          * to be affected, just the value read out.
769                          *
770                          * KDM, 3/7/2000
771                          */
772
773                         if (tmpval2 == 0xc0017c)
774                                 device_printf(sc->ti_dev, "found 0xc0017c at "
775                                     "%#x (tmpval2)\n", segptr);
776
777                         if (tmpval == 0xc0017c)
778                                 device_printf(sc->ti_dev, "found 0xc0017c at "
779                                     "%#x (tmpval)\n", segptr);
780
781                         if (useraddr)
782                                 copyout(&tmpval, ptr, 4);
783                         else
784                                 bcopy(&tmpval, ptr, 4);
785                 } else {
786                         if (useraddr)
787                                 copyin(ptr, &tmpval2, 4);
788                         else
789                                 bcopy(ptr, &tmpval2, 4);
790
791                         tmpval = htonl(tmpval2);
792
793                         CSR_WRITE_4(sc, CPU_REG(TI_SRAM_DATA, cpu), tmpval);
794                 }
795
796                 cnt -= 4;
797                 segptr += 4;
798                 ptr += 4;
799         }
800
801         return (0);
802 }
803
804 static int
805 ti_bcopy_swap(src, dst, len, swap_type)
806         const void      *src;
807         void            *dst;
808         size_t          len;
809         ti_swap_type    swap_type;
810 {
811         const u_int8_t *tmpsrc;
812         u_int8_t *tmpdst;
813         size_t tmplen;
814
815         if (len & 0x3) {
816                 printf("ti_bcopy_swap: length %zd isn't 32-bit aligned\n",
817                        len);
818                 return (-1);
819         }
820
821         tmpsrc = src;
822         tmpdst = dst;
823         tmplen = len;
824
825         while (tmplen) {
826                 if (swap_type == TI_SWAP_NTOH)
827                         *(u_int32_t *)tmpdst =
828                                 ntohl(*(const u_int32_t *)tmpsrc);
829                 else
830                         *(u_int32_t *)tmpdst =
831                                 htonl(*(const u_int32_t *)tmpsrc);
832
833                 tmpsrc += 4;
834                 tmpdst += 4;
835                 tmplen -= 4;
836         }
837
838         return (0);
839 }
840
841 /*
842  * Load firmware image into the NIC. Check that the firmware revision
843  * is acceptable and see if we want the firmware for the Tigon 1 or
844  * Tigon 2.
845  */
846 static void
847 ti_loadfw(sc)
848         struct ti_softc         *sc;
849 {
850
851         TI_LOCK_ASSERT(sc);
852
853         switch (sc->ti_hwrev) {
854         case TI_HWREV_TIGON:
855                 if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
856                     tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
857                     tigonFwReleaseFix != TI_FIRMWARE_FIX) {
858                         device_printf(sc->ti_dev, "firmware revision mismatch; "
859                             "want %d.%d.%d, got %d.%d.%d\n",
860                             TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
861                             TI_FIRMWARE_FIX, tigonFwReleaseMajor,
862                             tigonFwReleaseMinor, tigonFwReleaseFix);
863                         return;
864                 }
865                 ti_mem_write(sc, tigonFwTextAddr, tigonFwTextLen, tigonFwText);
866                 ti_mem_write(sc, tigonFwDataAddr, tigonFwDataLen, tigonFwData);
867                 ti_mem_write(sc, tigonFwRodataAddr, tigonFwRodataLen,
868                     tigonFwRodata);
869                 ti_mem_zero(sc, tigonFwBssAddr, tigonFwBssLen);
870                 ti_mem_zero(sc, tigonFwSbssAddr, tigonFwSbssLen);
871                 CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
872                 break;
873         case TI_HWREV_TIGON_II:
874                 if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
875                     tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
876                     tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
877                         device_printf(sc->ti_dev, "firmware revision mismatch; "
878                             "want %d.%d.%d, got %d.%d.%d\n",
879                             TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
880                             TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
881                             tigon2FwReleaseMinor, tigon2FwReleaseFix);
882                         return;
883                 }
884                 ti_mem_write(sc, tigon2FwTextAddr, tigon2FwTextLen,
885                     tigon2FwText);
886                 ti_mem_write(sc, tigon2FwDataAddr, tigon2FwDataLen,
887                     tigon2FwData);
888                 ti_mem_write(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
889                     tigon2FwRodata);
890                 ti_mem_zero(sc, tigon2FwBssAddr, tigon2FwBssLen);
891                 ti_mem_zero(sc, tigon2FwSbssAddr, tigon2FwSbssLen);
892                 CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
893                 break;
894         default:
895                 device_printf(sc->ti_dev,
896                     "can't load firmware: unknown hardware rev\n");
897                 break;
898         }
899 }
900
901 /*
902  * Send the NIC a command via the command ring.
903  */
904 static void
905 ti_cmd(sc, cmd)
906         struct ti_softc         *sc;
907         struct ti_cmd_desc      *cmd;
908 {
909         int                     index;
910
911         index = sc->ti_cmd_saved_prodidx;
912         CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
913         TI_INC(index, TI_CMD_RING_CNT);
914         CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
915         sc->ti_cmd_saved_prodidx = index;
916 }
917
918 /*
919  * Send the NIC an extended command. The 'len' parameter specifies the
920  * number of command slots to include after the initial command.
921  */
922 static void
923 ti_cmd_ext(sc, cmd, arg, len)
924         struct ti_softc         *sc;
925         struct ti_cmd_desc      *cmd;
926         caddr_t                 arg;
927         int                     len;
928 {
929         int                     index;
930         int                     i;
931
932         index = sc->ti_cmd_saved_prodidx;
933         CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
934         TI_INC(index, TI_CMD_RING_CNT);
935         for (i = 0; i < len; i++) {
936                 CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
937                     *(u_int32_t *)(&arg[i * 4]));
938                 TI_INC(index, TI_CMD_RING_CNT);
939         }
940         CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
941         sc->ti_cmd_saved_prodidx = index;
942 }
943
944 /*
945  * Handle events that have triggered interrupts.
946  */
947 static void
948 ti_handle_events(sc)
949         struct ti_softc         *sc;
950 {
951         struct ti_event_desc    *e;
952
953         if (sc->ti_rdata->ti_event_ring == NULL)
954                 return;
955
956         while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
957                 e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
958                 switch (TI_EVENT_EVENT(e)) {
959                 case TI_EV_LINKSTAT_CHANGED:
960                         sc->ti_linkstat = TI_EVENT_CODE(e);
961                         if (sc->ti_linkstat == TI_EV_CODE_LINK_UP)
962                                 device_printf(sc->ti_dev, "10/100 link up\n");
963                         else if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP)
964                                 device_printf(sc->ti_dev, "gigabit link up\n");
965                         else if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
966                                 device_printf(sc->ti_dev, "link down\n");
967                         break;
968                 case TI_EV_ERROR:
969                         if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_INVAL_CMD)
970                                 device_printf(sc->ti_dev, "invalid command\n");
971                         else if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_UNIMP_CMD)
972                                 device_printf(sc->ti_dev, "unknown command\n");
973                         else if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_BADCFG)
974                                 device_printf(sc->ti_dev, "bad config data\n");
975                         break;
976                 case TI_EV_FIRMWARE_UP:
977                         ti_init2(sc);
978                         break;
979                 case TI_EV_STATS_UPDATED:
980                         ti_stats_update(sc);
981                         break;
982                 case TI_EV_RESET_JUMBO_RING:
983                 case TI_EV_MCAST_UPDATED:
984                         /* Who cares. */
985                         break;
986                 default:
987                         device_printf(sc->ti_dev, "unknown event: %d\n",
988                             TI_EVENT_EVENT(e));
989                         break;
990                 }
991                 /* Advance the consumer index. */
992                 TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
993                 CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
994         }
995 }
996
997 static int
998 ti_alloc_dmamaps(struct ti_softc *sc)
999 {
1000         int i;
1001
1002         for (i = 0; i < TI_TX_RING_CNT; i++) {
1003                 sc->ti_cdata.ti_txdesc[i].tx_m = NULL;
1004                 sc->ti_cdata.ti_txdesc[i].tx_dmamap = 0;
1005                 if (bus_dmamap_create(sc->ti_mbuftx_dmat, 0,
1006                                       &sc->ti_cdata.ti_txdesc[i].tx_dmamap))
1007                         return (ENOBUFS);
1008         }
1009         for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
1010                 if (bus_dmamap_create(sc->ti_mbufrx_dmat, 0,
1011                                       &sc->ti_cdata.ti_rx_std_maps[i]))
1012                         return (ENOBUFS);
1013         }
1014
1015         for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1016                 if (bus_dmamap_create(sc->ti_jumbo_dmat, 0,
1017                                       &sc->ti_cdata.ti_rx_jumbo_maps[i]))
1018                         return (ENOBUFS);
1019         }
1020         for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1021                 if (bus_dmamap_create(sc->ti_mbufrx_dmat, 0,
1022                                       &sc->ti_cdata.ti_rx_mini_maps[i]))
1023                         return (ENOBUFS);
1024         }
1025
1026         return (0);
1027 }
1028
1029 static void
1030 ti_free_dmamaps(struct ti_softc *sc)
1031 {
1032         int i;
1033
1034         if (sc->ti_mbuftx_dmat)
1035                 for (i = 0; i < TI_TX_RING_CNT; i++)
1036                         if (sc->ti_cdata.ti_txdesc[i].tx_dmamap) {
1037                                 bus_dmamap_destroy(sc->ti_mbuftx_dmat,
1038                                     sc->ti_cdata.ti_txdesc[i].tx_dmamap);
1039                                 sc->ti_cdata.ti_txdesc[i].tx_dmamap = 0;
1040                         }
1041
1042         if (sc->ti_mbufrx_dmat)
1043                 for (i = 0; i < TI_STD_RX_RING_CNT; i++)
1044                         if (sc->ti_cdata.ti_rx_std_maps[i]) {
1045                                 bus_dmamap_destroy(sc->ti_mbufrx_dmat,
1046                                     sc->ti_cdata.ti_rx_std_maps[i]);
1047                                 sc->ti_cdata.ti_rx_std_maps[i] = 0;
1048                         }
1049
1050         if (sc->ti_jumbo_dmat)
1051                 for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++)
1052                         if (sc->ti_cdata.ti_rx_jumbo_maps[i]) {
1053                                 bus_dmamap_destroy(sc->ti_jumbo_dmat,
1054                                     sc->ti_cdata.ti_rx_jumbo_maps[i]);
1055                                 sc->ti_cdata.ti_rx_jumbo_maps[i] = 0;
1056                         }
1057         if (sc->ti_mbufrx_dmat)
1058                 for (i = 0; i < TI_MINI_RX_RING_CNT; i++)
1059                         if (sc->ti_cdata.ti_rx_mini_maps[i]) {
1060                                 bus_dmamap_destroy(sc->ti_mbufrx_dmat,
1061                                     sc->ti_cdata.ti_rx_mini_maps[i]);
1062                                 sc->ti_cdata.ti_rx_mini_maps[i] = 0;
1063                         }
1064 }
1065
1066 #ifdef TI_PRIVATE_JUMBOS
1067
1068 /*
1069  * Memory management for the jumbo receive ring is a pain in the
1070  * butt. We need to allocate at least 9018 bytes of space per frame,
1071  * _and_ it has to be contiguous (unless you use the extended
1072  * jumbo descriptor format). Using malloc() all the time won't
1073  * work: malloc() allocates memory in powers of two, which means we
1074  * would end up wasting a considerable amount of space by allocating
1075  * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
1076  * to do our own memory management.
1077  *
1078  * The driver needs to allocate a contiguous chunk of memory at boot
1079  * time. We then chop this up ourselves into 9K pieces and use them
1080  * as external mbuf storage.
1081  *
1082  * One issue here is how much memory to allocate. The jumbo ring has
1083  * 256 slots in it, but at 9K per slot than can consume over 2MB of
1084  * RAM. This is a bit much, especially considering we also need
1085  * RAM for the standard ring and mini ring (on the Tigon 2). To
1086  * save space, we only actually allocate enough memory for 64 slots
1087  * by default, which works out to between 500 and 600K. This can
1088  * be tuned by changing a #define in if_tireg.h.
1089  */
1090
1091 static int
1092 ti_alloc_jumbo_mem(sc)
1093         struct ti_softc         *sc;
1094 {
1095         caddr_t                 ptr;
1096         int                     i;
1097         struct ti_jpool_entry   *entry;
1098
1099         /*
1100          * Grab a big chunk o' storage.  Since we are chopping this pool up
1101          * into ~9k chunks, there doesn't appear to be a need to use page
1102          * alignment.
1103          */
1104         if (bus_dma_tag_create(sc->ti_parent_dmat,      /* parent */
1105                                 1, 0,                   /* algnmnt, boundary */
1106                                 BUS_SPACE_MAXADDR,      /* lowaddr */
1107                                 BUS_SPACE_MAXADDR,      /* highaddr */
1108                                 NULL, NULL,             /* filter, filterarg */
1109                                 TI_JMEM,                /* maxsize */
1110                                 1,                      /* nsegments */
1111                                 TI_JMEM,                /* maxsegsize */
1112                                 0,                      /* flags */
1113                                 NULL, NULL,             /* lockfunc, lockarg */
1114                                 &sc->ti_jumbo_dmat) != 0) {
1115                 device_printf(sc->ti_dev, "Failed to allocate jumbo dmat\n");
1116                 return (ENOBUFS);
1117         }
1118
1119         if (bus_dmamem_alloc(sc->ti_jumbo_dmat,
1120                              (void**)&sc->ti_cdata.ti_jumbo_buf,
1121                              BUS_DMA_NOWAIT, &sc->ti_jumbo_dmamap) != 0) {
1122                 device_printf(sc->ti_dev, "Failed to allocate jumbo memory\n");
1123                 return (ENOBUFS);
1124         }
1125
1126         SLIST_INIT(&sc->ti_jfree_listhead);
1127         SLIST_INIT(&sc->ti_jinuse_listhead);
1128
1129         /*
1130          * Now divide it up into 9K pieces and save the addresses
1131          * in an array.
1132          */
1133         ptr = sc->ti_cdata.ti_jumbo_buf;
1134         for (i = 0; i < TI_JSLOTS; i++) {
1135                 sc->ti_cdata.ti_jslots[i] = ptr;
1136                 ptr += TI_JLEN;
1137                 entry = malloc(sizeof(struct ti_jpool_entry),
1138                                M_DEVBUF, M_NOWAIT);
1139                 if (entry == NULL) {
1140                         device_printf(sc->ti_dev, "no memory for jumbo "
1141                             "buffer queue!\n");
1142                         return (ENOBUFS);
1143                 }
1144                 entry->slot = i;
1145                 SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
1146         }
1147
1148         return (0);
1149 }
1150
1151 /*
1152  * Allocate a jumbo buffer.
1153  */
1154 static void *ti_jalloc(sc)
1155         struct ti_softc         *sc;
1156 {
1157         struct ti_jpool_entry   *entry;
1158
1159         entry = SLIST_FIRST(&sc->ti_jfree_listhead);
1160
1161         if (entry == NULL) {
1162                 device_printf(sc->ti_dev, "no free jumbo buffers\n");
1163                 return (NULL);
1164         }
1165
1166         SLIST_REMOVE_HEAD(&sc->ti_jfree_listhead, jpool_entries);
1167         SLIST_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries);
1168         return (sc->ti_cdata.ti_jslots[entry->slot]);
1169 }
1170
1171 /*
1172  * Release a jumbo buffer.
1173  */
1174 static void
1175 ti_jfree(buf, args)
1176         void                    *buf;
1177         void                    *args;
1178 {
1179         struct ti_softc         *sc;
1180         int                     i;
1181         struct ti_jpool_entry   *entry;
1182
1183         /* Extract the softc struct pointer. */
1184         sc = (struct ti_softc *)args;
1185
1186         if (sc == NULL)
1187                 panic("ti_jfree: didn't get softc pointer!");
1188
1189         /* calculate the slot this buffer belongs to */
1190         i = ((vm_offset_t)buf
1191              - (vm_offset_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
1192
1193         if ((i < 0) || (i >= TI_JSLOTS))
1194                 panic("ti_jfree: asked to free buffer that we don't manage!");
1195
1196         entry = SLIST_FIRST(&sc->ti_jinuse_listhead);
1197         if (entry == NULL)
1198                 panic("ti_jfree: buffer not in use!");
1199         entry->slot = i;
1200         SLIST_REMOVE_HEAD(&sc->ti_jinuse_listhead, jpool_entries);
1201         SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
1202 }
1203
1204 #else
1205
1206 static int
1207 ti_alloc_jumbo_mem(sc)
1208         struct ti_softc         *sc;
1209 {
1210
1211         /*
1212          * The VM system will take care of providing aligned pages.  Alignment
1213          * is set to 1 here so that busdma resources won't be wasted.
1214          */
1215         if (bus_dma_tag_create(sc->ti_parent_dmat,      /* parent */
1216                                 1, 0,                   /* algnmnt, boundary */
1217                                 BUS_SPACE_MAXADDR,      /* lowaddr */
1218                                 BUS_SPACE_MAXADDR,      /* highaddr */
1219                                 NULL, NULL,             /* filter, filterarg */
1220                                 PAGE_SIZE * 4 /*XXX*/,  /* maxsize */
1221                                 4,                      /* nsegments */
1222                                 PAGE_SIZE,              /* maxsegsize */
1223                                 0,                      /* flags */
1224                                 NULL, NULL,             /* lockfunc, lockarg */
1225                                 &sc->ti_jumbo_dmat) != 0) {
1226                 device_printf(sc->ti_dev, "Failed to allocate jumbo dmat\n");
1227                 return (ENOBUFS);
1228         }
1229
1230         return (0);
1231 }
1232
1233 #endif /* TI_PRIVATE_JUMBOS */
1234
1235 /*
1236  * Intialize a standard receive ring descriptor.
1237  */
1238 static int
1239 ti_newbuf_std(sc, i, m)
1240         struct ti_softc         *sc;
1241         int                     i;
1242         struct mbuf             *m;
1243 {
1244         bus_dmamap_t            map;
1245         bus_dma_segment_t       segs;
1246         struct mbuf             *m_new = NULL;
1247         struct ti_rx_desc       *r;
1248         int                     nsegs;
1249
1250         nsegs = 0;
1251         if (m == NULL) {
1252                 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1253                 if (m_new == NULL)
1254                         return (ENOBUFS);
1255
1256                 MCLGET(m_new, M_DONTWAIT);
1257                 if (!(m_new->m_flags & M_EXT)) {
1258                         m_freem(m_new);
1259                         return (ENOBUFS);
1260                 }
1261                 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1262         } else {
1263                 m_new = m;
1264                 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1265                 m_new->m_data = m_new->m_ext.ext_buf;
1266         }
1267
1268         m_adj(m_new, ETHER_ALIGN);
1269         sc->ti_cdata.ti_rx_std_chain[i] = m_new;
1270         r = &sc->ti_rdata->ti_rx_std_ring[i];
1271         map = sc->ti_cdata.ti_rx_std_maps[i];
1272         if (bus_dmamap_load_mbuf_sg(sc->ti_mbufrx_dmat, map, m_new, &segs,
1273                                     &nsegs, 0))
1274                 return (ENOBUFS);
1275         if (nsegs != 1)
1276                 return (ENOBUFS);
1277         ti_hostaddr64(&r->ti_addr, segs.ds_addr);
1278         r->ti_len = segs.ds_len;
1279         r->ti_type = TI_BDTYPE_RECV_BD;
1280         r->ti_flags = 0;
1281         if (sc->ti_ifp->if_hwassist)
1282                 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1283         r->ti_idx = i;
1284
1285         bus_dmamap_sync(sc->ti_mbufrx_dmat, map, BUS_DMASYNC_PREREAD);
1286         return (0);
1287 }
1288
1289 /*
1290  * Intialize a mini receive ring descriptor. This only applies to
1291  * the Tigon 2.
1292  */
1293 static int
1294 ti_newbuf_mini(sc, i, m)
1295         struct ti_softc         *sc;
1296         int                     i;
1297         struct mbuf             *m;
1298 {
1299         bus_dma_segment_t       segs;
1300         bus_dmamap_t            map;
1301         struct mbuf             *m_new = NULL;
1302         struct ti_rx_desc       *r;
1303         int                     nsegs;
1304
1305         nsegs = 0;
1306         if (m == NULL) {
1307                 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1308                 if (m_new == NULL) {
1309                         return (ENOBUFS);
1310                 }
1311                 m_new->m_len = m_new->m_pkthdr.len = MHLEN;
1312         } else {
1313                 m_new = m;
1314                 m_new->m_data = m_new->m_pktdat;
1315                 m_new->m_len = m_new->m_pkthdr.len = MHLEN;
1316         }
1317
1318         m_adj(m_new, ETHER_ALIGN);
1319         r = &sc->ti_rdata->ti_rx_mini_ring[i];
1320         sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
1321         map = sc->ti_cdata.ti_rx_mini_maps[i];
1322         if (bus_dmamap_load_mbuf_sg(sc->ti_mbufrx_dmat, map, m_new, &segs,
1323                                     &nsegs, 0))
1324                 return (ENOBUFS);
1325         if (nsegs != 1)
1326                 return (ENOBUFS);
1327         ti_hostaddr64(&r->ti_addr, segs.ds_addr);
1328         r->ti_len = segs.ds_len;
1329         r->ti_type = TI_BDTYPE_RECV_BD;
1330         r->ti_flags = TI_BDFLAG_MINI_RING;
1331         if (sc->ti_ifp->if_hwassist)
1332                 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1333         r->ti_idx = i;
1334
1335         bus_dmamap_sync(sc->ti_mbufrx_dmat, map, BUS_DMASYNC_PREREAD);
1336         return (0);
1337 }
1338
1339 #ifdef TI_PRIVATE_JUMBOS
1340
1341 /*
1342  * Initialize a jumbo receive ring descriptor. This allocates
1343  * a jumbo buffer from the pool managed internally by the driver.
1344  */
1345 static int
1346 ti_newbuf_jumbo(sc, i, m)
1347         struct ti_softc         *sc;
1348         int                     i;
1349         struct mbuf             *m;
1350 {
1351         bus_dmamap_t            map;
1352         struct mbuf             *m_new = NULL;
1353         struct ti_rx_desc       *r;
1354         int                     nsegs;
1355         bus_dma_segment_t       segs;
1356
1357         if (m == NULL) {
1358                 caddr_t                 *buf = NULL;
1359
1360                 /* Allocate the mbuf. */
1361                 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1362                 if (m_new == NULL) {
1363                         return (ENOBUFS);
1364                 }
1365
1366                 /* Allocate the jumbo buffer */
1367                 buf = ti_jalloc(sc);
1368                 if (buf == NULL) {
1369                         m_freem(m_new);
1370                         device_printf(sc->ti_dev, "jumbo allocation failed "
1371                             "-- packet dropped!\n");
1372                         return (ENOBUFS);
1373                 }
1374
1375                 /* Attach the buffer to the mbuf. */
1376                 m_new->m_data = (void *) buf;
1377                 m_new->m_len = m_new->m_pkthdr.len = TI_JUMBO_FRAMELEN;
1378                 MEXTADD(m_new, buf, TI_JUMBO_FRAMELEN, ti_jfree,
1379                     (struct ti_softc *)sc, 0, EXT_NET_DRV);
1380         } else {
1381                 m_new = m;
1382                 m_new->m_data = m_new->m_ext.ext_buf;
1383                 m_new->m_ext.ext_size = TI_JUMBO_FRAMELEN;
1384         }
1385
1386         m_adj(m_new, ETHER_ALIGN);
1387         /* Set up the descriptor. */
1388         r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
1389         sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
1390         map = sc->ti_cdata.ti_rx_jumbo_maps[i];
1391         if (bus_dmamap_load_mbuf_sg(sc->ti_jumbo_dmat, map, m_new, &segs,
1392                                     &nsegs, 0))
1393                 return (ENOBUFS);
1394         if (nsegs != 1)
1395                 return (ENOBUFS);
1396         ti_hostaddr64(&r->ti_addr, segs.ds_addr);
1397         r->ti_len = segs.ds_len;
1398         r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
1399         r->ti_flags = TI_BDFLAG_JUMBO_RING;
1400         if (sc->ti_ifp->if_hwassist)
1401                 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1402         r->ti_idx = i;
1403
1404         bus_dmamap_sync(sc->ti_jumbo_dmat, map, BUS_DMASYNC_PREREAD);
1405         return (0);
1406 }
1407
1408 #else
1409
1410 #if (PAGE_SIZE == 4096)
1411 #define NPAYLOAD 2
1412 #else
1413 #define NPAYLOAD 1
1414 #endif
1415
1416 #define TCP_HDR_LEN (52 + sizeof(struct ether_header))
1417 #define UDP_HDR_LEN (28 + sizeof(struct ether_header))
1418 #define NFS_HDR_LEN (UDP_HDR_LEN)
1419 static int HDR_LEN =  TCP_HDR_LEN;
1420
1421
1422 /*
1423  * Initialize a jumbo receive ring descriptor. This allocates
1424  * a jumbo buffer from the pool managed internally by the driver.
1425  */
1426 static int
1427 ti_newbuf_jumbo(sc, idx, m_old)
1428         struct ti_softc         *sc;
1429         int                     idx;
1430         struct mbuf             *m_old;
1431 {
1432         bus_dmamap_t            map;
1433         struct mbuf             *cur, *m_new = NULL;
1434         struct mbuf             *m[3] = {NULL, NULL, NULL};
1435         struct ti_rx_desc_ext   *r;
1436         vm_page_t               frame;
1437         static int              color;
1438                                 /* 1 extra buf to make nobufs easy*/
1439         struct sf_buf           *sf[3] = {NULL, NULL, NULL};
1440         int                     i;
1441         bus_dma_segment_t       segs[4];
1442         int                     nsegs;
1443
1444         if (m_old != NULL) {
1445                 m_new = m_old;
1446                 cur = m_old->m_next;
1447                 for (i = 0; i <= NPAYLOAD; i++){
1448                         m[i] = cur;
1449                         cur = cur->m_next;
1450                 }
1451         } else {
1452                 /* Allocate the mbufs. */
1453                 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1454                 if (m_new == NULL) {
1455                         device_printf(sc->ti_dev, "mbuf allocation failed "
1456                             "-- packet dropped!\n");
1457                         goto nobufs;
1458                 }
1459                 MGET(m[NPAYLOAD], M_DONTWAIT, MT_DATA);
1460                 if (m[NPAYLOAD] == NULL) {
1461                         device_printf(sc->ti_dev, "cluster mbuf allocation "
1462                             "failed -- packet dropped!\n");
1463                         goto nobufs;
1464                 }
1465                 MCLGET(m[NPAYLOAD], M_DONTWAIT);
1466                 if ((m[NPAYLOAD]->m_flags & M_EXT) == 0) {
1467                         device_printf(sc->ti_dev, "mbuf allocation failed "
1468                             "-- packet dropped!\n");
1469                         goto nobufs;
1470                 }
1471                 m[NPAYLOAD]->m_len = MCLBYTES;
1472
1473                 for (i = 0; i < NPAYLOAD; i++){
1474                         MGET(m[i], M_DONTWAIT, MT_DATA);
1475                         if (m[i] == NULL) {
1476                                 device_printf(sc->ti_dev, "mbuf allocation "
1477                                     "failed -- packet dropped!\n");
1478                                 goto nobufs;
1479                         }
1480                         frame = vm_page_alloc(NULL, color++,
1481                             VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ |
1482                             VM_ALLOC_WIRED);
1483                         if (frame == NULL) {
1484                                 device_printf(sc->ti_dev, "buffer allocation "
1485                                     "failed -- packet dropped!\n");
1486                                 printf("      index %d page %d\n", idx, i);
1487                                 goto nobufs;
1488                         }
1489                         sf[i] = sf_buf_alloc(frame, SFB_NOWAIT);
1490                         if (sf[i] == NULL) {
1491                                 vm_page_lock_queues();
1492                                 vm_page_unwire(frame, 0);
1493                                 vm_page_free(frame);
1494                                 vm_page_unlock_queues();
1495                                 device_printf(sc->ti_dev, "buffer allocation "
1496                                     "failed -- packet dropped!\n");
1497                                 printf("      index %d page %d\n", idx, i);
1498                                 goto nobufs;
1499                         }
1500                 }
1501                 for (i = 0; i < NPAYLOAD; i++){
1502                 /* Attach the buffer to the mbuf. */
1503                         m[i]->m_data = (void *)sf_buf_kva(sf[i]);
1504                         m[i]->m_len = PAGE_SIZE;
1505                         MEXTADD(m[i], sf_buf_kva(sf[i]), PAGE_SIZE,
1506                             sf_buf_mext, sf[i], 0, EXT_DISPOSABLE);
1507                         m[i]->m_next = m[i+1];
1508                 }
1509                 /* link the buffers to the header */
1510                 m_new->m_next = m[0];
1511                 m_new->m_data += ETHER_ALIGN;
1512                 if (sc->ti_hdrsplit)
1513                         m_new->m_len = MHLEN - ETHER_ALIGN;
1514                 else
1515                         m_new->m_len = HDR_LEN;
1516                 m_new->m_pkthdr.len = NPAYLOAD * PAGE_SIZE + m_new->m_len;
1517         }
1518
1519         /* Set up the descriptor. */
1520         r = &sc->ti_rdata->ti_rx_jumbo_ring[idx];
1521         sc->ti_cdata.ti_rx_jumbo_chain[idx] = m_new;
1522         map = sc->ti_cdata.ti_rx_jumbo_maps[i];
1523         if (bus_dmamap_load_mbuf_sg(sc->ti_jumbo_dmat, map, m_new, segs,
1524                                     &nsegs, 0))
1525                 return (ENOBUFS);
1526         if ((nsegs < 1) || (nsegs > 4))
1527                 return (ENOBUFS);
1528         ti_hostaddr64(&r->ti_addr0, segs[0].ds_addr);
1529         r->ti_len0 = m_new->m_len;
1530
1531         ti_hostaddr64(&r->ti_addr1, segs[1].ds_addr);
1532         r->ti_len1 = PAGE_SIZE;
1533
1534         ti_hostaddr64(&r->ti_addr2, segs[2].ds_addr);
1535         r->ti_len2 = m[1]->m_ext.ext_size; /* could be PAGE_SIZE or MCLBYTES */
1536
1537         if (PAGE_SIZE == 4096) {
1538                 ti_hostaddr64(&r->ti_addr3, segs[3].ds_addr);
1539                 r->ti_len3 = MCLBYTES;
1540         } else {
1541                 r->ti_len3 = 0;
1542         }
1543         r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
1544
1545         r->ti_flags = TI_BDFLAG_JUMBO_RING|TI_RCB_FLAG_USE_EXT_RX_BD;
1546
1547         if (sc->ti_ifp->if_hwassist)
1548                 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM;
1549
1550         r->ti_idx = idx;
1551
1552         bus_dmamap_sync(sc->ti_jumbo_dmat, map, BUS_DMASYNC_PREREAD);
1553         return (0);
1554
1555 nobufs:
1556
1557         /*
1558          * Warning! :
1559          * This can only be called before the mbufs are strung together.
1560          * If the mbufs are strung together, m_freem() will free the chain,
1561          * so that the later mbufs will be freed multiple times.
1562          */
1563         if (m_new)
1564                 m_freem(m_new);
1565
1566         for (i = 0; i < 3; i++) {
1567                 if (m[i])
1568                         m_freem(m[i]);
1569                 if (sf[i])
1570                         sf_buf_mext((void *)sf_buf_kva(sf[i]), sf[i]);
1571         }
1572         return (ENOBUFS);
1573 }
1574 #endif
1575
1576
1577
1578 /*
1579  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1580  * that's 1MB or memory, which is a lot. For now, we fill only the first
1581  * 256 ring entries and hope that our CPU is fast enough to keep up with
1582  * the NIC.
1583  */
1584 static int
1585 ti_init_rx_ring_std(sc)
1586         struct ti_softc         *sc;
1587 {
1588         int                     i;
1589         struct ti_cmd_desc      cmd;
1590
1591         for (i = 0; i < TI_SSLOTS; i++) {
1592                 if (ti_newbuf_std(sc, i, NULL) == ENOBUFS)
1593                         return (ENOBUFS);
1594         };
1595
1596         TI_UPDATE_STDPROD(sc, i - 1);
1597         sc->ti_std = i - 1;
1598
1599         return (0);
1600 }
1601
1602 static void
1603 ti_free_rx_ring_std(sc)
1604         struct ti_softc         *sc;
1605 {
1606         bus_dmamap_t            map;
1607         int                     i;
1608
1609         for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
1610                 if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
1611                         map = sc->ti_cdata.ti_rx_std_maps[i];
1612                         bus_dmamap_sync(sc->ti_mbufrx_dmat, map,
1613                             BUS_DMASYNC_POSTREAD);
1614                         bus_dmamap_unload(sc->ti_mbufrx_dmat, map);
1615                         m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
1616                         sc->ti_cdata.ti_rx_std_chain[i] = NULL;
1617                 }
1618                 bzero((char *)&sc->ti_rdata->ti_rx_std_ring[i],
1619                     sizeof(struct ti_rx_desc));
1620         }
1621 }
1622
1623 static int
1624 ti_init_rx_ring_jumbo(sc)
1625         struct ti_softc         *sc;
1626 {
1627         int                     i;
1628         struct ti_cmd_desc      cmd;
1629
1630         for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1631                 if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1632                         return (ENOBUFS);
1633         };
1634
1635         TI_UPDATE_JUMBOPROD(sc, i - 1);
1636         sc->ti_jumbo = i - 1;
1637
1638         return (0);
1639 }
1640
1641 static void
1642 ti_free_rx_ring_jumbo(sc)
1643         struct ti_softc         *sc;
1644 {
1645         bus_dmamap_t            map;
1646         int                     i;
1647
1648         for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1649                 if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
1650                         map = sc->ti_cdata.ti_rx_jumbo_maps[i];
1651                         bus_dmamap_sync(sc->ti_jumbo_dmat, map,
1652                             BUS_DMASYNC_POSTREAD);
1653                         bus_dmamap_unload(sc->ti_jumbo_dmat, map);
1654                         m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
1655                         sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
1656                 }
1657                 bzero((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i],
1658                     sizeof(struct ti_rx_desc));
1659         }
1660 }
1661
1662 static int
1663 ti_init_rx_ring_mini(sc)
1664         struct ti_softc         *sc;
1665 {
1666         int                     i;
1667
1668         for (i = 0; i < TI_MSLOTS; i++) {
1669                 if (ti_newbuf_mini(sc, i, NULL) == ENOBUFS)
1670                         return (ENOBUFS);
1671         };
1672
1673         TI_UPDATE_MINIPROD(sc, i - 1);
1674         sc->ti_mini = i - 1;
1675
1676         return (0);
1677 }
1678
1679 static void
1680 ti_free_rx_ring_mini(sc)
1681         struct ti_softc         *sc;
1682 {
1683         bus_dmamap_t            map;
1684         int                     i;
1685
1686         for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1687                 if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
1688                         map = sc->ti_cdata.ti_rx_mini_maps[i];
1689                         bus_dmamap_sync(sc->ti_mbufrx_dmat, map,
1690                             BUS_DMASYNC_POSTREAD);
1691                         bus_dmamap_unload(sc->ti_mbufrx_dmat, map);
1692                         m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
1693                         sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
1694                 }
1695                 bzero((char *)&sc->ti_rdata->ti_rx_mini_ring[i],
1696                     sizeof(struct ti_rx_desc));
1697         }
1698 }
1699
1700 static void
1701 ti_free_tx_ring(sc)
1702         struct ti_softc         *sc;
1703 {
1704         struct ti_txdesc        *txd;
1705         int                     i;
1706
1707         if (sc->ti_rdata->ti_tx_ring == NULL)
1708                 return;
1709
1710         for (i = 0; i < TI_TX_RING_CNT; i++) {
1711                 txd = &sc->ti_cdata.ti_txdesc[i];
1712                 if (txd->tx_m != NULL) {
1713                         bus_dmamap_sync(sc->ti_mbuftx_dmat, txd->tx_dmamap,
1714                             BUS_DMASYNC_POSTWRITE);
1715                         bus_dmamap_unload(sc->ti_mbuftx_dmat, txd->tx_dmamap);
1716                         m_freem(txd->tx_m);
1717                         txd->tx_m = NULL;
1718                 }
1719                 bzero((char *)&sc->ti_rdata->ti_tx_ring[i],
1720                     sizeof(struct ti_tx_desc));
1721         }
1722 }
1723
1724 static int
1725 ti_init_tx_ring(sc)
1726         struct ti_softc         *sc;
1727 {
1728         struct ti_txdesc        *txd;
1729         int                     i;
1730
1731         STAILQ_INIT(&sc->ti_cdata.ti_txfreeq);
1732         STAILQ_INIT(&sc->ti_cdata.ti_txbusyq);
1733         for (i = 0; i < TI_TX_RING_CNT; i++) {
1734                 txd = &sc->ti_cdata.ti_txdesc[i];
1735                 STAILQ_INSERT_TAIL(&sc->ti_cdata.ti_txfreeq, txd, tx_q);
1736         }
1737         sc->ti_txcnt = 0;
1738         sc->ti_tx_saved_considx = 0;
1739         sc->ti_tx_saved_prodidx = 0;
1740         CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
1741         return (0);
1742 }
1743
1744 /*
1745  * The Tigon 2 firmware has a new way to add/delete multicast addresses,
1746  * but we have to support the old way too so that Tigon 1 cards will
1747  * work.
1748  */
1749 static void
1750 ti_add_mcast(sc, addr)
1751         struct ti_softc         *sc;
1752         struct ether_addr       *addr;
1753 {
1754         struct ti_cmd_desc      cmd;
1755         u_int16_t               *m;
1756         u_int32_t               ext[2] = {0, 0};
1757
1758         m = (u_int16_t *)&addr->octet[0];
1759
1760         switch (sc->ti_hwrev) {
1761         case TI_HWREV_TIGON:
1762                 CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1763                 CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1764                 TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
1765                 break;
1766         case TI_HWREV_TIGON_II:
1767                 ext[0] = htons(m[0]);
1768                 ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1769                 TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
1770                 break;
1771         default:
1772                 device_printf(sc->ti_dev, "unknown hwrev\n");
1773                 break;
1774         }
1775 }
1776
1777 static void
1778 ti_del_mcast(sc, addr)
1779         struct ti_softc         *sc;
1780         struct ether_addr       *addr;
1781 {
1782         struct ti_cmd_desc      cmd;
1783         u_int16_t               *m;
1784         u_int32_t               ext[2] = {0, 0};
1785
1786         m = (u_int16_t *)&addr->octet[0];
1787
1788         switch (sc->ti_hwrev) {
1789         case TI_HWREV_TIGON:
1790                 CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1791                 CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1792                 TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
1793                 break;
1794         case TI_HWREV_TIGON_II:
1795                 ext[0] = htons(m[0]);
1796                 ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1797                 TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
1798                 break;
1799         default:
1800                 device_printf(sc->ti_dev, "unknown hwrev\n");
1801                 break;
1802         }
1803 }
1804
1805 /*
1806  * Configure the Tigon's multicast address filter.
1807  *
1808  * The actual multicast table management is a bit of a pain, thanks to
1809  * slight brain damage on the part of both Alteon and us. With our
1810  * multicast code, we are only alerted when the multicast address table
1811  * changes and at that point we only have the current list of addresses:
1812  * we only know the current state, not the previous state, so we don't
1813  * actually know what addresses were removed or added. The firmware has
1814  * state, but we can't get our grubby mits on it, and there is no 'delete
1815  * all multicast addresses' command. Hence, we have to maintain our own
1816  * state so we know what addresses have been programmed into the NIC at
1817  * any given time.
1818  */
1819 static void
1820 ti_setmulti(sc)
1821         struct ti_softc         *sc;
1822 {
1823         struct ifnet            *ifp;
1824         struct ifmultiaddr      *ifma;
1825         struct ti_cmd_desc      cmd;
1826         struct ti_mc_entry      *mc;
1827         u_int32_t               intrs;
1828
1829         TI_LOCK_ASSERT(sc);
1830
1831         ifp = sc->ti_ifp;
1832
1833         if (ifp->if_flags & IFF_ALLMULTI) {
1834                 TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1835                 return;
1836         } else {
1837                 TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1838         }
1839
1840         /* Disable interrupts. */
1841         intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1842         CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1843
1844         /* First, zot all the existing filters. */
1845         while (SLIST_FIRST(&sc->ti_mc_listhead) != NULL) {
1846                 mc = SLIST_FIRST(&sc->ti_mc_listhead);
1847                 ti_del_mcast(sc, &mc->mc_addr);
1848                 SLIST_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1849                 free(mc, M_DEVBUF);
1850         }
1851
1852         /* Now program new ones. */
1853         IF_ADDR_LOCK(ifp);
1854         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1855                 if (ifma->ifma_addr->sa_family != AF_LINK)
1856                         continue;
1857                 mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF, M_NOWAIT);
1858                 if (mc == NULL) {
1859                         device_printf(sc->ti_dev,
1860                             "no memory for mcast filter entry\n");
1861                         continue;
1862                 }
1863                 bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1864                     (char *)&mc->mc_addr, ETHER_ADDR_LEN);
1865                 SLIST_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1866                 ti_add_mcast(sc, &mc->mc_addr);
1867         }
1868         IF_ADDR_UNLOCK(ifp);
1869
1870         /* Re-enable interrupts. */
1871         CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1872 }
1873
1874 /*
1875  * Check to see if the BIOS has configured us for a 64 bit slot when
1876  * we aren't actually in one. If we detect this condition, we can work
1877  * around it on the Tigon 2 by setting a bit in the PCI state register,
1878  * but for the Tigon 1 we must give up and abort the interface attach.
1879  */
1880 static int ti_64bitslot_war(sc)
1881         struct ti_softc         *sc;
1882 {
1883         if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
1884                 CSR_WRITE_4(sc, 0x600, 0);
1885                 CSR_WRITE_4(sc, 0x604, 0);
1886                 CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
1887                 if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
1888                         if (sc->ti_hwrev == TI_HWREV_TIGON)
1889                                 return (EINVAL);
1890                         else {
1891                                 TI_SETBIT(sc, TI_PCI_STATE,
1892                                     TI_PCISTATE_32BIT_BUS);
1893                                 return (0);
1894                         }
1895                 }
1896         }
1897
1898         return (0);
1899 }
1900
1901 /*
1902  * Do endian, PCI and DMA initialization. Also check the on-board ROM
1903  * self-test results.
1904  */
1905 static int
1906 ti_chipinit(sc)
1907         struct ti_softc         *sc;
1908 {
1909         u_int32_t               cacheline;
1910         u_int32_t               pci_writemax = 0;
1911         u_int32_t               hdrsplit;
1912
1913         /* Initialize link to down state. */
1914         sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
1915
1916         if (sc->ti_ifp->if_capenable & IFCAP_HWCSUM)
1917                 sc->ti_ifp->if_hwassist = TI_CSUM_FEATURES;
1918         else
1919                 sc->ti_ifp->if_hwassist = 0;
1920
1921         /* Set endianness before we access any non-PCI registers. */
1922 #if 0 && BYTE_ORDER == BIG_ENDIAN
1923         CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1924             TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
1925 #else
1926         CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1927             TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
1928 #endif
1929
1930         /* Check the ROM failed bit to see if self-tests passed. */
1931         if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
1932                 device_printf(sc->ti_dev, "board self-diagnostics failed!\n");
1933                 return (ENODEV);
1934         }
1935
1936         /* Halt the CPU. */
1937         TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
1938
1939         /* Figure out the hardware revision. */
1940         switch (CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK) {
1941         case TI_REV_TIGON_I:
1942                 sc->ti_hwrev = TI_HWREV_TIGON;
1943                 break;
1944         case TI_REV_TIGON_II:
1945                 sc->ti_hwrev = TI_HWREV_TIGON_II;
1946                 break;
1947         default:
1948                 device_printf(sc->ti_dev, "unsupported chip revision\n");
1949                 return (ENODEV);
1950         }
1951
1952         /* Do special setup for Tigon 2. */
1953         if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1954                 TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
1955                 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_512K);
1956                 TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
1957         }
1958
1959         /*
1960          * We don't have firmware source for the Tigon 1, so Tigon 1 boards
1961          * can't do header splitting.
1962          */
1963 #ifdef TI_JUMBO_HDRSPLIT
1964         if (sc->ti_hwrev != TI_HWREV_TIGON)
1965                 sc->ti_hdrsplit = 1;
1966         else
1967                 device_printf(sc->ti_dev,
1968                     "can't do header splitting on a Tigon I board\n");
1969 #endif /* TI_JUMBO_HDRSPLIT */
1970
1971         /* Set up the PCI state register. */
1972         CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
1973         if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1974                 TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
1975         }
1976
1977         /* Clear the read/write max DMA parameters. */
1978         TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
1979             TI_PCISTATE_READ_MAXDMA));
1980
1981         /* Get cache line size. */
1982         cacheline = CSR_READ_4(sc, TI_PCI_BIST) & 0xFF;
1983
1984         /*
1985          * If the system has set enabled the PCI memory write
1986          * and invalidate command in the command register, set
1987          * the write max parameter accordingly. This is necessary
1988          * to use MWI with the Tigon 2.
1989          */
1990         if (CSR_READ_4(sc, TI_PCI_CMDSTAT) & PCIM_CMD_MWIEN) {
1991                 switch (cacheline) {
1992                 case 1:
1993                 case 4:
1994                 case 8:
1995                 case 16:
1996                 case 32:
1997                 case 64:
1998                         break;
1999                 default:
2000                 /* Disable PCI memory write and invalidate. */
2001                         if (bootverbose)
2002                                 device_printf(sc->ti_dev, "cache line size %d"
2003                                     " not supported; disabling PCI MWI\n",
2004                                     cacheline);
2005                         CSR_WRITE_4(sc, TI_PCI_CMDSTAT, CSR_READ_4(sc,
2006                             TI_PCI_CMDSTAT) & ~PCIM_CMD_MWIEN);
2007                         break;
2008                 }
2009         }
2010
2011 #ifdef __brokenalpha__
2012         /*
2013          * From the Alteon sample driver:
2014          * Must insure that we do not cross an 8K (bytes) boundary
2015          * for DMA reads.  Our highest limit is 1K bytes.  This is a
2016          * restriction on some ALPHA platforms with early revision
2017          * 21174 PCI chipsets, such as the AlphaPC 164lx
2018          */
2019         TI_SETBIT(sc, TI_PCI_STATE, pci_writemax|TI_PCI_READMAX_1024);
2020 #else
2021         TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
2022 #endif
2023
2024         /* This sets the min dma param all the way up (0xff). */
2025         TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
2026
2027         if (sc->ti_hdrsplit)
2028                 hdrsplit = TI_OPMODE_JUMBO_HDRSPLIT;
2029         else
2030                 hdrsplit = 0;
2031
2032         /* Configure DMA variables. */
2033 #if BYTE_ORDER == BIG_ENDIAN
2034         CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
2035             TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
2036             TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
2037             TI_OPMODE_DONT_FRAG_JUMBO | hdrsplit);
2038 #else /* BYTE_ORDER */
2039         CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
2040             TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
2041             TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB | hdrsplit);
2042 #endif /* BYTE_ORDER */
2043
2044         /*
2045          * Only allow 1 DMA channel to be active at a time.
2046          * I don't think this is a good idea, but without it
2047          * the firmware racks up lots of nicDmaReadRingFull
2048          * errors.  This is not compatible with hardware checksums.
2049          */
2050         if (sc->ti_ifp->if_hwassist == 0)
2051                 TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
2052
2053         /* Recommended settings from Tigon manual. */
2054         CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
2055         CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
2056
2057         if (ti_64bitslot_war(sc)) {
2058                 device_printf(sc->ti_dev, "bios thinks we're in a 64 bit slot, "
2059                     "but we aren't");
2060                 return (EINVAL);
2061         }
2062
2063         return (0);
2064 }
2065
2066 /*
2067  * Initialize the general information block and firmware, and
2068  * start the CPU(s) running.
2069  */
2070 static int
2071 ti_gibinit(sc)
2072         struct ti_softc         *sc;
2073 {
2074         struct ti_rcb           *rcb;
2075         int                     i;
2076         struct ifnet            *ifp;
2077         uint32_t                rdphys;
2078
2079         TI_LOCK_ASSERT(sc);
2080
2081         ifp = sc->ti_ifp;
2082         rdphys = sc->ti_rdata_phys;
2083
2084         /* Disable interrupts for now. */
2085         CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2086
2087         /*
2088          * Tell the chip where to find the general information block.
2089          * While this struct could go into >4GB memory, we allocate it in a
2090          * single slab with the other descriptors, and those don't seem to
2091          * support being located in a 64-bit region.
2092          */
2093         CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
2094         CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, rdphys + TI_RD_OFF(ti_info));
2095
2096         /* Load the firmware into SRAM. */
2097         ti_loadfw(sc);
2098
2099         /* Set up the contents of the general info and ring control blocks. */
2100
2101         /* Set up the event ring and producer pointer. */
2102         rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
2103
2104         TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_event_ring);
2105         rcb->ti_flags = 0;
2106         TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
2107             rdphys + TI_RD_OFF(ti_ev_prodidx_r);
2108         sc->ti_ev_prodidx.ti_idx = 0;
2109         CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
2110         sc->ti_ev_saved_considx = 0;
2111
2112         /* Set up the command ring and producer mailbox. */
2113         rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
2114
2115         TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
2116         rcb->ti_flags = 0;
2117         rcb->ti_max_len = 0;
2118         for (i = 0; i < TI_CMD_RING_CNT; i++) {
2119                 CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
2120         }
2121         CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
2122         CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
2123         sc->ti_cmd_saved_prodidx = 0;
2124
2125         /*
2126          * Assign the address of the stats refresh buffer.
2127          * We re-use the current stats buffer for this to
2128          * conserve memory.
2129          */
2130         TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
2131             rdphys + TI_RD_OFF(ti_info.ti_stats);
2132
2133         /* Set up the standard receive ring. */
2134         rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
2135         TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_rx_std_ring);
2136         rcb->ti_max_len = TI_FRAMELEN;
2137         rcb->ti_flags = 0;
2138         if (sc->ti_ifp->if_hwassist)
2139                 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2140                      TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2141         rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2142
2143         /* Set up the jumbo receive ring. */
2144         rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
2145         TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_rx_jumbo_ring);
2146
2147 #ifdef TI_PRIVATE_JUMBOS
2148         rcb->ti_max_len = TI_JUMBO_FRAMELEN;
2149         rcb->ti_flags = 0;
2150 #else
2151         rcb->ti_max_len = PAGE_SIZE;
2152         rcb->ti_flags = TI_RCB_FLAG_USE_EXT_RX_BD;
2153 #endif
2154         if (sc->ti_ifp->if_hwassist)
2155                 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2156                      TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2157         rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2158
2159         /*
2160          * Set up the mini ring. Only activated on the
2161          * Tigon 2 but the slot in the config block is
2162          * still there on the Tigon 1.
2163          */
2164         rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
2165         TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_rx_mini_ring);
2166         rcb->ti_max_len = MHLEN - ETHER_ALIGN;
2167         if (sc->ti_hwrev == TI_HWREV_TIGON)
2168                 rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
2169         else
2170                 rcb->ti_flags = 0;
2171         if (sc->ti_ifp->if_hwassist)
2172                 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2173                      TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2174         rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2175
2176         /*
2177          * Set up the receive return ring.
2178          */
2179         rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
2180         TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_rx_return_ring);
2181         rcb->ti_flags = 0;
2182         rcb->ti_max_len = TI_RETURN_RING_CNT;
2183         TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
2184             rdphys + TI_RD_OFF(ti_return_prodidx_r);
2185
2186         /*
2187          * Set up the tx ring. Note: for the Tigon 2, we have the option
2188          * of putting the transmit ring in the host's address space and
2189          * letting the chip DMA it instead of leaving the ring in the NIC's
2190          * memory and accessing it through the shared memory region. We
2191          * do this for the Tigon 2, but it doesn't work on the Tigon 1,
2192          * so we have to revert to the shared memory scheme if we detect
2193          * a Tigon 1 chip.
2194          */
2195         CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
2196         bzero((char *)sc->ti_rdata->ti_tx_ring,
2197             TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
2198         rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
2199         if (sc->ti_hwrev == TI_HWREV_TIGON)
2200                 rcb->ti_flags = 0;
2201         else
2202                 rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
2203         rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2204         if (sc->ti_ifp->if_hwassist)
2205                 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2206                      TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2207         rcb->ti_max_len = TI_TX_RING_CNT;
2208         if (sc->ti_hwrev == TI_HWREV_TIGON)
2209                 TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
2210         else
2211                 TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_tx_ring);
2212         TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
2213             rdphys + TI_RD_OFF(ti_tx_considx_r);
2214
2215         bus_dmamap_sync(sc->ti_rdata_dmat, sc->ti_rdata_dmamap,
2216             BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2217
2218         /* Set up tuneables */
2219 #if 0
2220         if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2221                 CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
2222                     (sc->ti_rx_coal_ticks / 10));
2223         else
2224 #endif
2225                 CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
2226         CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
2227         CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
2228         CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
2229         CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
2230         CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
2231
2232         /* Turn interrupts on. */
2233         CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
2234         CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2235
2236         /* Start CPU. */
2237         TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
2238
2239         return (0);
2240 }
2241
2242 static void
2243 ti_rdata_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
2244 {
2245         struct ti_softc *sc;
2246
2247         sc = arg;
2248         if (error || nseg != 1)
2249                 return;
2250
2251         /*
2252          * All of the Tigon data structures need to live at <4GB.  This
2253          * cast is fine since busdma was told about this constraint.
2254          */
2255         sc->ti_rdata_phys = segs[0].ds_addr;
2256         return;
2257 }
2258         
2259 /*
2260  * Probe for a Tigon chip. Check the PCI vendor and device IDs
2261  * against our list and return its name if we find a match.
2262  */
2263 static int
2264 ti_probe(dev)
2265         device_t                dev;
2266 {
2267         struct ti_type          *t;
2268
2269         t = ti_devs;
2270
2271         while (t->ti_name != NULL) {
2272                 if ((pci_get_vendor(dev) == t->ti_vid) &&
2273                     (pci_get_device(dev) == t->ti_did)) {
2274                         device_set_desc(dev, t->ti_name);
2275                         return (BUS_PROBE_DEFAULT);
2276                 }
2277                 t++;
2278         }
2279
2280         return (ENXIO);
2281 }
2282
2283 static int
2284 ti_attach(dev)
2285         device_t                dev;
2286 {
2287         struct ifnet            *ifp;
2288         struct ti_softc         *sc;
2289         int                     error = 0, rid;
2290         u_char                  eaddr[6];
2291
2292         sc = device_get_softc(dev);
2293         sc->ti_unit = device_get_unit(dev);
2294         sc->ti_dev = dev;
2295
2296         mtx_init(&sc->ti_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
2297             MTX_DEF);
2298         ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
2299         ifp = sc->ti_ifp = if_alloc(IFT_ETHER);
2300         if (ifp == NULL) {
2301                 device_printf(dev, "can not if_alloc()\n");
2302                 error = ENOSPC;
2303                 goto fail;
2304         }
2305         sc->ti_ifp->if_capabilities = IFCAP_HWCSUM |
2306             IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
2307         sc->ti_ifp->if_capenable = sc->ti_ifp->if_capabilities;
2308
2309         /*
2310          * Map control/status registers.
2311          */
2312         pci_enable_busmaster(dev);
2313
2314         rid = TI_PCI_LOMEM;
2315         sc->ti_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
2316             RF_ACTIVE|PCI_RF_DENSE);
2317
2318         if (sc->ti_res == NULL) {
2319                 device_printf(dev, "couldn't map memory\n");
2320                 error = ENXIO;
2321                 goto fail;
2322         }
2323
2324         sc->ti_btag = rman_get_bustag(sc->ti_res);
2325         sc->ti_bhandle = rman_get_bushandle(sc->ti_res);
2326
2327         /* Allocate interrupt */
2328         rid = 0;
2329
2330         sc->ti_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
2331             RF_SHAREABLE | RF_ACTIVE);
2332
2333         if (sc->ti_irq == NULL) {
2334                 device_printf(dev, "couldn't map interrupt\n");
2335                 error = ENXIO;
2336                 goto fail;
2337         }
2338
2339         if (ti_chipinit(sc)) {
2340                 device_printf(dev, "chip initialization failed\n");
2341                 error = ENXIO;
2342                 goto fail;
2343         }
2344
2345         /* Zero out the NIC's on-board SRAM. */
2346         ti_mem_zero(sc, 0x2000, 0x100000 - 0x2000);
2347
2348         /* Init again -- zeroing memory may have clobbered some registers. */
2349         if (ti_chipinit(sc)) {
2350                 device_printf(dev, "chip initialization failed\n");
2351                 error = ENXIO;
2352                 goto fail;
2353         }
2354
2355         /*
2356          * Get station address from the EEPROM. Note: the manual states
2357          * that the MAC address is at offset 0x8c, however the data is
2358          * stored as two longwords (since that's how it's loaded into
2359          * the NIC). This means the MAC address is actually preceded
2360          * by two zero bytes. We need to skip over those.
2361          */
2362         if (ti_read_eeprom(sc, eaddr,
2363                                 TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
2364                 device_printf(dev, "failed to read station address\n");
2365                 error = ENXIO;
2366                 goto fail;
2367         }
2368
2369         /* Allocate the general information block and ring buffers. */
2370         if (bus_dma_tag_create(bus_get_dma_tag(dev),    /* parent */
2371                                 1, 0,                   /* algnmnt, boundary */
2372                                 BUS_SPACE_MAXADDR,      /* lowaddr */
2373                                 BUS_SPACE_MAXADDR,      /* highaddr */
2374                                 NULL, NULL,             /* filter, filterarg */
2375                                 BUS_SPACE_MAXSIZE_32BIT,/* maxsize */
2376                                 0,                      /* nsegments */
2377                                 BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
2378                                 0,                      /* flags */
2379                                 NULL, NULL,             /* lockfunc, lockarg */
2380                                 &sc->ti_parent_dmat) != 0) {
2381                 device_printf(dev, "Failed to allocate parent dmat\n");
2382                 error = ENOMEM;
2383                 goto fail;
2384         }
2385
2386         if (bus_dma_tag_create(sc->ti_parent_dmat,      /* parent */
2387                                 PAGE_SIZE, 0,           /* algnmnt, boundary */
2388                                 BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
2389                                 BUS_SPACE_MAXADDR,      /* highaddr */
2390                                 NULL, NULL,             /* filter, filterarg */
2391                                 sizeof(struct ti_ring_data),    /* maxsize */
2392                                 1,                      /* nsegments */
2393                                 sizeof(struct ti_ring_data),    /* maxsegsize */
2394                                 0,                      /* flags */
2395                                 NULL, NULL,             /* lockfunc, lockarg */
2396                                 &sc->ti_rdata_dmat) != 0) {
2397                 device_printf(dev, "Failed to allocate rdata dmat\n");
2398                 error = ENOMEM;
2399                 goto fail;
2400         }
2401
2402         if (bus_dmamem_alloc(sc->ti_rdata_dmat, (void**)&sc->ti_rdata,
2403                              BUS_DMA_NOWAIT, &sc->ti_rdata_dmamap) != 0) {
2404                 device_printf(dev, "Failed to allocate rdata memory\n");
2405                 error = ENOMEM;
2406                 goto fail;
2407         }
2408
2409         if (bus_dmamap_load(sc->ti_rdata_dmat, sc->ti_rdata_dmamap,
2410                             sc->ti_rdata, sizeof(struct ti_ring_data),
2411                             ti_rdata_cb, sc, BUS_DMA_NOWAIT) != 0) {
2412                 device_printf(dev, "Failed to load rdata segments\n");
2413                 error = ENOMEM;
2414                 goto fail;
2415         }
2416
2417         bzero(sc->ti_rdata, sizeof(struct ti_ring_data));
2418
2419         /* Try to allocate memory for jumbo buffers. */
2420         if (ti_alloc_jumbo_mem(sc)) {
2421                 device_printf(dev, "jumbo buffer allocation failed\n");
2422                 error = ENXIO;
2423                 goto fail;
2424         }
2425
2426         if (bus_dma_tag_create(sc->ti_parent_dmat,      /* parent */
2427                                 1, 0,                   /* algnmnt, boundary */
2428                                 BUS_SPACE_MAXADDR,      /* lowaddr */
2429                                 BUS_SPACE_MAXADDR,      /* highaddr */
2430                                 NULL, NULL,             /* filter, filterarg */
2431                                 MCLBYTES * TI_MAXTXSEGS,/* maxsize */
2432                                 TI_MAXTXSEGS,           /* nsegments */
2433                                 MCLBYTES,               /* maxsegsize */
2434                                 0,                      /* flags */
2435                                 NULL, NULL,             /* lockfunc, lockarg */
2436                                 &sc->ti_mbuftx_dmat) != 0) {
2437                 device_printf(dev, "Failed to allocate rdata dmat\n");
2438                 error = ENOMEM;
2439                 goto fail;
2440         }
2441
2442         if (bus_dma_tag_create(sc->ti_parent_dmat,      /* parent */
2443                                 1, 0,                   /* algnmnt, boundary */
2444                                 BUS_SPACE_MAXADDR,      /* lowaddr */
2445                                 BUS_SPACE_MAXADDR,      /* highaddr */
2446                                 NULL, NULL,             /* filter, filterarg */
2447                                 MCLBYTES,               /* maxsize */
2448                                 1,                      /* nsegments */
2449                                 MCLBYTES,               /* maxsegsize */
2450                                 0,                      /* flags */
2451                                 NULL, NULL,             /* lockfunc, lockarg */
2452                                 &sc->ti_mbufrx_dmat) != 0) {
2453                 device_printf(dev, "Failed to allocate rdata dmat\n");
2454                 error = ENOMEM;
2455                 goto fail;
2456         }
2457
2458         if (ti_alloc_dmamaps(sc)) {
2459                 device_printf(dev, "dma map creation failed\n");
2460                 error = ENXIO;
2461                 goto fail;
2462         }
2463
2464         /*
2465          * We really need a better way to tell a 1000baseTX card
2466          * from a 1000baseSX one, since in theory there could be
2467          * OEMed 1000baseTX cards from lame vendors who aren't
2468          * clever enough to change the PCI ID. For the moment
2469          * though, the AceNIC is the only copper card available.
2470          */
2471         if (pci_get_vendor(dev) == ALT_VENDORID &&
2472             pci_get_device(dev) == ALT_DEVICEID_ACENIC_COPPER)
2473                 sc->ti_copper = 1;
2474         /* Ok, it's not the only copper card available. */
2475         if (pci_get_vendor(dev) == NG_VENDORID &&
2476             pci_get_device(dev) == NG_DEVICEID_GA620T)
2477                 sc->ti_copper = 1;
2478
2479         /* Set default tuneable values. */
2480         sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
2481 #if 0
2482         sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
2483 #endif
2484         sc->ti_rx_coal_ticks = 170;
2485         sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
2486         sc->ti_rx_max_coal_bds = 64;
2487 #if 0
2488         sc->ti_tx_max_coal_bds = 128;
2489 #endif
2490         sc->ti_tx_max_coal_bds = 32;
2491         sc->ti_tx_buf_ratio = 21;
2492
2493         /* Set up ifnet structure */
2494         ifp->if_softc = sc;
2495         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2496         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2497         ifp->if_ioctl = ti_ioctl;
2498         ifp->if_start = ti_start;
2499         ifp->if_watchdog = ti_watchdog;
2500         ifp->if_init = ti_init;
2501         ifp->if_baudrate = 1000000000;
2502         ifp->if_mtu = ETHERMTU;
2503         ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1;
2504
2505         /* Set up ifmedia support. */
2506         if (sc->ti_copper) {
2507                 /*
2508                  * Copper cards allow manual 10/100 mode selection,
2509                  * but not manual 1000baseTX mode selection. Why?
2510                  * Becuase currently there's no way to specify the
2511                  * master/slave setting through the firmware interface,
2512                  * so Alteon decided to just bag it and handle it
2513                  * via autonegotiation.
2514                  */
2515                 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
2516                 ifmedia_add(&sc->ifmedia,
2517                     IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
2518                 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
2519                 ifmedia_add(&sc->ifmedia,
2520                     IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
2521                 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_T, 0, NULL);
2522                 ifmedia_add(&sc->ifmedia,
2523                     IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
2524         } else {
2525                 /* Fiber cards don't support 10/100 modes. */
2526                 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2527                 ifmedia_add(&sc->ifmedia,
2528                     IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
2529         }
2530         ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2531         ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
2532
2533         /*
2534          * We're assuming here that card initialization is a sequential
2535          * thing.  If it isn't, multiple cards probing at the same time
2536          * could stomp on the list of softcs here.
2537          */
2538
2539         /* Register the device */
2540         sc->dev = make_dev(&ti_cdevsw, sc->ti_unit, UID_ROOT, GID_OPERATOR,
2541                            0600, "ti%d", sc->ti_unit);
2542         sc->dev->si_drv1 = sc;
2543
2544         /*
2545          * Call MI attach routine.
2546          */
2547         ether_ifattach(ifp, eaddr);
2548
2549         /* Hook interrupt last to avoid having to lock softc */
2550         error = bus_setup_intr(dev, sc->ti_irq, INTR_TYPE_NET|INTR_MPSAFE,
2551            NULL, ti_intr, sc, &sc->ti_intrhand);
2552
2553         if (error) {
2554                 device_printf(dev, "couldn't set up irq\n");
2555                 goto fail;
2556         }
2557
2558 fail:
2559         if (error)
2560                 ti_detach(dev);
2561
2562         return (error);
2563 }
2564
2565 /*
2566  * Shutdown hardware and free up resources. This can be called any
2567  * time after the mutex has been initialized. It is called in both
2568  * the error case in attach and the normal detach case so it needs
2569  * to be careful about only freeing resources that have actually been
2570  * allocated.
2571  */
2572 static int
2573 ti_detach(dev)
2574         device_t                dev;
2575 {
2576         struct ti_softc         *sc;
2577         struct ifnet            *ifp;
2578         int                     attached;
2579
2580         sc = device_get_softc(dev);
2581         if (sc->dev)
2582                 destroy_dev(sc->dev);
2583         KASSERT(mtx_initialized(&sc->ti_mtx), ("ti mutex not initialized"));
2584         attached = device_is_attached(dev);
2585         TI_LOCK(sc);
2586         ifp = sc->ti_ifp;
2587         if (attached)
2588                 ti_stop(sc);
2589         TI_UNLOCK(sc);
2590         if (attached)
2591                 ether_ifdetach(ifp);
2592
2593         /* These should only be active if attach succeeded */
2594         if (attached)
2595                 bus_generic_detach(dev);
2596         ti_free_dmamaps(sc);
2597         ifmedia_removeall(&sc->ifmedia);
2598
2599 #ifdef TI_PRIVATE_JUMBOS
2600         if (sc->ti_cdata.ti_jumbo_buf)
2601                 bus_dmamem_free(sc->ti_jumbo_dmat, sc->ti_cdata.ti_jumbo_buf,
2602                     sc->ti_jumbo_dmamap);
2603 #endif
2604         if (sc->ti_jumbo_dmat)
2605                 bus_dma_tag_destroy(sc->ti_jumbo_dmat);
2606         if (sc->ti_mbuftx_dmat)
2607                 bus_dma_tag_destroy(sc->ti_mbuftx_dmat);
2608         if (sc->ti_mbufrx_dmat)
2609                 bus_dma_tag_destroy(sc->ti_mbufrx_dmat);
2610         if (sc->ti_rdata)
2611                 bus_dmamem_free(sc->ti_rdata_dmat, sc->ti_rdata,
2612                                 sc->ti_rdata_dmamap);
2613         if (sc->ti_rdata_dmat)
2614                 bus_dma_tag_destroy(sc->ti_rdata_dmat);
2615         if (sc->ti_parent_dmat)
2616                 bus_dma_tag_destroy(sc->ti_parent_dmat);
2617         if (sc->ti_intrhand)
2618                 bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
2619         if (sc->ti_irq)
2620                 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
2621         if (sc->ti_res) {
2622                 bus_release_resource(dev, SYS_RES_MEMORY, TI_PCI_LOMEM,
2623                     sc->ti_res);
2624         }
2625         if (ifp)
2626                 if_free(ifp);
2627
2628         mtx_destroy(&sc->ti_mtx);
2629
2630         return (0);
2631 }
2632
2633 #ifdef TI_JUMBO_HDRSPLIT
2634 /*
2635  * If hdr_len is 0, that means that header splitting wasn't done on
2636  * this packet for some reason.  The two most likely reasons are that
2637  * the protocol isn't a supported protocol for splitting, or this
2638  * packet had a fragment offset that wasn't 0.
2639  *
2640  * The header length, if it is non-zero, will always be the length of
2641  * the headers on the packet, but that length could be longer than the
2642  * first mbuf.  So we take the minimum of the two as the actual
2643  * length.
2644  */
2645 static __inline void
2646 ti_hdr_split(struct mbuf *top, int hdr_len, int pkt_len, int idx)
2647 {
2648         int i = 0;
2649         int lengths[4] = {0, 0, 0, 0};
2650         struct mbuf *m, *mp;
2651
2652         if (hdr_len != 0)
2653                 top->m_len = min(hdr_len, top->m_len);
2654         pkt_len -= top->m_len;
2655         lengths[i++] = top->m_len;
2656
2657         mp = top;
2658         for (m = top->m_next; m && pkt_len; m = m->m_next) {
2659                 m->m_len = m->m_ext.ext_size = min(m->m_len, pkt_len);
2660                 pkt_len -= m->m_len;
2661                 lengths[i++] = m->m_len;
2662                 mp = m;
2663         }
2664
2665 #if 0
2666         if (hdr_len != 0)
2667                 printf("got split packet: ");
2668         else
2669                 printf("got non-split packet: ");
2670
2671         printf("%d,%d,%d,%d = %d\n", lengths[0],
2672             lengths[1], lengths[2], lengths[3],
2673             lengths[0] + lengths[1] + lengths[2] +
2674             lengths[3]);
2675 #endif
2676
2677         if (pkt_len)
2678                 panic("header splitting didn't");
2679
2680         if (m) {
2681                 m_freem(m);
2682                 mp->m_next = NULL;
2683
2684         }
2685         if (mp->m_next != NULL)
2686                 panic("ti_hdr_split: last mbuf in chain should be null");
2687 }
2688 #endif /* TI_JUMBO_HDRSPLIT */
2689
2690 /*
2691  * Frame reception handling. This is called if there's a frame
2692  * on the receive return list.
2693  *
2694  * Note: we have to be able to handle three possibilities here:
2695  * 1) the frame is from the mini receive ring (can only happen)
2696  *    on Tigon 2 boards)
2697  * 2) the frame is from the jumbo recieve ring
2698  * 3) the frame is from the standard receive ring
2699  */
2700
2701 static void
2702 ti_rxeof(sc)
2703         struct ti_softc         *sc;
2704 {
2705         bus_dmamap_t            map;
2706         struct ifnet            *ifp;
2707         struct ti_cmd_desc      cmd;
2708
2709         TI_LOCK_ASSERT(sc);
2710
2711         ifp = sc->ti_ifp;
2712
2713         while (sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
2714                 struct ti_rx_desc       *cur_rx;
2715                 u_int32_t               rxidx;
2716                 struct mbuf             *m = NULL;
2717                 u_int16_t               vlan_tag = 0;
2718                 int                     have_tag = 0;
2719
2720                 cur_rx =
2721                     &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
2722                 rxidx = cur_rx->ti_idx;
2723                 TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
2724
2725                 if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
2726                         have_tag = 1;
2727                         vlan_tag = cur_rx->ti_vlan_tag & 0xfff;
2728                 }
2729
2730                 if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
2731
2732                         TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
2733                         m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
2734                         sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
2735                         map = sc->ti_cdata.ti_rx_jumbo_maps[rxidx];
2736                         bus_dmamap_sync(sc->ti_jumbo_dmat, map,
2737                             BUS_DMASYNC_POSTREAD);
2738                         bus_dmamap_unload(sc->ti_jumbo_dmat, map);
2739                         if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2740                                 ifp->if_ierrors++;
2741                                 ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
2742                                 continue;
2743                         }
2744                         if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL) == ENOBUFS) {
2745                                 ifp->if_ierrors++;
2746                                 ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
2747                                 continue;
2748                         }
2749 #ifdef TI_PRIVATE_JUMBOS
2750                         m->m_len = cur_rx->ti_len;
2751 #else /* TI_PRIVATE_JUMBOS */
2752 #ifdef TI_JUMBO_HDRSPLIT
2753                         if (sc->ti_hdrsplit)
2754                                 ti_hdr_split(m, TI_HOSTADDR(cur_rx->ti_addr),
2755                                              cur_rx->ti_len, rxidx);
2756                         else
2757 #endif /* TI_JUMBO_HDRSPLIT */
2758                         m_adj(m, cur_rx->ti_len - m->m_pkthdr.len);
2759 #endif /* TI_PRIVATE_JUMBOS */
2760                 } else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
2761                         TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
2762                         m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
2763                         sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
2764                         map = sc->ti_cdata.ti_rx_mini_maps[rxidx];
2765                         bus_dmamap_sync(sc->ti_mbufrx_dmat, map,
2766                             BUS_DMASYNC_POSTREAD);
2767                         bus_dmamap_unload(sc->ti_mbufrx_dmat, map);
2768                         if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2769                                 ifp->if_ierrors++;
2770                                 ti_newbuf_mini(sc, sc->ti_mini, m);
2771                                 continue;
2772                         }
2773                         if (ti_newbuf_mini(sc, sc->ti_mini, NULL) == ENOBUFS) {
2774                                 ifp->if_ierrors++;
2775                                 ti_newbuf_mini(sc, sc->ti_mini, m);
2776                                 continue;
2777                         }
2778                         m->m_len = cur_rx->ti_len;
2779                 } else {
2780                         TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
2781                         m = sc->ti_cdata.ti_rx_std_chain[rxidx];
2782                         sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
2783                         map = sc->ti_cdata.ti_rx_std_maps[rxidx];
2784                         bus_dmamap_sync(sc->ti_mbufrx_dmat, map,
2785                             BUS_DMASYNC_POSTREAD);
2786                         bus_dmamap_unload(sc->ti_mbufrx_dmat, map);
2787                         if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2788                                 ifp->if_ierrors++;
2789                                 ti_newbuf_std(sc, sc->ti_std, m);
2790                                 continue;
2791                         }
2792                         if (ti_newbuf_std(sc, sc->ti_std, NULL) == ENOBUFS) {
2793                                 ifp->if_ierrors++;
2794                                 ti_newbuf_std(sc, sc->ti_std, m);
2795                                 continue;
2796                         }
2797                         m->m_len = cur_rx->ti_len;
2798                 }
2799
2800                 m->m_pkthdr.len = cur_rx->ti_len;
2801                 ifp->if_ipackets++;
2802                 m->m_pkthdr.rcvif = ifp;
2803
2804                 if (ifp->if_hwassist) {
2805                         m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED |
2806                             CSUM_DATA_VALID;
2807                         if ((cur_rx->ti_ip_cksum ^ 0xffff) == 0)
2808                                 m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2809                         m->m_pkthdr.csum_data = cur_rx->ti_tcp_udp_cksum;
2810                 }
2811
2812                 /*
2813                  * If we received a packet with a vlan tag,
2814                  * tag it before passing the packet upward.
2815                  */
2816                 if (have_tag) {
2817                         m->m_pkthdr.ether_vtag = vlan_tag;
2818                         m->m_flags |= M_VLANTAG;
2819                 }
2820                 TI_UNLOCK(sc);
2821                 (*ifp->if_input)(ifp, m);
2822                 TI_LOCK(sc);
2823         }
2824
2825         /* Only necessary on the Tigon 1. */
2826         if (sc->ti_hwrev == TI_HWREV_TIGON)
2827                 CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
2828                     sc->ti_rx_saved_considx);
2829
2830         TI_UPDATE_STDPROD(sc, sc->ti_std);
2831         TI_UPDATE_MINIPROD(sc, sc->ti_mini);
2832         TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
2833 }
2834
2835 static void
2836 ti_txeof(sc)
2837         struct ti_softc         *sc;
2838 {
2839         struct ti_txdesc        *txd;
2840         struct ti_tx_desc       txdesc;
2841         struct ti_tx_desc       *cur_tx = NULL;
2842         struct ifnet            *ifp;
2843         int                     idx;
2844
2845         ifp = sc->ti_ifp;
2846
2847         txd = STAILQ_FIRST(&sc->ti_cdata.ti_txbusyq);
2848         if (txd == NULL)
2849                 return;
2850         /*
2851          * Go through our tx ring and free mbufs for those
2852          * frames that have been sent.
2853          */
2854         for (idx = sc->ti_tx_saved_considx; idx != sc->ti_tx_considx.ti_idx;
2855             TI_INC(idx, TI_TX_RING_CNT)) {
2856                 if (sc->ti_hwrev == TI_HWREV_TIGON) {
2857                         ti_mem_read(sc, TI_TX_RING_BASE + idx * sizeof(txdesc),
2858                             sizeof(txdesc), &txdesc);
2859                         cur_tx = &txdesc;
2860                 } else
2861                         cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
2862                 sc->ti_txcnt--;
2863                 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2864                 if ((cur_tx->ti_flags & TI_BDFLAG_END) == 0)
2865                         continue;
2866                 bus_dmamap_sync(sc->ti_mbuftx_dmat, txd->tx_dmamap,
2867                     BUS_DMASYNC_POSTWRITE);
2868                 bus_dmamap_unload(sc->ti_mbuftx_dmat, txd->tx_dmamap);
2869
2870                 ifp->if_opackets++;
2871                 m_freem(txd->tx_m);
2872                 txd->tx_m = NULL;
2873                 STAILQ_REMOVE_HEAD(&sc->ti_cdata.ti_txbusyq, tx_q);
2874                 STAILQ_INSERT_TAIL(&sc->ti_cdata.ti_txfreeq, txd, tx_q);
2875                 txd = STAILQ_FIRST(&sc->ti_cdata.ti_txbusyq);
2876         }
2877         sc->ti_tx_saved_considx = idx;
2878
2879         ifp->if_timer = sc->ti_txcnt > 0 ? 5 : 0;
2880 }
2881
2882 static void
2883 ti_intr(xsc)
2884         void                    *xsc;
2885 {
2886         struct ti_softc         *sc;
2887         struct ifnet            *ifp;
2888
2889         sc = xsc;
2890         TI_LOCK(sc);
2891         ifp = sc->ti_ifp;
2892
2893 /*#ifdef notdef*/
2894         /* Avoid this for now -- checking this register is expensive. */
2895         /* Make sure this is really our interrupt. */
2896         if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE)) {
2897                 TI_UNLOCK(sc);
2898                 return;
2899         }
2900 /*#endif*/
2901
2902         /* Ack interrupt and stop others from occuring. */
2903         CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2904
2905         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2906                 /* Check RX return ring producer/consumer */
2907                 ti_rxeof(sc);
2908
2909                 /* Check TX ring producer/consumer */
2910                 ti_txeof(sc);
2911         }
2912
2913         ti_handle_events(sc);
2914
2915         /* Re-enable interrupts. */
2916         CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2917
2918         if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
2919             ifp->if_snd.ifq_head != NULL)
2920                 ti_start_locked(ifp);
2921
2922         TI_UNLOCK(sc);
2923 }
2924
2925 static void
2926 ti_stats_update(sc)
2927         struct ti_softc         *sc;
2928 {
2929         struct ifnet            *ifp;
2930
2931         ifp = sc->ti_ifp;
2932
2933         bus_dmamap_sync(sc->ti_rdata_dmat, sc->ti_rdata_dmamap,
2934             BUS_DMASYNC_POSTREAD);
2935
2936         ifp->if_collisions +=
2937            (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
2938            sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
2939            sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
2940            sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) -
2941            ifp->if_collisions;
2942
2943         bus_dmamap_sync(sc->ti_rdata_dmat, sc->ti_rdata_dmamap,
2944             BUS_DMASYNC_PREREAD);
2945 }
2946
2947 /*
2948  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
2949  * pointers to descriptors.
2950  */
2951 static int
2952 ti_encap(sc, m_head)
2953         struct ti_softc         *sc;
2954         struct mbuf             **m_head;
2955 {
2956         struct ti_txdesc        *txd;
2957         struct ti_tx_desc       *f;
2958         struct ti_tx_desc       txdesc;
2959         struct mbuf             *m;
2960         bus_dma_segment_t       txsegs[TI_MAXTXSEGS];
2961         u_int16_t               csum_flags;
2962         int                     error, frag, i, nseg;
2963
2964         if ((txd = STAILQ_FIRST(&sc->ti_cdata.ti_txfreeq)) == NULL)
2965                 return (ENOBUFS);
2966
2967         error = bus_dmamap_load_mbuf_sg(sc->ti_mbuftx_dmat, txd->tx_dmamap,
2968             *m_head, txsegs, &nseg, 0);
2969         if (error == EFBIG) {
2970                 m = m_defrag(*m_head, M_DONTWAIT);
2971                 if (m == NULL) {
2972                         m_freem(*m_head);
2973                         *m_head = NULL;
2974                         return (ENOMEM);
2975                 }
2976                 *m_head = m;
2977                 error = bus_dmamap_load_mbuf_sg(sc->ti_mbuftx_dmat,
2978                     txd->tx_dmamap, *m_head, txsegs, &nseg, 0);
2979                 if (error) {
2980                         m_freem(*m_head);
2981                         *m_head = NULL;
2982                         return (error);
2983                 }
2984         } else if (error != 0)
2985                 return (error);
2986         if (nseg == 0) {
2987                 m_freem(*m_head);
2988                 *m_head = NULL;
2989                 return (EIO);
2990         }
2991
2992         if (sc->ti_txcnt + nseg >= TI_TX_RING_CNT) {
2993                 bus_dmamap_unload(sc->ti_mbuftx_dmat, txd->tx_dmamap);
2994                 return (ENOBUFS);
2995         }
2996
2997         m = *m_head;
2998         csum_flags = 0;
2999         if (m->m_pkthdr.csum_flags) {
3000                 if (m->m_pkthdr.csum_flags & CSUM_IP)
3001                         csum_flags |= TI_BDFLAG_IP_CKSUM;
3002                 if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
3003                         csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
3004                 if (m->m_flags & M_LASTFRAG)
3005                         csum_flags |= TI_BDFLAG_IP_FRAG_END;
3006                 else if (m->m_flags & M_FRAG)
3007                         csum_flags |= TI_BDFLAG_IP_FRAG;
3008         }
3009
3010         bus_dmamap_sync(sc->ti_mbuftx_dmat, txd->tx_dmamap,
3011             BUS_DMASYNC_PREWRITE);
3012         bus_dmamap_sync(sc->ti_rdata_dmat, sc->ti_rdata_dmamap,
3013             BUS_DMASYNC_PREWRITE);
3014
3015         frag = sc->ti_tx_saved_prodidx;
3016         for (i = 0; i < nseg; i++) {
3017                 if (sc->ti_hwrev == TI_HWREV_TIGON) {
3018                         bzero(&txdesc, sizeof(txdesc));
3019                         f = &txdesc;
3020                 } else
3021                         f = &sc->ti_rdata->ti_tx_ring[frag];
3022                 ti_hostaddr64(&f->ti_addr, txsegs[i].ds_addr);
3023                 f->ti_len = txsegs[i].ds_len;
3024                 f->ti_flags = csum_flags;
3025                 if (m->m_flags & M_VLANTAG) {
3026                         f->ti_flags |= TI_BDFLAG_VLAN_TAG;
3027                         f->ti_vlan_tag = m->m_pkthdr.ether_vtag & 0xfff;
3028                 } else {
3029                         f->ti_vlan_tag = 0;
3030                 }
3031
3032                 if (sc->ti_hwrev == TI_HWREV_TIGON)
3033                         ti_mem_write(sc, TI_TX_RING_BASE + frag *
3034                             sizeof(txdesc), sizeof(txdesc), &txdesc);
3035                 TI_INC(frag, TI_TX_RING_CNT);
3036         }
3037
3038         sc->ti_tx_saved_prodidx = frag;
3039         /* set TI_BDFLAG_END on the last descriptor */
3040         frag = (frag + TI_TX_RING_CNT - 1) % TI_TX_RING_CNT;
3041         if (sc->ti_hwrev == TI_HWREV_TIGON) {
3042                 txdesc.ti_flags |= TI_BDFLAG_END;
3043                 ti_mem_write(sc, TI_TX_RING_BASE + frag * sizeof(txdesc),
3044                     sizeof(txdesc), &txdesc);
3045         } else
3046                 sc->ti_rdata->ti_tx_ring[frag].ti_flags |= TI_BDFLAG_END;
3047
3048         STAILQ_REMOVE_HEAD(&sc->ti_cdata.ti_txfreeq, tx_q);
3049         STAILQ_INSERT_TAIL(&sc->ti_cdata.ti_txbusyq, txd, tx_q);
3050         txd->tx_m = m;
3051         sc->ti_txcnt += nseg;
3052
3053         return (0);
3054 }
3055
3056 static void
3057 ti_start(ifp)
3058         struct ifnet            *ifp;
3059 {
3060         struct ti_softc         *sc;
3061
3062         sc = ifp->if_softc;
3063         TI_LOCK(sc);
3064         ti_start_locked(ifp);
3065         TI_UNLOCK(sc);
3066 }
3067
3068 /*
3069  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3070  * to the mbuf data regions directly in the transmit descriptors.
3071  */
3072 static void
3073 ti_start_locked(ifp)
3074         struct ifnet            *ifp;
3075 {
3076         struct ti_softc         *sc;
3077         struct mbuf             *m_head = NULL;
3078         int                     enq = 0;
3079
3080         sc = ifp->if_softc;
3081
3082         for (; ifp->if_snd.ifq_head != NULL &&
3083             sc->ti_txcnt < (TI_TX_RING_CNT - 16);) {
3084                 IF_DEQUEUE(&ifp->if_snd, m_head);
3085                 if (m_head == NULL)
3086                         break;
3087
3088                 /*
3089                  * XXX
3090                  * safety overkill.  If this is a fragmented packet chain
3091                  * with delayed TCP/UDP checksums, then only encapsulate
3092                  * it if we have enough descriptors to handle the entire
3093                  * chain at once.
3094                  * (paranoia -- may not actually be needed)
3095                  */
3096                 if (m_head->m_flags & M_FIRSTFRAG &&
3097                     m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
3098                         if ((TI_TX_RING_CNT - sc->ti_txcnt) <
3099                             m_head->m_pkthdr.csum_data + 16) {
3100                                 IF_PREPEND(&ifp->if_snd, m_head);
3101                                 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3102                                 break;
3103                         }
3104                 }
3105
3106                 /*
3107                  * Pack the data into the transmit ring. If we
3108                  * don't have room, set the OACTIVE flag and wait
3109                  * for the NIC to drain the ring.
3110                  */
3111                 if (ti_encap(sc, &m_head)) {
3112                         if (m_head == NULL)
3113                                 break;
3114                         IF_PREPEND(&ifp->if_snd, m_head);
3115                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3116                         break;
3117                 }
3118
3119                 enq++;
3120                 /*
3121                  * If there's a BPF listener, bounce a copy of this frame
3122                  * to him.
3123                  */
3124                 ETHER_BPF_MTAP(ifp, m_head);
3125         }
3126
3127         if (enq > 0) {
3128                 /* Transmit */
3129                 CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, sc->ti_tx_saved_prodidx);
3130
3131                 /*
3132                  * Set a timeout in case the chip goes out to lunch.
3133                  */
3134                 ifp->if_timer = 5;
3135         }
3136 }
3137
3138 static void
3139 ti_init(xsc)
3140         void                    *xsc;
3141 {
3142         struct ti_softc         *sc;
3143
3144         sc = xsc;
3145         TI_LOCK(sc);
3146         ti_init_locked(sc);
3147         TI_UNLOCK(sc);
3148 }
3149
3150 static void
3151 ti_init_locked(xsc)
3152         void                    *xsc;
3153 {
3154         struct ti_softc         *sc = xsc;
3155
3156         /* Cancel pending I/O and flush buffers. */
3157         ti_stop(sc);
3158
3159         /* Init the gen info block, ring control blocks and firmware. */
3160         if (ti_gibinit(sc)) {
3161                 device_printf(sc->ti_dev, "initialization failure\n");
3162                 return;
3163         }
3164 }
3165
3166 static void ti_init2(sc)
3167         struct ti_softc         *sc;
3168 {
3169         struct ti_cmd_desc      cmd;
3170         struct ifnet            *ifp;
3171         u_int8_t                *ea;
3172         struct ifmedia          *ifm;
3173         int                     tmp;
3174
3175         TI_LOCK_ASSERT(sc);
3176
3177         ifp = sc->ti_ifp;
3178
3179         /* Specify MTU and interface index. */
3180         CSR_WRITE_4(sc, TI_GCR_IFINDEX, sc->ti_unit);
3181         CSR_WRITE_4(sc, TI_GCR_IFMTU, ifp->if_mtu +
3182             ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
3183         TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
3184
3185         /* Load our MAC address. */
3186         ea = IF_LLADDR(sc->ti_ifp);
3187         CSR_WRITE_4(sc, TI_GCR_PAR0, (ea[0] << 8) | ea[1]);
3188         CSR_WRITE_4(sc, TI_GCR_PAR1,
3189             (ea[2] << 24) | (ea[3] << 16) | (ea[4] << 8) | ea[5]);
3190         TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
3191
3192         /* Enable or disable promiscuous mode as needed. */
3193         if (ifp->if_flags & IFF_PROMISC) {
3194                 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
3195         } else {
3196                 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
3197         }
3198
3199         /* Program multicast filter. */
3200         ti_setmulti(sc);
3201
3202         /*
3203          * If this is a Tigon 1, we should tell the
3204          * firmware to use software packet filtering.
3205          */
3206         if (sc->ti_hwrev == TI_HWREV_TIGON) {
3207                 TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
3208         }
3209
3210         /* Init RX ring. */
3211         ti_init_rx_ring_std(sc);
3212
3213         /* Init jumbo RX ring. */
3214         if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
3215                 ti_init_rx_ring_jumbo(sc);
3216
3217         /*
3218          * If this is a Tigon 2, we can also configure the
3219          * mini ring.
3220          */
3221         if (sc->ti_hwrev == TI_HWREV_TIGON_II)
3222                 ti_init_rx_ring_mini(sc);
3223
3224         CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
3225         sc->ti_rx_saved_considx = 0;
3226
3227         /* Init TX ring. */
3228         ti_init_tx_ring(sc);
3229
3230         /* Tell firmware we're alive. */
3231         TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
3232
3233         /* Enable host interrupts. */
3234         CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
3235
3236         ifp->if_drv_flags |= IFF_DRV_RUNNING;
3237         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3238
3239         /*
3240          * Make sure to set media properly. We have to do this
3241          * here since we have to issue commands in order to set
3242          * the link negotiation and we can't issue commands until
3243          * the firmware is running.
3244          */
3245         ifm = &sc->ifmedia;
3246         tmp = ifm->ifm_media;
3247         ifm->ifm_media = ifm->ifm_cur->ifm_media;
3248         ti_ifmedia_upd(ifp);
3249         ifm->ifm_media = tmp;
3250 }
3251
3252 /*
3253  * Set media options.
3254  */
3255 static int
3256 ti_ifmedia_upd(ifp)
3257         struct ifnet            *ifp;
3258 {
3259         struct ti_softc         *sc;
3260         struct ifmedia          *ifm;
3261         struct ti_cmd_desc      cmd;
3262         u_int32_t               flowctl;
3263
3264         sc = ifp->if_softc;
3265         ifm = &sc->ifmedia;
3266
3267         if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
3268                 return (EINVAL);
3269
3270         flowctl = 0;
3271
3272         switch (IFM_SUBTYPE(ifm->ifm_media)) {
3273         case IFM_AUTO:
3274                 /*
3275                  * Transmit flow control doesn't work on the Tigon 1.
3276                  */
3277                 flowctl = TI_GLNK_RX_FLOWCTL_Y;
3278
3279                 /*
3280                  * Transmit flow control can also cause problems on the
3281                  * Tigon 2, apparantly with both the copper and fiber
3282                  * boards.  The symptom is that the interface will just
3283                  * hang.  This was reproduced with Alteon 180 switches.
3284                  */
3285 #if 0
3286                 if (sc->ti_hwrev != TI_HWREV_TIGON)
3287                         flowctl |= TI_GLNK_TX_FLOWCTL_Y;
3288 #endif
3289
3290                 CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
3291                     TI_GLNK_FULL_DUPLEX| flowctl |
3292                     TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
3293
3294                 flowctl = TI_LNK_RX_FLOWCTL_Y;
3295 #if 0
3296                 if (sc->ti_hwrev != TI_HWREV_TIGON)
3297                         flowctl |= TI_LNK_TX_FLOWCTL_Y;
3298 #endif
3299
3300                 CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
3301                     TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX| flowctl |
3302                     TI_LNK_AUTONEGENB|TI_LNK_ENB);
3303                 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
3304                     TI_CMD_CODE_NEGOTIATE_BOTH, 0);
3305                 break;
3306         case IFM_1000_SX:
3307         case IFM_1000_T:
3308                 flowctl = TI_GLNK_RX_FLOWCTL_Y;
3309 #if 0
3310                 if (sc->ti_hwrev != TI_HWREV_TIGON)
3311                         flowctl |= TI_GLNK_TX_FLOWCTL_Y;
3312 #endif
3313
3314                 CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
3315                     flowctl |TI_GLNK_ENB);
3316                 CSR_WRITE_4(sc, TI_GCR_LINK, 0);
3317                 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3318                         TI_SETBIT(sc, TI_GCR_GLINK, TI_GLNK_FULL_DUPLEX);
3319                 }
3320                 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
3321                     TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
3322                 break;
3323         case IFM_100_FX:
3324         case IFM_10_FL:
3325         case IFM_100_TX:
3326         case IFM_10_T:
3327                 flowctl = TI_LNK_RX_FLOWCTL_Y;
3328 #if 0
3329                 if (sc->ti_hwrev != TI_HWREV_TIGON)
3330                         flowctl |= TI_LNK_TX_FLOWCTL_Y;
3331 #endif
3332
3333                 CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
3334                 CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF|flowctl);
3335                 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
3336                     IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
3337                         TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
3338                 } else {
3339                         TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
3340                 }
3341                 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3342                         TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
3343                 } else {
3344                         TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
3345                 }
3346                 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
3347                     TI_CMD_CODE_NEGOTIATE_10_100, 0);
3348                 break;
3349         }
3350
3351         return (0);
3352 }
3353
3354 /*
3355  * Report current media status.
3356  */
3357 static void
3358 ti_ifmedia_sts(ifp, ifmr)
3359         struct ifnet            *ifp;
3360         struct ifmediareq       *ifmr;
3361 {
3362         struct ti_softc         *sc;
3363         u_int32_t               media = 0;
3364
3365         sc = ifp->if_softc;
3366
3367         ifmr->ifm_status = IFM_AVALID;
3368         ifmr->ifm_active = IFM_ETHER;
3369
3370         if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
3371                 return;
3372
3373         ifmr->ifm_status |= IFM_ACTIVE;
3374
3375         if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
3376                 media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
3377                 if (sc->ti_copper)
3378                         ifmr->ifm_active |= IFM_1000_T;
3379                 else
3380                         ifmr->ifm_active |= IFM_1000_SX;
3381                 if (media & TI_GLNK_FULL_DUPLEX)
3382                         ifmr->ifm_active |= IFM_FDX;
3383                 else
3384                         ifmr->ifm_active |= IFM_HDX;
3385         } else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
3386                 media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
3387                 if (sc->ti_copper) {
3388                         if (media & TI_LNK_100MB)
3389                                 ifmr->ifm_active |= IFM_100_TX;
3390                         if (media & TI_LNK_10MB)
3391                                 ifmr->ifm_active |= IFM_10_T;
3392                 } else {
3393                         if (media & TI_LNK_100MB)
3394                                 ifmr->ifm_active |= IFM_100_FX;
3395                         if (media & TI_LNK_10MB)
3396                                 ifmr->ifm_active |= IFM_10_FL;
3397                 }
3398                 if (media & TI_LNK_FULL_DUPLEX)
3399                         ifmr->ifm_active |= IFM_FDX;
3400                 if (media & TI_LNK_HALF_DUPLEX)
3401                         ifmr->ifm_active |= IFM_HDX;
3402         }
3403 }
3404
3405 static int
3406 ti_ioctl(ifp, command, data)
3407         struct ifnet            *ifp;
3408         u_long                  command;
3409         caddr_t                 data;
3410 {
3411         struct ti_softc         *sc = ifp->if_softc;
3412         struct ifreq            *ifr = (struct ifreq *) data;
3413         int                     mask, error = 0;
3414         struct ti_cmd_desc      cmd;
3415
3416         switch (command) {
3417         case SIOCSIFMTU:
3418                 TI_LOCK(sc);
3419                 if (ifr->ifr_mtu > TI_JUMBO_MTU)
3420                         error = EINVAL;
3421                 else {
3422                         ifp->if_mtu = ifr->ifr_mtu;
3423                         ti_init_locked(sc);
3424                 }
3425                 TI_UNLOCK(sc);
3426                 break;
3427         case SIOCSIFFLAGS:
3428                 TI_LOCK(sc);
3429                 if (ifp->if_flags & IFF_UP) {
3430                         /*
3431                          * If only the state of the PROMISC flag changed,
3432                          * then just use the 'set promisc mode' command
3433                          * instead of reinitializing the entire NIC. Doing
3434                          * a full re-init means reloading the firmware and
3435                          * waiting for it to start up, which may take a
3436                          * second or two.
3437                          */
3438                         if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
3439                             ifp->if_flags & IFF_PROMISC &&
3440                             !(sc->ti_if_flags & IFF_PROMISC)) {
3441                                 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
3442                                     TI_CMD_CODE_PROMISC_ENB, 0);
3443                         } else if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
3444                             !(ifp->if_flags & IFF_PROMISC) &&
3445                             sc->ti_if_flags & IFF_PROMISC) {
3446                                 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
3447                                     TI_CMD_CODE_PROMISC_DIS, 0);
3448                         } else
3449                                 ti_init_locked(sc);
3450                 } else {
3451                         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3452                                 ti_stop(sc);
3453                         }
3454                 }
3455                 sc->ti_if_flags = ifp->if_flags;
3456                 TI_UNLOCK(sc);
3457                 break;
3458         case SIOCADDMULTI:
3459         case SIOCDELMULTI:
3460                 TI_LOCK(sc);
3461                 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3462                         ti_setmulti(sc);
3463                 TI_UNLOCK(sc);
3464                 break;
3465         case SIOCSIFMEDIA:
3466         case SIOCGIFMEDIA:
3467                 error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
3468                 break;
3469         case SIOCSIFCAP:
3470                 TI_LOCK(sc);
3471                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
3472                 if (mask & IFCAP_HWCSUM) {
3473                         if (IFCAP_HWCSUM & ifp->if_capenable)
3474                                 ifp->if_capenable &= ~IFCAP_HWCSUM;
3475                         else
3476                                 ifp->if_capenable |= IFCAP_HWCSUM;
3477                         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3478                                 ti_init_locked(sc);
3479                 }
3480                 TI_UNLOCK(sc);
3481                 break;
3482         default:
3483                 error = ether_ioctl(ifp, command, data);
3484                 break;
3485         }
3486
3487         return (error);
3488 }
3489
3490 static int
3491 ti_open(struct cdev *dev, int flags, int fmt, struct thread *td)
3492 {
3493         struct ti_softc *sc;
3494
3495         sc = dev->si_drv1;
3496         if (sc == NULL)
3497                 return (ENODEV);
3498
3499         TI_LOCK(sc);
3500         sc->ti_flags |= TI_FLAG_DEBUGING;
3501         TI_UNLOCK(sc);
3502
3503         return (0);
3504 }
3505
3506 static int
3507 ti_close(struct cdev *dev, int flag, int fmt, struct thread *td)
3508 {
3509         struct ti_softc *sc;
3510
3511         sc = dev->si_drv1;
3512         if (sc == NULL)
3513                 return (ENODEV);
3514
3515         TI_LOCK(sc);
3516         sc->ti_flags &= ~TI_FLAG_DEBUGING;
3517         TI_UNLOCK(sc);
3518
3519         return (0);
3520 }
3521
3522 /*
3523  * This ioctl routine goes along with the Tigon character device.
3524  */
3525 static int
3526 ti_ioctl2(struct cdev *dev, u_long cmd, caddr_t addr, int flag,
3527     struct thread *td)
3528 {
3529         int error;
3530         struct ti_softc *sc;
3531
3532         sc = dev->si_drv1;
3533         if (sc == NULL)
3534                 return (ENODEV);
3535
3536         error = 0;
3537
3538         switch (cmd) {
3539         case TIIOCGETSTATS:
3540         {
3541                 struct ti_stats *outstats;
3542
3543                 outstats = (struct ti_stats *)addr;
3544
3545                 TI_LOCK(sc);
3546                 bcopy(&sc->ti_rdata->ti_info.ti_stats, outstats,
3547                       sizeof(struct ti_stats));
3548                 TI_UNLOCK(sc);
3549                 break;
3550         }
3551         case TIIOCGETPARAMS:
3552         {
3553                 struct ti_params        *params;
3554
3555                 params = (struct ti_params *)addr;
3556
3557                 TI_LOCK(sc);
3558                 params->ti_stat_ticks = sc->ti_stat_ticks;
3559                 params->ti_rx_coal_ticks = sc->ti_rx_coal_ticks;
3560                 params->ti_tx_coal_ticks = sc->ti_tx_coal_ticks;
3561                 params->ti_rx_max_coal_bds = sc->ti_rx_max_coal_bds;
3562                 params->ti_tx_max_coal_bds = sc->ti_tx_max_coal_bds;
3563                 params->ti_tx_buf_ratio = sc->ti_tx_buf_ratio;
3564                 params->param_mask = TI_PARAM_ALL;
3565                 TI_UNLOCK(sc);
3566
3567                 error = 0;
3568
3569                 break;
3570         }
3571         case TIIOCSETPARAMS:
3572         {
3573                 struct ti_params *params;
3574
3575                 params = (struct ti_params *)addr;
3576
3577                 TI_LOCK(sc);
3578                 if (params->param_mask & TI_PARAM_STAT_TICKS) {
3579                         sc->ti_stat_ticks = params->ti_stat_ticks;
3580                         CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
3581                 }
3582
3583                 if (params->param_mask & TI_PARAM_RX_COAL_TICKS) {
3584                         sc->ti_rx_coal_ticks = params->ti_rx_coal_ticks;
3585                         CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
3586                                     sc->ti_rx_coal_ticks);
3587                 }
3588
3589                 if (params->param_mask & TI_PARAM_TX_COAL_TICKS) {
3590                         sc->ti_tx_coal_ticks = params->ti_tx_coal_ticks;
3591                         CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS,
3592                                     sc->ti_tx_coal_ticks);
3593                 }
3594
3595                 if (params->param_mask & TI_PARAM_RX_COAL_BDS) {
3596                         sc->ti_rx_max_coal_bds = params->ti_rx_max_coal_bds;
3597                         CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD,
3598                                     sc->ti_rx_max_coal_bds);
3599                 }
3600
3601                 if (params->param_mask & TI_PARAM_TX_COAL_BDS) {
3602                         sc->ti_tx_max_coal_bds = params->ti_tx_max_coal_bds;
3603                         CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD,
3604                                     sc->ti_tx_max_coal_bds);
3605                 }
3606
3607                 if (params->param_mask & TI_PARAM_TX_BUF_RATIO) {
3608                         sc->ti_tx_buf_ratio = params->ti_tx_buf_ratio;
3609                         CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO,
3610                                     sc->ti_tx_buf_ratio);
3611                 }
3612                 TI_UNLOCK(sc);
3613
3614                 error = 0;
3615
3616                 break;
3617         }
3618         case TIIOCSETTRACE: {
3619                 ti_trace_type   trace_type;
3620
3621                 trace_type = *(ti_trace_type *)addr;
3622
3623                 /*
3624                  * Set tracing to whatever the user asked for.  Setting
3625                  * this register to 0 should have the effect of disabling
3626                  * tracing.
3627                  */
3628                 CSR_WRITE_4(sc, TI_GCR_NIC_TRACING, trace_type);
3629
3630                 error = 0;
3631
3632                 break;
3633         }
3634         case TIIOCGETTRACE: {
3635                 struct ti_trace_buf     *trace_buf;
3636                 u_int32_t               trace_start, cur_trace_ptr, trace_len;
3637
3638                 trace_buf = (struct ti_trace_buf *)addr;
3639
3640                 TI_LOCK(sc);
3641                 trace_start = CSR_READ_4(sc, TI_GCR_NICTRACE_START);
3642                 cur_trace_ptr = CSR_READ_4(sc, TI_GCR_NICTRACE_PTR);
3643                 trace_len = CSR_READ_4(sc, TI_GCR_NICTRACE_LEN);
3644
3645 #if 0
3646                 if_printf(sc->ti_ifp, "trace_start = %#x, cur_trace_ptr = %#x, "
3647                        "trace_len = %d\n", trace_start,
3648                        cur_trace_ptr, trace_len);
3649                 if_printf(sc->ti_ifp, "trace_buf->buf_len = %d\n",
3650                        trace_buf->buf_len);
3651 #endif
3652
3653                 error = ti_copy_mem(sc, trace_start, min(trace_len,
3654                                     trace_buf->buf_len),
3655                                     (caddr_t)trace_buf->buf, 1, 1);
3656
3657                 if (error == 0) {
3658                         trace_buf->fill_len = min(trace_len,
3659                                                   trace_buf->buf_len);
3660                         if (cur_trace_ptr < trace_start)
3661                                 trace_buf->cur_trace_ptr =
3662                                         trace_start - cur_trace_ptr;
3663                         else
3664                                 trace_buf->cur_trace_ptr =
3665                                         cur_trace_ptr - trace_start;
3666                 } else
3667                         trace_buf->fill_len = 0;
3668                 TI_UNLOCK(sc);
3669
3670                 break;
3671         }
3672
3673         /*
3674          * For debugging, five ioctls are needed:
3675          * ALT_ATTACH
3676          * ALT_READ_TG_REG
3677          * ALT_WRITE_TG_REG
3678          * ALT_READ_TG_MEM
3679          * ALT_WRITE_TG_MEM
3680          */
3681         case ALT_ATTACH:
3682                 /*
3683                  * From what I can tell, Alteon's Solaris Tigon driver
3684                  * only has one character device, so you have to attach
3685                  * to the Tigon board you're interested in.  This seems
3686                  * like a not-so-good way to do things, since unless you
3687                  * subsequently specify the unit number of the device
3688                  * you're interested in in every ioctl, you'll only be
3689                  * able to debug one board at a time.
3690                  */
3691                 error = 0;
3692                 break;
3693         case ALT_READ_TG_MEM:
3694         case ALT_WRITE_TG_MEM:
3695         {
3696                 struct tg_mem *mem_param;
3697                 u_int32_t sram_end, scratch_end;
3698
3699                 mem_param = (struct tg_mem *)addr;
3700
3701                 if (sc->ti_hwrev == TI_HWREV_TIGON) {
3702                         sram_end = TI_END_SRAM_I;
3703                         scratch_end = TI_END_SCRATCH_I;
3704                 } else {
3705                         sram_end = TI_END_SRAM_II;
3706                         scratch_end = TI_END_SCRATCH_II;
3707                 }
3708
3709                 /*
3710                  * For now, we'll only handle accessing regular SRAM,
3711                  * nothing else.
3712                  */
3713                 TI_LOCK(sc);
3714                 if ((mem_param->tgAddr >= TI_BEG_SRAM)
3715                  && ((mem_param->tgAddr + mem_param->len) <= sram_end)) {
3716                         /*
3717                          * In this instance, we always copy to/from user
3718                          * space, so the user space argument is set to 1.
3719                          */
3720                         error = ti_copy_mem(sc, mem_param->tgAddr,
3721                                             mem_param->len,
3722                                             mem_param->userAddr, 1,
3723                                             (cmd == ALT_READ_TG_MEM) ? 1 : 0);
3724                 } else if ((mem_param->tgAddr >= TI_BEG_SCRATCH)
3725                         && (mem_param->tgAddr <= scratch_end)) {
3726                         error = ti_copy_scratch(sc, mem_param->tgAddr,
3727                                                 mem_param->len,
3728                                                 mem_param->userAddr, 1,
3729                                                 (cmd == ALT_READ_TG_MEM) ?
3730                                                 1 : 0, TI_PROCESSOR_A);
3731                 } else if ((mem_param->tgAddr >= TI_BEG_SCRATCH_B_DEBUG)
3732                         && (mem_param->tgAddr <= TI_BEG_SCRATCH_B_DEBUG)) {
3733                         if (sc->ti_hwrev == TI_HWREV_TIGON) {
3734                                 if_printf(sc->ti_ifp,
3735                                     "invalid memory range for Tigon I\n");
3736                                 error = EINVAL;
3737                                 break;
3738                         }
3739                         error = ti_copy_scratch(sc, mem_param->tgAddr -
3740                                                 TI_SCRATCH_DEBUG_OFF,
3741                                                 mem_param->len,
3742                                                 mem_param->userAddr, 1,
3743                                                 (cmd == ALT_READ_TG_MEM) ?
3744                                                 1 : 0, TI_PROCESSOR_B);
3745                 } else {
3746                         if_printf(sc->ti_ifp, "memory address %#x len %d is "
3747                                 "out of supported range\n",
3748                                 mem_param->tgAddr, mem_param->len);
3749                         error = EINVAL;
3750                 }
3751                 TI_UNLOCK(sc);
3752
3753                 break;
3754         }
3755         case ALT_READ_TG_REG:
3756         case ALT_WRITE_TG_REG:
3757         {
3758                 struct tg_reg   *regs;
3759                 u_int32_t       tmpval;
3760
3761                 regs = (struct tg_reg *)addr;
3762
3763                 /*
3764                  * Make sure the address in question isn't out of range.
3765                  */
3766                 if (regs->addr > TI_REG_MAX) {
3767                         error = EINVAL;
3768                         break;
3769                 }
3770                 TI_LOCK(sc);
3771                 if (cmd == ALT_READ_TG_REG) {
3772                         bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
3773                                                 regs->addr, &tmpval, 1);
3774                         regs->data = ntohl(tmpval);
3775 #if 0
3776                         if ((regs->addr == TI_CPU_STATE)
3777                          || (regs->addr == TI_CPU_CTL_B)) {
3778                                 if_printf(sc->ti_ifp, "register %#x = %#x\n",
3779                                        regs->addr, tmpval);
3780                         }
3781 #endif
3782                 } else {
3783                         tmpval = htonl(regs->data);
3784                         bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
3785                                                  regs->addr, &tmpval, 1);
3786                 }
3787                 TI_UNLOCK(sc);
3788
3789                 break;
3790         }
3791         default:
3792                 error = ENOTTY;
3793                 break;
3794         }
3795         return (error);
3796 }
3797
3798 static void
3799 ti_watchdog(ifp)
3800         struct ifnet            *ifp;
3801 {
3802         struct ti_softc         *sc;
3803
3804         sc = ifp->if_softc;
3805         TI_LOCK(sc);
3806
3807         /*
3808          * When we're debugging, the chip is often stopped for long periods
3809          * of time, and that would normally cause the watchdog timer to fire.
3810          * Since that impedes debugging, we don't want to do that.
3811          */
3812         if (sc->ti_flags & TI_FLAG_DEBUGING) {
3813                 TI_UNLOCK(sc);
3814                 return;
3815         }
3816
3817         if_printf(ifp, "watchdog timeout -- resetting\n");
3818         ti_stop(sc);
3819         ti_init_locked(sc);
3820
3821         ifp->if_oerrors++;
3822         TI_UNLOCK(sc);
3823 }
3824
3825 /*
3826  * Stop the adapter and free any mbufs allocated to the
3827  * RX and TX lists.
3828  */
3829 static void
3830 ti_stop(sc)
3831         struct ti_softc         *sc;
3832 {
3833         struct ifnet            *ifp;
3834         struct ti_cmd_desc      cmd;
3835
3836         TI_LOCK_ASSERT(sc);
3837
3838         ifp = sc->ti_ifp;
3839
3840         /* Disable host interrupts. */
3841         CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
3842         /*
3843          * Tell firmware we're shutting down.
3844          */
3845         TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
3846
3847         /* Halt and reinitialize. */
3848         if (ti_chipinit(sc) != 0)
3849                 return;
3850         ti_mem_zero(sc, 0x2000, 0x100000 - 0x2000);
3851         if (ti_chipinit(sc) != 0)
3852                 return;
3853
3854         /* Free the RX lists. */
3855         ti_free_rx_ring_std(sc);
3856
3857         /* Free jumbo RX list. */
3858         ti_free_rx_ring_jumbo(sc);
3859
3860         /* Free mini RX list. */
3861         ti_free_rx_ring_mini(sc);
3862
3863         /* Free TX buffers. */
3864         ti_free_tx_ring(sc);
3865
3866         sc->ti_ev_prodidx.ti_idx = 0;
3867         sc->ti_return_prodidx.ti_idx = 0;
3868         sc->ti_tx_considx.ti_idx = 0;
3869         sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
3870
3871         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3872 }
3873
3874 /*
3875  * Stop all chip I/O so that the kernel's probe routines don't
3876  * get confused by errant DMAs when rebooting.
3877  */
3878 static int
3879 ti_shutdown(dev)
3880         device_t                dev;
3881 {
3882         struct ti_softc         *sc;
3883
3884         sc = device_get_softc(dev);
3885         TI_LOCK(sc);
3886         ti_chipinit(sc);
3887         TI_UNLOCK(sc);
3888
3889         return (0);
3890 }