]> CyberLeo.Net >> Repos - FreeBSD/releng/7.2.git/blob - sys/dev/usb/if_rum.c
Create releng/7.2 from stable/7 in preparation for 7.2-RELEASE.
[FreeBSD/releng/7.2.git] / sys / dev / usb / if_rum.c
1 /*      $FreeBSD$       */
2
3 /*-
4  * Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini@free.fr>
5  * Copyright (c) 2006 Niall O'Higgins <niallo@openbsd.org>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19
20 #include <sys/cdefs.h>
21 __FBSDID("$FreeBSD$");
22
23 /*-
24  * Ralink Technology RT2501USB/RT2601USB chipset driver
25  * http://www.ralinktech.com.tw/
26  */
27
28 #include <sys/param.h>
29 #include <sys/sysctl.h>
30 #include <sys/sockio.h>
31 #include <sys/mbuf.h>
32 #include <sys/kernel.h>
33 #include <sys/socket.h>
34 #include <sys/systm.h>
35 #include <sys/malloc.h>
36 #include <sys/module.h>
37 #include <sys/bus.h>
38 #include <sys/endian.h>
39
40 #include <machine/bus.h>
41 #include <machine/resource.h>
42 #include <sys/rman.h>
43
44 #include <net/bpf.h>
45 #include <net/if.h>
46 #include <net/if_arp.h>
47 #include <net/ethernet.h>
48 #include <net/if_dl.h>
49 #include <net/if_media.h>
50 #include <net/if_types.h>
51
52 #include <net80211/ieee80211_var.h>
53 #include <net80211/ieee80211_amrr.h>
54 #include <net80211/ieee80211_radiotap.h>
55 #include <net80211/ieee80211_regdomain.h>
56
57 #include <dev/usb/usb.h>
58 #include <dev/usb/usbdi.h>
59 #include <dev/usb/usbdi_util.h>
60 #include "usbdevs.h"
61
62 #include <dev/usb/if_rumreg.h>
63 #include <dev/usb/if_rumvar.h>
64 #include <dev/usb/rt2573_ucode.h>
65
66 #ifdef USB_DEBUG
67 #define DPRINTF(x)      do { if (rumdebug > 0) printf x; } while (0)
68 #define DPRINTFN(n, x)  do { if (rumdebug >= (n)) printf x; } while (0)
69 int rumdebug = 0;
70 SYSCTL_NODE(_hw_usb, OID_AUTO, rum, CTLFLAG_RW, 0, "USB rum");
71 SYSCTL_INT(_hw_usb_rum, OID_AUTO, debug, CTLFLAG_RW, &rumdebug, 0,
72     "rum debug level");
73 #else
74 #define DPRINTF(x)
75 #define DPRINTFN(n, x)
76 #endif
77
78 /* various supported device vendors/products */
79 static const struct usb_devno rum_devs[] = {
80         { USB_VENDOR_ABOCOM,            USB_PRODUCT_ABOCOM_HWU54DM },
81         { USB_VENDOR_ABOCOM,            USB_PRODUCT_ABOCOM_RT2573_2 },
82         { USB_VENDOR_ABOCOM,            USB_PRODUCT_ABOCOM_RT2573_3 },
83         { USB_VENDOR_ABOCOM,            USB_PRODUCT_ABOCOM_RT2573_4 },
84         { USB_VENDOR_ABOCOM,            USB_PRODUCT_ABOCOM_WUG2700 },
85         { USB_VENDOR_AMIT,              USB_PRODUCT_AMIT_CGWLUSB2GO },
86         { USB_VENDOR_ASUS,              USB_PRODUCT_ASUS_RT2573_1 },
87         { USB_VENDOR_ASUS,              USB_PRODUCT_ASUS_RT2573_2 },
88         { USB_VENDOR_BELKIN,            USB_PRODUCT_BELKIN_F5D7050A },
89         { USB_VENDOR_BELKIN,            USB_PRODUCT_BELKIN_F5D9050V3 },
90         { USB_VENDOR_CISCOLINKSYS,      USB_PRODUCT_CISCOLINKSYS_WUSB54GC },
91         { USB_VENDOR_CISCOLINKSYS,      USB_PRODUCT_CISCOLINKSYS_WUSB54GR },
92         { USB_VENDOR_CONCEPTRONIC2,     USB_PRODUCT_CONCEPTRONIC2_C54RU2 },
93         { USB_VENDOR_DICKSMITH,         USB_PRODUCT_DICKSMITH_CWD854F },
94         { USB_VENDOR_DICKSMITH,         USB_PRODUCT_DICKSMITH_RT2573 },
95         { USB_VENDOR_DLINK2,            USB_PRODUCT_DLINK2_DWLG122C1 },
96         { USB_VENDOR_DLINK2,            USB_PRODUCT_DLINK2_WUA1340 },
97         { USB_VENDOR_DLINK2,            USB_PRODUCT_DLINK2_DWA111 },
98         { USB_VENDOR_DLINK2,            USB_PRODUCT_DLINK2_DWA110 },
99         { USB_VENDOR_GIGABYTE,          USB_PRODUCT_GIGABYTE_GNWB01GS },
100         { USB_VENDOR_GIGABYTE,          USB_PRODUCT_GIGABYTE_GNWI05GS },
101         { USB_VENDOR_GIGASET,           USB_PRODUCT_GIGASET_RT2573 },
102         { USB_VENDOR_GOODWAY,           USB_PRODUCT_GOODWAY_RT2573 },
103         { USB_VENDOR_GUILLEMOT,         USB_PRODUCT_GUILLEMOT_HWGUSB254LB },
104         { USB_VENDOR_GUILLEMOT,         USB_PRODUCT_GUILLEMOT_HWGUSB254V2AP },
105         { USB_VENDOR_HUAWEI3COM,        USB_PRODUCT_HUAWEI3COM_WUB320G },
106         { USB_VENDOR_MELCO,             USB_PRODUCT_MELCO_G54HP },
107         { USB_VENDOR_MELCO,             USB_PRODUCT_MELCO_SG54HP },
108         { USB_VENDOR_MSI,               USB_PRODUCT_MSI_RT2573_1 },
109         { USB_VENDOR_MSI,               USB_PRODUCT_MSI_RT2573_2 },
110         { USB_VENDOR_MSI,               USB_PRODUCT_MSI_RT2573_3 },
111         { USB_VENDOR_MSI,               USB_PRODUCT_MSI_RT2573_4 },
112         { USB_VENDOR_NOVATECH,          USB_PRODUCT_NOVATECH_RT2573 },
113         { USB_VENDOR_PLANEX2,           USB_PRODUCT_PLANEX2_GWUS54HP },
114         { USB_VENDOR_PLANEX2,           USB_PRODUCT_PLANEX2_GWUS54MINI2 },
115         { USB_VENDOR_PLANEX2,           USB_PRODUCT_PLANEX2_GWUSMM },
116         { USB_VENDOR_QCOM,              USB_PRODUCT_QCOM_RT2573 },
117         { USB_VENDOR_QCOM,              USB_PRODUCT_QCOM_RT2573_2 },
118         { USB_VENDOR_RALINK,            USB_PRODUCT_RALINK_RT2573 },
119         { USB_VENDOR_RALINK,            USB_PRODUCT_RALINK_RT2573_2 },
120         { USB_VENDOR_RALINK,            USB_PRODUCT_RALINK_RT2671 },
121         { USB_VENDOR_SITECOMEU,         USB_PRODUCT_SITECOMEU_WL113R2 },
122         { USB_VENDOR_SITECOMEU,         USB_PRODUCT_SITECOMEU_WL172 },
123         { USB_VENDOR_SPARKLAN,          USB_PRODUCT_SPARKLAN_RT2573 },
124         { USB_VENDOR_SURECOM,           USB_PRODUCT_SURECOM_RT2573 }
125 };
126
127 MODULE_DEPEND(rum, wlan, 1, 1, 1);
128 MODULE_DEPEND(rum, wlan_amrr, 1, 1, 1);
129 MODULE_DEPEND(rum, usb, 1, 1, 1);
130
131 static int              rum_alloc_tx_list(struct rum_softc *);
132 static void             rum_free_tx_list(struct rum_softc *);
133 static int              rum_alloc_rx_list(struct rum_softc *);
134 static void             rum_free_rx_list(struct rum_softc *);
135 static int              rum_media_change(struct ifnet *);
136 static void             rum_task(void *);
137 static void             rum_scantask(void *);
138 static int              rum_newstate(struct ieee80211com *,
139                             enum ieee80211_state, int);
140 static void             rum_txeof(usbd_xfer_handle, usbd_private_handle,
141                             usbd_status);
142 static void             rum_rxeof(usbd_xfer_handle, usbd_private_handle,
143                             usbd_status);
144 static int              rum_rxrate(struct rum_rx_desc *);
145 static int              rum_ack_rate(struct ieee80211com *, int);
146 static uint16_t         rum_txtime(int, int, uint32_t);
147 static uint8_t          rum_plcp_signal(int);
148 static void             rum_setup_tx_desc(struct rum_softc *,
149                             struct rum_tx_desc *, uint32_t, uint16_t, int,
150                             int);
151 static int              rum_tx_mgt(struct rum_softc *, struct mbuf *,
152                             struct ieee80211_node *);
153 static int              rum_tx_raw(struct rum_softc *, struct mbuf *,
154                             struct ieee80211_node *, 
155                             const struct ieee80211_bpf_params *);
156 static int              rum_tx_data(struct rum_softc *, struct mbuf *,
157                             struct ieee80211_node *);
158 static void             rum_start(struct ifnet *);
159 static void             rum_watchdog(void *);
160 static int              rum_ioctl(struct ifnet *, u_long, caddr_t);
161 static void             rum_eeprom_read(struct rum_softc *, uint16_t, void *,
162                             int);
163 static uint32_t         rum_read(struct rum_softc *, uint16_t);
164 static void             rum_read_multi(struct rum_softc *, uint16_t, void *,
165                             int);
166 static void             rum_write(struct rum_softc *, uint16_t, uint32_t);
167 static void             rum_write_multi(struct rum_softc *, uint16_t, void *,
168                             size_t);
169 static void             rum_bbp_write(struct rum_softc *, uint8_t, uint8_t);
170 static uint8_t          rum_bbp_read(struct rum_softc *, uint8_t);
171 static void             rum_rf_write(struct rum_softc *, uint8_t, uint32_t);
172 static void             rum_select_antenna(struct rum_softc *);
173 static void             rum_enable_mrr(struct rum_softc *);
174 static void             rum_set_txpreamble(struct rum_softc *);
175 static void             rum_set_basicrates(struct rum_softc *);
176 static void             rum_select_band(struct rum_softc *,
177                             struct ieee80211_channel *);
178 static void             rum_set_chan(struct rum_softc *,
179                             struct ieee80211_channel *);
180 static void             rum_enable_tsf_sync(struct rum_softc *);
181 static void             rum_update_slot(struct ifnet *);
182 static void             rum_set_bssid(struct rum_softc *, const uint8_t *);
183 static void             rum_set_macaddr(struct rum_softc *, const uint8_t *);
184 static void             rum_update_promisc(struct rum_softc *);
185 static const char       *rum_get_rf(int);
186 static void             rum_read_eeprom(struct rum_softc *);
187 static int              rum_bbp_init(struct rum_softc *);
188 static void             rum_init(void *);
189 static void             rum_stop(void *);
190 static int              rum_load_microcode(struct rum_softc *, const u_char *,
191                             size_t);
192 static int              rum_prepare_beacon(struct rum_softc *);
193 static int              rum_raw_xmit(struct ieee80211_node *, struct mbuf *,
194                             const struct ieee80211_bpf_params *);
195 static void             rum_scan_start(struct ieee80211com *);
196 static void             rum_scan_end(struct ieee80211com *);
197 static void             rum_set_channel(struct ieee80211com *);
198 static int              rum_get_rssi(struct rum_softc *, uint8_t);
199 static void             rum_amrr_start(struct rum_softc *,
200                             struct ieee80211_node *);
201 static void             rum_amrr_timeout(void *);
202 static void             rum_amrr_update(usbd_xfer_handle, usbd_private_handle,
203                             usbd_status);
204
205 static const struct {
206         uint32_t        reg;
207         uint32_t        val;
208 } rum_def_mac[] = {
209         { RT2573_TXRX_CSR0,  0x025fb032 },
210         { RT2573_TXRX_CSR1,  0x9eaa9eaf },
211         { RT2573_TXRX_CSR2,  0x8a8b8c8d }, 
212         { RT2573_TXRX_CSR3,  0x00858687 },
213         { RT2573_TXRX_CSR7,  0x2e31353b },
214         { RT2573_TXRX_CSR8,  0x2a2a2a2c },
215         { RT2573_TXRX_CSR15, 0x0000000f },
216         { RT2573_MAC_CSR6,   0x00000fff },
217         { RT2573_MAC_CSR8,   0x016c030a },
218         { RT2573_MAC_CSR10,  0x00000718 },
219         { RT2573_MAC_CSR12,  0x00000004 },
220         { RT2573_MAC_CSR13,  0x00007f00 },
221         { RT2573_SEC_CSR0,   0x00000000 },
222         { RT2573_SEC_CSR1,   0x00000000 },
223         { RT2573_SEC_CSR5,   0x00000000 },
224         { RT2573_PHY_CSR1,   0x000023b0 },
225         { RT2573_PHY_CSR5,   0x00040a06 },
226         { RT2573_PHY_CSR6,   0x00080606 },
227         { RT2573_PHY_CSR7,   0x00000408 },
228         { RT2573_AIFSN_CSR,  0x00002273 },
229         { RT2573_CWMIN_CSR,  0x00002344 },
230         { RT2573_CWMAX_CSR,  0x000034aa }
231 };
232
233 static const struct {
234         uint8_t reg;
235         uint8_t val;
236 } rum_def_bbp[] = {
237         {   3, 0x80 },
238         {  15, 0x30 },
239         {  17, 0x20 },
240         {  21, 0xc8 },
241         {  22, 0x38 },
242         {  23, 0x06 },
243         {  24, 0xfe },
244         {  25, 0x0a },
245         {  26, 0x0d },
246         {  32, 0x0b },
247         {  34, 0x12 },
248         {  37, 0x07 },
249         {  39, 0xf8 },
250         {  41, 0x60 },
251         {  53, 0x10 },
252         {  54, 0x18 },
253         {  60, 0x10 },
254         {  61, 0x04 },
255         {  62, 0x04 },
256         {  75, 0xfe },
257         {  86, 0xfe },
258         {  88, 0xfe },
259         {  90, 0x0f },
260         {  99, 0x00 },
261         { 102, 0x16 },
262         { 107, 0x04 }
263 };
264
265 static const struct rfprog {
266         uint8_t         chan;
267         uint32_t        r1, r2, r3, r4;
268 }  rum_rf5226[] = {
269         {   1, 0x00b03, 0x001e1, 0x1a014, 0x30282 },
270         {   2, 0x00b03, 0x001e1, 0x1a014, 0x30287 },
271         {   3, 0x00b03, 0x001e2, 0x1a014, 0x30282 },
272         {   4, 0x00b03, 0x001e2, 0x1a014, 0x30287 },
273         {   5, 0x00b03, 0x001e3, 0x1a014, 0x30282 },
274         {   6, 0x00b03, 0x001e3, 0x1a014, 0x30287 },
275         {   7, 0x00b03, 0x001e4, 0x1a014, 0x30282 },
276         {   8, 0x00b03, 0x001e4, 0x1a014, 0x30287 },
277         {   9, 0x00b03, 0x001e5, 0x1a014, 0x30282 },
278         {  10, 0x00b03, 0x001e5, 0x1a014, 0x30287 },
279         {  11, 0x00b03, 0x001e6, 0x1a014, 0x30282 },
280         {  12, 0x00b03, 0x001e6, 0x1a014, 0x30287 },
281         {  13, 0x00b03, 0x001e7, 0x1a014, 0x30282 },
282         {  14, 0x00b03, 0x001e8, 0x1a014, 0x30284 },
283
284         {  34, 0x00b03, 0x20266, 0x36014, 0x30282 },
285         {  38, 0x00b03, 0x20267, 0x36014, 0x30284 },
286         {  42, 0x00b03, 0x20268, 0x36014, 0x30286 },
287         {  46, 0x00b03, 0x20269, 0x36014, 0x30288 },
288
289         {  36, 0x00b03, 0x00266, 0x26014, 0x30288 },
290         {  40, 0x00b03, 0x00268, 0x26014, 0x30280 },
291         {  44, 0x00b03, 0x00269, 0x26014, 0x30282 },
292         {  48, 0x00b03, 0x0026a, 0x26014, 0x30284 },
293         {  52, 0x00b03, 0x0026b, 0x26014, 0x30286 },
294         {  56, 0x00b03, 0x0026c, 0x26014, 0x30288 },
295         {  60, 0x00b03, 0x0026e, 0x26014, 0x30280 },
296         {  64, 0x00b03, 0x0026f, 0x26014, 0x30282 },
297
298         { 100, 0x00b03, 0x0028a, 0x2e014, 0x30280 },
299         { 104, 0x00b03, 0x0028b, 0x2e014, 0x30282 },
300         { 108, 0x00b03, 0x0028c, 0x2e014, 0x30284 },
301         { 112, 0x00b03, 0x0028d, 0x2e014, 0x30286 },
302         { 116, 0x00b03, 0x0028e, 0x2e014, 0x30288 },
303         { 120, 0x00b03, 0x002a0, 0x2e014, 0x30280 },
304         { 124, 0x00b03, 0x002a1, 0x2e014, 0x30282 },
305         { 128, 0x00b03, 0x002a2, 0x2e014, 0x30284 },
306         { 132, 0x00b03, 0x002a3, 0x2e014, 0x30286 },
307         { 136, 0x00b03, 0x002a4, 0x2e014, 0x30288 },
308         { 140, 0x00b03, 0x002a6, 0x2e014, 0x30280 },
309
310         { 149, 0x00b03, 0x002a8, 0x2e014, 0x30287 },
311         { 153, 0x00b03, 0x002a9, 0x2e014, 0x30289 },
312         { 157, 0x00b03, 0x002ab, 0x2e014, 0x30281 },
313         { 161, 0x00b03, 0x002ac, 0x2e014, 0x30283 },
314         { 165, 0x00b03, 0x002ad, 0x2e014, 0x30285 }
315 }, rum_rf5225[] = {
316         {   1, 0x00b33, 0x011e1, 0x1a014, 0x30282 },
317         {   2, 0x00b33, 0x011e1, 0x1a014, 0x30287 },
318         {   3, 0x00b33, 0x011e2, 0x1a014, 0x30282 },
319         {   4, 0x00b33, 0x011e2, 0x1a014, 0x30287 },
320         {   5, 0x00b33, 0x011e3, 0x1a014, 0x30282 },
321         {   6, 0x00b33, 0x011e3, 0x1a014, 0x30287 },
322         {   7, 0x00b33, 0x011e4, 0x1a014, 0x30282 },
323         {   8, 0x00b33, 0x011e4, 0x1a014, 0x30287 },
324         {   9, 0x00b33, 0x011e5, 0x1a014, 0x30282 },
325         {  10, 0x00b33, 0x011e5, 0x1a014, 0x30287 },
326         {  11, 0x00b33, 0x011e6, 0x1a014, 0x30282 },
327         {  12, 0x00b33, 0x011e6, 0x1a014, 0x30287 },
328         {  13, 0x00b33, 0x011e7, 0x1a014, 0x30282 },
329         {  14, 0x00b33, 0x011e8, 0x1a014, 0x30284 },
330
331         {  34, 0x00b33, 0x01266, 0x26014, 0x30282 },
332         {  38, 0x00b33, 0x01267, 0x26014, 0x30284 },
333         {  42, 0x00b33, 0x01268, 0x26014, 0x30286 },
334         {  46, 0x00b33, 0x01269, 0x26014, 0x30288 },
335
336         {  36, 0x00b33, 0x01266, 0x26014, 0x30288 },
337         {  40, 0x00b33, 0x01268, 0x26014, 0x30280 },
338         {  44, 0x00b33, 0x01269, 0x26014, 0x30282 },
339         {  48, 0x00b33, 0x0126a, 0x26014, 0x30284 },
340         {  52, 0x00b33, 0x0126b, 0x26014, 0x30286 },
341         {  56, 0x00b33, 0x0126c, 0x26014, 0x30288 },
342         {  60, 0x00b33, 0x0126e, 0x26014, 0x30280 },
343         {  64, 0x00b33, 0x0126f, 0x26014, 0x30282 },
344
345         { 100, 0x00b33, 0x0128a, 0x2e014, 0x30280 },
346         { 104, 0x00b33, 0x0128b, 0x2e014, 0x30282 },
347         { 108, 0x00b33, 0x0128c, 0x2e014, 0x30284 },
348         { 112, 0x00b33, 0x0128d, 0x2e014, 0x30286 },
349         { 116, 0x00b33, 0x0128e, 0x2e014, 0x30288 },
350         { 120, 0x00b33, 0x012a0, 0x2e014, 0x30280 },
351         { 124, 0x00b33, 0x012a1, 0x2e014, 0x30282 },
352         { 128, 0x00b33, 0x012a2, 0x2e014, 0x30284 },
353         { 132, 0x00b33, 0x012a3, 0x2e014, 0x30286 },
354         { 136, 0x00b33, 0x012a4, 0x2e014, 0x30288 },
355         { 140, 0x00b33, 0x012a6, 0x2e014, 0x30280 },
356
357         { 149, 0x00b33, 0x012a8, 0x2e014, 0x30287 },
358         { 153, 0x00b33, 0x012a9, 0x2e014, 0x30289 },
359         { 157, 0x00b33, 0x012ab, 0x2e014, 0x30281 },
360         { 161, 0x00b33, 0x012ac, 0x2e014, 0x30283 },
361         { 165, 0x00b33, 0x012ad, 0x2e014, 0x30285 }
362 };
363
364 static int
365 rum_match(device_t self)
366 {
367         struct usb_attach_arg *uaa = device_get_ivars(self);
368
369         if (uaa->iface != NULL)
370                 return UMATCH_NONE;
371
372         return (usb_lookup(rum_devs, uaa->vendor, uaa->product) != NULL) ?
373             UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
374 }
375
376 static int
377 rum_attach(device_t self)
378 {
379         struct rum_softc *sc = device_get_softc(self);
380         struct usb_attach_arg *uaa = device_get_ivars(self);
381         struct ieee80211com *ic = &sc->sc_ic;
382         struct ifnet *ifp;
383         const uint8_t *ucode = NULL;
384         usb_interface_descriptor_t *id;
385         usb_endpoint_descriptor_t *ed;
386         usbd_status error;
387         int i, ntries, size, bands;
388         uint32_t tmp;
389
390         sc->sc_udev = uaa->device;
391         sc->sc_dev = self;
392
393         if (usbd_set_config_no(sc->sc_udev, RT2573_CONFIG_NO, 0) != 0) {
394                 printf("%s: could not set configuration no\n",
395                     device_get_nameunit(sc->sc_dev));
396                 return ENXIO;
397         }
398
399         /* get the first interface handle */
400         error = usbd_device2interface_handle(sc->sc_udev, RT2573_IFACE_INDEX,
401             &sc->sc_iface);
402         if (error != 0) {
403                 printf("%s: could not get interface handle\n",
404                     device_get_nameunit(sc->sc_dev));
405                 return ENXIO;
406         }
407
408         /*
409          * Find endpoints.
410          */
411         id = usbd_get_interface_descriptor(sc->sc_iface);
412
413         sc->sc_rx_no = sc->sc_tx_no = -1;
414         for (i = 0; i < id->bNumEndpoints; i++) {
415                 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
416                 if (ed == NULL) {
417                         printf("%s: no endpoint descriptor for iface %d\n",
418                             device_get_nameunit(sc->sc_dev), i);
419                         return ENXIO;
420                 }
421
422                 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
423                     UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
424                         sc->sc_rx_no = ed->bEndpointAddress;
425                 else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
426                     UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
427                         sc->sc_tx_no = ed->bEndpointAddress;
428         }
429         if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
430                 printf("%s: missing endpoint\n", 
431                     device_get_nameunit(sc->sc_dev));
432                 return ENXIO;
433         }
434
435         mtx_init(&sc->sc_mtx, device_get_nameunit(sc->sc_dev), MTX_NETWORK_LOCK,
436             MTX_DEF | MTX_RECURSE);
437
438         usb_init_task(&sc->sc_task, rum_task, sc);
439         usb_init_task(&sc->sc_scantask, rum_scantask, sc);
440         callout_init(&sc->watchdog_ch, 0);
441         callout_init(&sc->amrr_ch, 0);
442
443         /* retrieve RT2573 rev. no */
444         for (ntries = 0; ntries < 1000; ntries++) {
445                 if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0)
446                         break;
447                 DELAY(1000);
448         }
449         if (ntries == 1000) {
450                 printf("%s: timeout waiting for chip to settle\n",
451                     device_get_nameunit(sc->sc_dev));
452                 return ENXIO;
453         }
454
455         /* retrieve MAC address and various other things from EEPROM */
456         rum_read_eeprom(sc);
457
458         printf("%s: MAC/BBP RT2573 (rev 0x%05x), RF %s\n",
459             device_get_nameunit(sc->sc_dev), tmp, rum_get_rf(sc->rf_rev));
460
461         ucode = rt2573_ucode;
462         size = sizeof rt2573_ucode;
463         error = rum_load_microcode(sc, ucode, size);
464         if (error != 0) {
465                 device_printf(sc->sc_dev, "could not load 8051 microcode\n");
466                 mtx_destroy(&sc->sc_mtx);
467                 return ENXIO;
468         }
469
470         ifp = sc->sc_ifp = if_alloc(IFT_ETHER);
471         if (ifp == NULL) {
472                 printf("%s: can not if_alloc()\n", 
473                     device_get_nameunit(sc->sc_dev));
474                 mtx_destroy(&sc->sc_mtx);
475                 return ENXIO;
476         }
477
478         ifp->if_softc = sc;
479         if_initname(ifp, "rum", device_get_unit(sc->sc_dev));
480         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST |
481             IFF_NEEDSGIANT; /* USB stack is still under Giant lock */
482         ifp->if_init = rum_init;
483         ifp->if_ioctl = rum_ioctl;
484         ifp->if_start = rum_start;
485         IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
486         ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
487         IFQ_SET_READY(&ifp->if_snd);
488
489         ic->ic_ifp = ifp;
490         ic->ic_phytype = IEEE80211_T_OFDM;      /* not only, but not used */
491         ic->ic_opmode = IEEE80211_M_STA;        /* default to BSS mode */
492         ic->ic_state = IEEE80211_S_INIT;
493
494         /* set device capabilities */
495         ic->ic_caps =
496             IEEE80211_C_IBSS |          /* IBSS mode supported */
497             IEEE80211_C_MONITOR |       /* monitor mode supported */
498             IEEE80211_C_HOSTAP |        /* HostAp mode supported */
499             IEEE80211_C_TXPMGT |        /* tx power management */
500             IEEE80211_C_SHPREAMBLE |    /* short preamble supported */
501             IEEE80211_C_SHSLOT |        /* short slot time supported */
502             IEEE80211_C_BGSCAN |        /* bg scanning supported */
503             IEEE80211_C_WPA;            /* 802.11i */
504
505         bands = 0;
506         setbit(&bands, IEEE80211_MODE_11B);
507         setbit(&bands, IEEE80211_MODE_11G);
508         ieee80211_init_channels(ic, 0, CTRY_DEFAULT, bands, 0, 1);
509
510         if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) {
511                 struct ieee80211_channel *c;
512
513                 /* set supported .11a channels */
514                 for (i = 34; i <= 46; i += 4) {
515                         c = &ic->ic_channels[ic->ic_nchans++];
516                         c->ic_freq = ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
517                         c->ic_flags = IEEE80211_CHAN_A;
518                         c->ic_ieee = i;
519                 }
520                 for (i = 36; i <= 64; i += 4) {
521                         c = &ic->ic_channels[ic->ic_nchans++];
522                         c->ic_freq = ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
523                         c->ic_flags = IEEE80211_CHAN_A;
524                         c->ic_ieee = i;
525                 }
526                 for (i = 100; i <= 140; i += 4) {
527                         c = &ic->ic_channels[ic->ic_nchans++];
528                         c->ic_freq = ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
529                         c->ic_flags = IEEE80211_CHAN_A;
530                         c->ic_ieee = i;
531                 }
532                 for (i = 149; i <= 165; i += 4) {
533                         c = &ic->ic_channels[ic->ic_nchans++];
534                         c->ic_freq = ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
535                         c->ic_flags = IEEE80211_CHAN_A;
536                         c->ic_ieee = i;
537                 }
538         }
539
540         ieee80211_ifattach(ic);
541         ic->ic_scan_start = rum_scan_start;
542         ic->ic_scan_end = rum_scan_end;
543         ic->ic_set_channel = rum_set_channel;
544
545         /* enable s/w bmiss handling in sta mode */
546         ic->ic_flags_ext |= IEEE80211_FEXT_SWBMISS;
547
548         /* override state transition machine */
549         sc->sc_newstate = ic->ic_newstate;
550         ic->ic_newstate = rum_newstate;
551         ic->ic_raw_xmit = rum_raw_xmit;
552         ieee80211_media_init(ic, rum_media_change, ieee80211_media_status);
553
554         ieee80211_amrr_init(&sc->amrr, ic,
555             IEEE80211_AMRR_MIN_SUCCESS_THRESHOLD,
556             IEEE80211_AMRR_MAX_SUCCESS_THRESHOLD);
557
558         bpfattach2(ifp, DLT_IEEE802_11_RADIO,
559             sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN, 
560             &sc->sc_drvbpf);
561
562         sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
563         sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
564         sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2573_RX_RADIOTAP_PRESENT);
565
566         sc->sc_txtap_len = sizeof sc->sc_txtapu;
567         sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
568         sc->sc_txtap.wt_ihdr.it_present = htole32(RT2573_TX_RADIOTAP_PRESENT);
569
570         if (bootverbose)
571                 ieee80211_announce(ic);
572
573         return 0;
574 }
575
576 static int
577 rum_detach(device_t self)
578 {
579         struct rum_softc *sc = device_get_softc(self);
580         struct ieee80211com *ic = &sc->sc_ic;
581         struct ifnet *ifp = ic->ic_ifp;
582
583         rum_stop(sc);
584         usb_rem_task(sc->sc_udev, &sc->sc_task);
585         usb_rem_task(sc->sc_udev, &sc->sc_scantask);
586         callout_stop(&sc->watchdog_ch);
587         callout_stop(&sc->amrr_ch);
588
589         if (sc->amrr_xfer != NULL) {
590                 usbd_free_xfer(sc->amrr_xfer);
591                 sc->amrr_xfer = NULL;
592         }
593
594         if (sc->sc_rx_pipeh != NULL) {
595                 usbd_abort_pipe(sc->sc_rx_pipeh);
596                 usbd_close_pipe(sc->sc_rx_pipeh);
597         }
598         if (sc->sc_tx_pipeh != NULL) {
599                 usbd_abort_pipe(sc->sc_tx_pipeh);
600                 usbd_close_pipe(sc->sc_tx_pipeh);
601         }
602         
603         rum_free_rx_list(sc);
604         rum_free_tx_list(sc);
605
606         bpfdetach(ifp);
607         ieee80211_ifdetach(ic);
608         if_free(ifp);
609
610         mtx_destroy(&sc->sc_mtx);
611
612         return 0;
613 }
614
615 static int
616 rum_alloc_tx_list(struct rum_softc *sc)
617 {
618         struct rum_tx_data *data;
619         int i, error;
620
621         sc->tx_queued = 0;
622
623         for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
624                 data = &sc->tx_data[i];
625
626                 data->sc = sc;
627
628                 data->xfer = usbd_alloc_xfer(sc->sc_udev);
629                 if (data->xfer == NULL) {
630                         printf("%s: could not allocate tx xfer\n",
631                             device_get_nameunit(sc->sc_dev));
632                         error = ENOMEM;
633                         goto fail;
634                 }
635                 data->buf = usbd_alloc_buffer(data->xfer,
636                     RT2573_TX_DESC_SIZE + MCLBYTES);
637                 if (data->buf == NULL) {
638                         printf("%s: could not allocate tx buffer\n",
639                             device_get_nameunit(sc->sc_dev));
640                         error = ENOMEM;
641                         goto fail;
642                 }
643                 /* clean Tx descriptor */
644                 bzero(data->buf, RT2573_TX_DESC_SIZE);
645         }
646
647         return 0;
648
649 fail:   rum_free_tx_list(sc);
650         return error;
651 }
652
653 static void
654 rum_free_tx_list(struct rum_softc *sc)
655 {
656         struct rum_tx_data *data;
657         int i;
658
659         for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
660                 data = &sc->tx_data[i];
661
662                 if (data->xfer != NULL) {
663                         usbd_free_xfer(data->xfer);
664                         data->xfer = NULL;
665                 }
666
667                 if (data->ni != NULL) {
668                         ieee80211_free_node(data->ni);
669                         data->ni = NULL;
670                 }
671         }
672 }
673
674 static int
675 rum_alloc_rx_list(struct rum_softc *sc)
676 {
677         struct rum_rx_data *data;
678         int i, error;
679
680         for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
681                 data = &sc->rx_data[i];
682
683                 data->sc = sc;
684
685                 data->xfer = usbd_alloc_xfer(sc->sc_udev);
686                 if (data->xfer == NULL) {
687                         printf("%s: could not allocate rx xfer\n",
688                             device_get_nameunit(sc->sc_dev));
689                         error = ENOMEM;
690                         goto fail;
691                 }
692                 if (usbd_alloc_buffer(data->xfer, MCLBYTES) == NULL) {
693                         printf("%s: could not allocate rx buffer\n",
694                             device_get_nameunit(sc->sc_dev));
695                         error = ENOMEM;
696                         goto fail;
697                 }
698
699                 data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
700                 if (data->m == NULL) {
701                         printf("%s: could not allocate rx mbuf\n",
702                             device_get_nameunit(sc->sc_dev));
703                         error = ENOMEM;
704                         goto fail;
705                 }
706
707                 data->buf = mtod(data->m, uint8_t *);
708         }
709
710         return 0;
711
712 fail:   rum_free_tx_list(sc);
713         return error;
714 }
715
716 static void
717 rum_free_rx_list(struct rum_softc *sc)
718 {
719         struct rum_rx_data *data;
720         int i;
721
722         for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
723                 data = &sc->rx_data[i];
724
725                 if (data->xfer != NULL) {
726                         usbd_free_xfer(data->xfer);
727                         data->xfer = NULL;
728                 }
729                 if (data->m != NULL) {
730                         m_freem(data->m);
731                         data->m = NULL;
732                 }
733         }
734 }
735
736 static int
737 rum_media_change(struct ifnet *ifp)
738 {
739         struct rum_softc *sc = ifp->if_softc;
740         int error;
741
742         RUM_LOCK(sc);
743
744         error = ieee80211_media_change(ifp);
745         if (error != ENETRESET) {
746                 RUM_UNLOCK(sc);
747                 return error;
748         }
749
750         if ((ifp->if_flags & IFF_UP) &&
751             (ifp->if_drv_flags & IFF_DRV_RUNNING))
752                 rum_init(sc);
753
754         RUM_UNLOCK(sc);
755
756         return 0;
757 }
758
759 static void
760 rum_task(void *arg)
761 {
762         struct rum_softc *sc = arg;
763         struct ieee80211com *ic = &sc->sc_ic;
764         enum ieee80211_state ostate;
765         struct ieee80211_node *ni;
766         uint32_t tmp;
767
768         ostate = ic->ic_state;
769
770         RUM_LOCK(sc);
771
772         switch (sc->sc_state) {
773         case IEEE80211_S_INIT:
774                 if (ostate == IEEE80211_S_RUN) {
775                         /* abort TSF synchronization */
776                         tmp = rum_read(sc, RT2573_TXRX_CSR9);
777                         rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff);
778                 }
779                 break;
780
781         case IEEE80211_S_RUN:
782                 ni = ic->ic_bss;
783
784                 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
785                         rum_update_slot(ic->ic_ifp);
786                         rum_enable_mrr(sc);
787                         rum_set_txpreamble(sc);
788                         rum_set_basicrates(sc);
789                         rum_set_bssid(sc, ni->ni_bssid);
790                 }
791
792                 if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
793                     ic->ic_opmode == IEEE80211_M_IBSS)
794                         rum_prepare_beacon(sc);
795
796                 if (ic->ic_opmode != IEEE80211_M_MONITOR)
797                         rum_enable_tsf_sync(sc);
798
799                 /* enable automatic rate adaptation in STA mode */
800                 if (ic->ic_opmode == IEEE80211_M_STA &&
801                     ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
802                         rum_amrr_start(sc, ni);
803                 break;
804         default:
805                 break;
806         }
807
808         RUM_UNLOCK(sc);
809
810         sc->sc_newstate(ic, sc->sc_state, sc->sc_arg);
811 }
812
813 static int
814 rum_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
815 {
816         struct rum_softc *sc = ic->ic_ifp->if_softc;
817
818         callout_stop(&sc->amrr_ch);
819
820         /* do it in a process context */
821         sc->sc_state = nstate;
822         sc->sc_arg = arg;
823
824         usb_rem_task(sc->sc_udev, &sc->sc_task);
825         if (nstate == IEEE80211_S_INIT)
826                 sc->sc_newstate(ic, nstate, arg);
827         else
828                 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
829         return 0;
830 }
831
832 /* quickly determine if a given rate is CCK or OFDM */
833 #define RUM_RATE_IS_OFDM(rate)  ((rate) >= 12 && (rate) != 22)
834
835 #define RUM_ACK_SIZE    14      /* 10 + 4(FCS) */
836 #define RUM_CTS_SIZE    14      /* 10 + 4(FCS) */
837
838 static void
839 rum_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
840 {
841         struct rum_tx_data *data = priv;
842         struct rum_softc *sc = data->sc;
843         struct ifnet *ifp = sc->sc_ic.ic_ifp;
844
845         if (data->m->m_flags & M_TXCB)
846                 ieee80211_process_callback(data->ni, data->m,
847                         status == USBD_NORMAL_COMPLETION ? 0 : ETIMEDOUT);
848
849         if (status != USBD_NORMAL_COMPLETION) {
850                 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
851                         return;
852
853                 printf("%s: could not transmit buffer: %s\n",
854                     device_get_nameunit(sc->sc_dev), usbd_errstr(status));
855
856                 if (status == USBD_STALLED)
857                         usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
858
859                 ifp->if_oerrors++;
860                 return;
861         }
862
863         m_freem(data->m);
864         data->m = NULL;
865         ieee80211_free_node(data->ni);
866         data->ni = NULL;
867
868         sc->tx_queued--;
869         ifp->if_opackets++;
870
871         DPRINTFN(10, ("tx done\n"));
872
873         sc->sc_tx_timer = 0;
874         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
875         rum_start(ifp);
876 }
877
878 static void
879 rum_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
880 {
881         struct rum_rx_data *data = priv;
882         struct rum_softc *sc = data->sc;
883         struct ieee80211com *ic = &sc->sc_ic;
884         struct ifnet *ifp = ic->ic_ifp;
885         struct rum_rx_desc *desc;
886         struct ieee80211_frame *wh;
887         struct ieee80211_node *ni;
888         struct mbuf *mnew, *m;
889         int len, rssi;
890
891         if (status != USBD_NORMAL_COMPLETION) {
892                 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
893                         return;
894
895                 if (status == USBD_STALLED)
896                         usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
897                 goto skip;
898         }
899
900         usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
901
902         if (len < RT2573_RX_DESC_SIZE + sizeof (struct ieee80211_frame_min)) {
903                 DPRINTF(("%s: xfer too short %d\n", 
904                     device_get_nameunit(sc->sc_dev), len));
905                 ifp->if_ierrors++;
906                 goto skip;
907         }
908
909         desc = (struct rum_rx_desc *)data->buf;
910
911         if (le32toh(desc->flags) & RT2573_RX_CRC_ERROR) {
912                 /*
913                  * This should not happen since we did not request to receive
914                  * those frames when we filled RT2573_TXRX_CSR0.
915                  */
916                 DPRINTFN(5, ("CRC error\n"));
917                 ifp->if_ierrors++;
918                 goto skip;
919         }
920
921         mnew = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
922         if (mnew == NULL) {
923                 ifp->if_ierrors++;
924                 goto skip;
925         }
926
927         m = data->m;
928         data->m = mnew;
929         data->buf = mtod(data->m, uint8_t *);
930
931         /* finalize mbuf */
932         m->m_pkthdr.rcvif = ifp;
933         m->m_data = (caddr_t)(desc + 1); 
934         m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
935
936         rssi = rum_get_rssi(sc, desc->rssi);
937
938         wh = mtod(m, struct ieee80211_frame *);
939         ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
940
941         /* Error happened during RSSI conversion. */
942         if (rssi < 0)
943                 rssi = ni->ni_rssi;
944
945         if (bpf_peers_present(sc->sc_drvbpf)) {
946                 struct rum_rx_radiotap_header *tap = &sc->sc_rxtap;
947
948                 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
949                 tap->wr_rate = rum_rxrate(desc);
950                 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
951                 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
952                 tap->wr_antenna = sc->rx_ant;
953                 tap->wr_antsignal = rssi;
954
955                 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
956         }
957
958         /* send the frame to the 802.11 layer */
959         ieee80211_input(ic, m, ni, rssi, RT2573_NOISE_FLOOR, 0);
960
961         /* node is no longer needed */
962         ieee80211_free_node(ni);
963
964         DPRINTFN(15, ("rx done\n"));
965
966 skip:   /* setup a new transfer */
967         usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES,
968             USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
969         usbd_transfer(xfer);
970 }
971
972 /*
973  * This function is only used by the Rx radiotap code. 
974  */
975 static int
976 rum_rxrate(struct rum_rx_desc *desc)
977 {
978         if (le32toh(desc->flags) & RT2573_RX_OFDM) {
979                 /* reverse function of rum_plcp_signal */
980                 switch (desc->rate) {
981                 case 0xb:       return 12;
982                 case 0xf:       return 18;
983                 case 0xa:       return 24;
984                 case 0xe:       return 36;
985                 case 0x9:       return 48;
986                 case 0xd:       return 72;
987                 case 0x8:       return 96;
988                 case 0xc:       return 108;
989                 }
990         } else {
991                 if (desc->rate == 10)
992                         return 2;
993                 if (desc->rate == 20)
994                         return 4;
995                 if (desc->rate == 55)
996                         return 11;
997                 if (desc->rate == 110)
998                         return 22;
999         }
1000         return 2;       /* should not get there */
1001 }
1002
1003 /*
1004  * Return the expected ack rate for a frame transmitted at rate `rate'.
1005  */
1006 static int
1007 rum_ack_rate(struct ieee80211com *ic, int rate)
1008 {
1009         switch (rate) {
1010         /* CCK rates */
1011         case 2:
1012                 return 2;
1013         case 4:
1014         case 11:
1015         case 22:
1016                 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
1017
1018         /* OFDM rates */
1019         case 12:
1020         case 18:
1021                 return 12;
1022         case 24:
1023         case 36:
1024                 return 24;
1025         case 48:
1026         case 72:
1027         case 96:
1028         case 108:
1029                 return 48;
1030         }
1031
1032         /* default to 1Mbps */
1033         return 2;
1034 }
1035
1036 /*
1037  * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
1038  * The function automatically determines the operating mode depending on the
1039  * given rate. `flags' indicates whether short preamble is in use or not.
1040  */
1041 static uint16_t
1042 rum_txtime(int len, int rate, uint32_t flags)
1043 {
1044         uint16_t txtime;
1045
1046         if (RUM_RATE_IS_OFDM(rate)) {
1047                 /* IEEE Std 802.11a-1999, pp. 37 */
1048                 txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1049                 txtime = 16 + 4 + 4 * txtime + 6;
1050         } else {
1051                 /* IEEE Std 802.11b-1999, pp. 28 */
1052                 txtime = (16 * len + rate - 1) / rate;
1053                 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1054                         txtime +=  72 + 24;
1055                 else
1056                         txtime += 144 + 48;
1057         }
1058         return txtime;
1059 }
1060
1061 static uint8_t
1062 rum_plcp_signal(int rate)
1063 {
1064         switch (rate) {
1065         /* CCK rates (returned values are device-dependent) */
1066         case 2:         return 0x0;
1067         case 4:         return 0x1;
1068         case 11:        return 0x2;
1069         case 22:        return 0x3;
1070
1071         /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1072         case 12:        return 0xb;
1073         case 18:        return 0xf;
1074         case 24:        return 0xa;
1075         case 36:        return 0xe;
1076         case 48:        return 0x9;
1077         case 72:        return 0xd;
1078         case 96:        return 0x8;
1079         case 108:       return 0xc;
1080
1081         /* unsupported rates (should not get there) */
1082         default:        return 0xff;
1083         }
1084 }
1085
1086 static void
1087 rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc,
1088     uint32_t flags, uint16_t xflags, int len, int rate)
1089 {
1090         struct ieee80211com *ic = &sc->sc_ic;
1091         uint16_t plcp_length;
1092         int remainder;
1093
1094         desc->flags = htole32(flags);
1095         desc->flags |= htole32(RT2573_TX_VALID);
1096         desc->flags |= htole32(len << 16);
1097
1098         desc->xflags = htole16(xflags);
1099
1100         desc->wme = htole16(RT2573_QID(0) | RT2573_AIFSN(2) | 
1101             RT2573_LOGCWMIN(4) | RT2573_LOGCWMAX(10));
1102
1103         /* setup PLCP fields */
1104         desc->plcp_signal  = rum_plcp_signal(rate);
1105         desc->plcp_service = 4;
1106
1107         len += IEEE80211_CRC_LEN;
1108         if (RUM_RATE_IS_OFDM(rate)) {
1109                 desc->flags |= htole32(RT2573_TX_OFDM);
1110
1111                 plcp_length = len & 0xfff;
1112                 desc->plcp_length_hi = plcp_length >> 6;
1113                 desc->plcp_length_lo = plcp_length & 0x3f;
1114         } else {
1115                 plcp_length = (16 * len + rate - 1) / rate;
1116                 if (rate == 22) {
1117                         remainder = (16 * len) % 22;
1118                         if (remainder != 0 && remainder < 7)
1119                                 desc->plcp_service |= RT2573_PLCP_LENGEXT;
1120                 }
1121                 desc->plcp_length_hi = plcp_length >> 8;
1122                 desc->plcp_length_lo = plcp_length & 0xff;
1123
1124                 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1125                         desc->plcp_signal |= 0x08;
1126         }
1127 }
1128
1129 #define RUM_TX_TIMEOUT  5000
1130
1131 static int
1132 rum_tx_mgt(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1133 {
1134         struct ieee80211com *ic = &sc->sc_ic;
1135         struct rum_tx_desc *desc;
1136         struct rum_tx_data *data;
1137         struct ieee80211_frame *wh;
1138         uint32_t flags = 0;
1139         uint16_t dur;
1140         usbd_status error;
1141         int xferlen, rate;
1142
1143         data = &sc->tx_data[0];
1144         desc = (struct rum_tx_desc *)data->buf;
1145
1146         rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1147
1148         data->m = m0;
1149         data->ni = ni;
1150
1151         wh = mtod(m0, struct ieee80211_frame *);
1152
1153         if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1154                 flags |= RT2573_TX_NEED_ACK;
1155
1156                 dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate), 
1157                     ic->ic_flags) + sc->sifs;
1158                 *(uint16_t *)wh->i_dur = htole16(dur);
1159
1160                 /* tell hardware to add timestamp for probe responses */
1161                 if ((wh->i_fc[0] &
1162                     (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1163                     (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1164                         flags |= RT2573_TX_TIMESTAMP;
1165         }
1166
1167         if (bpf_peers_present(sc->sc_drvbpf)) {
1168                 struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
1169
1170                 tap->wt_flags = 0;
1171                 tap->wt_rate = rate;
1172                 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1173                 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1174                 tap->wt_antenna = sc->tx_ant;
1175
1176                 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1177         }
1178
1179         m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE);
1180         rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate);
1181
1182         /* align end on a 4-bytes boundary */
1183         xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3;
1184
1185         /*
1186          * No space left in the last URB to store the extra 4 bytes, force
1187          * sending of another URB.
1188          */
1189         if ((xferlen % 64) == 0)
1190                 xferlen += 4;
1191
1192         DPRINTFN(10, ("sending mgt frame len=%d rate=%d xfer len=%d\n",
1193             m0->m_pkthdr.len + (int)RT2573_TX_DESC_SIZE, rate, xferlen));
1194         
1195         usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen,
1196             USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RUM_TX_TIMEOUT, rum_txeof);
1197
1198         error = usbd_transfer(data->xfer);
1199         if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
1200                 m_freem(m0);
1201                 data->m = NULL;
1202                 data->ni = NULL;
1203                 return error;
1204         }
1205
1206         sc->tx_queued++;
1207
1208         return 0;
1209 }
1210
1211 static int
1212 rum_tx_raw(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1213     const struct ieee80211_bpf_params *params)
1214 {
1215         struct ieee80211com *ic = &sc->sc_ic;
1216         struct rum_tx_desc *desc;
1217         struct rum_tx_data *data;
1218         uint32_t flags;
1219         usbd_status error;
1220         int xferlen, rate;
1221
1222         data = &sc->tx_data[0];
1223         desc = (struct rum_tx_desc *)data->buf;
1224
1225         rate = params->ibp_rate0 & IEEE80211_RATE_VAL;
1226         /* XXX validate */
1227         if (rate == 0) {
1228                 m_freem(m0);
1229                 return EINVAL;
1230         }
1231
1232         if (bpf_peers_present(sc->sc_drvbpf)) {
1233                 struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
1234
1235                 tap->wt_flags = 0;
1236                 tap->wt_rate = rate;
1237                 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1238                 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1239                 tap->wt_antenna = sc->tx_ant;
1240
1241                 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1242         }
1243
1244         data->m = m0;
1245         data->ni = ni;
1246
1247         flags = 0;
1248         if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
1249                 flags |= RT2573_TX_NEED_ACK;
1250
1251         m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE);
1252         /* XXX need to setup descriptor ourself */
1253         rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate);
1254
1255         /* align end on a 4-bytes boundary */
1256         xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3;
1257
1258         /*
1259          * No space left in the last URB to store the extra 4 bytes, force
1260          * sending of another URB.
1261          */
1262         if ((xferlen % 64) == 0)
1263                 xferlen += 4;
1264
1265         DPRINTFN(10, ("sending raw frame len=%u rate=%u xfer len=%u\n",
1266             m0->m_pkthdr.len, rate, xferlen));
1267
1268         usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf,
1269             xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RUM_TX_TIMEOUT,
1270             rum_txeof);
1271
1272         error = usbd_transfer(data->xfer);
1273         if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS)
1274                 return error;
1275
1276         sc->tx_queued++;
1277
1278         return 0;
1279 }
1280
1281 static int
1282 rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1283 {
1284         struct ieee80211com *ic = &sc->sc_ic;
1285         struct rum_tx_desc *desc;
1286         struct rum_tx_data *data;
1287         struct ieee80211_frame *wh;
1288         struct ieee80211_key *k;
1289         uint32_t flags = 0;
1290         uint16_t dur;
1291         usbd_status error;
1292         int rate, xferlen;
1293
1294         wh = mtod(m0, struct ieee80211_frame *);
1295
1296         if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
1297                 rate = ic->ic_fixed_rate;
1298         else
1299                 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1300
1301         rate &= IEEE80211_RATE_VAL;
1302
1303         if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1304                 k = ieee80211_crypto_encap(ic, ni, m0);
1305                 if (k == NULL) {
1306                         m_freem(m0);
1307                         return ENOBUFS;
1308                 }
1309
1310                 /* packet header may have moved, reset our local pointer */
1311                 wh = mtod(m0, struct ieee80211_frame *);
1312         }
1313
1314         data = &sc->tx_data[0];
1315         desc = (struct rum_tx_desc *)data->buf;
1316
1317         data->m = m0;
1318         data->ni = ni;
1319
1320         if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1321                 flags |= RT2573_TX_NEED_ACK;
1322                 flags |= RT2573_TX_MORE_FRAG;
1323
1324                 dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate),
1325                     ic->ic_flags) + sc->sifs;
1326                 *(uint16_t *)wh->i_dur = htole16(dur);
1327         }
1328
1329         if (bpf_peers_present(sc->sc_drvbpf)) {
1330                 struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
1331
1332                 tap->wt_flags = 0;
1333                 tap->wt_rate = rate;
1334                 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1335                 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1336                 tap->wt_antenna = sc->tx_ant;
1337
1338                 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1339         }
1340
1341         m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE);
1342         rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate);
1343
1344         /* align end on a 4-bytes boundary */
1345         xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3;
1346
1347         /*
1348          * No space left in the last URB to store the extra 4 bytes, force
1349          * sending of another URB.
1350          */
1351         if ((xferlen % 64) == 0)
1352                 xferlen += 4;
1353
1354         DPRINTFN(10, ("sending frame len=%d rate=%d xfer len=%d\n",
1355             m0->m_pkthdr.len + (int)RT2573_TX_DESC_SIZE, rate, xferlen));
1356
1357         usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen,
1358             USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RUM_TX_TIMEOUT, rum_txeof);
1359
1360         error = usbd_transfer(data->xfer);
1361         if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
1362                 m_freem(m0);
1363                 data->m = NULL;
1364                 data->ni = NULL;
1365                 return error;
1366         }
1367
1368         sc->tx_queued++;
1369
1370         return 0;
1371 }
1372
1373 static void
1374 rum_start(struct ifnet *ifp)
1375 {
1376         struct rum_softc *sc = ifp->if_softc;
1377         struct ieee80211com *ic = &sc->sc_ic;
1378         struct ieee80211_node *ni;
1379         struct mbuf *m0;
1380         struct ether_header *eh;
1381
1382         for (;;) {
1383                 IF_POLL(&ic->ic_mgtq, m0);
1384                 if (m0 != NULL) {
1385                         if (sc->tx_queued >= RUM_TX_LIST_COUNT) {
1386                                 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1387                                 break;
1388                         }
1389                         IF_DEQUEUE(&ic->ic_mgtq, m0);
1390
1391                         ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1392                         m0->m_pkthdr.rcvif = NULL;
1393
1394                         if (bpf_peers_present(ic->ic_rawbpf))
1395                                 bpf_mtap(ic->ic_rawbpf, m0);
1396
1397                         if (rum_tx_mgt(sc, m0, ni) != 0) {
1398                                 ieee80211_free_node(ni);
1399                                 break;
1400                         }
1401                 } else {
1402                         if (ic->ic_state != IEEE80211_S_RUN)
1403                                 break;
1404                         IFQ_DRV_DEQUEUE(&ifp->if_snd, m0);
1405                         if (m0 == NULL)
1406                                 break;
1407                         if (sc->tx_queued >= RUM_TX_LIST_COUNT) {
1408                                 IFQ_DRV_PREPEND(&ifp->if_snd, m0);
1409                                 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1410                                 break;
1411                         }
1412                         /*
1413                          * Cancel any background scan.
1414                          */
1415                         if (ic->ic_flags & IEEE80211_F_SCAN)
1416                                 ieee80211_cancel_scan(ic);
1417
1418                         if (m0->m_len < sizeof (struct ether_header) &&
1419                             !(m0 = m_pullup(m0, sizeof (struct ether_header))))
1420                                 continue;
1421
1422                         eh = mtod(m0, struct ether_header *);
1423                         ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1424                         if (ni == NULL) {
1425                                 m_freem(m0);
1426                                 continue;
1427                         }
1428                         BPF_MTAP(ifp, m0);
1429
1430                         m0 = ieee80211_encap(ic, m0, ni);
1431                         if (m0 == NULL) {
1432                                 ieee80211_free_node(ni);
1433                                 continue;
1434                         }
1435
1436                         if (bpf_peers_present(ic->ic_rawbpf))
1437                                 bpf_mtap(ic->ic_rawbpf, m0);
1438
1439                         if (rum_tx_data(sc, m0, ni) != 0) {
1440                                 ieee80211_free_node(ni);
1441                                 ifp->if_oerrors++;
1442                                 break;
1443                         }
1444                 }
1445
1446                 sc->sc_tx_timer = 5;
1447                 ic->ic_lastdata = ticks;
1448                 callout_reset(&sc->watchdog_ch, hz, rum_watchdog, sc);
1449         }
1450 }
1451
1452 static void
1453 rum_watchdog(void *arg)
1454 {
1455         struct rum_softc *sc = arg;
1456
1457         RUM_LOCK(sc);
1458
1459         if (sc->sc_tx_timer > 0) {
1460                 if (--sc->sc_tx_timer == 0) {
1461                         device_printf(sc->sc_dev, "device timeout\n");
1462                         /*rum_init(ifp); XXX needs a process context! */
1463                         sc->sc_ifp->if_oerrors++;
1464                         RUM_UNLOCK(sc);
1465                         return;
1466                 }
1467                 callout_reset(&sc->watchdog_ch, hz, rum_watchdog, sc);
1468         }
1469
1470         RUM_UNLOCK(sc);
1471 }
1472
1473 static int
1474 rum_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1475 {
1476         struct rum_softc *sc = ifp->if_softc;
1477         struct ieee80211com *ic = &sc->sc_ic;
1478         int error = 0;
1479
1480         RUM_LOCK(sc);
1481
1482         switch (cmd) {
1483         case SIOCSIFFLAGS:
1484                 if (ifp->if_flags & IFF_UP) {
1485                         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1486                                 rum_update_promisc(sc);
1487                         else
1488                                 rum_init(sc);
1489                 } else {
1490                         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1491                                 rum_stop(sc);
1492                 }
1493                 break;
1494         default:
1495                 error = ieee80211_ioctl(ic, cmd, data);
1496         }
1497
1498         if (error == ENETRESET) {
1499                 if ((ifp->if_flags & IFF_UP) &&
1500                     (ifp->if_drv_flags & IFF_DRV_RUNNING) &&
1501                     (ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
1502                         rum_init(sc);
1503                 error = 0;
1504         }
1505
1506         RUM_UNLOCK(sc);
1507
1508         return error;
1509 }
1510
1511 static void
1512 rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len)
1513 {
1514         usb_device_request_t req;
1515         usbd_status error;
1516
1517         req.bmRequestType = UT_READ_VENDOR_DEVICE;
1518         req.bRequest = RT2573_READ_EEPROM;
1519         USETW(req.wValue, 0);
1520         USETW(req.wIndex, addr);
1521         USETW(req.wLength, len);
1522
1523         error = usbd_do_request(sc->sc_udev, &req, buf);
1524         if (error != 0) {
1525                 printf("%s: could not read EEPROM: %s\n",
1526                     device_get_nameunit(sc->sc_dev), usbd_errstr(error));
1527         }
1528 }
1529
1530 static uint32_t
1531 rum_read(struct rum_softc *sc, uint16_t reg)
1532 {
1533         uint32_t val;
1534
1535         rum_read_multi(sc, reg, &val, sizeof val);
1536
1537         return le32toh(val);
1538 }
1539
1540 static void
1541 rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len)
1542 {
1543         usb_device_request_t req;
1544         usbd_status error;
1545
1546         req.bmRequestType = UT_READ_VENDOR_DEVICE;
1547         req.bRequest = RT2573_READ_MULTI_MAC;
1548         USETW(req.wValue, 0);
1549         USETW(req.wIndex, reg);
1550         USETW(req.wLength, len);
1551
1552         error = usbd_do_request(sc->sc_udev, &req, buf);
1553         if (error != 0) {
1554                 printf("%s: could not multi read MAC register: %s\n",
1555                     device_get_nameunit(sc->sc_dev), usbd_errstr(error));
1556         }
1557 }
1558
1559 static void
1560 rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val)
1561 {
1562         uint32_t tmp = htole32(val);
1563
1564         rum_write_multi(sc, reg, &tmp, sizeof tmp);
1565 }
1566
1567 static void
1568 rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len)
1569 {
1570         usb_device_request_t req;
1571         usbd_status error;
1572
1573         req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1574         req.bRequest = RT2573_WRITE_MULTI_MAC;
1575         USETW(req.wValue, 0);
1576         USETW(req.wIndex, reg);
1577         USETW(req.wLength, len);
1578
1579         error = usbd_do_request(sc->sc_udev, &req, buf);
1580         if (error != 0) {
1581                 printf("%s: could not multi write MAC register: %s\n",
1582                     device_get_nameunit(sc->sc_dev), usbd_errstr(error));
1583         }
1584 }
1585
1586 static void
1587 rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val)
1588 {
1589         uint32_t tmp;
1590         int ntries;
1591
1592         for (ntries = 0; ntries < 5; ntries++) {
1593                 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1594                         break;
1595         }
1596         if (ntries == 5) {
1597                 printf("%s: could not write to BBP\n", 
1598                     device_get_nameunit(sc->sc_dev));
1599                 return;
1600         }
1601
1602         tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val;
1603         rum_write(sc, RT2573_PHY_CSR3, tmp);
1604 }
1605
1606 static uint8_t
1607 rum_bbp_read(struct rum_softc *sc, uint8_t reg)
1608 {
1609         uint32_t val;
1610         int ntries;
1611
1612         for (ntries = 0; ntries < 5; ntries++) {
1613                 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1614                         break;
1615         }
1616         if (ntries == 5) {
1617                 printf("%s: could not read BBP\n", 
1618                     device_get_nameunit(sc->sc_dev));
1619                 return 0;
1620         }
1621
1622         val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8;
1623         rum_write(sc, RT2573_PHY_CSR3, val);
1624
1625         for (ntries = 0; ntries < 100; ntries++) {
1626                 val = rum_read(sc, RT2573_PHY_CSR3);
1627                 if (!(val & RT2573_BBP_BUSY))
1628                         return val & 0xff;
1629                 DELAY(1);
1630         }
1631
1632         printf("%s: could not read BBP\n", device_get_nameunit(sc->sc_dev));
1633         return 0;
1634 }
1635
1636 static void
1637 rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val)
1638 {
1639         uint32_t tmp;
1640         int ntries;
1641
1642         for (ntries = 0; ntries < 5; ntries++) {
1643                 if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY))
1644                         break;
1645         }
1646         if (ntries == 5) {
1647                 printf("%s: could not write to RF\n", 
1648                     device_get_nameunit(sc->sc_dev));
1649                 return;
1650         }
1651
1652         tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 |
1653             (reg & 3);
1654         rum_write(sc, RT2573_PHY_CSR4, tmp);
1655
1656         /* remember last written value in sc */
1657         sc->rf_regs[reg] = val;
1658
1659         DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff));
1660 }
1661
1662 static void
1663 rum_select_antenna(struct rum_softc *sc)
1664 {
1665         uint8_t bbp4, bbp77;
1666         uint32_t tmp;
1667
1668         bbp4  = rum_bbp_read(sc, 4);
1669         bbp77 = rum_bbp_read(sc, 77);
1670
1671         /* TBD */
1672
1673         /* make sure Rx is disabled before switching antenna */
1674         tmp = rum_read(sc, RT2573_TXRX_CSR0);
1675         rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
1676
1677         rum_bbp_write(sc,  4, bbp4);
1678         rum_bbp_write(sc, 77, bbp77);
1679
1680         rum_write(sc, RT2573_TXRX_CSR0, tmp);
1681 }
1682
1683 /*
1684  * Enable multi-rate retries for frames sent at OFDM rates.
1685  * In 802.11b/g mode, allow fallback to CCK rates.
1686  */
1687 static void
1688 rum_enable_mrr(struct rum_softc *sc)
1689 {
1690         struct ieee80211com *ic = &sc->sc_ic;
1691         uint32_t tmp;
1692
1693         tmp = rum_read(sc, RT2573_TXRX_CSR4);
1694
1695         tmp &= ~RT2573_MRR_CCK_FALLBACK;
1696         if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
1697                 tmp |= RT2573_MRR_CCK_FALLBACK;
1698         tmp |= RT2573_MRR_ENABLED;
1699
1700         rum_write(sc, RT2573_TXRX_CSR4, tmp);
1701 }
1702
1703 static void
1704 rum_set_txpreamble(struct rum_softc *sc)
1705 {
1706         uint32_t tmp;
1707
1708         tmp = rum_read(sc, RT2573_TXRX_CSR4);
1709
1710         tmp &= ~RT2573_SHORT_PREAMBLE;
1711         if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1712                 tmp |= RT2573_SHORT_PREAMBLE;
1713
1714         rum_write(sc, RT2573_TXRX_CSR4, tmp);
1715 }
1716
1717 static void
1718 rum_set_basicrates(struct rum_softc *sc)
1719 {
1720         struct ieee80211com *ic = &sc->sc_ic;
1721
1722         /* update basic rate set */
1723         if (ic->ic_curmode == IEEE80211_MODE_11B) {
1724                 /* 11b basic rates: 1, 2Mbps */
1725                 rum_write(sc, RT2573_TXRX_CSR5, 0x3);
1726         } else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) {
1727                 /* 11a basic rates: 6, 12, 24Mbps */
1728                 rum_write(sc, RT2573_TXRX_CSR5, 0x150);
1729         } else {
1730                 /* 11b/g basic rates: 1, 2, 5.5, 11Mbps */
1731                 rum_write(sc, RT2573_TXRX_CSR5, 0xf);
1732         }
1733 }
1734
1735 /*
1736  * Reprogram MAC/BBP to switch to a new band.  Values taken from the reference
1737  * driver.
1738  */
1739 static void
1740 rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c)
1741 {
1742         uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
1743         uint32_t tmp;
1744
1745         /* update all BBP registers that depend on the band */
1746         bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
1747         bbp35 = 0x50; bbp97 = 0x48; bbp98  = 0x48;
1748         if (IEEE80211_IS_CHAN_5GHZ(c)) {
1749                 bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
1750                 bbp35 += 0x10; bbp97 += 0x10; bbp98  += 0x10;
1751         }
1752         if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1753             (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1754                 bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
1755         }
1756
1757         sc->bbp17 = bbp17;
1758         rum_bbp_write(sc,  17, bbp17);
1759         rum_bbp_write(sc,  96, bbp96);
1760         rum_bbp_write(sc, 104, bbp104);
1761
1762         if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1763             (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1764                 rum_bbp_write(sc, 75, 0x80);
1765                 rum_bbp_write(sc, 86, 0x80);
1766                 rum_bbp_write(sc, 88, 0x80);
1767         }
1768
1769         rum_bbp_write(sc, 35, bbp35);
1770         rum_bbp_write(sc, 97, bbp97);
1771         rum_bbp_write(sc, 98, bbp98);
1772
1773         tmp = rum_read(sc, RT2573_PHY_CSR0);
1774         tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ);
1775         if (IEEE80211_IS_CHAN_2GHZ(c))
1776                 tmp |= RT2573_PA_PE_2GHZ;
1777         else
1778                 tmp |= RT2573_PA_PE_5GHZ;
1779         rum_write(sc, RT2573_PHY_CSR0, tmp);
1780
1781         /* 802.11a uses a 16 microseconds short interframe space */
1782         sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10;
1783 }
1784
1785 static void
1786 rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c)
1787 {
1788         struct ieee80211com *ic = &sc->sc_ic;
1789         const struct rfprog *rfprog;
1790         uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT;
1791         int8_t power;
1792         u_int i, chan;
1793
1794         chan = ieee80211_chan2ieee(ic, c);
1795         if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1796                 return;
1797
1798         /* select the appropriate RF settings based on what EEPROM says */
1799         rfprog = (sc->rf_rev == RT2573_RF_5225 ||
1800                   sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226;
1801
1802         /* find the settings for this channel (we know it exists) */
1803         for (i = 0; rfprog[i].chan != chan; i++);
1804
1805         power = sc->txpow[i];
1806         if (power < 0) {
1807                 bbp94 += power;
1808                 power = 0;
1809         } else if (power > 31) {
1810                 bbp94 += power - 31;
1811                 power = 31;
1812         }
1813
1814         /*
1815          * If we are switching from the 2GHz band to the 5GHz band or
1816          * vice-versa, BBP registers need to be reprogrammed.
1817          */
1818         if (c->ic_flags != ic->ic_curchan->ic_flags) {
1819                 rum_select_band(sc, c);
1820                 rum_select_antenna(sc);
1821         }
1822         ic->ic_curchan = c;
1823
1824         rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1825         rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1826         rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1827         rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1828
1829         rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1830         rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1831         rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1);
1832         rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1833
1834         rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1835         rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1836         rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1837         rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1838
1839         DELAY(10);
1840
1841         /* enable smart mode for MIMO-capable RFs */
1842         bbp3 = rum_bbp_read(sc, 3);
1843
1844         bbp3 &= ~RT2573_SMART_MODE;
1845         if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527)
1846                 bbp3 |= RT2573_SMART_MODE;
1847
1848         rum_bbp_write(sc, 3, bbp3);
1849
1850         if (bbp94 != RT2573_BBPR94_DEFAULT)
1851                 rum_bbp_write(sc, 94, bbp94);
1852 }
1853
1854 /*
1855  * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
1856  * and HostAP operating modes.
1857  */
1858 static void
1859 rum_enable_tsf_sync(struct rum_softc *sc)
1860 {
1861         struct ieee80211com *ic = &sc->sc_ic;
1862         uint32_t tmp;
1863
1864         if (ic->ic_opmode != IEEE80211_M_STA) {
1865                 /*
1866                  * Change default 16ms TBTT adjustment to 8ms.
1867                  * Must be done before enabling beacon generation.
1868                  */
1869                 rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8);
1870         }
1871
1872         tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000;
1873
1874         /* set beacon interval (in 1/16ms unit) */
1875         tmp |= ic->ic_bss->ni_intval * 16;
1876
1877         tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT;
1878         if (ic->ic_opmode == IEEE80211_M_STA)
1879                 tmp |= RT2573_TSF_MODE(1);
1880         else
1881                 tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON;
1882
1883         rum_write(sc, RT2573_TXRX_CSR9, tmp);
1884 }
1885
1886 static void
1887 rum_update_slot(struct ifnet *ifp)
1888 {
1889         struct rum_softc *sc = ifp->if_softc;
1890         struct ieee80211com *ic = &sc->sc_ic;
1891         uint8_t slottime;
1892         uint32_t tmp;
1893
1894         slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1895
1896         tmp = rum_read(sc, RT2573_MAC_CSR9);
1897         tmp = (tmp & ~0xff) | slottime;
1898         rum_write(sc, RT2573_MAC_CSR9, tmp);
1899
1900         DPRINTF(("setting slot time to %uus\n", slottime));
1901 }
1902
1903 static void
1904 rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid)
1905 {
1906         uint32_t tmp;
1907
1908         tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
1909         rum_write(sc, RT2573_MAC_CSR4, tmp);
1910
1911         tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16;
1912         rum_write(sc, RT2573_MAC_CSR5, tmp);
1913 }
1914
1915 static void
1916 rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr)
1917 {
1918         uint32_t tmp;
1919
1920         tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
1921         rum_write(sc, RT2573_MAC_CSR2, tmp);
1922
1923         tmp = addr[4] | addr[5] << 8 | 0xff << 16;
1924         rum_write(sc, RT2573_MAC_CSR3, tmp);
1925 }
1926
1927 static void
1928 rum_update_promisc(struct rum_softc *sc)
1929 {
1930         struct ifnet *ifp = sc->sc_ic.ic_ifp;
1931         uint32_t tmp;
1932
1933         tmp = rum_read(sc, RT2573_TXRX_CSR0);
1934
1935         tmp &= ~RT2573_DROP_NOT_TO_ME;
1936         if (!(ifp->if_flags & IFF_PROMISC))
1937                 tmp |= RT2573_DROP_NOT_TO_ME;
1938
1939         rum_write(sc, RT2573_TXRX_CSR0, tmp);
1940
1941         DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1942             "entering" : "leaving"));
1943 }
1944
1945 static const char *
1946 rum_get_rf(int rev)
1947 {
1948         switch (rev) {
1949         case RT2573_RF_2527:    return "RT2527 (MIMO XR)";
1950         case RT2573_RF_2528:    return "RT2528";
1951         case RT2573_RF_5225:    return "RT5225 (MIMO XR)";
1952         case RT2573_RF_5226:    return "RT5226";
1953         default:                return "unknown";
1954         }
1955 }
1956
1957 static void
1958 rum_read_eeprom(struct rum_softc *sc)
1959 {
1960         struct ieee80211com *ic = &sc->sc_ic;
1961         uint16_t val;
1962 #ifdef RUM_DEBUG
1963         int i;
1964 #endif
1965
1966         /* read MAC address */
1967         rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, ic->ic_myaddr, 6);
1968
1969         rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2);
1970         val = le16toh(val);
1971         sc->rf_rev =   (val >> 11) & 0x1f;
1972         sc->hw_radio = (val >> 10) & 0x1;
1973         sc->rx_ant =   (val >> 4)  & 0x3;
1974         sc->tx_ant =   (val >> 2)  & 0x3;
1975         sc->nb_ant =   val & 0x3;
1976
1977         DPRINTF(("RF revision=%d\n", sc->rf_rev));
1978
1979         rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2);
1980         val = le16toh(val);
1981         sc->ext_5ghz_lna = (val >> 6) & 0x1;
1982         sc->ext_2ghz_lna = (val >> 4) & 0x1;
1983
1984         DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
1985             sc->ext_2ghz_lna, sc->ext_5ghz_lna));
1986
1987         rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2);
1988         val = le16toh(val);
1989         if ((val & 0xff) != 0xff)
1990                 sc->rssi_2ghz_corr = (int8_t)(val & 0xff);      /* signed */
1991
1992         /* Only [-10, 10] is valid */
1993         if (sc->rssi_2ghz_corr < -10 || sc->rssi_2ghz_corr > 10)
1994                 sc->rssi_2ghz_corr = 0;
1995
1996         rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2);
1997         val = le16toh(val);
1998         if ((val & 0xff) != 0xff)
1999                 sc->rssi_5ghz_corr = (int8_t)(val & 0xff);      /* signed */
2000
2001         /* Only [-10, 10] is valid */
2002         if (sc->rssi_5ghz_corr < -10 || sc->rssi_5ghz_corr > 10)
2003                 sc->rssi_5ghz_corr = 0;
2004
2005         if (sc->ext_2ghz_lna)
2006                 sc->rssi_2ghz_corr -= 14;
2007         if (sc->ext_5ghz_lna)
2008                 sc->rssi_5ghz_corr -= 14;
2009
2010         DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
2011             sc->rssi_2ghz_corr, sc->rssi_5ghz_corr));
2012
2013         rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2);
2014         val = le16toh(val);
2015         if ((val & 0xff) != 0xff)
2016                 sc->rffreq = val & 0xff;
2017
2018         DPRINTF(("RF freq=%d\n", sc->rffreq));
2019
2020         /* read Tx power for all a/b/g channels */
2021         rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14);
2022         /* XXX default Tx power for 802.11a channels */
2023         memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14);
2024 #ifdef RUM_DEBUG
2025         for (i = 0; i < 14; i++)
2026                 DPRINTF(("Channel=%d Tx power=%d\n", i + 1,  sc->txpow[i]));
2027 #endif
2028
2029         /* read default values for BBP registers */
2030         rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
2031 #ifdef RUM_DEBUG
2032         for (i = 0; i < 14; i++) {
2033                 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
2034                         continue;
2035                 DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
2036                     sc->bbp_prom[i].val));
2037         }
2038 #endif
2039 }
2040
2041 static int
2042 rum_bbp_init(struct rum_softc *sc)
2043 {
2044 #define N(a)    (sizeof (a) / sizeof ((a)[0]))
2045         int i, ntries;
2046
2047         /* wait for BBP to be ready */
2048         for (ntries = 0; ntries < 100; ntries++) {
2049                 const uint8_t val = rum_bbp_read(sc, 0);
2050                 if (val != 0 && val != 0xff)
2051                         break;
2052                 DELAY(1000);
2053         }
2054         if (ntries == 100) {
2055                 device_printf(sc->sc_dev, "timeout waiting for BBP\n");
2056                 return EIO;
2057         }
2058
2059         /* initialize BBP registers to default values */
2060         for (i = 0; i < N(rum_def_bbp); i++)
2061                 rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val);
2062
2063         /* write vendor-specific BBP values (from EEPROM) */
2064         for (i = 0; i < 16; i++) {
2065                 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
2066                         continue;
2067                 rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2068         }
2069
2070         return 0;
2071 #undef N
2072 }
2073
2074 static void
2075 rum_init(void *priv)
2076 {
2077 #define N(a)    (sizeof (a) / sizeof ((a)[0]))
2078         struct rum_softc *sc = priv;
2079         struct ieee80211com *ic = &sc->sc_ic;
2080         struct ifnet *ifp = ic->ic_ifp;
2081         struct rum_rx_data *data;
2082         uint32_t tmp;
2083         usbd_status error;
2084         int i, ntries;
2085
2086         rum_stop(sc);
2087
2088         /* initialize MAC registers to default values */
2089         for (i = 0; i < N(rum_def_mac); i++)
2090                 rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val);
2091
2092         /* set host ready */
2093         rum_write(sc, RT2573_MAC_CSR1, 3);
2094         rum_write(sc, RT2573_MAC_CSR1, 0);
2095
2096         /* wait for BBP/RF to wakeup */
2097         for (ntries = 0; ntries < 1000; ntries++) {
2098                 if (rum_read(sc, RT2573_MAC_CSR12) & 8)
2099                         break;
2100                 rum_write(sc, RT2573_MAC_CSR12, 4);     /* force wakeup */
2101                 DELAY(1000);
2102         }
2103         if (ntries == 1000) {
2104                 printf("%s: timeout waiting for BBP/RF to wakeup\n",
2105                     device_get_nameunit(sc->sc_dev));
2106                 goto fail;
2107         }
2108
2109         if ((error = rum_bbp_init(sc)) != 0)
2110                 goto fail;
2111
2112         /* select default channel */
2113         rum_select_band(sc, ic->ic_curchan);
2114         rum_select_antenna(sc);
2115         rum_set_chan(sc, ic->ic_curchan);
2116
2117         /* clear STA registers */
2118         rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
2119
2120         IEEE80211_ADDR_COPY(ic->ic_myaddr, IF_LLADDR(ifp));
2121         rum_set_macaddr(sc, ic->ic_myaddr);
2122
2123         /* initialize ASIC */
2124         rum_write(sc, RT2573_MAC_CSR1, 4);
2125
2126         /*
2127          * Allocate xfer for AMRR statistics requests.
2128          */
2129         sc->amrr_xfer = usbd_alloc_xfer(sc->sc_udev);
2130         if (sc->amrr_xfer == NULL) {
2131                 printf("%s: could not allocate AMRR xfer\n",
2132                     device_get_nameunit(sc->sc_dev));
2133                 goto fail;
2134         }
2135
2136         /*
2137          * Open Tx and Rx USB bulk pipes.
2138          */
2139         error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
2140             &sc->sc_tx_pipeh);
2141         if (error != 0) {
2142                 printf("%s: could not open Tx pipe: %s\n",
2143                     device_get_nameunit(sc->sc_dev), usbd_errstr(error));
2144                 goto fail;
2145         }
2146         error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
2147             &sc->sc_rx_pipeh);
2148         if (error != 0) {
2149                 printf("%s: could not open Rx pipe: %s\n",
2150                     device_get_nameunit(sc->sc_dev), usbd_errstr(error));
2151                 goto fail;
2152         }
2153
2154         /*
2155          * Allocate Tx and Rx xfer queues.
2156          */
2157         error = rum_alloc_tx_list(sc);
2158         if (error != 0) {
2159                 printf("%s: could not allocate Tx list\n",
2160                     device_get_nameunit(sc->sc_dev));
2161                 goto fail;
2162         }
2163         error = rum_alloc_rx_list(sc);
2164         if (error != 0) {
2165                 printf("%s: could not allocate Rx list\n",
2166                     device_get_nameunit(sc->sc_dev));
2167                 goto fail;
2168         }
2169
2170         /*
2171          * Start up the receive pipe.
2172          */
2173         for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
2174                 data = &sc->rx_data[i];
2175
2176                 usbd_setup_xfer(data->xfer, sc->sc_rx_pipeh, data, data->buf,
2177                     MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
2178                 usbd_transfer(data->xfer);
2179         }
2180
2181         /* update Rx filter */
2182         tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff;
2183
2184         tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR;
2185         if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2186                 tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR |
2187                        RT2573_DROP_ACKCTS;
2188                 if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2189                         tmp |= RT2573_DROP_TODS;
2190                 if (!(ifp->if_flags & IFF_PROMISC))
2191                         tmp |= RT2573_DROP_NOT_TO_ME;
2192         }
2193         rum_write(sc, RT2573_TXRX_CSR0, tmp);
2194
2195         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2196         ifp->if_drv_flags |= IFF_DRV_RUNNING;
2197
2198         if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2199                 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
2200                         ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2201         } else
2202                 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2203
2204         return;
2205
2206 fail:   rum_stop(sc);
2207 #undef N
2208 }
2209
2210 static void
2211 rum_stop(void *priv)
2212 {
2213         struct rum_softc *sc = priv;
2214         struct ieee80211com *ic = &sc->sc_ic;
2215         struct ifnet *ifp = ic->ic_ifp;
2216         uint32_t tmp;
2217
2218         sc->sc_tx_timer = 0;
2219         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2220
2221         ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2222
2223         /* disable Rx */
2224         tmp = rum_read(sc, RT2573_TXRX_CSR0);
2225         rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
2226
2227         /* reset ASIC */
2228         rum_write(sc, RT2573_MAC_CSR1, 3);
2229         rum_write(sc, RT2573_MAC_CSR1, 0);
2230
2231         if (sc->amrr_xfer != NULL) {
2232                 usbd_free_xfer(sc->amrr_xfer);
2233                 sc->amrr_xfer = NULL;
2234         }
2235
2236         if (sc->sc_rx_pipeh != NULL) {
2237                 usbd_abort_pipe(sc->sc_rx_pipeh);
2238                 usbd_close_pipe(sc->sc_rx_pipeh);
2239                 sc->sc_rx_pipeh = NULL;
2240         }
2241         if (sc->sc_tx_pipeh != NULL) {
2242                 usbd_abort_pipe(sc->sc_tx_pipeh);
2243                 usbd_close_pipe(sc->sc_tx_pipeh);
2244                 sc->sc_tx_pipeh = NULL;
2245         }
2246
2247         rum_free_rx_list(sc);
2248         rum_free_tx_list(sc);
2249 }
2250
2251 static int
2252 rum_load_microcode(struct rum_softc *sc, const u_char *ucode, size_t size)
2253 {
2254         usb_device_request_t req;
2255         uint16_t reg = RT2573_MCU_CODE_BASE;
2256         usbd_status error;
2257
2258         /* copy firmware image into NIC */
2259         for (; size >= 4; reg += 4, ucode += 4, size -= 4)
2260                 rum_write(sc, reg, UGETDW(ucode));
2261
2262         req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2263         req.bRequest = RT2573_MCU_CNTL;
2264         USETW(req.wValue, RT2573_MCU_RUN);
2265         USETW(req.wIndex, 0);
2266         USETW(req.wLength, 0);
2267
2268         error = usbd_do_request(sc->sc_udev, &req, NULL);
2269         if (error != 0) {
2270                 printf("%s: could not run firmware: %s\n",
2271                     device_get_nameunit(sc->sc_dev), usbd_errstr(error));
2272         }
2273         return error;
2274 }
2275
2276 static int
2277 rum_prepare_beacon(struct rum_softc *sc)
2278 {
2279         struct ieee80211com *ic = &sc->sc_ic;
2280         struct rum_tx_desc desc;
2281         struct mbuf *m0;
2282         int rate;
2283
2284         m0 = ieee80211_beacon_alloc(ic->ic_bss, &sc->sc_bo);
2285         if (m0 == NULL) {
2286                 return ENOBUFS;
2287         }
2288
2289         /* send beacons at the lowest available rate */
2290         rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
2291
2292         rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ,
2293             m0->m_pkthdr.len, rate);
2294
2295         /* copy the first 24 bytes of Tx descriptor into NIC memory */
2296         rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
2297
2298         /* copy beacon header and payload into NIC memory */
2299         rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *),
2300             m0->m_pkthdr.len);
2301
2302         m_freem(m0);
2303
2304         return 0;
2305 }
2306
2307 static int
2308 rum_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2309     const struct ieee80211_bpf_params *params)
2310 {
2311         struct ieee80211com *ic = ni->ni_ic;
2312         struct ifnet *ifp = ic->ic_ifp;
2313         struct rum_softc *sc = ifp->if_softc;
2314
2315         /* prevent management frames from being sent if we're not ready */
2316         if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2317                 m_freem(m);
2318                 ieee80211_free_node(ni);
2319                 return ENETDOWN;
2320         }
2321         if (sc->tx_queued >= RUM_TX_LIST_COUNT) {
2322                 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2323                 m_freem(m);
2324                 ieee80211_free_node(ni);
2325                 return EIO;
2326         }
2327
2328         if (bpf_peers_present(ic->ic_rawbpf))
2329                 bpf_mtap(ic->ic_rawbpf, m);
2330
2331         ifp->if_opackets++;
2332
2333         if (params == NULL) {
2334                 /*
2335                  * Legacy path; interpret frame contents to decide
2336                  * precisely how to send the frame.
2337                  */
2338                 if (rum_tx_mgt(sc, m, ni) != 0)
2339                         goto bad;
2340         } else {
2341                 /*
2342                  * Caller supplied explicit parameters to use in
2343                  * sending the frame.
2344                  */
2345                 if (rum_tx_raw(sc, m, ni, params) != 0)
2346                         goto bad;
2347         }
2348         sc->sc_tx_timer = 5;
2349         callout_reset(&sc->watchdog_ch, hz, rum_watchdog, sc);
2350
2351         return 0;
2352 bad:
2353         ifp->if_oerrors++;
2354         ieee80211_free_node(ni);
2355         return EIO;
2356 }
2357
2358 static void
2359 rum_amrr_start(struct rum_softc *sc, struct ieee80211_node *ni)
2360 {
2361         int i;
2362
2363         /* clear statistic registers (STA_CSR0 to STA_CSR5) */
2364         rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
2365
2366         ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
2367
2368         /* set rate to some reasonable initial value */
2369         for (i = ni->ni_rates.rs_nrates - 1;
2370              i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2371              i--);
2372         ni->ni_txrate = i;
2373
2374         callout_reset(&sc->amrr_ch, hz, rum_amrr_timeout, sc);
2375 }
2376
2377 static void
2378 rum_amrr_timeout(void *arg)
2379 {
2380         struct rum_softc *sc = (struct rum_softc *)arg;
2381         usb_device_request_t req;
2382
2383         /*
2384          * Asynchronously read statistic registers (cleared by read).
2385          */
2386         req.bmRequestType = UT_READ_VENDOR_DEVICE;
2387         req.bRequest = RT2573_READ_MULTI_MAC;
2388         USETW(req.wValue, 0);
2389         USETW(req.wIndex, RT2573_STA_CSR0);
2390         USETW(req.wLength, sizeof sc->sta);
2391
2392         usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
2393             USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof sc->sta, 0,
2394             rum_amrr_update);
2395         (void)usbd_transfer(sc->amrr_xfer);
2396 }
2397
2398 static void
2399 rum_amrr_update(usbd_xfer_handle xfer, usbd_private_handle priv,
2400     usbd_status status)
2401 {
2402         struct rum_softc *sc = (struct rum_softc *)priv;
2403         struct ifnet *ifp = sc->sc_ic.ic_ifp;
2404
2405         if (status != USBD_NORMAL_COMPLETION) {
2406                 device_printf(sc->sc_dev, "could not retrieve Tx statistics - "
2407                     "cancelling automatic rate control\n");
2408                 return;
2409         }
2410
2411         /* count TX retry-fail as Tx errors */
2412         ifp->if_oerrors += le32toh(sc->sta[5]) >> 16;
2413
2414         sc->amn.amn_retrycnt =
2415             (le32toh(sc->sta[4]) >> 16) +       /* TX one-retry ok count */
2416             (le32toh(sc->sta[5]) & 0xffff) +    /* TX more-retry ok count */
2417             (le32toh(sc->sta[5]) >> 16);        /* TX retry-fail count */
2418
2419         sc->amn.amn_txcnt =
2420             sc->amn.amn_retrycnt +
2421             (le32toh(sc->sta[4]) & 0xffff);     /* TX no-retry ok count */
2422
2423         ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
2424
2425         callout_reset(&sc->amrr_ch, hz, rum_amrr_timeout, sc);
2426 }
2427
2428 static void
2429 rum_scan_start(struct ieee80211com *ic)
2430 {
2431         struct rum_softc *sc = ic->ic_ifp->if_softc;
2432
2433         usb_rem_task(sc->sc_udev, &sc->sc_scantask);
2434
2435         /* do it in a process context */
2436         sc->sc_scan_action = RUM_SCAN_START;
2437         usb_add_task(sc->sc_udev, &sc->sc_scantask, USB_TASKQ_DRIVER);
2438 }
2439
2440 static void
2441 rum_scan_end(struct ieee80211com *ic)
2442 {
2443         struct rum_softc *sc = ic->ic_ifp->if_softc;
2444
2445         usb_rem_task(sc->sc_udev, &sc->sc_scantask);
2446
2447         /* do it in a process context */
2448         sc->sc_scan_action = RUM_SCAN_END;
2449         usb_add_task(sc->sc_udev, &sc->sc_scantask, USB_TASKQ_DRIVER);
2450 }
2451
2452 static void
2453 rum_set_channel(struct ieee80211com *ic)
2454 {
2455         struct rum_softc *sc = ic->ic_ifp->if_softc;
2456
2457         usb_rem_task(sc->sc_udev, &sc->sc_scantask);
2458
2459         /* do it in a process context */
2460         sc->sc_scan_action = RUM_SET_CHANNEL;
2461         usb_add_task(sc->sc_udev, &sc->sc_scantask, USB_TASKQ_DRIVER);
2462 }
2463
2464 static void
2465 rum_scantask(void *arg)
2466 {
2467         struct rum_softc *sc = arg;
2468         struct ieee80211com *ic = &sc->sc_ic;
2469         struct ifnet *ifp = ic->ic_ifp;
2470         uint32_t tmp;
2471
2472         RUM_LOCK(sc);
2473
2474         switch (sc->sc_scan_action) {
2475         case RUM_SCAN_START:
2476                 /* abort TSF synchronization */
2477                 tmp = rum_read(sc, RT2573_TXRX_CSR9);
2478                 rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff);
2479                 rum_set_bssid(sc, ifp->if_broadcastaddr);
2480                 break;
2481
2482         case RUM_SCAN_END:
2483                 rum_enable_tsf_sync(sc);
2484                 /* XXX keep local copy */
2485                 rum_set_bssid(sc, ic->ic_bss->ni_bssid);
2486                 break;
2487
2488         case RUM_SET_CHANNEL:
2489                 mtx_lock(&Giant);
2490                 rum_set_chan(sc, ic->ic_curchan);
2491                 mtx_unlock(&Giant);
2492                 break;
2493
2494         default:
2495                 panic("unknown scan action %d\n", sc->sc_scan_action);
2496                 /* NEVER REACHED */
2497                 break;
2498         }
2499
2500         RUM_UNLOCK(sc);
2501 }
2502
2503 static int
2504 rum_get_rssi(struct rum_softc *sc, uint8_t raw)
2505 {
2506         int lna, agc, rssi;
2507
2508         lna = (raw >> 5) & 0x3;
2509         agc = raw & 0x1f;
2510
2511         if (lna == 0) {
2512                 /*
2513                  * No RSSI mapping
2514                  *
2515                  * NB: Since RSSI is relative to noise floor, -1 is
2516                  *     adequate for caller to know error happened.
2517                  */
2518                 return -1;
2519         }
2520
2521         rssi = (2 * agc) - RT2573_NOISE_FLOOR;
2522
2523         if (IEEE80211_IS_CHAN_2GHZ(sc->sc_ic.ic_curchan)) {
2524                 rssi += sc->rssi_2ghz_corr;
2525
2526                 if (lna == 1)
2527                         rssi -= 64;
2528                 else if (lna == 2)
2529                         rssi -= 74;
2530                 else if (lna == 3)
2531                         rssi -= 90;
2532         } else {
2533                 rssi += sc->rssi_5ghz_corr;
2534
2535                 if (!sc->ext_5ghz_lna && lna != 1)
2536                         rssi += 4;
2537
2538                 if (lna == 1)
2539                         rssi -= 64;
2540                 else if (lna == 2)
2541                         rssi -= 86;
2542                 else if (lna == 3)
2543                         rssi -= 100;
2544         }
2545         return rssi;
2546 }
2547
2548 static device_method_t rum_methods[] = {
2549         /* Device interface */
2550         DEVMETHOD(device_probe,         rum_match),
2551         DEVMETHOD(device_attach,        rum_attach),
2552         DEVMETHOD(device_detach,        rum_detach),
2553
2554         { 0, 0 }
2555 };
2556
2557 static driver_t rum_driver = {
2558         "rum",
2559         rum_methods,
2560         sizeof(struct rum_softc)
2561 };
2562
2563 static devclass_t rum_devclass;
2564
2565 DRIVER_MODULE(rum, uhub, rum_driver, rum_devclass, usbd_driver_load, 0);