]> CyberLeo.Net >> Repos - FreeBSD/releng/7.2.git/blob - sys/dev/usb/if_ural.c
Create releng/7.2 from stable/7 in preparation for 7.2-RELEASE.
[FreeBSD/releng/7.2.git] / sys / dev / usb / if_ural.c
1 /*      $FreeBSD$       */
2
3 /*-
4  * Copyright (c) 2005, 2006
5  *      Damien Bergamini <damien.bergamini@free.fr>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19
20 #include <sys/cdefs.h>
21 __FBSDID("$FreeBSD$");
22
23 /*-
24  * Ralink Technology RT2500USB chipset driver
25  * http://www.ralinktech.com/
26  */
27
28 #include <sys/param.h>
29 #include <sys/sysctl.h>
30 #include <sys/sockio.h>
31 #include <sys/mbuf.h>
32 #include <sys/kernel.h>
33 #include <sys/socket.h>
34 #include <sys/systm.h>
35 #include <sys/malloc.h>
36 #include <sys/module.h>
37 #include <sys/bus.h>
38 #include <sys/endian.h>
39
40 #include <machine/bus.h>
41 #include <machine/resource.h>
42 #include <sys/rman.h>
43
44 #include <net/bpf.h>
45 #include <net/if.h>
46 #include <net/if_arp.h>
47 #include <net/ethernet.h>
48 #include <net/if_dl.h>
49 #include <net/if_media.h>
50 #include <net/if_types.h>
51
52 #include <net80211/ieee80211_var.h>
53 #include <net80211/ieee80211_amrr.h>
54 #include <net80211/ieee80211_radiotap.h>
55 #include <net80211/ieee80211_regdomain.h>
56
57 #include <dev/usb/usb.h>
58 #include <dev/usb/usbdi.h>
59 #include <dev/usb/usbdi_util.h>
60 #include "usbdevs.h"
61
62 #include <dev/usb/if_uralreg.h>
63 #include <dev/usb/if_uralvar.h>
64
65 #ifdef USB_DEBUG
66 #define DPRINTF(x)      do { if (uraldebug > 0) printf x; } while (0)
67 #define DPRINTFN(n, x)  do { if (uraldebug >= (n)) printf x; } while (0)
68 int uraldebug = 0;
69 SYSCTL_NODE(_hw_usb, OID_AUTO, ural, CTLFLAG_RW, 0, "USB ural");
70 SYSCTL_INT(_hw_usb_ural, OID_AUTO, debug, CTLFLAG_RW, &uraldebug, 0,
71     "ural debug level");
72 #else
73 #define DPRINTF(x)
74 #define DPRINTFN(n, x)
75 #endif
76
77 #define URAL_RSSI(rssi)                                 \
78         ((rssi) > (RAL_NOISE_FLOOR + RAL_RSSI_CORR) ?   \
79          ((rssi) - (RAL_NOISE_FLOOR + RAL_RSSI_CORR)) : 0)
80
81 /* various supported device vendors/products */
82 static const struct usb_devno ural_devs[] = {
83         { USB_VENDOR_ASUS,              USB_PRODUCT_ASUS_WL167G },
84         { USB_VENDOR_ASUS,              USB_PRODUCT_RALINK_RT2570 },
85         { USB_VENDOR_BELKIN,            USB_PRODUCT_BELKIN_F5D7050 },
86         { USB_VENDOR_BELKIN,            USB_PRODUCT_BELKIN_F5D7051 },
87         { USB_VENDOR_CONCEPTRONIC2,     USB_PRODUCT_CONCEPTRONIC2_C54RU },
88         { USB_VENDOR_DLINK,             USB_PRODUCT_DLINK_DWLG122 },
89         { USB_VENDOR_GIGABYTE,          USB_PRODUCT_GIGABYTE_GNWBKG },
90         { USB_VENDOR_GIGABYTE,          USB_PRODUCT_GIGABYTE_GN54G },
91         { USB_VENDOR_GUILLEMOT,         USB_PRODUCT_GUILLEMOT_HWGUSB254 },
92         { USB_VENDOR_CISCOLINKSYS,      USB_PRODUCT_CISCOLINKSYS_WUSB54G },
93         { USB_VENDOR_CISCOLINKSYS,      USB_PRODUCT_CISCOLINKSYS_WUSB54GP },
94         { USB_VENDOR_CISCOLINKSYS,      USB_PRODUCT_CISCOLINKSYS_HU200TS },
95         { USB_VENDOR_MELCO,             USB_PRODUCT_MELCO_KG54 },
96         { USB_VENDOR_MELCO,             USB_PRODUCT_MELCO_KG54AI },
97         { USB_VENDOR_MELCO,             USB_PRODUCT_MELCO_KG54YB },
98         { USB_VENDOR_MELCO,             USB_PRODUCT_MELCO_NINWIFI },
99         { USB_VENDOR_MSI,               USB_PRODUCT_MSI_RT2570 },
100         { USB_VENDOR_MSI,               USB_PRODUCT_MSI_RT2570_2 },
101         { USB_VENDOR_MSI,               USB_PRODUCT_MSI_RT2570_3 },
102         { USB_VENDOR_NOVATECH,          USB_PRODUCT_NOVATECH_NV902 },
103         { USB_VENDOR_RALINK,            USB_PRODUCT_RALINK_RT2570 },
104         { USB_VENDOR_RALINK,            USB_PRODUCT_RALINK_RT2570_2 },
105         { USB_VENDOR_RALINK,            USB_PRODUCT_RALINK_RT2570_3 },
106         { USB_VENDOR_SIEMENS2,          USB_PRODUCT_SIEMENS2_WL54G },
107         { USB_VENDOR_SMC,               USB_PRODUCT_SMC_2862WG },
108         { USB_VENDOR_SPHAIRON,          USB_PRODUCT_SPHAIRON_UB801R},
109         { USB_VENDOR_SURECOM,           USB_PRODUCT_SURECOM_RT2570 },
110         { USB_VENDOR_VTECH,             USB_PRODUCT_VTECH_RT2570 },
111         { USB_VENDOR_ZINWELL,           USB_PRODUCT_ZINWELL_RT2570 }
112 };
113
114 MODULE_DEPEND(ural, wlan, 1, 1, 1);
115 MODULE_DEPEND(ural, wlan_amrr, 1, 1, 1);
116 MODULE_DEPEND(ural, usb, 1, 1, 1);
117
118 static int              ural_alloc_tx_list(struct ural_softc *);
119 static void             ural_free_tx_list(struct ural_softc *);
120 static int              ural_alloc_rx_list(struct ural_softc *);
121 static void             ural_free_rx_list(struct ural_softc *);
122 static int              ural_media_change(struct ifnet *);
123 static void             ural_task(void *);
124 static void             ural_scantask(void *);
125 static int              ural_newstate(struct ieee80211com *,
126                             enum ieee80211_state, int);
127 static int              ural_rxrate(struct ural_rx_desc *);
128 static void             ural_txeof(usbd_xfer_handle, usbd_private_handle,
129                             usbd_status);
130 static void             ural_rxeof(usbd_xfer_handle, usbd_private_handle,
131                             usbd_status);
132 static int              ural_ack_rate(struct ieee80211com *, int);
133 static uint16_t         ural_txtime(int, int, uint32_t);
134 static uint8_t          ural_plcp_signal(int);
135 static void             ural_setup_tx_desc(struct ural_softc *,
136                             struct ural_tx_desc *, uint32_t, int, int);
137 static int              ural_tx_bcn(struct ural_softc *, struct mbuf *,
138                             struct ieee80211_node *);
139 static int              ural_tx_mgt(struct ural_softc *, struct mbuf *,
140                             struct ieee80211_node *);
141 static int              ural_tx_data(struct ural_softc *, struct mbuf *,
142                             struct ieee80211_node *);
143 static void             ural_start(struct ifnet *);
144 static void             ural_watchdog(void *);
145 static int              ural_reset(struct ifnet *);
146 static int              ural_ioctl(struct ifnet *, u_long, caddr_t);
147 static void             ural_set_testmode(struct ural_softc *);
148 static void             ural_eeprom_read(struct ural_softc *, uint16_t, void *,
149                             int);
150 static uint16_t         ural_read(struct ural_softc *, uint16_t);
151 static void             ural_read_multi(struct ural_softc *, uint16_t, void *,
152                             int);
153 static void             ural_write(struct ural_softc *, uint16_t, uint16_t);
154 static void             ural_write_multi(struct ural_softc *, uint16_t, void *,
155                             int) __unused;
156 static void             ural_bbp_write(struct ural_softc *, uint8_t, uint8_t);
157 static uint8_t          ural_bbp_read(struct ural_softc *, uint8_t);
158 static void             ural_rf_write(struct ural_softc *, uint8_t, uint32_t);
159 static void             ural_scan_start(struct ieee80211com *);
160 static void             ural_scan_end(struct ieee80211com *);
161 static void             ural_set_channel(struct ieee80211com *);
162 static void             ural_set_chan(struct ural_softc *,
163                             struct ieee80211_channel *);
164 static void             ural_disable_rf_tune(struct ural_softc *);
165 static void             ural_enable_tsf_sync(struct ural_softc *);
166 static void             ural_update_slot(struct ifnet *);
167 static void             ural_set_txpreamble(struct ural_softc *);
168 static void             ural_set_basicrates(struct ural_softc *);
169 static void             ural_set_bssid(struct ural_softc *, const uint8_t *);
170 static void             ural_set_macaddr(struct ural_softc *, uint8_t *);
171 static void             ural_update_promisc(struct ural_softc *);
172 static const char       *ural_get_rf(int);
173 static void             ural_read_eeprom(struct ural_softc *);
174 static int              ural_bbp_init(struct ural_softc *);
175 static void             ural_set_txantenna(struct ural_softc *, int);
176 static void             ural_set_rxantenna(struct ural_softc *, int);
177 static void             ural_init(void *);
178 static void             ural_stop(void *);
179 static int              ural_raw_xmit(struct ieee80211_node *, struct mbuf *,
180                             const struct ieee80211_bpf_params *);
181 static void             ural_amrr_start(struct ural_softc *,
182                             struct ieee80211_node *);
183 static void             ural_amrr_timeout(void *);
184 static void             ural_amrr_update(usbd_xfer_handle, usbd_private_handle,
185                             usbd_status status);
186
187 /*
188  * Default values for MAC registers; values taken from the reference driver.
189  */
190 static const struct {
191         uint16_t        reg;
192         uint16_t        val;
193 } ural_def_mac[] = {
194         { RAL_TXRX_CSR5,  0x8c8d },
195         { RAL_TXRX_CSR6,  0x8b8a },
196         { RAL_TXRX_CSR7,  0x8687 },
197         { RAL_TXRX_CSR8,  0x0085 },
198         { RAL_MAC_CSR13,  0x1111 },
199         { RAL_MAC_CSR14,  0x1e11 },
200         { RAL_TXRX_CSR21, 0xe78f },
201         { RAL_MAC_CSR9,   0xff1d },
202         { RAL_MAC_CSR11,  0x0002 },
203         { RAL_MAC_CSR22,  0x0053 },
204         { RAL_MAC_CSR15,  0x0000 },
205         { RAL_MAC_CSR8,   0x0780 },
206         { RAL_TXRX_CSR19, 0x0000 },
207         { RAL_TXRX_CSR18, 0x005a },
208         { RAL_PHY_CSR2,   0x0000 },
209         { RAL_TXRX_CSR0,  0x1ec0 },
210         { RAL_PHY_CSR4,   0x000f }
211 };
212
213 /*
214  * Default values for BBP registers; values taken from the reference driver.
215  */
216 static const struct {
217         uint8_t reg;
218         uint8_t val;
219 } ural_def_bbp[] = {
220         {  3, 0x02 },
221         {  4, 0x19 },
222         { 14, 0x1c },
223         { 15, 0x30 },
224         { 16, 0xac },
225         { 17, 0x48 },
226         { 18, 0x18 },
227         { 19, 0xff },
228         { 20, 0x1e },
229         { 21, 0x08 },
230         { 22, 0x08 },
231         { 23, 0x08 },
232         { 24, 0x80 },
233         { 25, 0x50 },
234         { 26, 0x08 },
235         { 27, 0x23 },
236         { 30, 0x10 },
237         { 31, 0x2b },
238         { 32, 0xb9 },
239         { 34, 0x12 },
240         { 35, 0x50 },
241         { 39, 0xc4 },
242         { 40, 0x02 },
243         { 41, 0x60 },
244         { 53, 0x10 },
245         { 54, 0x18 },
246         { 56, 0x08 },
247         { 57, 0x10 },
248         { 58, 0x08 },
249         { 61, 0x60 },
250         { 62, 0x10 },
251         { 75, 0xff }
252 };
253
254 /*
255  * Default values for RF register R2 indexed by channel numbers.
256  */
257 static const uint32_t ural_rf2522_r2[] = {
258         0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814,
259         0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e
260 };
261
262 static const uint32_t ural_rf2523_r2[] = {
263         0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
264         0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
265 };
266
267 static const uint32_t ural_rf2524_r2[] = {
268         0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
269         0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
270 };
271
272 static const uint32_t ural_rf2525_r2[] = {
273         0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d,
274         0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346
275 };
276
277 static const uint32_t ural_rf2525_hi_r2[] = {
278         0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345,
279         0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e
280 };
281
282 static const uint32_t ural_rf2525e_r2[] = {
283         0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463,
284         0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b
285 };
286
287 static const uint32_t ural_rf2526_hi_r2[] = {
288         0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d,
289         0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241
290 };
291
292 static const uint32_t ural_rf2526_r2[] = {
293         0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229,
294         0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d
295 };
296
297 /*
298  * For dual-band RF, RF registers R1 and R4 also depend on channel number;
299  * values taken from the reference driver.
300  */
301 static const struct {
302         uint8_t         chan;
303         uint32_t        r1;
304         uint32_t        r2;
305         uint32_t        r4;
306 } ural_rf5222[] = {
307         {   1, 0x08808, 0x0044d, 0x00282 },
308         {   2, 0x08808, 0x0044e, 0x00282 },
309         {   3, 0x08808, 0x0044f, 0x00282 },
310         {   4, 0x08808, 0x00460, 0x00282 },
311         {   5, 0x08808, 0x00461, 0x00282 },
312         {   6, 0x08808, 0x00462, 0x00282 },
313         {   7, 0x08808, 0x00463, 0x00282 },
314         {   8, 0x08808, 0x00464, 0x00282 },
315         {   9, 0x08808, 0x00465, 0x00282 },
316         {  10, 0x08808, 0x00466, 0x00282 },
317         {  11, 0x08808, 0x00467, 0x00282 },
318         {  12, 0x08808, 0x00468, 0x00282 },
319         {  13, 0x08808, 0x00469, 0x00282 },
320         {  14, 0x08808, 0x0046b, 0x00286 },
321
322         {  36, 0x08804, 0x06225, 0x00287 },
323         {  40, 0x08804, 0x06226, 0x00287 },
324         {  44, 0x08804, 0x06227, 0x00287 },
325         {  48, 0x08804, 0x06228, 0x00287 },
326         {  52, 0x08804, 0x06229, 0x00287 },
327         {  56, 0x08804, 0x0622a, 0x00287 },
328         {  60, 0x08804, 0x0622b, 0x00287 },
329         {  64, 0x08804, 0x0622c, 0x00287 },
330
331         { 100, 0x08804, 0x02200, 0x00283 },
332         { 104, 0x08804, 0x02201, 0x00283 },
333         { 108, 0x08804, 0x02202, 0x00283 },
334         { 112, 0x08804, 0x02203, 0x00283 },
335         { 116, 0x08804, 0x02204, 0x00283 },
336         { 120, 0x08804, 0x02205, 0x00283 },
337         { 124, 0x08804, 0x02206, 0x00283 },
338         { 128, 0x08804, 0x02207, 0x00283 },
339         { 132, 0x08804, 0x02208, 0x00283 },
340         { 136, 0x08804, 0x02209, 0x00283 },
341         { 140, 0x08804, 0x0220a, 0x00283 },
342
343         { 149, 0x08808, 0x02429, 0x00281 },
344         { 153, 0x08808, 0x0242b, 0x00281 },
345         { 157, 0x08808, 0x0242d, 0x00281 },
346         { 161, 0x08808, 0x0242f, 0x00281 }
347 };
348
349 static device_probe_t ural_match;
350 static device_attach_t ural_attach;
351 static device_detach_t ural_detach;
352
353 static device_method_t ural_methods[] = {
354         /* Device interface */
355         DEVMETHOD(device_probe,         ural_match),
356         DEVMETHOD(device_attach,        ural_attach),
357         DEVMETHOD(device_detach,        ural_detach),
358
359         { 0, 0 }
360 };
361
362 static driver_t ural_driver = {
363         "ural",
364         ural_methods,
365         sizeof(struct ural_softc)
366 };
367
368 static devclass_t ural_devclass;
369
370 DRIVER_MODULE(ural, uhub, ural_driver, ural_devclass, usbd_driver_load, 0);
371
372 static int
373 ural_match(device_t self)
374 {
375         struct usb_attach_arg *uaa = device_get_ivars(self);
376
377         if (uaa->iface != NULL)
378                 return UMATCH_NONE;
379
380         return (usb_lookup(ural_devs, uaa->vendor, uaa->product) != NULL) ?
381             UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
382 }
383
384 static int
385 ural_attach(device_t self)
386 {
387         struct ural_softc *sc = device_get_softc(self);
388         struct usb_attach_arg *uaa = device_get_ivars(self);
389         struct ifnet *ifp;
390         struct ieee80211com *ic = &sc->sc_ic;
391         usb_interface_descriptor_t *id;
392         usb_endpoint_descriptor_t *ed;
393         usbd_status error;
394         int i, bands;
395
396         sc->sc_udev = uaa->device;
397         sc->sc_dev = self;
398
399         if (usbd_set_config_no(sc->sc_udev, RAL_CONFIG_NO, 0) != 0) {
400                 printf("%s: could not set configuration no\n",
401                     device_get_nameunit(sc->sc_dev));
402                 return ENXIO;
403         }
404
405         /* get the first interface handle */
406         error = usbd_device2interface_handle(sc->sc_udev, RAL_IFACE_INDEX,
407             &sc->sc_iface);
408         if (error != 0) {
409                 printf("%s: could not get interface handle\n",
410                     device_get_nameunit(sc->sc_dev));
411                 return ENXIO;
412         }
413
414         /*
415          * Find endpoints.
416          */
417         id = usbd_get_interface_descriptor(sc->sc_iface);
418
419         sc->sc_rx_no = sc->sc_tx_no = -1;
420         for (i = 0; i < id->bNumEndpoints; i++) {
421                 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
422                 if (ed == NULL) {
423                         printf("%s: no endpoint descriptor for %d\n",
424                             device_get_nameunit(sc->sc_dev), i);
425                         return ENXIO;
426                 }
427
428                 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
429                     UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
430                         sc->sc_rx_no = ed->bEndpointAddress;
431                 else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
432                     UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
433                         sc->sc_tx_no = ed->bEndpointAddress;
434         }
435         if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
436                 printf("%s: missing endpoint\n",
437                     device_get_nameunit(sc->sc_dev));
438                 return ENXIO;
439         }
440
441         mtx_init(&sc->sc_mtx, device_get_nameunit(sc->sc_dev), MTX_NETWORK_LOCK,
442             MTX_DEF | MTX_RECURSE);
443
444         usb_init_task(&sc->sc_task, ural_task, sc);
445         usb_init_task(&sc->sc_scantask, ural_scantask, sc);
446         callout_init(&sc->watchdog_ch, 0);
447         callout_init(&sc->amrr_ch, 0);
448
449         /* retrieve RT2570 rev. no */
450         sc->asic_rev = ural_read(sc, RAL_MAC_CSR0);
451
452         /* retrieve MAC address and various other things from EEPROM */
453         ural_read_eeprom(sc);
454
455         printf("%s: MAC/BBP RT2570 (rev 0x%02x), RF %s\n",
456             device_get_nameunit(sc->sc_dev), sc->asic_rev,
457             ural_get_rf(sc->rf_rev));
458
459         ifp = sc->sc_ifp = if_alloc(IFT_ETHER);
460         if (ifp == NULL) {
461                 printf("%s: can not if_alloc()\n",
462                     device_get_nameunit(sc->sc_dev));
463                 return ENXIO;
464         }
465
466         ifp->if_softc = sc;
467         if_initname(ifp, "ural", device_get_unit(sc->sc_dev));
468         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST |
469             IFF_NEEDSGIANT; /* USB stack is still under Giant lock */
470         ifp->if_init = ural_init;
471         ifp->if_ioctl = ural_ioctl;
472         ifp->if_start = ural_start;
473         IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
474         ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
475         IFQ_SET_READY(&ifp->if_snd);
476
477         ic->ic_ifp = ifp;
478         ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
479         ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
480         ic->ic_state = IEEE80211_S_INIT;
481
482         /* set device capabilities */
483         ic->ic_caps =
484               IEEE80211_C_IBSS          /* IBSS mode supported */
485             | IEEE80211_C_MONITOR       /* monitor mode supported */
486             | IEEE80211_C_HOSTAP        /* HostAp mode supported */
487             | IEEE80211_C_TXPMGT        /* tx power management */
488             | IEEE80211_C_SHPREAMBLE    /* short preamble supported */
489             | IEEE80211_C_SHSLOT        /* short slot time supported */
490             | IEEE80211_C_BGSCAN        /* bg scanning supported */
491             | IEEE80211_C_WPA           /* 802.11i */
492             ;
493
494         bands = 0;
495         setbit(&bands, IEEE80211_MODE_11B);
496         setbit(&bands, IEEE80211_MODE_11G);
497         if (sc->rf_rev == RAL_RF_5222)
498                 setbit(&bands, IEEE80211_MODE_11A);
499         ieee80211_init_channels(ic, 0, CTRY_DEFAULT, bands, 0, 1);
500
501         ieee80211_ifattach(ic);
502         ic->ic_reset = ural_reset;
503         /* enable s/w bmiss handling in sta mode */
504         ic->ic_flags_ext |= IEEE80211_FEXT_SWBMISS;
505         ic->ic_scan_start = ural_scan_start;
506         ic->ic_scan_end = ural_scan_end;
507         ic->ic_set_channel = ural_set_channel;
508
509         /* override state transition machine */
510         sc->sc_newstate = ic->ic_newstate;
511         ic->ic_newstate = ural_newstate;
512         ic->ic_raw_xmit = ural_raw_xmit;
513         ieee80211_media_init(ic, ural_media_change, ieee80211_media_status);
514
515         ieee80211_amrr_init(&sc->amrr, ic,
516                 IEEE80211_AMRR_MIN_SUCCESS_THRESHOLD,
517                 IEEE80211_AMRR_MAX_SUCCESS_THRESHOLD);
518
519         bpfattach2(ifp, DLT_IEEE802_11_RADIO,
520             sizeof (struct ieee80211_frame) + 64, &sc->sc_drvbpf);
521
522         sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
523         sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
524         sc->sc_rxtap.wr_ihdr.it_present = htole32(RAL_RX_RADIOTAP_PRESENT);
525
526         sc->sc_txtap_len = sizeof sc->sc_txtapu;
527         sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
528         sc->sc_txtap.wt_ihdr.it_present = htole32(RAL_TX_RADIOTAP_PRESENT);
529
530         if (bootverbose)
531                 ieee80211_announce(ic);
532
533         return 0;
534 }
535
536 static int
537 ural_detach(device_t self)
538 {
539         struct ural_softc *sc = device_get_softc(self);
540         struct ieee80211com *ic = &sc->sc_ic;
541         struct ifnet *ifp = ic->ic_ifp;
542
543         ural_stop(sc);
544         usb_rem_task(sc->sc_udev, &sc->sc_task);
545         callout_stop(&sc->watchdog_ch);
546         callout_stop(&sc->amrr_ch);
547
548         if (sc->amrr_xfer != NULL) {
549                 usbd_free_xfer(sc->amrr_xfer);
550                 sc->amrr_xfer = NULL;
551         }
552
553         if (sc->sc_rx_pipeh != NULL) {
554                 usbd_abort_pipe(sc->sc_rx_pipeh);
555                 usbd_close_pipe(sc->sc_rx_pipeh);
556         }
557
558         if (sc->sc_tx_pipeh != NULL) {
559                 usbd_abort_pipe(sc->sc_tx_pipeh);
560                 usbd_close_pipe(sc->sc_tx_pipeh);
561         }
562
563         ural_free_rx_list(sc);
564         ural_free_tx_list(sc);
565
566         bpfdetach(ifp);
567         ieee80211_ifdetach(ic);
568         if_free(ifp);
569
570         mtx_destroy(&sc->sc_mtx);
571
572         return 0;
573 }
574
575 static int
576 ural_alloc_tx_list(struct ural_softc *sc)
577 {
578         struct ural_tx_data *data;
579         int i, error;
580
581         sc->tx_queued = 0;
582
583         for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
584                 data = &sc->tx_data[i];
585
586                 data->sc = sc;
587
588                 data->xfer = usbd_alloc_xfer(sc->sc_udev);
589                 if (data->xfer == NULL) {
590                         printf("%s: could not allocate tx xfer\n",
591                             device_get_nameunit(sc->sc_dev));
592                         error = ENOMEM;
593                         goto fail;
594                 }
595
596                 data->buf = usbd_alloc_buffer(data->xfer,
597                     RAL_TX_DESC_SIZE + MCLBYTES);
598                 if (data->buf == NULL) {
599                         printf("%s: could not allocate tx buffer\n",
600                             device_get_nameunit(sc->sc_dev));
601                         error = ENOMEM;
602                         goto fail;
603                 }
604         }
605
606         return 0;
607
608 fail:   ural_free_tx_list(sc);
609         return error;
610 }
611
612 static void
613 ural_free_tx_list(struct ural_softc *sc)
614 {
615         struct ural_tx_data *data;
616         int i;
617
618         for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
619                 data = &sc->tx_data[i];
620
621                 if (data->xfer != NULL) {
622                         usbd_free_xfer(data->xfer);
623                         data->xfer = NULL;
624                 }
625
626                 if (data->ni != NULL) {
627                         ieee80211_free_node(data->ni);
628                         data->ni = NULL;
629                 }
630         }
631 }
632
633 static int
634 ural_alloc_rx_list(struct ural_softc *sc)
635 {
636         struct ural_rx_data *data;
637         int i, error;
638
639         for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
640                 data = &sc->rx_data[i];
641
642                 data->sc = sc;
643
644                 data->xfer = usbd_alloc_xfer(sc->sc_udev);
645                 if (data->xfer == NULL) {
646                         printf("%s: could not allocate rx xfer\n",
647                             device_get_nameunit(sc->sc_dev));
648                         error = ENOMEM;
649                         goto fail;
650                 }
651
652                 if (usbd_alloc_buffer(data->xfer, MCLBYTES) == NULL) {
653                         printf("%s: could not allocate rx buffer\n",
654                             device_get_nameunit(sc->sc_dev));
655                         error = ENOMEM;
656                         goto fail;
657                 }
658
659                 data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
660                 if (data->m == NULL) {
661                         printf("%s: could not allocate rx mbuf\n",
662                             device_get_nameunit(sc->sc_dev));
663                         error = ENOMEM;
664                         goto fail;
665                 }
666
667                 data->buf = mtod(data->m, uint8_t *);
668         }
669
670         return 0;
671
672 fail:   ural_free_tx_list(sc);
673         return error;
674 }
675
676 static void
677 ural_free_rx_list(struct ural_softc *sc)
678 {
679         struct ural_rx_data *data;
680         int i;
681
682         for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
683                 data = &sc->rx_data[i];
684
685                 if (data->xfer != NULL) {
686                         usbd_free_xfer(data->xfer);
687                         data->xfer = NULL;
688                 }
689
690                 if (data->m != NULL) {
691                         m_freem(data->m);
692                         data->m = NULL;
693                 }
694         }
695 }
696
697 static int
698 ural_media_change(struct ifnet *ifp)
699 {
700         struct ural_softc *sc = ifp->if_softc;
701         int error;
702
703         RAL_LOCK(sc);
704
705         error = ieee80211_media_change(ifp);
706         if (error != ENETRESET) {
707                 RAL_UNLOCK(sc);
708                 return error;
709         }
710
711         if ((ifp->if_flags & IFF_UP) &&
712             (ifp->if_drv_flags & IFF_DRV_RUNNING))
713                 ural_init(sc);
714
715         RAL_UNLOCK(sc);
716
717         return 0;
718 }
719
720 static void
721 ural_task(void *xarg)
722 {
723         struct ural_softc *sc = xarg;
724         struct ieee80211com *ic = &sc->sc_ic;
725         enum ieee80211_state ostate;
726         struct ieee80211_node *ni;
727         struct mbuf *m;
728
729         ostate = ic->ic_state;
730
731         RAL_LOCK(sc);
732         switch (sc->sc_state) {
733         case IEEE80211_S_INIT:
734                 if (ostate == IEEE80211_S_RUN) {
735                         /* abort TSF synchronization */
736                         ural_write(sc, RAL_TXRX_CSR19, 0);
737
738                         /* force tx led to stop blinking */
739                         ural_write(sc, RAL_MAC_CSR20, 0);
740                 }
741                 break;
742
743         case IEEE80211_S_RUN:
744                 ni = ic->ic_bss;
745
746                 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
747                         ural_update_slot(ic->ic_ifp);
748                         ural_set_txpreamble(sc);
749                         ural_set_basicrates(sc);
750                         ural_set_bssid(sc, ni->ni_bssid);
751                 }
752
753                 if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
754                     ic->ic_opmode == IEEE80211_M_IBSS) {
755                         m = ieee80211_beacon_alloc(ni, &sc->sc_bo);
756                         if (m == NULL) {
757                                 printf("%s: could not allocate beacon\n",
758                                     device_get_nameunit(sc->sc_dev));
759                                 return;
760                         }
761
762                         if (ural_tx_bcn(sc, m, ni) != 0) {
763                                 printf("%s: could not send beacon\n",
764                                     device_get_nameunit(sc->sc_dev));
765                                 return;
766                         }
767                 }
768
769                 /* make tx led blink on tx (controlled by ASIC) */
770                 ural_write(sc, RAL_MAC_CSR20, 1);
771
772                 if (ic->ic_opmode != IEEE80211_M_MONITOR)
773                         ural_enable_tsf_sync(sc);
774
775                 /* enable automatic rate adaptation in STA mode */
776                 if (ic->ic_opmode == IEEE80211_M_STA &&
777                     ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
778                         ural_amrr_start(sc, ni);
779
780                 break;
781
782         default:
783                 break;
784         }
785
786         RAL_UNLOCK(sc);
787         sc->sc_newstate(ic, sc->sc_state, sc->sc_arg);
788 }
789
790 static void
791 ural_scantask(void *arg)
792 {
793         struct ural_softc *sc = arg;
794         struct ieee80211com *ic = &sc->sc_ic;
795         struct ifnet *ifp = ic->ic_ifp;
796
797         RAL_LOCK(sc);
798         if (sc->sc_scan_action == URAL_SCAN_START) {
799                 /* abort TSF synchronization */
800                 ural_write(sc, RAL_TXRX_CSR19, 0);
801                 ural_set_bssid(sc, ifp->if_broadcastaddr);
802         } else if (sc->sc_scan_action == URAL_SET_CHANNEL) {
803                 mtx_lock(&Giant);
804                 ural_set_chan(sc, ic->ic_curchan);
805                 mtx_unlock(&Giant);
806         } else {
807                 ural_enable_tsf_sync(sc);
808                 /* XXX keep local copy */
809                 ural_set_bssid(sc, ic->ic_bss->ni_bssid);
810         } 
811         RAL_UNLOCK(sc);
812 }
813
814 static int
815 ural_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
816 {
817         struct ural_softc *sc = ic->ic_ifp->if_softc;
818
819         callout_stop(&sc->amrr_ch);
820
821         /* do it in a process context */
822         sc->sc_state = nstate;
823         sc->sc_arg = arg;
824
825         usb_rem_task(sc->sc_udev, &sc->sc_task);
826         if (nstate == IEEE80211_S_INIT)
827                 sc->sc_newstate(ic, nstate, arg);
828         else
829                 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
830         return 0;
831 }
832
833 /* quickly determine if a given rate is CCK or OFDM */
834 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
835
836 #define RAL_ACK_SIZE    14      /* 10 + 4(FCS) */
837 #define RAL_CTS_SIZE    14      /* 10 + 4(FCS) */
838
839 #define RAL_SIFS                10      /* us */
840
841 #define RAL_RXTX_TURNAROUND     5       /* us */
842
843 /*
844  * This function is only used by the Rx radiotap code.
845  */
846 static int
847 ural_rxrate(struct ural_rx_desc *desc)
848 {
849         if (le32toh(desc->flags) & RAL_RX_OFDM) {
850                 /* reverse function of ural_plcp_signal */
851                 switch (desc->rate) {
852                 case 0xb:       return 12;
853                 case 0xf:       return 18;
854                 case 0xa:       return 24;
855                 case 0xe:       return 36;
856                 case 0x9:       return 48;
857                 case 0xd:       return 72;
858                 case 0x8:       return 96;
859                 case 0xc:       return 108;
860                 }
861         } else {
862                 if (desc->rate == 10)
863                         return 2;
864                 if (desc->rate == 20)
865                         return 4;
866                 if (desc->rate == 55)
867                         return 11;
868                 if (desc->rate == 110)
869                         return 22;
870         }
871         return 2;       /* should not get there */
872 }
873
874 static void
875 ural_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
876 {
877         struct ural_tx_data *data = priv;
878         struct ural_softc *sc = data->sc;
879         struct ifnet *ifp = sc->sc_ic.ic_ifp;
880
881         if (data->m->m_flags & M_TXCB)
882                 ieee80211_process_callback(data->ni, data->m,
883                         status == USBD_NORMAL_COMPLETION ? 0 : ETIMEDOUT);
884         if (status != USBD_NORMAL_COMPLETION) {
885                 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
886                         return;
887
888                 printf("%s: could not transmit buffer: %s\n",
889                     device_get_nameunit(sc->sc_dev), usbd_errstr(status));
890
891                 if (status == USBD_STALLED)
892                         usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
893
894                 ifp->if_oerrors++;
895                 /* XXX mbuf leak? */
896                 return;
897         }
898
899         m_freem(data->m);
900         data->m = NULL;
901         ieee80211_free_node(data->ni);
902         data->ni = NULL;
903
904         sc->tx_queued--;
905         ifp->if_opackets++;
906
907         DPRINTFN(10, ("tx done\n"));
908
909         sc->sc_tx_timer = 0;
910         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
911         ural_start(ifp);
912 }
913
914 static void
915 ural_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
916 {
917         struct ural_rx_data *data = priv;
918         struct ural_softc *sc = data->sc;
919         struct ieee80211com *ic = &sc->sc_ic;
920         struct ifnet *ifp = ic->ic_ifp;
921         struct ural_rx_desc *desc;
922         struct ieee80211_frame *wh;
923         struct ieee80211_node *ni;
924         struct mbuf *mnew, *m;
925         int len;
926
927         if (status != USBD_NORMAL_COMPLETION) {
928                 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
929                         return;
930
931                 if (status == USBD_STALLED)
932                         usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
933                 goto skip;
934         }
935
936         usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
937
938         if (len < RAL_RX_DESC_SIZE + IEEE80211_MIN_LEN) {
939                 DPRINTF(("%s: xfer too short %d\n", device_get_nameunit(sc->sc_dev),
940                     len));
941                 ifp->if_ierrors++;
942                 goto skip;
943         }
944
945         /* rx descriptor is located at the end */
946         desc = (struct ural_rx_desc *)(data->buf + len - RAL_RX_DESC_SIZE);
947
948         if ((le32toh(desc->flags) & RAL_RX_PHY_ERROR) ||
949             (le32toh(desc->flags) & RAL_RX_CRC_ERROR)) {
950                 /*
951                  * This should not happen since we did not request to receive
952                  * those frames when we filled RAL_TXRX_CSR2.
953                  */
954                 DPRINTFN(5, ("PHY or CRC error\n"));
955                 ifp->if_ierrors++;
956                 goto skip;
957         }
958
959         mnew = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
960         if (mnew == NULL) {
961                 ifp->if_ierrors++;
962                 goto skip;
963         }
964
965         m = data->m;
966         data->m = mnew;
967         data->buf = mtod(data->m, uint8_t *);
968
969         /* finalize mbuf */
970         m->m_pkthdr.rcvif = ifp;
971         m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
972
973         if (bpf_peers_present(sc->sc_drvbpf)) {
974                 struct ural_rx_radiotap_header *tap = &sc->sc_rxtap;
975
976                 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;   
977                 tap->wr_rate = ural_rxrate(desc);
978                 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
979                 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
980                 tap->wr_antenna = sc->rx_ant;
981                 tap->wr_antsignal = URAL_RSSI(desc->rssi);
982
983                 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
984         }
985
986         /* Strip trailing 802.11 MAC FCS. */
987         m_adj(m, -IEEE80211_CRC_LEN);
988
989         wh = mtod(m, struct ieee80211_frame *);
990         ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
991
992         /* send the frame to the 802.11 layer */
993         ieee80211_input(ic, m, ni, URAL_RSSI(desc->rssi), RAL_NOISE_FLOOR, 0);
994
995         /* node is no longer needed */
996         ieee80211_free_node(ni);
997
998         DPRINTFN(15, ("rx done\n"));
999
1000 skip:   /* setup a new transfer */
1001         usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES,
1002             USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof);
1003         usbd_transfer(xfer);
1004 }
1005
1006 /*
1007  * Return the expected ack rate for a frame transmitted at rate `rate'.
1008  * XXX: this should depend on the destination node basic rate set.
1009  */
1010 static int
1011 ural_ack_rate(struct ieee80211com *ic, int rate)
1012 {
1013         switch (rate) {
1014         /* CCK rates */
1015         case 2:
1016                 return 2;
1017         case 4:
1018         case 11:
1019         case 22:
1020                 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
1021
1022         /* OFDM rates */
1023         case 12:
1024         case 18:
1025                 return 12;
1026         case 24:
1027         case 36:
1028                 return 24;
1029         case 48:
1030         case 72:
1031         case 96:
1032         case 108:
1033                 return 48;
1034         }
1035
1036         /* default to 1Mbps */
1037         return 2;
1038 }
1039
1040 /*
1041  * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
1042  * The function automatically determines the operating mode depending on the
1043  * given rate. `flags' indicates whether short preamble is in use or not.
1044  */
1045 static uint16_t
1046 ural_txtime(int len, int rate, uint32_t flags)
1047 {
1048         uint16_t txtime;
1049
1050         if (RAL_RATE_IS_OFDM(rate)) {
1051                 /* IEEE Std 802.11a-1999, pp. 37 */
1052                 txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1053                 txtime = 16 + 4 + 4 * txtime + 6;
1054         } else {
1055                 /* IEEE Std 802.11b-1999, pp. 28 */
1056                 txtime = (16 * len + rate - 1) / rate;
1057                 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1058                         txtime +=  72 + 24;
1059                 else
1060                         txtime += 144 + 48;
1061         }
1062         return txtime;
1063 }
1064
1065 static uint8_t
1066 ural_plcp_signal(int rate)
1067 {
1068         switch (rate) {
1069         /* CCK rates (returned values are device-dependent) */
1070         case 2:         return 0x0;
1071         case 4:         return 0x1;
1072         case 11:        return 0x2;
1073         case 22:        return 0x3;
1074
1075         /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1076         case 12:        return 0xb;
1077         case 18:        return 0xf;
1078         case 24:        return 0xa;
1079         case 36:        return 0xe;
1080         case 48:        return 0x9;
1081         case 72:        return 0xd;
1082         case 96:        return 0x8;
1083         case 108:       return 0xc;
1084
1085         /* unsupported rates (should not get there) */
1086         default:        return 0xff;
1087         }
1088 }
1089
1090 static void
1091 ural_setup_tx_desc(struct ural_softc *sc, struct ural_tx_desc *desc,
1092     uint32_t flags, int len, int rate)
1093 {
1094         struct ieee80211com *ic = &sc->sc_ic;
1095         uint16_t plcp_length;
1096         int remainder;
1097
1098         desc->flags = htole32(flags);
1099         desc->flags |= htole32(RAL_TX_NEWSEQ);
1100         desc->flags |= htole32(len << 16);
1101
1102         desc->wme = htole16(RAL_AIFSN(2) | RAL_LOGCWMIN(3) | RAL_LOGCWMAX(5));
1103         desc->wme |= htole16(RAL_IVOFFSET(sizeof (struct ieee80211_frame)));
1104
1105         /* setup PLCP fields */
1106         desc->plcp_signal  = ural_plcp_signal(rate);
1107         desc->plcp_service = 4;
1108
1109         len += IEEE80211_CRC_LEN;
1110         if (RAL_RATE_IS_OFDM(rate)) {
1111                 desc->flags |= htole32(RAL_TX_OFDM);
1112
1113                 plcp_length = len & 0xfff;
1114                 desc->plcp_length_hi = plcp_length >> 6;
1115                 desc->plcp_length_lo = plcp_length & 0x3f;
1116         } else {
1117                 plcp_length = (16 * len + rate - 1) / rate;
1118                 if (rate == 22) {
1119                         remainder = (16 * len) % 22;
1120                         if (remainder != 0 && remainder < 7)
1121                                 desc->plcp_service |= RAL_PLCP_LENGEXT;
1122                 }
1123                 desc->plcp_length_hi = plcp_length >> 8;
1124                 desc->plcp_length_lo = plcp_length & 0xff;
1125
1126                 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1127                         desc->plcp_signal |= 0x08;
1128         }
1129
1130         desc->iv = 0;
1131         desc->eiv = 0;
1132 }
1133
1134 #define RAL_TX_TIMEOUT  5000
1135
1136 static int
1137 ural_tx_bcn(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1138 {
1139         struct ural_tx_desc *desc;
1140         usbd_xfer_handle xfer;
1141         uint8_t cmd = 0;
1142         usbd_status error;
1143         uint8_t *buf;
1144         int xferlen, rate;
1145
1146         rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1147
1148         xfer = usbd_alloc_xfer(sc->sc_udev);
1149         if (xfer == NULL)
1150                 return ENOMEM;
1151
1152         /* xfer length needs to be a multiple of two! */
1153         xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1154
1155         buf = usbd_alloc_buffer(xfer, xferlen);
1156         if (buf == NULL) {
1157                 usbd_free_xfer(xfer);
1158                 return ENOMEM;
1159         }
1160
1161         usbd_setup_xfer(xfer, sc->sc_tx_pipeh, NULL, &cmd, sizeof cmd,
1162             USBD_FORCE_SHORT_XFER, RAL_TX_TIMEOUT, NULL);
1163
1164         error = usbd_sync_transfer(xfer);
1165         if (error != 0) {
1166                 usbd_free_xfer(xfer);
1167                 return error;
1168         }
1169
1170         desc = (struct ural_tx_desc *)buf;
1171
1172         m_copydata(m0, 0, m0->m_pkthdr.len, buf + RAL_TX_DESC_SIZE);
1173         ural_setup_tx_desc(sc, desc, RAL_TX_IFS_NEWBACKOFF | RAL_TX_TIMESTAMP,
1174             m0->m_pkthdr.len, rate);
1175
1176         DPRINTFN(10, ("sending beacon frame len=%u rate=%u xfer len=%u\n",
1177             m0->m_pkthdr.len, rate, xferlen));
1178
1179         usbd_setup_xfer(xfer, sc->sc_tx_pipeh, NULL, buf, xferlen,
1180             USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT, NULL);
1181
1182         error = usbd_sync_transfer(xfer);
1183         usbd_free_xfer(xfer);
1184
1185         return error;
1186 }
1187
1188 static int
1189 ural_tx_mgt(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1190 {
1191         struct ieee80211com *ic = &sc->sc_ic;
1192         struct ural_tx_desc *desc;
1193         struct ural_tx_data *data;
1194         struct ieee80211_frame *wh;
1195         uint32_t flags = 0;
1196         uint16_t dur;
1197         usbd_status error;
1198         int xferlen, rate;
1199
1200         data = &sc->tx_data[0];
1201         desc = (struct ural_tx_desc *)data->buf;
1202
1203         rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1204
1205         data->m = m0;
1206         data->ni = ni;
1207
1208         wh = mtod(m0, struct ieee80211_frame *);
1209
1210         if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1211                 flags |= RAL_TX_ACK;
1212
1213                 dur = ural_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) + RAL_SIFS;
1214                 *(uint16_t *)wh->i_dur = htole16(dur);
1215
1216                 /* tell hardware to add timestamp for probe responses */
1217                 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1218                     IEEE80211_FC0_TYPE_MGT &&
1219                     (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1220                     IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1221                         flags |= RAL_TX_TIMESTAMP;
1222         }
1223
1224         if (bpf_peers_present(sc->sc_drvbpf)) {
1225                 struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
1226
1227                 tap->wt_flags = 0;
1228                 tap->wt_rate = rate;
1229                 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1230                 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1231                 tap->wt_antenna = sc->tx_ant;
1232
1233                 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1234         }
1235
1236         m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE);
1237         ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate);
1238
1239         /* align end on a 2-bytes boundary */
1240         xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1241
1242         /*
1243          * No space left in the last URB to store the extra 2 bytes, force
1244          * sending of another URB.
1245          */
1246         if ((xferlen % 64) == 0)
1247                 xferlen += 2;
1248
1249         DPRINTFN(10, ("sending mgt frame len=%u rate=%u xfer len=%u\n",
1250             m0->m_pkthdr.len, rate, xferlen));
1251
1252         usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf,
1253             xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT,
1254             ural_txeof);
1255
1256         error = usbd_transfer(data->xfer);
1257         if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
1258                 m_freem(m0);
1259                 data->m = NULL;
1260                 data->ni = NULL;
1261                 return error;
1262         }
1263
1264         sc->tx_queued++;
1265
1266         return 0;
1267 }
1268
1269 static int
1270 ural_tx_raw(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1271     const struct ieee80211_bpf_params *params)
1272 {
1273         struct ieee80211com *ic = &sc->sc_ic;
1274         struct ural_tx_desc *desc;
1275         struct ural_tx_data *data;
1276         uint32_t flags;
1277         usbd_status error;
1278         int xferlen, rate;
1279
1280         data = &sc->tx_data[0];
1281         desc = (struct ural_tx_desc *)data->buf;
1282
1283         rate = params->ibp_rate0 & IEEE80211_RATE_VAL;
1284         /* XXX validate */
1285         if (rate == 0) {
1286                 m_freem(m0);
1287                 return EINVAL;
1288         }
1289
1290         if (bpf_peers_present(sc->sc_drvbpf)) {
1291                 struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
1292
1293                 tap->wt_flags = 0;
1294                 tap->wt_rate = rate;
1295                 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1296                 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1297                 tap->wt_antenna = sc->tx_ant;
1298
1299                 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1300         }
1301
1302         data->m = m0;
1303         data->ni = ni;
1304
1305         flags = 0;
1306         if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
1307                 flags |= RAL_TX_ACK;
1308
1309         m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE);
1310         /* XXX need to setup descriptor ourself */
1311         ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate);
1312
1313         /* align end on a 2-bytes boundary */
1314         xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1315
1316         /*
1317          * No space left in the last URB to store the extra 2 bytes, force
1318          * sending of another URB.
1319          */
1320         if ((xferlen % 64) == 0)
1321                 xferlen += 2;
1322
1323         DPRINTFN(10, ("sending raw frame len=%u rate=%u xfer len=%u\n",
1324             m0->m_pkthdr.len, rate, xferlen));
1325
1326         usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf,
1327             xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT,
1328             ural_txeof);
1329
1330         error = usbd_transfer(data->xfer);
1331         if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
1332                 m_freem(m0);
1333                 data->m = NULL;
1334                 data->ni = NULL;
1335                 return error;
1336         }
1337
1338         sc->tx_queued++;
1339
1340         return 0;
1341 }
1342
1343 static int
1344 ural_tx_data(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1345 {
1346         struct ieee80211com *ic = &sc->sc_ic;
1347         struct ural_tx_desc *desc;
1348         struct ural_tx_data *data;
1349         struct ieee80211_frame *wh;
1350         struct ieee80211_key *k;
1351         uint32_t flags = 0;
1352         uint16_t dur;
1353         usbd_status error;
1354         int xferlen, rate;
1355
1356         wh = mtod(m0, struct ieee80211_frame *);
1357
1358         if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
1359                 rate = ic->ic_fixed_rate;
1360         else
1361                 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1362
1363         rate &= IEEE80211_RATE_VAL;
1364
1365         if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1366                 k = ieee80211_crypto_encap(ic, ni, m0);
1367                 if (k == NULL) {
1368                         m_freem(m0);
1369                         return ENOBUFS;
1370                 }
1371
1372                 /* packet header may have moved, reset our local pointer */
1373                 wh = mtod(m0, struct ieee80211_frame *);
1374         }
1375
1376         data = &sc->tx_data[0];
1377         desc = (struct ural_tx_desc *)data->buf;
1378
1379         data->m = m0;
1380         data->ni = ni;
1381
1382         if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1383                 flags |= RAL_TX_ACK;
1384                 flags |= RAL_TX_RETRY(7);
1385
1386                 dur = ural_txtime(RAL_ACK_SIZE, ural_ack_rate(ic, rate),
1387                     ic->ic_flags) + RAL_SIFS;
1388                 *(uint16_t *)wh->i_dur = htole16(dur);
1389         }
1390
1391         if (bpf_peers_present(sc->sc_drvbpf)) {
1392                 struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
1393
1394                 tap->wt_flags = 0;
1395                 tap->wt_rate = rate;
1396                 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1397                 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1398                 tap->wt_antenna = sc->tx_ant;
1399
1400                 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1401         }
1402
1403         m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE);
1404         ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate);
1405
1406         /* align end on a 2-bytes boundary */
1407         xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1408
1409         /*
1410          * No space left in the last URB to store the extra 2 bytes, force
1411          * sending of another URB.
1412          */
1413         if ((xferlen % 64) == 0)
1414                 xferlen += 2;
1415
1416         DPRINTFN(10, ("sending data frame len=%u rate=%u xfer len=%u\n",
1417             m0->m_pkthdr.len, rate, xferlen));
1418
1419         usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf,
1420             xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT,
1421             ural_txeof);
1422
1423         error = usbd_transfer(data->xfer);
1424         if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
1425                 m_freem(m0);
1426                 data->m = NULL;
1427                 data->ni = NULL;
1428                 return error;
1429         }
1430
1431         sc->tx_queued++;
1432
1433         return 0;
1434 }
1435
1436 static void
1437 ural_start(struct ifnet *ifp)
1438 {
1439         struct ural_softc *sc = ifp->if_softc;
1440         struct ieee80211com *ic = &sc->sc_ic;
1441         struct mbuf *m0;
1442         struct ether_header *eh;
1443         struct ieee80211_node *ni;
1444
1445         for (;;) {
1446                 IF_POLL(&ic->ic_mgtq, m0);
1447                 if (m0 != NULL) {
1448                         if (sc->tx_queued >= RAL_TX_LIST_COUNT) {
1449                                 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1450                                 break;
1451                         }
1452                         IF_DEQUEUE(&ic->ic_mgtq, m0);
1453
1454                         ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1455                         m0->m_pkthdr.rcvif = NULL;
1456
1457                         if (bpf_peers_present(ic->ic_rawbpf))
1458                                 bpf_mtap(ic->ic_rawbpf, m0);
1459
1460                         if (ural_tx_mgt(sc, m0, ni) != 0) {
1461                                 ieee80211_free_node(ni);
1462                                 break;
1463                         }
1464                 } else {
1465                         if (ic->ic_state != IEEE80211_S_RUN)
1466                                 break;
1467                         IFQ_DRV_DEQUEUE(&ifp->if_snd, m0);
1468                         if (m0 == NULL)
1469                                 break;
1470                         if (sc->tx_queued >= RAL_TX_LIST_COUNT) {
1471                                 IFQ_DRV_PREPEND(&ifp->if_snd, m0);
1472                                 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1473                                 break;
1474                         }
1475                         /*
1476                          * Cancel any background scan.
1477                          */
1478                         if (ic->ic_flags & IEEE80211_F_SCAN)
1479                                 ieee80211_cancel_scan(ic);
1480
1481                         if (m0->m_len < sizeof (struct ether_header) &&
1482                             !(m0 = m_pullup(m0, sizeof (struct ether_header))))
1483                                 continue;
1484
1485                         eh = mtod(m0, struct ether_header *);
1486                         ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1487                         if (ni == NULL) {
1488                                 m_freem(m0);
1489                                 continue;
1490                         }
1491                         BPF_MTAP(ifp, m0);
1492
1493                         m0 = ieee80211_encap(ic, m0, ni);
1494                         if (m0 == NULL) {
1495                                 ieee80211_free_node(ni);
1496                                 continue;
1497                         }
1498
1499                         if (bpf_peers_present(ic->ic_rawbpf))
1500                                 bpf_mtap(ic->ic_rawbpf, m0);
1501
1502                         if (ural_tx_data(sc, m0, ni) != 0) {
1503                                 ieee80211_free_node(ni);
1504                                 ifp->if_oerrors++;
1505                                 break;
1506                         }
1507                 }
1508
1509                 sc->sc_tx_timer = 5;
1510                 ic->ic_lastdata = ticks;
1511                 callout_reset(&sc->watchdog_ch, hz, ural_watchdog, sc);
1512         }
1513 }
1514
1515 static void
1516 ural_watchdog(void *arg)
1517 {
1518         struct ural_softc *sc = (struct ural_softc *)arg;
1519
1520         RAL_LOCK(sc);
1521
1522         if (sc->sc_tx_timer > 0) {
1523                 if (--sc->sc_tx_timer == 0) {
1524                         device_printf(sc->sc_dev, "device timeout\n");
1525                         /*ural_init(sc); XXX needs a process context! */
1526                         sc->sc_ifp->if_oerrors++;
1527                         RAL_UNLOCK(sc);
1528                         return;
1529                 }
1530                 callout_reset(&sc->watchdog_ch, hz, ural_watchdog, sc);
1531         }
1532
1533         RAL_UNLOCK(sc);
1534 }
1535
1536 /*
1537  * This function allows for fast channel switching in monitor mode (used by
1538  * net-mgmt/kismet). In IBSS mode, we must explicitly reset the interface to
1539  * generate a new beacon frame.
1540  */
1541 static int
1542 ural_reset(struct ifnet *ifp)
1543 {
1544         struct ural_softc *sc = ifp->if_softc;
1545         struct ieee80211com *ic = &sc->sc_ic;
1546
1547         if (ic->ic_opmode != IEEE80211_M_MONITOR)
1548                 return ENETRESET;
1549
1550         ural_set_chan(sc, ic->ic_curchan);
1551
1552         return 0;
1553 }
1554
1555 static int
1556 ural_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1557 {
1558         struct ural_softc *sc = ifp->if_softc;
1559         struct ieee80211com *ic = &sc->sc_ic;
1560         int error = 0;
1561
1562         RAL_LOCK(sc);
1563
1564         switch (cmd) {
1565         case SIOCSIFFLAGS:
1566                 if (ifp->if_flags & IFF_UP) {
1567                         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1568                                 ural_update_promisc(sc);
1569                         else
1570                                 ural_init(sc);
1571                 } else {
1572                         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1573                                 ural_stop(sc);
1574                 }
1575                 break;
1576
1577         default:
1578                 error = ieee80211_ioctl(ic, cmd, data);
1579         }
1580
1581         if (error == ENETRESET) {
1582                 if ((ifp->if_flags & IFF_UP) &&
1583                     (ifp->if_drv_flags & IFF_DRV_RUNNING) &&
1584                     (ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
1585                         ural_init(sc);
1586                 error = 0;
1587         }
1588
1589         RAL_UNLOCK(sc);
1590
1591         return error;
1592 }
1593
1594 static void
1595 ural_set_testmode(struct ural_softc *sc)
1596 {
1597         usb_device_request_t req;
1598         usbd_status error;
1599
1600         req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1601         req.bRequest = RAL_VENDOR_REQUEST;
1602         USETW(req.wValue, 4);
1603         USETW(req.wIndex, 1);
1604         USETW(req.wLength, 0);
1605
1606         error = usbd_do_request(sc->sc_udev, &req, NULL);
1607         if (error != 0) {
1608                 printf("%s: could not set test mode: %s\n",
1609                     device_get_nameunit(sc->sc_dev), usbd_errstr(error));
1610         }
1611 }
1612
1613 static void
1614 ural_eeprom_read(struct ural_softc *sc, uint16_t addr, void *buf, int len)
1615 {
1616         usb_device_request_t req;
1617         usbd_status error;
1618
1619         req.bmRequestType = UT_READ_VENDOR_DEVICE;
1620         req.bRequest = RAL_READ_EEPROM;
1621         USETW(req.wValue, 0);
1622         USETW(req.wIndex, addr);
1623         USETW(req.wLength, len);
1624
1625         error = usbd_do_request(sc->sc_udev, &req, buf);
1626         if (error != 0) {
1627                 printf("%s: could not read EEPROM: %s\n",
1628                     device_get_nameunit(sc->sc_dev), usbd_errstr(error));
1629         }
1630 }
1631
1632 static uint16_t
1633 ural_read(struct ural_softc *sc, uint16_t reg)
1634 {
1635         usb_device_request_t req;
1636         usbd_status error;
1637         uint16_t val;
1638
1639         req.bmRequestType = UT_READ_VENDOR_DEVICE;
1640         req.bRequest = RAL_READ_MAC;
1641         USETW(req.wValue, 0);
1642         USETW(req.wIndex, reg);
1643         USETW(req.wLength, sizeof (uint16_t));
1644
1645         error = usbd_do_request(sc->sc_udev, &req, &val);
1646         if (error != 0) {
1647                 printf("%s: could not read MAC register: %s\n",
1648                     device_get_nameunit(sc->sc_dev), usbd_errstr(error));
1649                 return 0;
1650         }
1651
1652         return le16toh(val);
1653 }
1654
1655 static void
1656 ural_read_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1657 {
1658         usb_device_request_t req;
1659         usbd_status error;
1660
1661         req.bmRequestType = UT_READ_VENDOR_DEVICE;
1662         req.bRequest = RAL_READ_MULTI_MAC;
1663         USETW(req.wValue, 0);
1664         USETW(req.wIndex, reg);
1665         USETW(req.wLength, len);
1666
1667         error = usbd_do_request(sc->sc_udev, &req, buf);
1668         if (error != 0) {
1669                 printf("%s: could not read MAC register: %s\n",
1670                     device_get_nameunit(sc->sc_dev), usbd_errstr(error));
1671         }
1672 }
1673
1674 static void
1675 ural_write(struct ural_softc *sc, uint16_t reg, uint16_t val)
1676 {
1677         usb_device_request_t req;
1678         usbd_status error;
1679
1680         req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1681         req.bRequest = RAL_WRITE_MAC;
1682         USETW(req.wValue, val);
1683         USETW(req.wIndex, reg);
1684         USETW(req.wLength, 0);
1685
1686         error = usbd_do_request(sc->sc_udev, &req, NULL);
1687         if (error != 0) {
1688                 printf("%s: could not write MAC register: %s\n",
1689                     device_get_nameunit(sc->sc_dev), usbd_errstr(error));
1690         }
1691 }
1692
1693 static void
1694 ural_write_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1695 {
1696         usb_device_request_t req;
1697         usbd_status error;
1698
1699         req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1700         req.bRequest = RAL_WRITE_MULTI_MAC;
1701         USETW(req.wValue, 0);
1702         USETW(req.wIndex, reg);
1703         USETW(req.wLength, len);
1704
1705         error = usbd_do_request(sc->sc_udev, &req, buf);
1706         if (error != 0) {
1707                 printf("%s: could not write MAC register: %s\n",
1708                     device_get_nameunit(sc->sc_dev), usbd_errstr(error));
1709         }
1710 }
1711
1712 static void
1713 ural_bbp_write(struct ural_softc *sc, uint8_t reg, uint8_t val)
1714 {
1715         uint16_t tmp;
1716         int ntries;
1717
1718         for (ntries = 0; ntries < 5; ntries++) {
1719                 if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1720                         break;
1721         }
1722         if (ntries == 5) {
1723                 printf("%s: could not write to BBP\n", device_get_nameunit(sc->sc_dev));
1724                 return;
1725         }
1726
1727         tmp = reg << 8 | val;
1728         ural_write(sc, RAL_PHY_CSR7, tmp);
1729 }
1730
1731 static uint8_t
1732 ural_bbp_read(struct ural_softc *sc, uint8_t reg)
1733 {
1734         uint16_t val;
1735         int ntries;
1736
1737         val = RAL_BBP_WRITE | reg << 8;
1738         ural_write(sc, RAL_PHY_CSR7, val);
1739
1740         for (ntries = 0; ntries < 5; ntries++) {
1741                 if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1742                         break;
1743         }
1744         if (ntries == 5) {
1745                 printf("%s: could not read BBP\n", device_get_nameunit(sc->sc_dev));
1746                 return 0;
1747         }
1748
1749         return ural_read(sc, RAL_PHY_CSR7) & 0xff;
1750 }
1751
1752 static void
1753 ural_rf_write(struct ural_softc *sc, uint8_t reg, uint32_t val)
1754 {
1755         uint32_t tmp;
1756         int ntries;
1757
1758         for (ntries = 0; ntries < 5; ntries++) {
1759                 if (!(ural_read(sc, RAL_PHY_CSR10) & RAL_RF_LOBUSY))
1760                         break;
1761         }
1762         if (ntries == 5) {
1763                 printf("%s: could not write to RF\n", device_get_nameunit(sc->sc_dev));
1764                 return;
1765         }
1766
1767         tmp = RAL_RF_BUSY | RAL_RF_20BIT | (val & 0xfffff) << 2 | (reg & 0x3);
1768         ural_write(sc, RAL_PHY_CSR9,  tmp & 0xffff);
1769         ural_write(sc, RAL_PHY_CSR10, tmp >> 16);
1770
1771         /* remember last written value in sc */
1772         sc->rf_regs[reg] = val;
1773
1774         DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff));
1775 }
1776
1777 static void
1778 ural_scan_start(struct ieee80211com *ic)
1779 {
1780         struct ural_softc *sc = ic->ic_ifp->if_softc;
1781
1782         usb_rem_task(sc->sc_udev, &sc->sc_scantask);
1783
1784         /* do it in a process context */
1785         sc->sc_scan_action = URAL_SCAN_START;
1786         usb_add_task(sc->sc_udev, &sc->sc_scantask, USB_TASKQ_DRIVER);
1787
1788 }
1789
1790 static void
1791 ural_scan_end(struct ieee80211com *ic)
1792 {
1793         struct ural_softc *sc = ic->ic_ifp->if_softc;
1794
1795         usb_rem_task(sc->sc_udev, &sc->sc_scantask);
1796
1797         /* do it in a process context */
1798         sc->sc_scan_action = URAL_SCAN_END;
1799         usb_add_task(sc->sc_udev, &sc->sc_scantask, USB_TASKQ_DRIVER);
1800
1801 }
1802
1803 static void
1804 ural_set_channel(struct ieee80211com *ic)
1805 {
1806
1807         struct ural_softc *sc = ic->ic_ifp->if_softc;
1808
1809         usb_rem_task(sc->sc_udev, &sc->sc_scantask);
1810
1811         /* do it in a process context */
1812         sc->sc_scan_action = URAL_SET_CHANNEL;
1813         usb_add_task(sc->sc_udev, &sc->sc_scantask, USB_TASKQ_DRIVER);
1814 }
1815
1816 static void
1817 ural_set_chan(struct ural_softc *sc, struct ieee80211_channel *c)
1818 {
1819         struct ieee80211com *ic = &sc->sc_ic;
1820         uint8_t power, tmp;
1821         u_int i, chan;
1822
1823         chan = ieee80211_chan2ieee(ic, c);
1824         if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1825                 return;
1826
1827         if (IEEE80211_IS_CHAN_2GHZ(c))
1828                 power = min(sc->txpow[chan - 1], 31);
1829         else
1830                 power = 31;
1831
1832         /* adjust txpower using ifconfig settings */
1833         power -= (100 - ic->ic_txpowlimit) / 8;
1834
1835         DPRINTFN(2, ("setting channel to %u, txpower to %u\n", chan, power));
1836
1837         switch (sc->rf_rev) {
1838         case RAL_RF_2522:
1839                 ural_rf_write(sc, RAL_RF1, 0x00814);
1840                 ural_rf_write(sc, RAL_RF2, ural_rf2522_r2[chan - 1]);
1841                 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1842                 break;
1843
1844         case RAL_RF_2523:
1845                 ural_rf_write(sc, RAL_RF1, 0x08804);
1846                 ural_rf_write(sc, RAL_RF2, ural_rf2523_r2[chan - 1]);
1847                 ural_rf_write(sc, RAL_RF3, power << 7 | 0x38044);
1848                 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1849                 break;
1850
1851         case RAL_RF_2524:
1852                 ural_rf_write(sc, RAL_RF1, 0x0c808);
1853                 ural_rf_write(sc, RAL_RF2, ural_rf2524_r2[chan - 1]);
1854                 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1855                 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1856                 break;
1857
1858         case RAL_RF_2525:
1859                 ural_rf_write(sc, RAL_RF1, 0x08808);
1860                 ural_rf_write(sc, RAL_RF2, ural_rf2525_hi_r2[chan - 1]);
1861                 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1862                 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1863
1864                 ural_rf_write(sc, RAL_RF1, 0x08808);
1865                 ural_rf_write(sc, RAL_RF2, ural_rf2525_r2[chan - 1]);
1866                 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1867                 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1868                 break;
1869
1870         case RAL_RF_2525E:
1871                 ural_rf_write(sc, RAL_RF1, 0x08808);
1872                 ural_rf_write(sc, RAL_RF2, ural_rf2525e_r2[chan - 1]);
1873                 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1874                 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282);
1875                 break;
1876
1877         case RAL_RF_2526:
1878                 ural_rf_write(sc, RAL_RF2, ural_rf2526_hi_r2[chan - 1]);
1879                 ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1880                 ural_rf_write(sc, RAL_RF1, 0x08804);
1881
1882                 ural_rf_write(sc, RAL_RF2, ural_rf2526_r2[chan - 1]);
1883                 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1884                 ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1885                 break;
1886
1887         /* dual-band RF */
1888         case RAL_RF_5222:
1889                 for (i = 0; ural_rf5222[i].chan != chan; i++);
1890
1891                 ural_rf_write(sc, RAL_RF1, ural_rf5222[i].r1);
1892                 ural_rf_write(sc, RAL_RF2, ural_rf5222[i].r2);
1893                 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1894                 ural_rf_write(sc, RAL_RF4, ural_rf5222[i].r4);
1895                 break;
1896         }
1897
1898         if (ic->ic_opmode != IEEE80211_M_MONITOR &&
1899             (ic->ic_flags & IEEE80211_F_SCAN) == 0) {
1900                 /* set Japan filter bit for channel 14 */
1901                 tmp = ural_bbp_read(sc, 70);
1902
1903                 tmp &= ~RAL_JAPAN_FILTER;
1904                 if (chan == 14)
1905                         tmp |= RAL_JAPAN_FILTER;
1906
1907                 ural_bbp_write(sc, 70, tmp);
1908
1909                 /* clear CRC errors */
1910                 ural_read(sc, RAL_STA_CSR0);
1911
1912                 DELAY(10000);
1913                 ural_disable_rf_tune(sc);
1914         }
1915
1916         /* update basic rate set */
1917         if (IEEE80211_IS_CHAN_B(c)) {
1918                 /* 11b basic rates: 1, 2Mbps */
1919                 ural_write(sc, RAL_TXRX_CSR11, 0x3);
1920         } else if (IEEE80211_IS_CHAN_A(c)) {
1921                 /* 11a basic rates: 6, 12, 24Mbps */
1922                 ural_write(sc, RAL_TXRX_CSR11, 0x150);
1923         } else {
1924                 /* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
1925                 ural_write(sc, RAL_TXRX_CSR11, 0x15f);
1926         }
1927 }
1928
1929 /*
1930  * Disable RF auto-tuning.
1931  */
1932 static void
1933 ural_disable_rf_tune(struct ural_softc *sc)
1934 {
1935         uint32_t tmp;
1936
1937         if (sc->rf_rev != RAL_RF_2523) {
1938                 tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE;
1939                 ural_rf_write(sc, RAL_RF1, tmp);
1940         }
1941
1942         tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE;
1943         ural_rf_write(sc, RAL_RF3, tmp);
1944
1945         DPRINTFN(2, ("disabling RF autotune\n"));
1946 }
1947
1948 /*
1949  * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
1950  * synchronization.
1951  */
1952 static void
1953 ural_enable_tsf_sync(struct ural_softc *sc)
1954 {
1955         struct ieee80211com *ic = &sc->sc_ic;
1956         uint16_t logcwmin, preload, tmp;
1957
1958         /* first, disable TSF synchronization */
1959         ural_write(sc, RAL_TXRX_CSR19, 0);
1960
1961         tmp = (16 * ic->ic_bss->ni_intval) << 4;
1962         ural_write(sc, RAL_TXRX_CSR18, tmp);
1963
1964         logcwmin = (ic->ic_opmode == IEEE80211_M_IBSS) ? 2 : 0;
1965         preload = (ic->ic_opmode == IEEE80211_M_IBSS) ? 320 : 6;
1966         tmp = logcwmin << 12 | preload;
1967         ural_write(sc, RAL_TXRX_CSR20, tmp);
1968
1969         /* finally, enable TSF synchronization */
1970         tmp = RAL_ENABLE_TSF | RAL_ENABLE_TBCN;
1971         if (ic->ic_opmode == IEEE80211_M_STA)
1972                 tmp |= RAL_ENABLE_TSF_SYNC(1);
1973         else
1974                 tmp |= RAL_ENABLE_TSF_SYNC(2) | RAL_ENABLE_BEACON_GENERATOR;
1975         ural_write(sc, RAL_TXRX_CSR19, tmp);
1976
1977         DPRINTF(("enabling TSF synchronization\n"));
1978 }
1979
1980 static void
1981 ural_update_slot(struct ifnet *ifp)
1982 {
1983         struct ural_softc *sc = ifp->if_softc;
1984         struct ieee80211com *ic = &sc->sc_ic;
1985         uint16_t slottime, sifs, eifs;
1986
1987         slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1988
1989         /*
1990          * These settings may sound a bit inconsistent but this is what the
1991          * reference driver does.
1992          */
1993         if (ic->ic_curmode == IEEE80211_MODE_11B) {
1994                 sifs = 16 - RAL_RXTX_TURNAROUND;
1995                 eifs = 364;
1996         } else {
1997                 sifs = 10 - RAL_RXTX_TURNAROUND;
1998                 eifs = 64;
1999         }
2000
2001         ural_write(sc, RAL_MAC_CSR10, slottime);
2002         ural_write(sc, RAL_MAC_CSR11, sifs);
2003         ural_write(sc, RAL_MAC_CSR12, eifs);
2004 }
2005
2006 static void
2007 ural_set_txpreamble(struct ural_softc *sc)
2008 {
2009         uint16_t tmp;
2010
2011         tmp = ural_read(sc, RAL_TXRX_CSR10);
2012
2013         tmp &= ~RAL_SHORT_PREAMBLE;
2014         if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
2015                 tmp |= RAL_SHORT_PREAMBLE;
2016
2017         ural_write(sc, RAL_TXRX_CSR10, tmp);
2018 }
2019
2020 static void
2021 ural_set_basicrates(struct ural_softc *sc)
2022 {
2023         struct ieee80211com *ic = &sc->sc_ic;
2024
2025         /* update basic rate set */
2026         if (ic->ic_curmode == IEEE80211_MODE_11B) {
2027                 /* 11b basic rates: 1, 2Mbps */
2028                 ural_write(sc, RAL_TXRX_CSR11, 0x3);
2029         } else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) {
2030                 /* 11a basic rates: 6, 12, 24Mbps */
2031                 ural_write(sc, RAL_TXRX_CSR11, 0x150);
2032         } else {
2033                 /* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
2034                 ural_write(sc, RAL_TXRX_CSR11, 0x15f);
2035         }
2036 }
2037
2038 static void
2039 ural_set_bssid(struct ural_softc *sc, const uint8_t *bssid)
2040 {
2041         uint16_t tmp;
2042
2043         tmp = bssid[0] | bssid[1] << 8;
2044         ural_write(sc, RAL_MAC_CSR5, tmp);
2045
2046         tmp = bssid[2] | bssid[3] << 8;
2047         ural_write(sc, RAL_MAC_CSR6, tmp);
2048
2049         tmp = bssid[4] | bssid[5] << 8;
2050         ural_write(sc, RAL_MAC_CSR7, tmp);
2051
2052         DPRINTF(("setting BSSID to %6D\n", bssid, ":"));
2053 }
2054
2055 static void
2056 ural_set_macaddr(struct ural_softc *sc, uint8_t *addr)
2057 {
2058         uint16_t tmp;
2059
2060         tmp = addr[0] | addr[1] << 8;
2061         ural_write(sc, RAL_MAC_CSR2, tmp);
2062
2063         tmp = addr[2] | addr[3] << 8;
2064         ural_write(sc, RAL_MAC_CSR3, tmp);
2065
2066         tmp = addr[4] | addr[5] << 8;
2067         ural_write(sc, RAL_MAC_CSR4, tmp);
2068
2069         DPRINTF(("setting MAC address to %6D\n", addr, ":"));
2070 }
2071
2072 static void
2073 ural_update_promisc(struct ural_softc *sc)
2074 {
2075         struct ifnet *ifp = sc->sc_ic.ic_ifp;
2076         uint32_t tmp;
2077
2078         tmp = ural_read(sc, RAL_TXRX_CSR2);
2079
2080         tmp &= ~RAL_DROP_NOT_TO_ME;
2081         if (!(ifp->if_flags & IFF_PROMISC))
2082                 tmp |= RAL_DROP_NOT_TO_ME;
2083
2084         ural_write(sc, RAL_TXRX_CSR2, tmp);
2085
2086         DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
2087             "entering" : "leaving"));
2088 }
2089
2090 static const char *
2091 ural_get_rf(int rev)
2092 {
2093         switch (rev) {
2094         case RAL_RF_2522:       return "RT2522";
2095         case RAL_RF_2523:       return "RT2523";
2096         case RAL_RF_2524:       return "RT2524";
2097         case RAL_RF_2525:       return "RT2525";
2098         case RAL_RF_2525E:      return "RT2525e";
2099         case RAL_RF_2526:       return "RT2526";
2100         case RAL_RF_5222:       return "RT5222";
2101         default:                return "unknown";
2102         }
2103 }
2104
2105 static void
2106 ural_read_eeprom(struct ural_softc *sc)
2107 {
2108         struct ieee80211com *ic = &sc->sc_ic;
2109         uint16_t val;
2110
2111         ural_eeprom_read(sc, RAL_EEPROM_CONFIG0, &val, 2);
2112         val = le16toh(val);
2113         sc->rf_rev =   (val >> 11) & 0x7;
2114         sc->hw_radio = (val >> 10) & 0x1;
2115         sc->led_mode = (val >> 6)  & 0x7;
2116         sc->rx_ant =   (val >> 4)  & 0x3;
2117         sc->tx_ant =   (val >> 2)  & 0x3;
2118         sc->nb_ant =   val & 0x3;
2119
2120         /* read MAC address */
2121         ural_eeprom_read(sc, RAL_EEPROM_ADDRESS, ic->ic_myaddr, 6);
2122
2123         /* read default values for BBP registers */
2124         ural_eeprom_read(sc, RAL_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
2125
2126         /* read Tx power for all b/g channels */
2127         ural_eeprom_read(sc, RAL_EEPROM_TXPOWER, sc->txpow, 14);
2128 }
2129
2130 static int
2131 ural_bbp_init(struct ural_softc *sc)
2132 {
2133 #define N(a)    (sizeof (a) / sizeof ((a)[0]))
2134         int i, ntries;
2135
2136         /* wait for BBP to be ready */
2137         for (ntries = 0; ntries < 100; ntries++) {
2138                 if (ural_bbp_read(sc, RAL_BBP_VERSION) != 0)
2139                         break;
2140                 DELAY(1000);
2141         }
2142         if (ntries == 100) {
2143                 device_printf(sc->sc_dev, "timeout waiting for BBP\n");
2144                 return EIO;
2145         }
2146
2147         /* initialize BBP registers to default values */
2148         for (i = 0; i < N(ural_def_bbp); i++)
2149                 ural_bbp_write(sc, ural_def_bbp[i].reg, ural_def_bbp[i].val);
2150
2151 #if 0
2152         /* initialize BBP registers to values stored in EEPROM */
2153         for (i = 0; i < 16; i++) {
2154                 if (sc->bbp_prom[i].reg == 0xff)
2155                         continue;
2156                 ural_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2157         }
2158 #endif
2159
2160         return 0;
2161 #undef N
2162 }
2163
2164 static void
2165 ural_set_txantenna(struct ural_softc *sc, int antenna)
2166 {
2167         uint16_t tmp;
2168         uint8_t tx;
2169
2170         tx = ural_bbp_read(sc, RAL_BBP_TX) & ~RAL_BBP_ANTMASK;
2171         if (antenna == 1)
2172                 tx |= RAL_BBP_ANTA;
2173         else if (antenna == 2)
2174                 tx |= RAL_BBP_ANTB;
2175         else
2176                 tx |= RAL_BBP_DIVERSITY;
2177
2178         /* need to force I/Q flip for RF 2525e, 2526 and 5222 */
2179         if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526 ||
2180             sc->rf_rev == RAL_RF_5222)
2181                 tx |= RAL_BBP_FLIPIQ;
2182
2183         ural_bbp_write(sc, RAL_BBP_TX, tx);
2184
2185         /* update values in PHY_CSR5 and PHY_CSR6 */
2186         tmp = ural_read(sc, RAL_PHY_CSR5) & ~0x7;
2187         ural_write(sc, RAL_PHY_CSR5, tmp | (tx & 0x7));
2188
2189         tmp = ural_read(sc, RAL_PHY_CSR6) & ~0x7;
2190         ural_write(sc, RAL_PHY_CSR6, tmp | (tx & 0x7));
2191 }
2192
2193 static void
2194 ural_set_rxantenna(struct ural_softc *sc, int antenna)
2195 {
2196         uint8_t rx;
2197
2198         rx = ural_bbp_read(sc, RAL_BBP_RX) & ~RAL_BBP_ANTMASK;
2199         if (antenna == 1)
2200                 rx |= RAL_BBP_ANTA;
2201         else if (antenna == 2)
2202                 rx |= RAL_BBP_ANTB;
2203         else
2204                 rx |= RAL_BBP_DIVERSITY;
2205
2206         /* need to force no I/Q flip for RF 2525e and 2526 */
2207         if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526)
2208                 rx &= ~RAL_BBP_FLIPIQ;
2209
2210         ural_bbp_write(sc, RAL_BBP_RX, rx);
2211 }
2212
2213 static void
2214 ural_init(void *priv)
2215 {
2216 #define N(a)    (sizeof (a) / sizeof ((a)[0]))
2217         struct ural_softc *sc = priv;
2218         struct ieee80211com *ic = &sc->sc_ic;
2219         struct ifnet *ifp = ic->ic_ifp;
2220         struct ural_rx_data *data;
2221         uint16_t tmp;
2222         usbd_status error;
2223         int i, ntries;
2224
2225         ural_set_testmode(sc);
2226         ural_write(sc, 0x308, 0x00f0);  /* XXX magic */
2227
2228         ural_stop(sc);
2229
2230         /* initialize MAC registers to default values */
2231         for (i = 0; i < N(ural_def_mac); i++)
2232                 ural_write(sc, ural_def_mac[i].reg, ural_def_mac[i].val);
2233
2234         /* wait for BBP and RF to wake up (this can take a long time!) */
2235         for (ntries = 0; ntries < 100; ntries++) {
2236                 tmp = ural_read(sc, RAL_MAC_CSR17);
2237                 if ((tmp & (RAL_BBP_AWAKE | RAL_RF_AWAKE)) ==
2238                     (RAL_BBP_AWAKE | RAL_RF_AWAKE))
2239                         break;
2240                 DELAY(1000);
2241         }
2242         if (ntries == 100) {
2243                 printf("%s: timeout waiting for BBP/RF to wakeup\n",
2244                     device_get_nameunit(sc->sc_dev));
2245                 goto fail;
2246         }
2247
2248         /* we're ready! */
2249         ural_write(sc, RAL_MAC_CSR1, RAL_HOST_READY);
2250
2251         /* set basic rate set (will be updated later) */
2252         ural_write(sc, RAL_TXRX_CSR11, 0x15f);
2253
2254         if (ural_bbp_init(sc) != 0)
2255                 goto fail;
2256
2257         ural_set_chan(sc, ic->ic_curchan);
2258
2259         /* clear statistic registers (STA_CSR0 to STA_CSR10) */
2260         ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta);
2261
2262         ural_set_txantenna(sc, sc->tx_ant);
2263         ural_set_rxantenna(sc, sc->rx_ant);
2264
2265         IEEE80211_ADDR_COPY(ic->ic_myaddr, IF_LLADDR(ifp));
2266         ural_set_macaddr(sc, ic->ic_myaddr);
2267
2268         /*
2269          * Allocate xfer for AMRR statistics requests.
2270          */
2271         sc->amrr_xfer = usbd_alloc_xfer(sc->sc_udev);
2272         if (sc->amrr_xfer == NULL) {
2273                 printf("%s: could not allocate AMRR xfer\n",
2274                     device_get_nameunit(sc->sc_dev));
2275                 goto fail;
2276         }
2277
2278         /*
2279          * Open Tx and Rx USB bulk pipes.
2280          */
2281         error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
2282             &sc->sc_tx_pipeh);
2283         if (error != 0) {
2284                 printf("%s: could not open Tx pipe: %s\n",
2285                     device_get_nameunit(sc->sc_dev), usbd_errstr(error));
2286                 goto fail;
2287         }
2288
2289         error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
2290             &sc->sc_rx_pipeh);
2291         if (error != 0) {
2292                 printf("%s: could not open Rx pipe: %s\n",
2293                     device_get_nameunit(sc->sc_dev), usbd_errstr(error));
2294                 goto fail;
2295         }
2296
2297         /*
2298          * Allocate Tx and Rx xfer queues.
2299          */
2300         error = ural_alloc_tx_list(sc);
2301         if (error != 0) {
2302                 printf("%s: could not allocate Tx list\n",
2303                     device_get_nameunit(sc->sc_dev));
2304                 goto fail;
2305         }
2306
2307         error = ural_alloc_rx_list(sc);
2308         if (error != 0) {
2309                 printf("%s: could not allocate Rx list\n",
2310                     device_get_nameunit(sc->sc_dev));
2311                 goto fail;
2312         }
2313
2314         /*
2315          * Start up the receive pipe.
2316          */
2317         for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
2318                 data = &sc->rx_data[i];
2319
2320                 usbd_setup_xfer(data->xfer, sc->sc_rx_pipeh, data, data->buf,
2321                     MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof);
2322                 usbd_transfer(data->xfer);
2323         }
2324
2325         /* kick Rx */
2326         tmp = RAL_DROP_PHY | RAL_DROP_CRC;
2327         if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2328                 tmp |= RAL_DROP_CTL | RAL_DROP_BAD_VERSION;
2329                 if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2330                         tmp |= RAL_DROP_TODS;
2331                 if (!(ifp->if_flags & IFF_PROMISC))
2332                         tmp |= RAL_DROP_NOT_TO_ME;
2333         }
2334         ural_write(sc, RAL_TXRX_CSR2, tmp);
2335
2336         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2337         ifp->if_drv_flags |= IFF_DRV_RUNNING;
2338
2339         if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2340                 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
2341                         ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2342         } else
2343                 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2344
2345         return;
2346
2347 fail:   ural_stop(sc);
2348 #undef N
2349 }
2350
2351 static void
2352 ural_stop(void *priv)
2353 {
2354         struct ural_softc *sc = priv;
2355         struct ieee80211com *ic = &sc->sc_ic;
2356         struct ifnet *ifp = ic->ic_ifp;
2357
2358         sc->sc_tx_timer = 0;
2359         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2360
2361         ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2362
2363         /* disable Rx */
2364         ural_write(sc, RAL_TXRX_CSR2, RAL_DISABLE_RX);
2365
2366         /* reset ASIC and BBP (but won't reset MAC registers!) */
2367         ural_write(sc, RAL_MAC_CSR1, RAL_RESET_ASIC | RAL_RESET_BBP);
2368         ural_write(sc, RAL_MAC_CSR1, 0);
2369
2370         if (sc->amrr_xfer != NULL) {
2371                 usbd_free_xfer(sc->amrr_xfer);
2372                 sc->amrr_xfer = NULL;
2373         }
2374
2375         if (sc->sc_rx_pipeh != NULL) {
2376                 usbd_abort_pipe(sc->sc_rx_pipeh);
2377                 usbd_close_pipe(sc->sc_rx_pipeh);
2378                 sc->sc_rx_pipeh = NULL;
2379         }
2380
2381         if (sc->sc_tx_pipeh != NULL) {
2382                 usbd_abort_pipe(sc->sc_tx_pipeh);
2383                 usbd_close_pipe(sc->sc_tx_pipeh);
2384                 sc->sc_tx_pipeh = NULL;
2385         }
2386
2387         ural_free_rx_list(sc);
2388         ural_free_tx_list(sc);
2389 }
2390
2391 static int
2392 ural_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2393         const struct ieee80211_bpf_params *params)
2394 {
2395         struct ieee80211com *ic = ni->ni_ic;
2396         struct ifnet *ifp = ic->ic_ifp;
2397         struct ural_softc *sc = ifp->if_softc;
2398
2399         /* prevent management frames from being sent if we're not ready */
2400         if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2401                 m_freem(m);
2402                 ieee80211_free_node(ni);
2403                 return ENETDOWN;
2404         }
2405         if (sc->tx_queued >= RAL_TX_LIST_COUNT) {
2406                 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2407                 m_freem(m);
2408                 ieee80211_free_node(ni);
2409                 return EIO;
2410         }
2411
2412         if (bpf_peers_present(ic->ic_rawbpf))
2413                 bpf_mtap(ic->ic_rawbpf, m);
2414
2415         ifp->if_opackets++;
2416
2417         if (params == NULL) {
2418                 /*
2419                  * Legacy path; interpret frame contents to decide
2420                  * precisely how to send the frame.
2421                  */
2422                 if (ural_tx_mgt(sc, m, ni) != 0)
2423                         goto bad;
2424         } else {
2425                 /*
2426                  * Caller supplied explicit parameters to use in
2427                  * sending the frame.
2428                  */
2429                 if (ural_tx_raw(sc, m, ni, params) != 0)
2430                         goto bad;
2431         }
2432         sc->sc_tx_timer = 5;
2433         callout_reset(&sc->watchdog_ch, hz, ural_watchdog, sc);
2434
2435         return 0;
2436 bad:
2437         ifp->if_oerrors++;
2438         ieee80211_free_node(ni);
2439         return EIO;             /* XXX */
2440 }
2441
2442 static void
2443 ural_amrr_start(struct ural_softc *sc, struct ieee80211_node *ni)
2444 {
2445         int i;
2446
2447         /* clear statistic registers (STA_CSR0 to STA_CSR10) */
2448         ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta);
2449
2450         ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
2451
2452         /* set rate to some reasonable initial value */
2453         for (i = ni->ni_rates.rs_nrates - 1;
2454              i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2455              i--);
2456
2457         ni->ni_txrate = i;
2458
2459         callout_reset(&sc->amrr_ch, hz, ural_amrr_timeout, sc);
2460 }
2461
2462 static void
2463 ural_amrr_timeout(void *arg)
2464 {
2465         struct ural_softc *sc = (struct ural_softc *)arg;
2466         usb_device_request_t req;
2467
2468         /*
2469          * Asynchronously read statistic registers (cleared by read).
2470          */
2471         req.bmRequestType = UT_READ_VENDOR_DEVICE;
2472         req.bRequest = RAL_READ_MULTI_MAC;
2473         USETW(req.wValue, 0);
2474         USETW(req.wIndex, RAL_STA_CSR0);
2475         USETW(req.wLength, sizeof sc->sta);
2476
2477         usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
2478             USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof sc->sta, 0,
2479             ural_amrr_update);
2480         (void)usbd_transfer(sc->amrr_xfer);
2481 }
2482
2483 static void
2484 ural_amrr_update(usbd_xfer_handle xfer, usbd_private_handle priv,
2485     usbd_status status)
2486 {
2487         struct ural_softc *sc = (struct ural_softc *)priv;
2488         struct ifnet *ifp = sc->sc_ic.ic_ifp;
2489
2490         if (status != USBD_NORMAL_COMPLETION) {
2491                 device_printf(sc->sc_dev, "could not retrieve Tx statistics - "
2492                     "cancelling automatic rate control\n");
2493                 return;
2494         }
2495
2496         /* count TX retry-fail as Tx errors */
2497         ifp->if_oerrors += sc->sta[9];
2498
2499         sc->amn.amn_retrycnt =
2500             sc->sta[7] +        /* TX one-retry ok count */
2501             sc->sta[8] +        /* TX more-retry ok count */
2502             sc->sta[9];         /* TX retry-fail count */
2503
2504         sc->amn.amn_txcnt =
2505             sc->amn.amn_retrycnt +
2506             sc->sta[6];         /* TX no-retry ok count */
2507
2508         ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
2509
2510         callout_reset(&sc->amrr_ch, hz, ural_amrr_timeout, sc);
2511 }