]> CyberLeo.Net >> Repos - FreeBSD/releng/7.2.git/blob - sys/dev/vge/if_vge.c
Create releng/7.2 from stable/7 in preparation for 7.2-RELEASE.
[FreeBSD/releng/7.2.git] / sys / dev / vge / if_vge.c
1 /*-
2  * Copyright (c) 2004
3  *      Bill Paul <wpaul@windriver.com>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *      This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35
36 /*
37  * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
38  *
39  * Written by Bill Paul <wpaul@windriver.com>
40  * Senior Networking Software Engineer
41  * Wind River Systems
42  */
43
44 /*
45  * The VIA Networking VT6122 is a 32bit, 33/66Mhz PCI device that
46  * combines a tri-speed ethernet MAC and PHY, with the following
47  * features:
48  *
49  *      o Jumbo frame support up to 16K
50  *      o Transmit and receive flow control
51  *      o IPv4 checksum offload
52  *      o VLAN tag insertion and stripping
53  *      o TCP large send
54  *      o 64-bit multicast hash table filter
55  *      o 64 entry CAM filter
56  *      o 16K RX FIFO and 48K TX FIFO memory
57  *      o Interrupt moderation
58  *
59  * The VT6122 supports up to four transmit DMA queues. The descriptors
60  * in the transmit ring can address up to 7 data fragments; frames which
61  * span more than 7 data buffers must be coalesced, but in general the
62  * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
63  * long. The receive descriptors address only a single buffer.
64  *
65  * There are two peculiar design issues with the VT6122. One is that
66  * receive data buffers must be aligned on a 32-bit boundary. This is
67  * not a problem where the VT6122 is used as a LOM device in x86-based
68  * systems, but on architectures that generate unaligned access traps, we
69  * have to do some copying.
70  *
71  * The other issue has to do with the way 64-bit addresses are handled.
72  * The DMA descriptors only allow you to specify 48 bits of addressing
73  * information. The remaining 16 bits are specified using one of the
74  * I/O registers. If you only have a 32-bit system, then this isn't
75  * an issue, but if you have a 64-bit system and more than 4GB of
76  * memory, you must have to make sure your network data buffers reside
77  * in the same 48-bit 'segment.'
78  *
79  * Special thanks to Ryan Fu at VIA Networking for providing documentation
80  * and sample NICs for testing.
81  */
82
83 #ifdef HAVE_KERNEL_OPTION_HEADERS
84 #include "opt_device_polling.h"
85 #endif
86
87 #include <sys/param.h>
88 #include <sys/endian.h>
89 #include <sys/systm.h>
90 #include <sys/sockio.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/module.h>
94 #include <sys/kernel.h>
95 #include <sys/socket.h>
96 #include <sys/taskqueue.h>
97
98 #include <net/if.h>
99 #include <net/if_arp.h>
100 #include <net/ethernet.h>
101 #include <net/if_dl.h>
102 #include <net/if_media.h>
103 #include <net/if_types.h>
104 #include <net/if_vlan_var.h>
105
106 #include <net/bpf.h>
107
108 #include <machine/bus.h>
109 #include <machine/resource.h>
110 #include <sys/bus.h>
111 #include <sys/rman.h>
112
113 #include <dev/mii/mii.h>
114 #include <dev/mii/miivar.h>
115
116 #include <dev/pci/pcireg.h>
117 #include <dev/pci/pcivar.h>
118
119 MODULE_DEPEND(vge, pci, 1, 1, 1);
120 MODULE_DEPEND(vge, ether, 1, 1, 1);
121 MODULE_DEPEND(vge, miibus, 1, 1, 1);
122
123 /* "device miibus" required.  See GENERIC if you get errors here. */
124 #include "miibus_if.h"
125
126 #include <dev/vge/if_vgereg.h>
127 #include <dev/vge/if_vgevar.h>
128
129 #define VGE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
130
131 /*
132  * Various supported device vendors/types and their names.
133  */
134 static struct vge_type vge_devs[] = {
135         { VIA_VENDORID, VIA_DEVICEID_61XX,
136                 "VIA Networking Gigabit Ethernet" },
137         { 0, 0, NULL }
138 };
139
140 static int vge_probe            (device_t);
141 static int vge_attach           (device_t);
142 static int vge_detach           (device_t);
143
144 static int vge_encap            (struct vge_softc *, struct mbuf *, int);
145
146 static void vge_dma_map_addr    (void *, bus_dma_segment_t *, int, int);
147 static void vge_dma_map_rx_desc (void *, bus_dma_segment_t *, int,
148                                     bus_size_t, int);
149 static void vge_dma_map_tx_desc (void *, bus_dma_segment_t *, int,
150                                     bus_size_t, int);
151 static int vge_allocmem         (device_t, struct vge_softc *);
152 static int vge_newbuf           (struct vge_softc *, int, struct mbuf *);
153 static int vge_rx_list_init     (struct vge_softc *);
154 static int vge_tx_list_init     (struct vge_softc *);
155 #ifdef VGE_FIXUP_RX
156 static __inline void vge_fixup_rx
157                                 (struct mbuf *);
158 #endif
159 static void vge_rxeof           (struct vge_softc *);
160 static void vge_txeof           (struct vge_softc *);
161 static void vge_intr            (void *);
162 static void vge_tick            (void *);
163 static void vge_tx_task         (void *, int);
164 static void vge_start           (struct ifnet *);
165 static int vge_ioctl            (struct ifnet *, u_long, caddr_t);
166 static void vge_init            (void *);
167 static void vge_stop            (struct vge_softc *);
168 static void vge_watchdog        (struct ifnet *);
169 static int vge_suspend          (device_t);
170 static int vge_resume           (device_t);
171 static int vge_shutdown         (device_t);
172 static int vge_ifmedia_upd      (struct ifnet *);
173 static void vge_ifmedia_sts     (struct ifnet *, struct ifmediareq *);
174
175 #ifdef VGE_EEPROM
176 static void vge_eeprom_getword  (struct vge_softc *, int, u_int16_t *);
177 #endif
178 static void vge_read_eeprom     (struct vge_softc *, caddr_t, int, int, int);
179
180 static void vge_miipoll_start   (struct vge_softc *);
181 static void vge_miipoll_stop    (struct vge_softc *);
182 static int vge_miibus_readreg   (device_t, int, int);
183 static int vge_miibus_writereg  (device_t, int, int, int);
184 static void vge_miibus_statchg  (device_t);
185
186 static void vge_cam_clear       (struct vge_softc *);
187 static int vge_cam_set          (struct vge_softc *, uint8_t *);
188 static void vge_setmulti        (struct vge_softc *);
189 static void vge_reset           (struct vge_softc *);
190
191 #define VGE_PCI_LOIO             0x10
192 #define VGE_PCI_LOMEM            0x14
193
194 static device_method_t vge_methods[] = {
195         /* Device interface */
196         DEVMETHOD(device_probe,         vge_probe),
197         DEVMETHOD(device_attach,        vge_attach),
198         DEVMETHOD(device_detach,        vge_detach),
199         DEVMETHOD(device_suspend,       vge_suspend),
200         DEVMETHOD(device_resume,        vge_resume),
201         DEVMETHOD(device_shutdown,      vge_shutdown),
202
203         /* bus interface */
204         DEVMETHOD(bus_print_child,      bus_generic_print_child),
205         DEVMETHOD(bus_driver_added,     bus_generic_driver_added),
206
207         /* MII interface */
208         DEVMETHOD(miibus_readreg,       vge_miibus_readreg),
209         DEVMETHOD(miibus_writereg,      vge_miibus_writereg),
210         DEVMETHOD(miibus_statchg,       vge_miibus_statchg),
211
212         { 0, 0 }
213 };
214
215 static driver_t vge_driver = {
216         "vge",
217         vge_methods,
218         sizeof(struct vge_softc)
219 };
220
221 static devclass_t vge_devclass;
222
223 DRIVER_MODULE(vge, pci, vge_driver, vge_devclass, 0, 0);
224 DRIVER_MODULE(vge, cardbus, vge_driver, vge_devclass, 0, 0);
225 DRIVER_MODULE(miibus, vge, miibus_driver, miibus_devclass, 0, 0);
226
227 #ifdef VGE_EEPROM
228 /*
229  * Read a word of data stored in the EEPROM at address 'addr.'
230  */
231 static void
232 vge_eeprom_getword(sc, addr, dest)
233         struct vge_softc        *sc;
234         int                     addr;
235         u_int16_t               *dest;
236 {
237         register int            i;
238         u_int16_t               word = 0;
239
240         /*
241          * Enter EEPROM embedded programming mode. In order to
242          * access the EEPROM at all, we first have to set the
243          * EELOAD bit in the CHIPCFG2 register.
244          */
245         CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
246         CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
247
248         /* Select the address of the word we want to read */
249         CSR_WRITE_1(sc, VGE_EEADDR, addr);
250
251         /* Issue read command */
252         CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
253
254         /* Wait for the done bit to be set. */
255         for (i = 0; i < VGE_TIMEOUT; i++) {
256                 if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
257                         break;
258         }
259
260         if (i == VGE_TIMEOUT) {
261                 device_printf(sc->vge_dev, "EEPROM read timed out\n");
262                 *dest = 0;
263                 return;
264         }
265
266         /* Read the result */
267         word = CSR_READ_2(sc, VGE_EERDDAT);
268
269         /* Turn off EEPROM access mode. */
270         CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
271         CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
272
273         *dest = word;
274
275         return;
276 }
277 #endif
278
279 /*
280  * Read a sequence of words from the EEPROM.
281  */
282 static void
283 vge_read_eeprom(sc, dest, off, cnt, swap)
284         struct vge_softc        *sc;
285         caddr_t                 dest;
286         int                     off;
287         int                     cnt;
288         int                     swap;
289 {
290         int                     i;
291 #ifdef VGE_EEPROM
292         u_int16_t               word = 0, *ptr;
293
294         for (i = 0; i < cnt; i++) {
295                 vge_eeprom_getword(sc, off + i, &word);
296                 ptr = (u_int16_t *)(dest + (i * 2));
297                 if (swap)
298                         *ptr = ntohs(word);
299                 else
300                         *ptr = word;
301         }
302 #else
303         for (i = 0; i < ETHER_ADDR_LEN; i++)
304                 dest[i] = CSR_READ_1(sc, VGE_PAR0 + i);
305 #endif
306 }
307
308 static void
309 vge_miipoll_stop(sc)
310         struct vge_softc        *sc;
311 {
312         int                     i;
313
314         CSR_WRITE_1(sc, VGE_MIICMD, 0);
315
316         for (i = 0; i < VGE_TIMEOUT; i++) {
317                 DELAY(1);
318                 if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
319                         break;
320         }
321
322         if (i == VGE_TIMEOUT)
323                 device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
324
325         return;
326 }
327
328 static void
329 vge_miipoll_start(sc)
330         struct vge_softc        *sc;
331 {
332         int                     i;
333
334         /* First, make sure we're idle. */
335
336         CSR_WRITE_1(sc, VGE_MIICMD, 0);
337         CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
338
339         for (i = 0; i < VGE_TIMEOUT; i++) {
340                 DELAY(1);
341                 if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
342                         break;
343         }
344
345         if (i == VGE_TIMEOUT) {
346                 device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
347                 return;
348         }
349
350         /* Now enable auto poll mode. */
351
352         CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
353
354         /* And make sure it started. */
355
356         for (i = 0; i < VGE_TIMEOUT; i++) {
357                 DELAY(1);
358                 if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
359                         break;
360         }
361
362         if (i == VGE_TIMEOUT)
363                 device_printf(sc->vge_dev, "failed to start MII autopoll\n");
364
365         return;
366 }
367
368 static int
369 vge_miibus_readreg(dev, phy, reg)
370         device_t                dev;
371         int                     phy, reg;
372 {
373         struct vge_softc        *sc;
374         int                     i;
375         u_int16_t               rval = 0;
376
377         sc = device_get_softc(dev);
378
379         if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
380                 return(0);
381
382         VGE_LOCK(sc);
383         vge_miipoll_stop(sc);
384
385         /* Specify the register we want to read. */
386         CSR_WRITE_1(sc, VGE_MIIADDR, reg);
387
388         /* Issue read command. */
389         CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
390
391         /* Wait for the read command bit to self-clear. */
392         for (i = 0; i < VGE_TIMEOUT; i++) {
393                 DELAY(1);
394                 if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
395                         break;
396         }
397
398         if (i == VGE_TIMEOUT)
399                 device_printf(sc->vge_dev, "MII read timed out\n");
400         else
401                 rval = CSR_READ_2(sc, VGE_MIIDATA);
402
403         vge_miipoll_start(sc);
404         VGE_UNLOCK(sc);
405
406         return (rval);
407 }
408
409 static int
410 vge_miibus_writereg(dev, phy, reg, data)
411         device_t                dev;
412         int                     phy, reg, data;
413 {
414         struct vge_softc        *sc;
415         int                     i, rval = 0;
416
417         sc = device_get_softc(dev);
418
419         if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
420                 return(0);
421
422         VGE_LOCK(sc);
423         vge_miipoll_stop(sc);
424
425         /* Specify the register we want to write. */
426         CSR_WRITE_1(sc, VGE_MIIADDR, reg);
427
428         /* Specify the data we want to write. */
429         CSR_WRITE_2(sc, VGE_MIIDATA, data);
430
431         /* Issue write command. */
432         CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
433
434         /* Wait for the write command bit to self-clear. */
435         for (i = 0; i < VGE_TIMEOUT; i++) {
436                 DELAY(1);
437                 if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
438                         break;
439         }
440
441         if (i == VGE_TIMEOUT) {
442                 device_printf(sc->vge_dev, "MII write timed out\n");
443                 rval = EIO;
444         }
445
446         vge_miipoll_start(sc);
447         VGE_UNLOCK(sc);
448
449         return (rval);
450 }
451
452 static void
453 vge_cam_clear(sc)
454         struct vge_softc        *sc;
455 {
456         int                     i;
457
458         /*
459          * Turn off all the mask bits. This tells the chip
460          * that none of the entries in the CAM filter are valid.
461          * desired entries will be enabled as we fill the filter in.
462          */
463
464         CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
465         CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
466         CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
467         for (i = 0; i < 8; i++)
468                 CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
469
470         /* Clear the VLAN filter too. */
471
472         CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
473         for (i = 0; i < 8; i++)
474                 CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
475
476         CSR_WRITE_1(sc, VGE_CAMADDR, 0);
477         CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
478         CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
479
480         sc->vge_camidx = 0;
481
482         return;
483 }
484
485 static int
486 vge_cam_set(sc, addr)
487         struct vge_softc        *sc;
488         uint8_t                 *addr;
489 {
490         int                     i, error = 0;
491
492         if (sc->vge_camidx == VGE_CAM_MAXADDRS)
493                 return(ENOSPC);
494
495         /* Select the CAM data page. */
496         CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
497         CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
498
499         /* Set the filter entry we want to update and enable writing. */
500         CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|sc->vge_camidx);
501
502         /* Write the address to the CAM registers */
503         for (i = 0; i < ETHER_ADDR_LEN; i++)
504                 CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
505
506         /* Issue a write command. */
507         CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
508
509         /* Wake for it to clear. */
510         for (i = 0; i < VGE_TIMEOUT; i++) {
511                 DELAY(1);
512                 if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
513                         break;
514         }
515
516         if (i == VGE_TIMEOUT) {
517                 device_printf(sc->vge_dev, "setting CAM filter failed\n");
518                 error = EIO;
519                 goto fail;
520         }
521
522         /* Select the CAM mask page. */
523         CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
524         CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
525
526         /* Set the mask bit that enables this filter. */
527         CSR_SETBIT_1(sc, VGE_CAM0 + (sc->vge_camidx/8),
528             1<<(sc->vge_camidx & 7));
529
530         sc->vge_camidx++;
531
532 fail:
533         /* Turn off access to CAM. */
534         CSR_WRITE_1(sc, VGE_CAMADDR, 0);
535         CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
536         CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
537
538         return (error);
539 }
540
541 /*
542  * Program the multicast filter. We use the 64-entry CAM filter
543  * for perfect filtering. If there's more than 64 multicast addresses,
544  * we use the hash filter insted.
545  */
546 static void
547 vge_setmulti(sc)
548         struct vge_softc        *sc;
549 {
550         struct ifnet            *ifp;
551         int                     error = 0/*, h = 0*/;
552         struct ifmultiaddr      *ifma;
553         u_int32_t               h, hashes[2] = { 0, 0 };
554
555         ifp = sc->vge_ifp;
556
557         /* First, zot all the multicast entries. */
558         vge_cam_clear(sc);
559         CSR_WRITE_4(sc, VGE_MAR0, 0);
560         CSR_WRITE_4(sc, VGE_MAR1, 0);
561
562         /*
563          * If the user wants allmulti or promisc mode, enable reception
564          * of all multicast frames.
565          */
566         if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
567                 CSR_WRITE_4(sc, VGE_MAR0, 0xFFFFFFFF);
568                 CSR_WRITE_4(sc, VGE_MAR1, 0xFFFFFFFF);
569                 return;
570         }
571
572         /* Now program new ones */
573         IF_ADDR_LOCK(ifp);
574         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
575                 if (ifma->ifma_addr->sa_family != AF_LINK)
576                         continue;
577                 error = vge_cam_set(sc,
578                     LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
579                 if (error)
580                         break;
581         }
582
583         /* If there were too many addresses, use the hash filter. */
584         if (error) {
585                 vge_cam_clear(sc);
586
587                 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
588                         if (ifma->ifma_addr->sa_family != AF_LINK)
589                                 continue;
590                         h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
591                             ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
592                         if (h < 32)
593                                 hashes[0] |= (1 << h);
594                         else
595                                 hashes[1] |= (1 << (h - 32));
596                 }
597
598                 CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
599                 CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
600         }
601         IF_ADDR_UNLOCK(ifp);
602
603         return;
604 }
605
606 static void
607 vge_reset(sc)
608         struct vge_softc                *sc;
609 {
610         register int            i;
611
612         CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
613
614         for (i = 0; i < VGE_TIMEOUT; i++) {
615                 DELAY(5);
616                 if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
617                         break;
618         }
619
620         if (i == VGE_TIMEOUT) {
621                 device_printf(sc->vge_dev, "soft reset timed out");
622                 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
623                 DELAY(2000);
624         }
625
626         DELAY(5000);
627
628         CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
629
630         for (i = 0; i < VGE_TIMEOUT; i++) {
631                 DELAY(5);
632                 if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
633                         break;
634         }
635
636         if (i == VGE_TIMEOUT) {
637                 device_printf(sc->vge_dev, "EEPROM reload timed out\n");
638                 return;
639         }
640
641         CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
642
643         return;
644 }
645
646 /*
647  * Probe for a VIA gigabit chip. Check the PCI vendor and device
648  * IDs against our list and return a device name if we find a match.
649  */
650 static int
651 vge_probe(dev)
652         device_t                dev;
653 {
654         struct vge_type         *t;
655         struct vge_softc        *sc;
656
657         t = vge_devs;
658         sc = device_get_softc(dev);
659
660         while (t->vge_name != NULL) {
661                 if ((pci_get_vendor(dev) == t->vge_vid) &&
662                     (pci_get_device(dev) == t->vge_did)) {
663                         device_set_desc(dev, t->vge_name);
664                         return (BUS_PROBE_DEFAULT);
665                 }
666                 t++;
667         }
668
669         return (ENXIO);
670 }
671
672 static void
673 vge_dma_map_rx_desc(arg, segs, nseg, mapsize, error)
674         void                    *arg;
675         bus_dma_segment_t       *segs;
676         int                     nseg;
677         bus_size_t              mapsize;
678         int                     error;
679 {
680
681         struct vge_dmaload_arg  *ctx;
682         struct vge_rx_desc      *d = NULL;
683
684         if (error)
685                 return;
686
687         ctx = arg;
688
689         /* Signal error to caller if there's too many segments */
690         if (nseg > ctx->vge_maxsegs) {
691                 ctx->vge_maxsegs = 0;
692                 return;
693         }
694
695         /*
696          * Map the segment array into descriptors.
697          */
698
699         d = &ctx->sc->vge_ldata.vge_rx_list[ctx->vge_idx];
700
701         /* If this descriptor is still owned by the chip, bail. */
702
703         if (le32toh(d->vge_sts) & VGE_RDSTS_OWN) {
704                 device_printf(ctx->sc->vge_dev,
705                     "tried to map busy descriptor\n");
706                 ctx->vge_maxsegs = 0;
707                 return;
708         }
709
710         d->vge_buflen = htole16(VGE_BUFLEN(segs[0].ds_len) | VGE_RXDESC_I);
711         d->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
712         d->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF);
713         d->vge_sts = 0;
714         d->vge_ctl = 0;
715
716         ctx->vge_maxsegs = 1;
717
718         return;
719 }
720
721 static void
722 vge_dma_map_tx_desc(arg, segs, nseg, mapsize, error)
723         void                    *arg;
724         bus_dma_segment_t       *segs;
725         int                     nseg;
726         bus_size_t              mapsize;
727         int                     error;
728 {
729         struct vge_dmaload_arg  *ctx;
730         struct vge_tx_desc      *d = NULL;
731         struct vge_tx_frag      *f;
732         int                     i = 0;
733
734         if (error)
735                 return;
736
737         ctx = arg;
738
739         /* Signal error to caller if there's too many segments */
740         if (nseg > ctx->vge_maxsegs) {
741                 ctx->vge_maxsegs = 0;
742                 return;
743         }
744
745         /* Map the segment array into descriptors. */
746
747         d = &ctx->sc->vge_ldata.vge_tx_list[ctx->vge_idx];
748
749         /* If this descriptor is still owned by the chip, bail. */
750
751         if (le32toh(d->vge_sts) & VGE_TDSTS_OWN) {
752                 ctx->vge_maxsegs = 0;
753                 return;
754         }
755
756         for (i = 0; i < nseg; i++) {
757                 f = &d->vge_frag[i];
758                 f->vge_buflen = htole16(VGE_BUFLEN(segs[i].ds_len));
759                 f->vge_addrlo = htole32(VGE_ADDR_LO(segs[i].ds_addr));
760                 f->vge_addrhi = htole16(VGE_ADDR_HI(segs[i].ds_addr) & 0xFFFF);
761         }
762
763         /* Argh. This chip does not autopad short frames */
764
765         if (ctx->vge_m0->m_pkthdr.len < VGE_MIN_FRAMELEN) {
766                 f = &d->vge_frag[i];
767                 f->vge_buflen = htole16(VGE_BUFLEN(VGE_MIN_FRAMELEN -
768                     ctx->vge_m0->m_pkthdr.len));
769                 f->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
770                 f->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF);
771                 ctx->vge_m0->m_pkthdr.len = VGE_MIN_FRAMELEN;
772                 i++;
773         }
774
775         /*
776          * When telling the chip how many segments there are, we
777          * must use nsegs + 1 instead of just nsegs. Darned if I
778          * know why.
779          */
780         i++;
781
782         d->vge_sts = ctx->vge_m0->m_pkthdr.len << 16;
783         d->vge_ctl = ctx->vge_flags|(i << 28)|VGE_TD_LS_NORM;
784
785         if (ctx->vge_m0->m_pkthdr.len > ETHERMTU + ETHER_HDR_LEN)
786                 d->vge_ctl |= VGE_TDCTL_JUMBO;
787
788         ctx->vge_maxsegs = nseg;
789
790         return;
791 }
792
793 /*
794  * Map a single buffer address.
795  */
796
797 static void
798 vge_dma_map_addr(arg, segs, nseg, error)
799         void                    *arg;
800         bus_dma_segment_t       *segs;
801         int                     nseg;
802         int                     error;
803 {
804         bus_addr_t              *addr;
805
806         if (error)
807                 return;
808
809         KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
810         addr = arg;
811         *addr = segs->ds_addr;
812
813         return;
814 }
815
816 static int
817 vge_allocmem(dev, sc)
818         device_t                dev;
819         struct vge_softc                *sc;
820 {
821         int                     error;
822         int                     nseg;
823         int                     i;
824
825         /*
826          * Allocate map for RX mbufs.
827          */
828         nseg = 32;
829         error = bus_dma_tag_create(sc->vge_parent_tag, ETHER_ALIGN, 0,
830             BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
831             NULL, MCLBYTES * nseg, nseg, MCLBYTES, BUS_DMA_ALLOCNOW,
832             NULL, NULL, &sc->vge_ldata.vge_mtag);
833         if (error) {
834                 device_printf(dev, "could not allocate dma tag\n");
835                 return (ENOMEM);
836         }
837
838         /*
839          * Allocate map for TX descriptor list.
840          */
841         error = bus_dma_tag_create(sc->vge_parent_tag, VGE_RING_ALIGN,
842             0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
843             NULL, VGE_TX_LIST_SZ, 1, VGE_TX_LIST_SZ, BUS_DMA_ALLOCNOW,
844             NULL, NULL, &sc->vge_ldata.vge_tx_list_tag);
845         if (error) {
846                 device_printf(dev, "could not allocate dma tag\n");
847                 return (ENOMEM);
848         }
849
850         /* Allocate DMA'able memory for the TX ring */
851
852         error = bus_dmamem_alloc(sc->vge_ldata.vge_tx_list_tag,
853             (void **)&sc->vge_ldata.vge_tx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
854             &sc->vge_ldata.vge_tx_list_map);
855         if (error)
856                 return (ENOMEM);
857
858         /* Load the map for the TX ring. */
859
860         error = bus_dmamap_load(sc->vge_ldata.vge_tx_list_tag,
861              sc->vge_ldata.vge_tx_list_map, sc->vge_ldata.vge_tx_list,
862              VGE_TX_LIST_SZ, vge_dma_map_addr,
863              &sc->vge_ldata.vge_tx_list_addr, BUS_DMA_NOWAIT);
864
865         /* Create DMA maps for TX buffers */
866
867         for (i = 0; i < VGE_TX_DESC_CNT; i++) {
868                 error = bus_dmamap_create(sc->vge_ldata.vge_mtag, 0,
869                             &sc->vge_ldata.vge_tx_dmamap[i]);
870                 if (error) {
871                         device_printf(dev, "can't create DMA map for TX\n");
872                         return (ENOMEM);
873                 }
874         }
875
876         /*
877          * Allocate map for RX descriptor list.
878          */
879         error = bus_dma_tag_create(sc->vge_parent_tag, VGE_RING_ALIGN,
880             0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
881             NULL, VGE_TX_LIST_SZ, 1, VGE_TX_LIST_SZ, BUS_DMA_ALLOCNOW,
882             NULL, NULL, &sc->vge_ldata.vge_rx_list_tag);
883         if (error) {
884                 device_printf(dev, "could not allocate dma tag\n");
885                 return (ENOMEM);
886         }
887
888         /* Allocate DMA'able memory for the RX ring */
889
890         error = bus_dmamem_alloc(sc->vge_ldata.vge_rx_list_tag,
891             (void **)&sc->vge_ldata.vge_rx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
892             &sc->vge_ldata.vge_rx_list_map);
893         if (error)
894                 return (ENOMEM);
895
896         /* Load the map for the RX ring. */
897
898         error = bus_dmamap_load(sc->vge_ldata.vge_rx_list_tag,
899              sc->vge_ldata.vge_rx_list_map, sc->vge_ldata.vge_rx_list,
900              VGE_TX_LIST_SZ, vge_dma_map_addr,
901              &sc->vge_ldata.vge_rx_list_addr, BUS_DMA_NOWAIT);
902
903         /* Create DMA maps for RX buffers */
904
905         for (i = 0; i < VGE_RX_DESC_CNT; i++) {
906                 error = bus_dmamap_create(sc->vge_ldata.vge_mtag, 0,
907                             &sc->vge_ldata.vge_rx_dmamap[i]);
908                 if (error) {
909                         device_printf(dev, "can't create DMA map for RX\n");
910                         return (ENOMEM);
911                 }
912         }
913
914         return (0);
915 }
916
917 /*
918  * Attach the interface. Allocate softc structures, do ifmedia
919  * setup and ethernet/BPF attach.
920  */
921 static int
922 vge_attach(dev)
923         device_t                dev;
924 {
925         u_char                  eaddr[ETHER_ADDR_LEN];
926         struct vge_softc        *sc;
927         struct ifnet            *ifp;
928         int                     unit, error = 0, rid;
929
930         sc = device_get_softc(dev);
931         unit = device_get_unit(dev);
932         sc->vge_dev = dev;
933
934         mtx_init(&sc->vge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
935             MTX_DEF | MTX_RECURSE);
936         /*
937          * Map control/status registers.
938          */
939         pci_enable_busmaster(dev);
940
941         rid = VGE_PCI_LOMEM;
942         sc->vge_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
943             0, ~0, 1, RF_ACTIVE);
944
945         if (sc->vge_res == NULL) {
946                 printf ("vge%d: couldn't map ports/memory\n", unit);
947                 error = ENXIO;
948                 goto fail;
949         }
950
951         sc->vge_btag = rman_get_bustag(sc->vge_res);
952         sc->vge_bhandle = rman_get_bushandle(sc->vge_res);
953
954         /* Allocate interrupt */
955         rid = 0;
956         sc->vge_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid,
957             0, ~0, 1, RF_SHAREABLE | RF_ACTIVE);
958
959         if (sc->vge_irq == NULL) {
960                 printf("vge%d: couldn't map interrupt\n", unit);
961                 error = ENXIO;
962                 goto fail;
963         }
964
965         /* Reset the adapter. */
966         vge_reset(sc);
967
968         /*
969          * Get station address from the EEPROM.
970          */
971         vge_read_eeprom(sc, (caddr_t)eaddr, VGE_EE_EADDR, 3, 0);
972
973         sc->vge_unit = unit;
974
975         /*
976          * Allocate the parent bus DMA tag appropriate for PCI.
977          */
978 #define VGE_NSEG_NEW 32
979         error = bus_dma_tag_create(NULL,        /* parent */
980                         1, 0,                   /* alignment, boundary */
981                         BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
982                         BUS_SPACE_MAXADDR,      /* highaddr */
983                         NULL, NULL,             /* filter, filterarg */
984                         MAXBSIZE, VGE_NSEG_NEW, /* maxsize, nsegments */
985                         BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
986                         BUS_DMA_ALLOCNOW,       /* flags */
987                         NULL, NULL,             /* lockfunc, lockarg */
988                         &sc->vge_parent_tag);
989         if (error)
990                 goto fail;
991
992         error = vge_allocmem(dev, sc);
993
994         if (error)
995                 goto fail;
996
997         ifp = sc->vge_ifp = if_alloc(IFT_ETHER);
998         if (ifp == NULL) {
999                 printf("vge%d: can not if_alloc()\n", sc->vge_unit);
1000                 error = ENOSPC;
1001                 goto fail;
1002         }
1003
1004         /* Do MII setup */
1005         if (mii_phy_probe(dev, &sc->vge_miibus,
1006             vge_ifmedia_upd, vge_ifmedia_sts)) {
1007                 printf("vge%d: MII without any phy!\n", sc->vge_unit);
1008                 error = ENXIO;
1009                 goto fail;
1010         }
1011
1012         ifp->if_softc = sc;
1013         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1014         ifp->if_mtu = ETHERMTU;
1015         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1016         ifp->if_ioctl = vge_ioctl;
1017         ifp->if_capabilities = IFCAP_VLAN_MTU;
1018         ifp->if_start = vge_start;
1019         ifp->if_hwassist = VGE_CSUM_FEATURES;
1020         ifp->if_capabilities |= IFCAP_HWCSUM|IFCAP_VLAN_HWTAGGING;
1021         ifp->if_capenable = ifp->if_capabilities;
1022 #ifdef DEVICE_POLLING
1023         ifp->if_capabilities |= IFCAP_POLLING;
1024 #endif
1025         ifp->if_watchdog = vge_watchdog;
1026         ifp->if_init = vge_init;
1027         IFQ_SET_MAXLEN(&ifp->if_snd, VGE_IFQ_MAXLEN);
1028         ifp->if_snd.ifq_drv_maxlen = VGE_IFQ_MAXLEN;
1029         IFQ_SET_READY(&ifp->if_snd);
1030
1031         TASK_INIT(&sc->vge_txtask, 0, vge_tx_task, ifp);
1032
1033         /*
1034          * Call MI attach routine.
1035          */
1036         ether_ifattach(ifp, eaddr);
1037
1038         /* Hook interrupt last to avoid having to lock softc */
1039         error = bus_setup_intr(dev, sc->vge_irq, INTR_TYPE_NET|INTR_MPSAFE,
1040             NULL, vge_intr, sc, &sc->vge_intrhand);
1041
1042         if (error) {
1043                 printf("vge%d: couldn't set up irq\n", unit);
1044                 ether_ifdetach(ifp);
1045                 goto fail;
1046         }
1047
1048 fail:
1049         if (error)
1050                 vge_detach(dev);
1051
1052         return (error);
1053 }
1054
1055 /*
1056  * Shutdown hardware and free up resources. This can be called any
1057  * time after the mutex has been initialized. It is called in both
1058  * the error case in attach and the normal detach case so it needs
1059  * to be careful about only freeing resources that have actually been
1060  * allocated.
1061  */
1062 static int
1063 vge_detach(dev)
1064         device_t                dev;
1065 {
1066         struct vge_softc                *sc;
1067         struct ifnet            *ifp;
1068         int                     i;
1069
1070         sc = device_get_softc(dev);
1071         KASSERT(mtx_initialized(&sc->vge_mtx), ("vge mutex not initialized"));
1072         ifp = sc->vge_ifp;
1073
1074 #ifdef DEVICE_POLLING
1075         if (ifp->if_capenable & IFCAP_POLLING)
1076                 ether_poll_deregister(ifp);
1077 #endif
1078
1079         /* These should only be active if attach succeeded */
1080         if (device_is_attached(dev)) {
1081                 vge_stop(sc);
1082                 /*
1083                  * Force off the IFF_UP flag here, in case someone
1084                  * still had a BPF descriptor attached to this
1085                  * interface. If they do, ether_ifattach() will cause
1086                  * the BPF code to try and clear the promisc mode
1087                  * flag, which will bubble down to vge_ioctl(),
1088                  * which will try to call vge_init() again. This will
1089                  * turn the NIC back on and restart the MII ticker,
1090                  * which will panic the system when the kernel tries
1091                  * to invoke the vge_tick() function that isn't there
1092                  * anymore.
1093                  */
1094                 ifp->if_flags &= ~IFF_UP;
1095                 ether_ifdetach(ifp);
1096         }
1097         if (sc->vge_miibus)
1098                 device_delete_child(dev, sc->vge_miibus);
1099         bus_generic_detach(dev);
1100
1101         if (sc->vge_intrhand)
1102                 bus_teardown_intr(dev, sc->vge_irq, sc->vge_intrhand);
1103         if (sc->vge_irq)
1104                 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->vge_irq);
1105         if (sc->vge_res)
1106                 bus_release_resource(dev, SYS_RES_MEMORY,
1107                     VGE_PCI_LOMEM, sc->vge_res);
1108         if (ifp)
1109                 if_free(ifp);
1110
1111         /* Unload and free the RX DMA ring memory and map */
1112
1113         if (sc->vge_ldata.vge_rx_list_tag) {
1114                 bus_dmamap_unload(sc->vge_ldata.vge_rx_list_tag,
1115                     sc->vge_ldata.vge_rx_list_map);
1116                 bus_dmamem_free(sc->vge_ldata.vge_rx_list_tag,
1117                     sc->vge_ldata.vge_rx_list,
1118                     sc->vge_ldata.vge_rx_list_map);
1119                 bus_dma_tag_destroy(sc->vge_ldata.vge_rx_list_tag);
1120         }
1121
1122         /* Unload and free the TX DMA ring memory and map */
1123
1124         if (sc->vge_ldata.vge_tx_list_tag) {
1125                 bus_dmamap_unload(sc->vge_ldata.vge_tx_list_tag,
1126                     sc->vge_ldata.vge_tx_list_map);
1127                 bus_dmamem_free(sc->vge_ldata.vge_tx_list_tag,
1128                     sc->vge_ldata.vge_tx_list,
1129                     sc->vge_ldata.vge_tx_list_map);
1130                 bus_dma_tag_destroy(sc->vge_ldata.vge_tx_list_tag);
1131         }
1132
1133         /* Destroy all the RX and TX buffer maps */
1134
1135         if (sc->vge_ldata.vge_mtag) {
1136                 for (i = 0; i < VGE_TX_DESC_CNT; i++)
1137                         bus_dmamap_destroy(sc->vge_ldata.vge_mtag,
1138                             sc->vge_ldata.vge_tx_dmamap[i]);
1139                 for (i = 0; i < VGE_RX_DESC_CNT; i++)
1140                         bus_dmamap_destroy(sc->vge_ldata.vge_mtag,
1141                             sc->vge_ldata.vge_rx_dmamap[i]);
1142                 bus_dma_tag_destroy(sc->vge_ldata.vge_mtag);
1143         }
1144
1145         if (sc->vge_parent_tag)
1146                 bus_dma_tag_destroy(sc->vge_parent_tag);
1147
1148         mtx_destroy(&sc->vge_mtx);
1149
1150         return (0);
1151 }
1152
1153 static int
1154 vge_newbuf(sc, idx, m)
1155         struct vge_softc        *sc;
1156         int                     idx;
1157         struct mbuf             *m;
1158 {
1159         struct vge_dmaload_arg  arg;
1160         struct mbuf             *n = NULL;
1161         int                     i, error;
1162
1163         if (m == NULL) {
1164                 n = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1165                 if (n == NULL)
1166                         return (ENOBUFS);
1167                 m = n;
1168         } else
1169                 m->m_data = m->m_ext.ext_buf;
1170
1171
1172 #ifdef VGE_FIXUP_RX
1173         /*
1174          * This is part of an evil trick to deal with non-x86 platforms.
1175          * The VIA chip requires RX buffers to be aligned on 32-bit
1176          * boundaries, but that will hose non-x86 machines. To get around
1177          * this, we leave some empty space at the start of each buffer
1178          * and for non-x86 hosts, we copy the buffer back two bytes
1179          * to achieve word alignment. This is slightly more efficient
1180          * than allocating a new buffer, copying the contents, and
1181          * discarding the old buffer.
1182          */
1183         m->m_len = m->m_pkthdr.len = MCLBYTES - VGE_ETHER_ALIGN;
1184         m_adj(m, VGE_ETHER_ALIGN);
1185 #else
1186         m->m_len = m->m_pkthdr.len = MCLBYTES;
1187 #endif
1188
1189         arg.sc = sc;
1190         arg.vge_idx = idx;
1191         arg.vge_maxsegs = 1;
1192         arg.vge_flags = 0;
1193
1194         error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag,
1195             sc->vge_ldata.vge_rx_dmamap[idx], m, vge_dma_map_rx_desc,
1196             &arg, BUS_DMA_NOWAIT);
1197         if (error || arg.vge_maxsegs != 1) {
1198                 if (n != NULL)
1199                         m_freem(n);
1200                 return (ENOMEM);
1201         }
1202
1203         /*
1204          * Note: the manual fails to document the fact that for
1205          * proper opration, the driver needs to replentish the RX
1206          * DMA ring 4 descriptors at a time (rather than one at a
1207          * time, like most chips). We can allocate the new buffers
1208          * but we should not set the OWN bits until we're ready
1209          * to hand back 4 of them in one shot.
1210          */
1211
1212 #define VGE_RXCHUNK 4
1213         sc->vge_rx_consumed++;
1214         if (sc->vge_rx_consumed == VGE_RXCHUNK) {
1215                 for (i = idx; i != idx - sc->vge_rx_consumed; i--)
1216                         sc->vge_ldata.vge_rx_list[i].vge_sts |=
1217                             htole32(VGE_RDSTS_OWN);
1218                 sc->vge_rx_consumed = 0;
1219         }
1220
1221         sc->vge_ldata.vge_rx_mbuf[idx] = m;
1222
1223         bus_dmamap_sync(sc->vge_ldata.vge_mtag,
1224             sc->vge_ldata.vge_rx_dmamap[idx],
1225             BUS_DMASYNC_PREREAD);
1226
1227         return (0);
1228 }
1229
1230 static int
1231 vge_tx_list_init(sc)
1232         struct vge_softc                *sc;
1233 {
1234         bzero ((char *)sc->vge_ldata.vge_tx_list, VGE_TX_LIST_SZ);
1235         bzero ((char *)&sc->vge_ldata.vge_tx_mbuf,
1236             (VGE_TX_DESC_CNT * sizeof(struct mbuf *)));
1237
1238         bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
1239             sc->vge_ldata.vge_tx_list_map, BUS_DMASYNC_PREWRITE);
1240         sc->vge_ldata.vge_tx_prodidx = 0;
1241         sc->vge_ldata.vge_tx_considx = 0;
1242         sc->vge_ldata.vge_tx_free = VGE_TX_DESC_CNT;
1243
1244         return (0);
1245 }
1246
1247 static int
1248 vge_rx_list_init(sc)
1249         struct vge_softc                *sc;
1250 {
1251         int                     i;
1252
1253         bzero ((char *)sc->vge_ldata.vge_rx_list, VGE_RX_LIST_SZ);
1254         bzero ((char *)&sc->vge_ldata.vge_rx_mbuf,
1255             (VGE_RX_DESC_CNT * sizeof(struct mbuf *)));
1256
1257         sc->vge_rx_consumed = 0;
1258
1259         for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1260                 if (vge_newbuf(sc, i, NULL) == ENOBUFS)
1261                         return (ENOBUFS);
1262         }
1263
1264         /* Flush the RX descriptors */
1265
1266         bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
1267             sc->vge_ldata.vge_rx_list_map,
1268             BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1269
1270         sc->vge_ldata.vge_rx_prodidx = 0;
1271         sc->vge_rx_consumed = 0;
1272         sc->vge_head = sc->vge_tail = NULL;
1273
1274         return (0);
1275 }
1276
1277 #ifdef VGE_FIXUP_RX
1278 static __inline void
1279 vge_fixup_rx(m)
1280         struct mbuf             *m;
1281 {
1282         int                     i;
1283         uint16_t                *src, *dst;
1284
1285         src = mtod(m, uint16_t *);
1286         dst = src - 1;
1287
1288         for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1289                 *dst++ = *src++;
1290
1291         m->m_data -= ETHER_ALIGN;
1292
1293         return;
1294 }
1295 #endif
1296
1297 /*
1298  * RX handler. We support the reception of jumbo frames that have
1299  * been fragmented across multiple 2K mbuf cluster buffers.
1300  */
1301 static void
1302 vge_rxeof(sc)
1303         struct vge_softc        *sc;
1304 {
1305         struct mbuf             *m;
1306         struct ifnet            *ifp;
1307         int                     i, total_len;
1308         int                     lim = 0;
1309         struct vge_rx_desc      *cur_rx;
1310         u_int32_t               rxstat, rxctl;
1311
1312         VGE_LOCK_ASSERT(sc);
1313         ifp = sc->vge_ifp;
1314         i = sc->vge_ldata.vge_rx_prodidx;
1315
1316         /* Invalidate the descriptor memory */
1317
1318         bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
1319             sc->vge_ldata.vge_rx_list_map,
1320             BUS_DMASYNC_POSTREAD);
1321
1322         while (!VGE_OWN(&sc->vge_ldata.vge_rx_list[i])) {
1323
1324 #ifdef DEVICE_POLLING
1325                 if (ifp->if_capenable & IFCAP_POLLING) {
1326                         if (sc->rxcycles <= 0)
1327                                 break;
1328                         sc->rxcycles--;
1329                 }
1330 #endif
1331
1332                 cur_rx = &sc->vge_ldata.vge_rx_list[i];
1333                 m = sc->vge_ldata.vge_rx_mbuf[i];
1334                 total_len = VGE_RXBYTES(cur_rx);
1335                 rxstat = le32toh(cur_rx->vge_sts);
1336                 rxctl = le32toh(cur_rx->vge_ctl);
1337
1338                 /* Invalidate the RX mbuf and unload its map */
1339
1340                 bus_dmamap_sync(sc->vge_ldata.vge_mtag,
1341                     sc->vge_ldata.vge_rx_dmamap[i],
1342                     BUS_DMASYNC_POSTWRITE);
1343                 bus_dmamap_unload(sc->vge_ldata.vge_mtag,
1344                     sc->vge_ldata.vge_rx_dmamap[i]);
1345
1346                 /*
1347                  * If the 'start of frame' bit is set, this indicates
1348                  * either the first fragment in a multi-fragment receive,
1349                  * or an intermediate fragment. Either way, we want to
1350                  * accumulate the buffers.
1351                  */
1352                 if (rxstat & VGE_RXPKT_SOF) {
1353                         m->m_len = MCLBYTES - VGE_ETHER_ALIGN;
1354                         if (sc->vge_head == NULL)
1355                                 sc->vge_head = sc->vge_tail = m;
1356                         else {
1357                                 m->m_flags &= ~M_PKTHDR;
1358                                 sc->vge_tail->m_next = m;
1359                                 sc->vge_tail = m;
1360                         }
1361                         vge_newbuf(sc, i, NULL);
1362                         VGE_RX_DESC_INC(i);
1363                         continue;
1364                 }
1365
1366                 /*
1367                  * Bad/error frames will have the RXOK bit cleared.
1368                  * However, there's one error case we want to allow:
1369                  * if a VLAN tagged frame arrives and the chip can't
1370                  * match it against the CAM filter, it considers this
1371                  * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
1372                  * We don't want to drop the frame though: our VLAN
1373                  * filtering is done in software.
1374                  */
1375                 if (!(rxstat & VGE_RDSTS_RXOK) && !(rxstat & VGE_RDSTS_VIDM)
1376                     && !(rxstat & VGE_RDSTS_CSUMERR)) {
1377                         ifp->if_ierrors++;
1378                         /*
1379                          * If this is part of a multi-fragment packet,
1380                          * discard all the pieces.
1381                          */
1382                         if (sc->vge_head != NULL) {
1383                                 m_freem(sc->vge_head);
1384                                 sc->vge_head = sc->vge_tail = NULL;
1385                         }
1386                         vge_newbuf(sc, i, m);
1387                         VGE_RX_DESC_INC(i);
1388                         continue;
1389                 }
1390
1391                 /*
1392                  * If allocating a replacement mbuf fails,
1393                  * reload the current one.
1394                  */
1395
1396                 if (vge_newbuf(sc, i, NULL)) {
1397                         ifp->if_ierrors++;
1398                         if (sc->vge_head != NULL) {
1399                                 m_freem(sc->vge_head);
1400                                 sc->vge_head = sc->vge_tail = NULL;
1401                         }
1402                         vge_newbuf(sc, i, m);
1403                         VGE_RX_DESC_INC(i);
1404                         continue;
1405                 }
1406
1407                 VGE_RX_DESC_INC(i);
1408
1409                 if (sc->vge_head != NULL) {
1410                         m->m_len = total_len % (MCLBYTES - VGE_ETHER_ALIGN);
1411                         /*
1412                          * Special case: if there's 4 bytes or less
1413                          * in this buffer, the mbuf can be discarded:
1414                          * the last 4 bytes is the CRC, which we don't
1415                          * care about anyway.
1416                          */
1417                         if (m->m_len <= ETHER_CRC_LEN) {
1418                                 sc->vge_tail->m_len -=
1419                                     (ETHER_CRC_LEN - m->m_len);
1420                                 m_freem(m);
1421                         } else {
1422                                 m->m_len -= ETHER_CRC_LEN;
1423                                 m->m_flags &= ~M_PKTHDR;
1424                                 sc->vge_tail->m_next = m;
1425                         }
1426                         m = sc->vge_head;
1427                         sc->vge_head = sc->vge_tail = NULL;
1428                         m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1429                 } else
1430                         m->m_pkthdr.len = m->m_len =
1431                             (total_len - ETHER_CRC_LEN);
1432
1433 #ifdef VGE_FIXUP_RX
1434                 vge_fixup_rx(m);
1435 #endif
1436                 ifp->if_ipackets++;
1437                 m->m_pkthdr.rcvif = ifp;
1438
1439                 /* Do RX checksumming if enabled */
1440                 if (ifp->if_capenable & IFCAP_RXCSUM) {
1441
1442                         /* Check IP header checksum */
1443                         if (rxctl & VGE_RDCTL_IPPKT)
1444                                 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1445                         if (rxctl & VGE_RDCTL_IPCSUMOK)
1446                                 m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1447
1448                         /* Check TCP/UDP checksum */
1449                         if (rxctl & (VGE_RDCTL_TCPPKT|VGE_RDCTL_UDPPKT) &&
1450                             rxctl & VGE_RDCTL_PROTOCSUMOK) {
1451                                 m->m_pkthdr.csum_flags |=
1452                                     CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1453                                 m->m_pkthdr.csum_data = 0xffff;
1454                         }
1455                 }
1456
1457                 if (rxstat & VGE_RDSTS_VTAG) {
1458                         /*
1459                          * The 32-bit rxctl register is stored in little-endian.
1460                          * However, the 16-bit vlan tag is stored in big-endian,
1461                          * so we have to byte swap it.
1462                          */
1463                         m->m_pkthdr.ether_vtag =
1464                             bswap16(rxctl & VGE_RDCTL_VLANID);
1465                         m->m_flags |= M_VLANTAG;
1466                 }
1467
1468                 VGE_UNLOCK(sc);
1469                 (*ifp->if_input)(ifp, m);
1470                 VGE_LOCK(sc);
1471
1472                 lim++;
1473                 if (lim == VGE_RX_DESC_CNT)
1474                         break;
1475
1476         }
1477
1478         /* Flush the RX DMA ring */
1479
1480         bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
1481             sc->vge_ldata.vge_rx_list_map,
1482             BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1483
1484         sc->vge_ldata.vge_rx_prodidx = i;
1485         CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, lim);
1486
1487
1488         return;
1489 }
1490
1491 static void
1492 vge_txeof(sc)
1493         struct vge_softc                *sc;
1494 {
1495         struct ifnet            *ifp;
1496         u_int32_t               txstat;
1497         int                     idx;
1498
1499         ifp = sc->vge_ifp;
1500         idx = sc->vge_ldata.vge_tx_considx;
1501
1502         /* Invalidate the TX descriptor list */
1503
1504         bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
1505             sc->vge_ldata.vge_tx_list_map,
1506             BUS_DMASYNC_POSTREAD);
1507
1508         while (idx != sc->vge_ldata.vge_tx_prodidx) {
1509
1510                 txstat = le32toh(sc->vge_ldata.vge_tx_list[idx].vge_sts);
1511                 if (txstat & VGE_TDSTS_OWN)
1512                         break;
1513
1514                 m_freem(sc->vge_ldata.vge_tx_mbuf[idx]);
1515                 sc->vge_ldata.vge_tx_mbuf[idx] = NULL;
1516                 bus_dmamap_unload(sc->vge_ldata.vge_mtag,
1517                     sc->vge_ldata.vge_tx_dmamap[idx]);
1518                 if (txstat & (VGE_TDSTS_EXCESSCOLL|VGE_TDSTS_COLL))
1519                         ifp->if_collisions++;
1520                 if (txstat & VGE_TDSTS_TXERR)
1521                         ifp->if_oerrors++;
1522                 else
1523                         ifp->if_opackets++;
1524
1525                 sc->vge_ldata.vge_tx_free++;
1526                 VGE_TX_DESC_INC(idx);
1527         }
1528
1529         /* No changes made to the TX ring, so no flush needed */
1530
1531         if (idx != sc->vge_ldata.vge_tx_considx) {
1532                 sc->vge_ldata.vge_tx_considx = idx;
1533                 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1534                 ifp->if_timer = 0;
1535         }
1536
1537         /*
1538          * If not all descriptors have been released reaped yet,
1539          * reload the timer so that we will eventually get another
1540          * interrupt that will cause us to re-enter this routine.
1541          * This is done in case the transmitter has gone idle.
1542          */
1543         if (sc->vge_ldata.vge_tx_free != VGE_TX_DESC_CNT) {
1544                 CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1545         }
1546
1547         return;
1548 }
1549
1550 static void
1551 vge_tick(xsc)
1552         void                    *xsc;
1553 {
1554         struct vge_softc        *sc;
1555         struct ifnet            *ifp;
1556         struct mii_data         *mii;
1557
1558         sc = xsc;
1559         ifp = sc->vge_ifp;
1560         VGE_LOCK(sc);
1561         mii = device_get_softc(sc->vge_miibus);
1562
1563         mii_tick(mii);
1564         if (sc->vge_link) {
1565                 if (!(mii->mii_media_status & IFM_ACTIVE)) {
1566                         sc->vge_link = 0;
1567                         if_link_state_change(sc->vge_ifp,
1568                             LINK_STATE_DOWN);
1569                 }
1570         } else {
1571                 if (mii->mii_media_status & IFM_ACTIVE &&
1572                     IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1573                         sc->vge_link = 1;
1574                         if_link_state_change(sc->vge_ifp,
1575                             LINK_STATE_UP);
1576                         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1577                                 taskqueue_enqueue(taskqueue_swi,
1578                                     &sc->vge_txtask);
1579                 }
1580         }
1581
1582         VGE_UNLOCK(sc);
1583
1584         return;
1585 }
1586
1587 #ifdef DEVICE_POLLING
1588 static void
1589 vge_poll (struct ifnet *ifp, enum poll_cmd cmd, int count)
1590 {
1591         struct vge_softc *sc = ifp->if_softc;
1592
1593         VGE_LOCK(sc);
1594         if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
1595                 goto done;
1596
1597         sc->rxcycles = count;
1598         vge_rxeof(sc);
1599         vge_txeof(sc);
1600
1601         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1602                 taskqueue_enqueue(taskqueue_swi, &sc->vge_txtask);
1603
1604         if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1605                 u_int32_t       status;
1606                 status = CSR_READ_4(sc, VGE_ISR);
1607                 if (status == 0xFFFFFFFF)
1608                         goto done;
1609                 if (status)
1610                         CSR_WRITE_4(sc, VGE_ISR, status);
1611
1612                 /*
1613                  * XXX check behaviour on receiver stalls.
1614                  */
1615
1616                 if (status & VGE_ISR_TXDMA_STALL ||
1617                     status & VGE_ISR_RXDMA_STALL)
1618                         vge_init(sc);
1619
1620                 if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1621                         vge_rxeof(sc);
1622                         ifp->if_ierrors++;
1623                         CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1624                         CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1625                 }
1626         }
1627 done:
1628         VGE_UNLOCK(sc);
1629 }
1630 #endif /* DEVICE_POLLING */
1631
1632 static void
1633 vge_intr(arg)
1634         void                    *arg;
1635 {
1636         struct vge_softc        *sc;
1637         struct ifnet            *ifp;
1638         u_int32_t               status;
1639
1640         sc = arg;
1641
1642         if (sc->suspended) {
1643                 return;
1644         }
1645
1646         VGE_LOCK(sc);
1647         ifp = sc->vge_ifp;
1648
1649         if (!(ifp->if_flags & IFF_UP)) {
1650                 VGE_UNLOCK(sc);
1651                 return;
1652         }
1653
1654 #ifdef DEVICE_POLLING
1655         if  (ifp->if_capenable & IFCAP_POLLING) {
1656                 VGE_UNLOCK(sc);
1657                 return;
1658         }
1659 #endif
1660
1661         /* Disable interrupts */
1662         CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1663
1664         for (;;) {
1665
1666                 status = CSR_READ_4(sc, VGE_ISR);
1667                 /* If the card has gone away the read returns 0xffff. */
1668                 if (status == 0xFFFFFFFF)
1669                         break;
1670
1671                 if (status)
1672                         CSR_WRITE_4(sc, VGE_ISR, status);
1673
1674                 if ((status & VGE_INTRS) == 0)
1675                         break;
1676
1677                 if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
1678                         vge_rxeof(sc);
1679
1680                 if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1681                         vge_rxeof(sc);
1682                         CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1683                         CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1684                 }
1685
1686                 if (status & (VGE_ISR_TXOK0|VGE_ISR_TIMER0))
1687                         vge_txeof(sc);
1688
1689                 if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL))
1690                         vge_init(sc);
1691
1692                 if (status & VGE_ISR_LINKSTS)
1693                         vge_tick(sc);
1694         }
1695
1696         /* Re-enable interrupts */
1697         CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1698
1699         VGE_UNLOCK(sc);
1700
1701         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1702                 taskqueue_enqueue(taskqueue_swi, &sc->vge_txtask);
1703
1704         return;
1705 }
1706
1707 static int
1708 vge_encap(sc, m_head, idx)
1709         struct vge_softc        *sc;
1710         struct mbuf             *m_head;
1711         int                     idx;
1712 {
1713         struct mbuf             *m_new = NULL;
1714         struct vge_dmaload_arg  arg;
1715         bus_dmamap_t            map;
1716         int                     error;
1717
1718         if (sc->vge_ldata.vge_tx_free <= 2)
1719                 return (EFBIG);
1720
1721         arg.vge_flags = 0;
1722
1723         if (m_head->m_pkthdr.csum_flags & CSUM_IP)
1724                 arg.vge_flags |= VGE_TDCTL_IPCSUM;
1725         if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
1726                 arg.vge_flags |= VGE_TDCTL_TCPCSUM;
1727         if (m_head->m_pkthdr.csum_flags & CSUM_UDP)
1728                 arg.vge_flags |= VGE_TDCTL_UDPCSUM;
1729
1730         arg.sc = sc;
1731         arg.vge_idx = idx;
1732         arg.vge_m0 = m_head;
1733         arg.vge_maxsegs = VGE_TX_FRAGS;
1734
1735         map = sc->vge_ldata.vge_tx_dmamap[idx];
1736         error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag, map,
1737             m_head, vge_dma_map_tx_desc, &arg, BUS_DMA_NOWAIT);
1738
1739         if (error && error != EFBIG) {
1740                 printf("vge%d: can't map mbuf (error %d)\n",
1741                     sc->vge_unit, error);
1742                 return (ENOBUFS);
1743         }
1744
1745         /* Too many segments to map, coalesce into a single mbuf */
1746
1747         if (error || arg.vge_maxsegs == 0) {
1748                 m_new = m_defrag(m_head, M_DONTWAIT);
1749                 if (m_new == NULL)
1750                         return (1);
1751                 else
1752                         m_head = m_new;
1753
1754                 arg.sc = sc;
1755                 arg.vge_m0 = m_head;
1756                 arg.vge_idx = idx;
1757                 arg.vge_maxsegs = 1;
1758
1759                 error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag, map,
1760                     m_head, vge_dma_map_tx_desc, &arg, BUS_DMA_NOWAIT);
1761                 if (error) {
1762                         printf("vge%d: can't map mbuf (error %d)\n",
1763                             sc->vge_unit, error);
1764                         return (EFBIG);
1765                 }
1766         }
1767
1768         sc->vge_ldata.vge_tx_mbuf[idx] = m_head;
1769         sc->vge_ldata.vge_tx_free--;
1770
1771         /*
1772          * Set up hardware VLAN tagging.
1773          */
1774
1775         if (m_head->m_flags & M_VLANTAG)
1776                 sc->vge_ldata.vge_tx_list[idx].vge_ctl |=
1777                     htole32(m_head->m_pkthdr.ether_vtag | VGE_TDCTL_VTAG);
1778
1779         sc->vge_ldata.vge_tx_list[idx].vge_sts |= htole32(VGE_TDSTS_OWN);
1780
1781         return (0);
1782 }
1783
1784 static void
1785 vge_tx_task(arg, npending)
1786         void                    *arg;
1787         int                     npending;
1788 {
1789         struct ifnet            *ifp;
1790
1791         ifp = arg;
1792         vge_start(ifp);
1793
1794         return;
1795 }
1796
1797 /*
1798  * Main transmit routine.
1799  */
1800
1801 static void
1802 vge_start(ifp)
1803         struct ifnet            *ifp;
1804 {
1805         struct vge_softc        *sc;
1806         struct mbuf             *m_head = NULL;
1807         int                     idx, pidx = 0;
1808
1809         sc = ifp->if_softc;
1810         VGE_LOCK(sc);
1811
1812         if (!sc->vge_link || ifp->if_drv_flags & IFF_DRV_OACTIVE) {
1813                 VGE_UNLOCK(sc);
1814                 return;
1815         }
1816
1817         if (IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
1818                 VGE_UNLOCK(sc);
1819                 return;
1820         }
1821
1822         idx = sc->vge_ldata.vge_tx_prodidx;
1823
1824         pidx = idx - 1;
1825         if (pidx < 0)
1826                 pidx = VGE_TX_DESC_CNT - 1;
1827
1828
1829         while (sc->vge_ldata.vge_tx_mbuf[idx] == NULL) {
1830                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1831                 if (m_head == NULL)
1832                         break;
1833
1834                 if (vge_encap(sc, m_head, idx)) {
1835                         IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1836                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1837                         break;
1838                 }
1839
1840                 sc->vge_ldata.vge_tx_list[pidx].vge_frag[0].vge_buflen |=
1841                     htole16(VGE_TXDESC_Q);
1842
1843                 pidx = idx;
1844                 VGE_TX_DESC_INC(idx);
1845
1846                 /*
1847                  * If there's a BPF listener, bounce a copy of this frame
1848                  * to him.
1849                  */
1850                 ETHER_BPF_MTAP(ifp, m_head);
1851         }
1852
1853         if (idx == sc->vge_ldata.vge_tx_prodidx) {
1854                 VGE_UNLOCK(sc);
1855                 return;
1856         }
1857
1858         /* Flush the TX descriptors */
1859
1860         bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
1861             sc->vge_ldata.vge_tx_list_map,
1862             BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1863
1864         /* Issue a transmit command. */
1865         CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
1866
1867         sc->vge_ldata.vge_tx_prodidx = idx;
1868
1869         /*
1870          * Use the countdown timer for interrupt moderation.
1871          * 'TX done' interrupts are disabled. Instead, we reset the
1872          * countdown timer, which will begin counting until it hits
1873          * the value in the SSTIMER register, and then trigger an
1874          * interrupt. Each time we set the TIMER0_ENABLE bit, the
1875          * the timer count is reloaded. Only when the transmitter
1876          * is idle will the timer hit 0 and an interrupt fire.
1877          */
1878         CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1879
1880         VGE_UNLOCK(sc);
1881
1882         /*
1883          * Set a timeout in case the chip goes out to lunch.
1884          */
1885         ifp->if_timer = 5;
1886
1887         return;
1888 }
1889
1890 static void
1891 vge_init(xsc)
1892         void                    *xsc;
1893 {
1894         struct vge_softc        *sc = xsc;
1895         struct ifnet            *ifp = sc->vge_ifp;
1896         struct mii_data         *mii;
1897         int                     i;
1898
1899         VGE_LOCK(sc);
1900         mii = device_get_softc(sc->vge_miibus);
1901
1902         /*
1903          * Cancel pending I/O and free all RX/TX buffers.
1904          */
1905         vge_stop(sc);
1906         vge_reset(sc);
1907
1908         /*
1909          * Initialize the RX and TX descriptors and mbufs.
1910          */
1911
1912         vge_rx_list_init(sc);
1913         vge_tx_list_init(sc);
1914
1915         /* Set our station address */
1916         for (i = 0; i < ETHER_ADDR_LEN; i++)
1917                 CSR_WRITE_1(sc, VGE_PAR0 + i, IF_LLADDR(sc->vge_ifp)[i]);
1918
1919         /*
1920          * Set receive FIFO threshold. Also allow transmission and
1921          * reception of VLAN tagged frames.
1922          */
1923         CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT);
1924         CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES|VGE_VTAG_OPT2);
1925
1926         /* Set DMA burst length */
1927         CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
1928         CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
1929
1930         CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
1931
1932         /* Set collision backoff algorithm */
1933         CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
1934             VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
1935         CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
1936
1937         /* Disable LPSEL field in priority resolution */
1938         CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
1939
1940         /*
1941          * Load the addresses of the DMA queues into the chip.
1942          * Note that we only use one transmit queue.
1943          */
1944
1945         CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0,
1946             VGE_ADDR_LO(sc->vge_ldata.vge_tx_list_addr));
1947         CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_TX_DESC_CNT - 1);
1948
1949         CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO,
1950             VGE_ADDR_LO(sc->vge_ldata.vge_rx_list_addr));
1951         CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_RX_DESC_CNT - 1);
1952         CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_RX_DESC_CNT);
1953
1954         /* Enable and wake up the RX descriptor queue */
1955         CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1956         CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1957
1958         /* Enable the TX descriptor queue */
1959         CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
1960
1961         /* Set up the receive filter -- allow large frames for VLANs. */
1962         CSR_WRITE_1(sc, VGE_RXCTL, VGE_RXCTL_RX_UCAST|VGE_RXCTL_RX_GIANT);
1963
1964         /* If we want promiscuous mode, set the allframes bit. */
1965         if (ifp->if_flags & IFF_PROMISC) {
1966                 CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
1967         }
1968
1969         /* Set capture broadcast bit to capture broadcast frames. */
1970         if (ifp->if_flags & IFF_BROADCAST) {
1971                 CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_BCAST);
1972         }
1973
1974         /* Set multicast bit to capture multicast frames. */
1975         if (ifp->if_flags & IFF_MULTICAST) {
1976                 CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_MCAST);
1977         }
1978
1979         /* Init the cam filter. */
1980         vge_cam_clear(sc);
1981
1982         /* Init the multicast filter. */
1983         vge_setmulti(sc);
1984
1985         /* Enable flow control */
1986
1987         CSR_WRITE_1(sc, VGE_CRS2, 0x8B);
1988
1989         /* Enable jumbo frame reception (if desired) */
1990
1991         /* Start the MAC. */
1992         CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
1993         CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
1994         CSR_WRITE_1(sc, VGE_CRS0,
1995             VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
1996
1997         /*
1998          * Configure one-shot timer for microsecond
1999          * resulution and load it for 500 usecs.
2000          */
2001         CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_TIMER0_RES);
2002         CSR_WRITE_2(sc, VGE_SSTIMER, 400);
2003
2004         /*
2005          * Configure interrupt moderation for receive. Enable
2006          * the holdoff counter and load it, and set the RX
2007          * suppression count to the number of descriptors we
2008          * want to allow before triggering an interrupt.
2009          * The holdoff timer is in units of 20 usecs.
2010          */
2011
2012 #ifdef notyet
2013         CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_TXINTSUP_DISABLE);
2014         /* Select the interrupt holdoff timer page. */
2015         CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
2016         CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
2017         CSR_WRITE_1(sc, VGE_INTHOLDOFF, 10); /* ~200 usecs */
2018
2019         /* Enable use of the holdoff timer. */
2020         CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
2021         CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_SC_RELOAD);
2022
2023         /* Select the RX suppression threshold page. */
2024         CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
2025         CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
2026         CSR_WRITE_1(sc, VGE_RXSUPPTHR, 64); /* interrupt after 64 packets */
2027
2028         /* Restore the page select bits. */
2029         CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
2030         CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
2031 #endif
2032
2033 #ifdef DEVICE_POLLING
2034         /*
2035          * Disable interrupts if we are polling.
2036          */
2037         if (ifp->if_capenable & IFCAP_POLLING) {
2038                 CSR_WRITE_4(sc, VGE_IMR, 0);
2039                 CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2040         } else  /* otherwise ... */
2041 #endif
2042         {
2043         /*
2044          * Enable interrupts.
2045          */
2046                 CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2047                 CSR_WRITE_4(sc, VGE_ISR, 0);
2048                 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2049         }
2050
2051         mii_mediachg(mii);
2052
2053         ifp->if_drv_flags |= IFF_DRV_RUNNING;
2054         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2055
2056         sc->vge_if_flags = 0;
2057         sc->vge_link = 0;
2058
2059         VGE_UNLOCK(sc);
2060
2061         return;
2062 }
2063
2064 /*
2065  * Set media options.
2066  */
2067 static int
2068 vge_ifmedia_upd(ifp)
2069         struct ifnet            *ifp;
2070 {
2071         struct vge_softc        *sc;
2072         struct mii_data         *mii;
2073
2074         sc = ifp->if_softc;
2075         VGE_LOCK(sc);
2076         mii = device_get_softc(sc->vge_miibus);
2077         mii_mediachg(mii);
2078         VGE_UNLOCK(sc);
2079
2080         return (0);
2081 }
2082
2083 /*
2084  * Report current media status.
2085  */
2086 static void
2087 vge_ifmedia_sts(ifp, ifmr)
2088         struct ifnet            *ifp;
2089         struct ifmediareq       *ifmr;
2090 {
2091         struct vge_softc        *sc;
2092         struct mii_data         *mii;
2093
2094         sc = ifp->if_softc;
2095         mii = device_get_softc(sc->vge_miibus);
2096
2097         mii_pollstat(mii);
2098         ifmr->ifm_active = mii->mii_media_active;
2099         ifmr->ifm_status = mii->mii_media_status;
2100
2101         return;
2102 }
2103
2104 static void
2105 vge_miibus_statchg(dev)
2106         device_t                dev;
2107 {
2108         struct vge_softc        *sc;
2109         struct mii_data         *mii;
2110         struct ifmedia_entry    *ife;
2111
2112         sc = device_get_softc(dev);
2113         mii = device_get_softc(sc->vge_miibus);
2114         ife = mii->mii_media.ifm_cur;
2115
2116         /*
2117          * If the user manually selects a media mode, we need to turn
2118          * on the forced MAC mode bit in the DIAGCTL register. If the
2119          * user happens to choose a full duplex mode, we also need to
2120          * set the 'force full duplex' bit. This applies only to
2121          * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
2122          * mode is disabled, and in 1000baseT mode, full duplex is
2123          * always implied, so we turn on the forced mode bit but leave
2124          * the FDX bit cleared.
2125          */
2126
2127         switch (IFM_SUBTYPE(ife->ifm_media)) {
2128         case IFM_AUTO:
2129                 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2130                 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2131                 break;
2132         case IFM_1000_T:
2133                 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2134                 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2135                 break;
2136         case IFM_100_TX:
2137         case IFM_10_T:
2138                 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2139                 if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
2140                         CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2141                 } else {
2142                         CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2143                 }
2144                 break;
2145         default:
2146                 device_printf(dev, "unknown media type: %x\n",
2147                     IFM_SUBTYPE(ife->ifm_media));
2148                 break;
2149         }
2150
2151         return;
2152 }
2153
2154 static int
2155 vge_ioctl(ifp, command, data)
2156         struct ifnet            *ifp;
2157         u_long                  command;
2158         caddr_t                 data;
2159 {
2160         struct vge_softc        *sc = ifp->if_softc;
2161         struct ifreq            *ifr = (struct ifreq *) data;
2162         struct mii_data         *mii;
2163         int                     error = 0;
2164
2165         switch (command) {
2166         case SIOCSIFMTU:
2167                 if (ifr->ifr_mtu > VGE_JUMBO_MTU)
2168                         error = EINVAL;
2169                 ifp->if_mtu = ifr->ifr_mtu;
2170                 break;
2171         case SIOCSIFFLAGS:
2172                 if (ifp->if_flags & IFF_UP) {
2173                         if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
2174                             ifp->if_flags & IFF_PROMISC &&
2175                             !(sc->vge_if_flags & IFF_PROMISC)) {
2176                                 CSR_SETBIT_1(sc, VGE_RXCTL,
2177                                     VGE_RXCTL_RX_PROMISC);
2178                                 vge_setmulti(sc);
2179                         } else if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
2180                             !(ifp->if_flags & IFF_PROMISC) &&
2181                             sc->vge_if_flags & IFF_PROMISC) {
2182                                 CSR_CLRBIT_1(sc, VGE_RXCTL,
2183                                     VGE_RXCTL_RX_PROMISC);
2184                                 vge_setmulti(sc);
2185                         } else
2186                                 vge_init(sc);
2187                 } else {
2188                         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2189                                 vge_stop(sc);
2190                 }
2191                 sc->vge_if_flags = ifp->if_flags;
2192                 break;
2193         case SIOCADDMULTI:
2194         case SIOCDELMULTI:
2195                 vge_setmulti(sc);
2196                 break;
2197         case SIOCGIFMEDIA:
2198         case SIOCSIFMEDIA:
2199                 mii = device_get_softc(sc->vge_miibus);
2200                 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2201                 break;
2202         case SIOCSIFCAP:
2203             {
2204                 int mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2205 #ifdef DEVICE_POLLING
2206                 if (mask & IFCAP_POLLING) {
2207                         if (ifr->ifr_reqcap & IFCAP_POLLING) {
2208                                 error = ether_poll_register(vge_poll, ifp);
2209                                 if (error)
2210                                         return(error);
2211                                 VGE_LOCK(sc);
2212                                         /* Disable interrupts */
2213                                 CSR_WRITE_4(sc, VGE_IMR, 0);
2214                                 CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2215                                 ifp->if_capenable |= IFCAP_POLLING;
2216                                 VGE_UNLOCK(sc);
2217                         } else {
2218                                 error = ether_poll_deregister(ifp);
2219                                 /* Enable interrupts. */
2220                                 VGE_LOCK(sc);
2221                                 CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2222                                 CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2223                                 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2224                                 ifp->if_capenable &= ~IFCAP_POLLING;
2225                                 VGE_UNLOCK(sc);
2226                         }
2227                 }
2228 #endif /* DEVICE_POLLING */
2229                 if ((mask & IFCAP_TXCSUM) != 0 &&
2230                     (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
2231                         ifp->if_capenable ^= IFCAP_TXCSUM;
2232                         if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
2233                                 ifp->if_hwassist |= VGE_CSUM_FEATURES;
2234                         else
2235                                 ifp->if_hwassist &= ~VGE_CSUM_FEATURES;
2236                 }
2237                 if ((mask & IFCAP_RXCSUM) != 0 &&
2238                     (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
2239                         ifp->if_capenable ^= IFCAP_RXCSUM;
2240             }
2241                 break;
2242         default:
2243                 error = ether_ioctl(ifp, command, data);
2244                 break;
2245         }
2246
2247         return (error);
2248 }
2249
2250 static void
2251 vge_watchdog(ifp)
2252         struct ifnet            *ifp;
2253 {
2254         struct vge_softc                *sc;
2255
2256         sc = ifp->if_softc;
2257         VGE_LOCK(sc);
2258         printf("vge%d: watchdog timeout\n", sc->vge_unit);
2259         ifp->if_oerrors++;
2260
2261         vge_txeof(sc);
2262         vge_rxeof(sc);
2263
2264         vge_init(sc);
2265
2266         VGE_UNLOCK(sc);
2267
2268         return;
2269 }
2270
2271 /*
2272  * Stop the adapter and free any mbufs allocated to the
2273  * RX and TX lists.
2274  */
2275 static void
2276 vge_stop(sc)
2277         struct vge_softc                *sc;
2278 {
2279         register int            i;
2280         struct ifnet            *ifp;
2281
2282         VGE_LOCK(sc);
2283         ifp = sc->vge_ifp;
2284         ifp->if_timer = 0;
2285
2286         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2287
2288         CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2289         CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
2290         CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2291         CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
2292         CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
2293         CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
2294
2295         if (sc->vge_head != NULL) {
2296                 m_freem(sc->vge_head);
2297                 sc->vge_head = sc->vge_tail = NULL;
2298         }
2299
2300         /* Free the TX list buffers. */
2301
2302         for (i = 0; i < VGE_TX_DESC_CNT; i++) {
2303                 if (sc->vge_ldata.vge_tx_mbuf[i] != NULL) {
2304                         bus_dmamap_unload(sc->vge_ldata.vge_mtag,
2305                             sc->vge_ldata.vge_tx_dmamap[i]);
2306                         m_freem(sc->vge_ldata.vge_tx_mbuf[i]);
2307                         sc->vge_ldata.vge_tx_mbuf[i] = NULL;
2308                 }
2309         }
2310
2311         /* Free the RX list buffers. */
2312
2313         for (i = 0; i < VGE_RX_DESC_CNT; i++) {
2314                 if (sc->vge_ldata.vge_rx_mbuf[i] != NULL) {
2315                         bus_dmamap_unload(sc->vge_ldata.vge_mtag,
2316                             sc->vge_ldata.vge_rx_dmamap[i]);
2317                         m_freem(sc->vge_ldata.vge_rx_mbuf[i]);
2318                         sc->vge_ldata.vge_rx_mbuf[i] = NULL;
2319                 }
2320         }
2321
2322         VGE_UNLOCK(sc);
2323
2324         return;
2325 }
2326
2327 /*
2328  * Device suspend routine.  Stop the interface and save some PCI
2329  * settings in case the BIOS doesn't restore them properly on
2330  * resume.
2331  */
2332 static int
2333 vge_suspend(dev)
2334         device_t                dev;
2335 {
2336         struct vge_softc        *sc;
2337
2338         sc = device_get_softc(dev);
2339
2340         vge_stop(sc);
2341
2342         sc->suspended = 1;
2343
2344         return (0);
2345 }
2346
2347 /*
2348  * Device resume routine.  Restore some PCI settings in case the BIOS
2349  * doesn't, re-enable busmastering, and restart the interface if
2350  * appropriate.
2351  */
2352 static int
2353 vge_resume(dev)
2354         device_t                dev;
2355 {
2356         struct vge_softc        *sc;
2357         struct ifnet            *ifp;
2358
2359         sc = device_get_softc(dev);
2360         ifp = sc->vge_ifp;
2361
2362         /* reenable busmastering */
2363         pci_enable_busmaster(dev);
2364         pci_enable_io(dev, SYS_RES_MEMORY);
2365
2366         /* reinitialize interface if necessary */
2367         if (ifp->if_flags & IFF_UP)
2368                 vge_init(sc);
2369
2370         sc->suspended = 0;
2371
2372         return (0);
2373 }
2374
2375 /*
2376  * Stop all chip I/O so that the kernel's probe routines don't
2377  * get confused by errant DMAs when rebooting.
2378  */
2379 static int
2380 vge_shutdown(dev)
2381         device_t                dev;
2382 {
2383         struct vge_softc                *sc;
2384
2385         sc = device_get_softc(dev);
2386
2387         vge_stop(sc);
2388
2389         return (0);
2390 }