]> CyberLeo.Net >> Repos - FreeBSD/releng/7.2.git/blob - sys/dev/wpi/if_wpi.c
Create releng/7.2 from stable/7 in preparation for 7.2-RELEASE.
[FreeBSD/releng/7.2.git] / sys / dev / wpi / if_wpi.c
1 /*-
2  * Copyright (c) 2006,2007
3  *      Damien Bergamini <damien.bergamini@free.fr>
4  *      Benjamin Close <Benjamin.Close@clearchain.com>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18
19 #define VERSION "20071127"
20
21 #include <sys/cdefs.h>
22 __FBSDID("$FreeBSD$");
23
24 /*
25  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
26  *
27  * The 3945ABG network adapter doesn't use traditional hardware as
28  * many other adaptors do. Instead at run time the eeprom is set into a known
29  * state and told to load boot firmware. The boot firmware loads an init and a
30  * main  binary firmware image into SRAM on the card via DMA.
31  * Once the firmware is loaded, the driver/hw then
32  * communicate by way of circular dma rings via the the SRAM to the firmware.
33  *
34  * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
35  * The 4 tx data rings allow for prioritization QoS.
36  *
37  * The rx data ring consists of 32 dma buffers. Two registers are used to
38  * indicate where in the ring the driver and the firmware are up to. The
39  * driver sets the initial read index (reg1) and the initial write index (reg2),
40  * the firmware updates the read index (reg1) on rx of a packet and fires an
41  * interrupt. The driver then processes the buffers starting at reg1 indicating
42  * to the firmware which buffers have been accessed by updating reg2. At the
43  * same time allocating new memory for the processed buffer.
44  *
45  * A similar thing happens with the tx rings. The difference is the firmware
46  * stop processing buffers once the queue is full and until confirmation
47  * of a successful transmition (tx_intr) has occurred.
48  *
49  * The command ring operates in the same manner as the tx queues.
50  *
51  * All communication direct to the card (ie eeprom) is classed as Stage1
52  * communication
53  *
54  * All communication via the firmware to the card is classed as State2.
55  * The firmware consists of 2 parts. A bootstrap firmware and a runtime
56  * firmware. The bootstrap firmware and runtime firmware are loaded
57  * from host memory via dma to the card then told to execute. From this point
58  * on the majority of communications between the driver and the card goes
59  * via the firmware.
60  */
61
62 #include <sys/param.h>
63 #include <sys/sysctl.h>
64 #include <sys/sockio.h>
65 #include <sys/mbuf.h>
66 #include <sys/kernel.h>
67 #include <sys/socket.h>
68 #include <sys/systm.h>
69 #include <sys/malloc.h>
70 #include <sys/queue.h>
71 #include <sys/taskqueue.h>
72 #include <sys/module.h>
73 #include <sys/bus.h>
74 #include <sys/endian.h>
75 #include <sys/linker.h>
76 #include <sys/firmware.h>
77
78 #include <machine/bus.h>
79 #include <machine/resource.h>
80 #include <sys/rman.h>
81
82 #include <dev/pci/pcireg.h>
83 #include <dev/pci/pcivar.h>
84
85 #include <net/bpf.h>
86 #include <net/if.h>
87 #include <net/if_arp.h>
88 #include <net/ethernet.h>
89 #include <net/if_dl.h>
90 #include <net/if_media.h>
91 #include <net/if_types.h>
92
93 #include <net80211/ieee80211_var.h>
94 #include <net80211/ieee80211_radiotap.h>
95 #include <net80211/ieee80211_regdomain.h>
96
97 #include <netinet/in.h>
98 #include <netinet/in_systm.h>
99 #include <netinet/in_var.h>
100 #include <netinet/ip.h>
101 #include <netinet/if_ether.h>
102
103 #include <dev/wpi/if_wpireg.h>
104 #include <dev/wpi/if_wpivar.h>
105
106 #define WPI_DEBUG
107
108 #ifdef WPI_DEBUG
109 #define DPRINTF(x)      do { if (wpi_debug != 0) printf x; } while (0)
110 #define DPRINTFN(n, x)  do { if (wpi_debug & n) printf x; } while (0)
111
112 enum {
113         WPI_DEBUG_UNUSED        = 0x00000001,   /* Unused */
114         WPI_DEBUG_HW            = 0x00000002,   /* Stage 1 (eeprom) debugging */
115         WPI_DEBUG_TX            = 0x00000004,   /* Stage 2 TX intrp debugging*/
116         WPI_DEBUG_RX            = 0x00000008,   /* Stage 2 RX intrp debugging */
117         WPI_DEBUG_CMD           = 0x00000010,   /* Stage 2 CMD intrp debugging*/
118         WPI_DEBUG_FIRMWARE      = 0x00000020,   /* firmware(9) loading debug  */
119         WPI_DEBUG_DMA           = 0x00000040,   /* DMA (de)allocations/syncs  */
120         WPI_DEBUG_SCANNING      = 0x00000080,   /* Stage 2 Scanning debugging */
121         WPI_DEBUG_NOTIFY        = 0x00000100,   /* State 2 Noftif intr debug */
122         WPI_DEBUG_TEMP          = 0x00000200,   /* TXPower/Temp Calibration */
123         WPI_DEBUG_OPS           = 0x00000400,   /* wpi_ops taskq debug */
124         WPI_DEBUG_WATCHDOG      = 0x00000800,   /* Watch dog debug */
125         WPI_DEBUG_ANY           = 0xffffffff
126 };
127
128 int wpi_debug = 0;
129 SYSCTL_INT(_debug, OID_AUTO, wpi, CTLFLAG_RW, &wpi_debug, 0, "wpi debug level");
130
131 #else
132 #define DPRINTF(x)
133 #define DPRINTFN(n, x)
134 #endif
135
136 struct wpi_ident {
137         uint16_t        vendor;
138         uint16_t        device;
139         uint16_t        subdevice;
140         const char      *name;
141 };
142
143 static const struct wpi_ident wpi_ident_table[] = {
144         /* The below entries support ABG regardless of the subid */
145         { 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
146         { 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
147         /* The below entries only support BG */
148         { 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945AB"  },
149         { 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945AB"  },
150         { 0x8086, 0x4222, 0x1014, "Intel(R) PRO/Wireless 3945AB"  },
151         { 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945AB"  },
152         { 0, 0, 0, NULL }
153 };
154
155 static int      wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
156                     void **, bus_size_t, bus_size_t, int);
157 static void     wpi_dma_contig_free(struct wpi_dma_info *);
158 static void     wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
159 static int      wpi_alloc_shared(struct wpi_softc *);
160 static void     wpi_free_shared(struct wpi_softc *);
161 static int      wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
162 static void     wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
163 static void     wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
164 static int      wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
165                     int, int);
166 static void     wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
167 static void     wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
168 static struct   ieee80211_node *wpi_node_alloc(struct ieee80211_node_table *);
169 static int      wpi_media_change(struct ifnet *);
170 static int      wpi_newstate(struct ieee80211com *, enum ieee80211_state, int);
171 static void     wpi_mem_lock(struct wpi_softc *);
172 static void     wpi_mem_unlock(struct wpi_softc *);
173 static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t);
174 static void     wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
175 static void     wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
176                     const uint32_t *, int);
177 static uint16_t wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
178 static int      wpi_alloc_fwmem(struct wpi_softc *);
179 static void     wpi_free_fwmem(struct wpi_softc *);
180 static int      wpi_load_firmware(struct wpi_softc *);
181 static void     wpi_unload_firmware(struct wpi_softc *);
182 static int      wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
183 static void     wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
184                     struct wpi_rx_data *);
185 static void     wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
186 static void     wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
187 static void     wpi_notif_intr(struct wpi_softc *);
188 static void     wpi_intr(void *);
189 static void     wpi_ops(void *, int);
190 static uint8_t  wpi_plcp_signal(int);
191 static int      wpi_queue_cmd(struct wpi_softc *, int, int, int);
192 static void     wpi_watchdog(void *);
193 static int      wpi_tx_data(struct wpi_softc *, struct mbuf *,
194                     struct ieee80211_node *, int);
195 static void     wpi_start(struct ifnet *);
196 static void     wpi_scan_start(struct ieee80211com *);
197 static void     wpi_scan_end(struct ieee80211com *);
198 static void     wpi_set_channel(struct ieee80211com *);
199 static void     wpi_scan_curchan(struct ieee80211com *, unsigned long);
200 static void     wpi_scan_mindwell(struct ieee80211com *);
201 static int      wpi_ioctl(struct ifnet *, u_long, caddr_t);
202 static void     wpi_read_eeprom(struct wpi_softc *);
203 static void     wpi_read_eeprom_channels(struct wpi_softc *, int);
204 static void     wpi_read_eeprom_group(struct wpi_softc *, int);
205 static int      wpi_cmd(struct wpi_softc *, int, const void *, int, int);
206 static int      wpi_wme_update(struct ieee80211com *);
207 static int      wpi_mrr_setup(struct wpi_softc *);
208 static void     wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
209 static void     wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
210 #if 0
211 static int      wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
212 #endif
213 static int      wpi_auth(struct wpi_softc *);
214 static int      wpi_run(struct wpi_softc *);
215 static int      wpi_scan(struct wpi_softc *);
216 static int      wpi_config(struct wpi_softc *);
217 static void     wpi_stop_master(struct wpi_softc *);
218 static int      wpi_power_up(struct wpi_softc *);
219 static int      wpi_reset(struct wpi_softc *);
220 static void     wpi_hw_config(struct wpi_softc *);
221 static void     wpi_init(void *);
222 static void     wpi_init_locked(struct wpi_softc *, int);
223 static void     wpi_stop(struct wpi_softc *);
224 static void     wpi_stop_locked(struct wpi_softc *);
225 static void     wpi_iter_func(void *, struct ieee80211_node *);
226
227 static void     wpi_newassoc(struct ieee80211_node *, int);
228 static int      wpi_set_txpower(struct wpi_softc *, struct ieee80211_channel *,
229                     int);
230 static void     wpi_calib_timeout(void *);
231 static void     wpi_power_calibration(struct wpi_softc *, int);
232 static int      wpi_get_power_index(struct wpi_softc *,
233                     struct wpi_power_group *, struct ieee80211_channel *, int);
234 static const char *wpi_cmd_str(int);
235 static int wpi_probe(device_t);
236 static int wpi_attach(device_t);
237 static int wpi_detach(device_t);
238 static int wpi_shutdown(device_t);
239 static int wpi_suspend(device_t);
240 static int wpi_resume(device_t);
241
242
243 static device_method_t wpi_methods[] = {
244         /* Device interface */
245         DEVMETHOD(device_probe,         wpi_probe),
246         DEVMETHOD(device_attach,        wpi_attach),
247         DEVMETHOD(device_detach,        wpi_detach),
248         DEVMETHOD(device_shutdown,      wpi_shutdown),
249         DEVMETHOD(device_suspend,       wpi_suspend),
250         DEVMETHOD(device_resume,        wpi_resume),
251
252         { 0, 0 }
253 };
254
255 static driver_t wpi_driver = {
256         "wpi",
257         wpi_methods,
258         sizeof (struct wpi_softc)
259 };
260
261 static devclass_t wpi_devclass;
262
263 DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, 0, 0);
264
265 static const uint8_t wpi_ridx_to_plcp[] = {
266         /* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */
267         /* R1-R4 (ral/ural is R4-R1) */
268         0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3,
269         /* CCK: device-dependent */
270         10, 20, 55, 110
271 };
272 static const uint8_t wpi_ridx_to_rate[] = {
273         12, 18, 24, 36, 48, 72, 96, 108, /* OFDM */
274         2, 4, 11, 22 /*CCK */
275 };
276
277
278 static int
279 wpi_probe(device_t dev)
280 {
281         const struct wpi_ident *ident;
282
283         for (ident = wpi_ident_table; ident->name != NULL; ident++) {
284                 if (pci_get_vendor(dev) == ident->vendor &&
285                     pci_get_device(dev) == ident->device) {
286                         device_set_desc(dev, ident->name);
287                         return 0;
288                 }
289         }
290         return ENXIO;
291 }
292
293 /**
294  * Load the firmare image from disk to the allocated dma buffer.
295  * we also maintain the reference to the firmware pointer as there
296  * is times where we may need to reload the firmware but we are not
297  * in a context that can access the filesystem (ie taskq cause by restart)
298  *
299  * @return 0 on success, an errno on failure
300  */
301 static int
302 wpi_load_firmware(struct wpi_softc *sc)
303 {
304         const struct firmware *fp ;
305         struct wpi_dma_info *dma = &sc->fw_dma;
306         const struct wpi_firmware_hdr *hdr;
307         const uint8_t *itext, *idata, *rtext, *rdata, *btext;
308         uint32_t itextsz, idatasz, rtextsz, rdatasz, btextsz;
309         int error;
310
311         DPRINTFN(WPI_DEBUG_FIRMWARE,
312             ("Attempting Loading Firmware from wpi_fw module\n"));
313
314         WPI_UNLOCK(sc);
315
316         if (sc->fw_fp == NULL && (sc->fw_fp = firmware_get("wpifw")) == NULL) {
317                 device_printf(sc->sc_dev,
318                     "could not load firmware image 'wpifw'\n");
319                 error = ENOENT;
320                 WPI_LOCK(sc);
321                 goto fail;
322         }
323
324         fp = sc->fw_fp;
325
326         WPI_LOCK(sc);
327
328         /* Validate the firmware is minimum a particular version */
329         if (fp->version < WPI_FW_MINVERSION) {
330             device_printf(sc->sc_dev,
331                            "firmware version is too old. Need %d, got %d\n",
332                            WPI_FW_MINVERSION,
333                            fp->version);
334             error = ENXIO;
335             goto fail;
336         }
337
338         if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
339                 device_printf(sc->sc_dev,
340                     "firmware file too short: %zu bytes\n", fp->datasize);
341                 error = ENXIO;
342                 goto fail;
343         }
344
345         hdr = (const struct wpi_firmware_hdr *)fp->data;
346
347         /*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
348            |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
349
350         rtextsz = le32toh(hdr->rtextsz);
351         rdatasz = le32toh(hdr->rdatasz);
352         itextsz = le32toh(hdr->itextsz);
353         idatasz = le32toh(hdr->idatasz);
354         btextsz = le32toh(hdr->btextsz);
355
356         /* check that all firmware segments are present */
357         if (fp->datasize < sizeof (struct wpi_firmware_hdr) +
358                 rtextsz + rdatasz + itextsz + idatasz + btextsz) {
359                 device_printf(sc->sc_dev,
360                     "firmware file too short: %zu bytes\n", fp->datasize);
361                 error = ENXIO; /* XXX appropriate error code? */
362                 goto fail;
363         }
364
365         /* get pointers to firmware segments */
366         rtext = (const uint8_t *)(hdr + 1);
367         rdata = rtext + rtextsz;
368         itext = rdata + rdatasz;
369         idata = itext + itextsz;
370         btext = idata + idatasz;
371
372         DPRINTFN(WPI_DEBUG_FIRMWARE,
373             ("Firmware Version: Major %d, Minor %d, Driver %d, \n"
374              "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n",
375              (le32toh(hdr->version) & 0xff000000) >> 24,
376              (le32toh(hdr->version) & 0x00ff0000) >> 16,
377              (le32toh(hdr->version) & 0x0000ffff),
378              rtextsz, rdatasz,
379              itextsz, idatasz, btextsz));
380
381         DPRINTFN(WPI_DEBUG_FIRMWARE,("rtext 0x%x\n", *(const uint32_t *)rtext));
382         DPRINTFN(WPI_DEBUG_FIRMWARE,("rdata 0x%x\n", *(const uint32_t *)rdata));
383         DPRINTFN(WPI_DEBUG_FIRMWARE,("itext 0x%x\n", *(const uint32_t *)itext));
384         DPRINTFN(WPI_DEBUG_FIRMWARE,("idata 0x%x\n", *(const uint32_t *)idata));
385         DPRINTFN(WPI_DEBUG_FIRMWARE,("btext 0x%x\n", *(const uint32_t *)btext));
386
387         /* sanity checks */
388         if (rtextsz > WPI_FW_MAIN_TEXT_MAXSZ ||
389             rdatasz > WPI_FW_MAIN_DATA_MAXSZ ||
390             itextsz > WPI_FW_INIT_TEXT_MAXSZ ||
391             idatasz > WPI_FW_INIT_DATA_MAXSZ ||
392             btextsz > WPI_FW_BOOT_TEXT_MAXSZ ||
393             (btextsz & 3) != 0) {
394                 device_printf(sc->sc_dev, "firmware invalid\n");
395                 error = EINVAL;
396                 goto fail;
397         }
398
399         /* copy initialization images into pre-allocated DMA-safe memory */
400         memcpy(dma->vaddr, idata, idatasz);
401         memcpy(dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, itext, itextsz);
402
403         bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
404
405         /* tell adapter where to find initialization images */
406         wpi_mem_lock(sc);
407         wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
408         wpi_mem_write(sc, WPI_MEM_DATA_SIZE, idatasz);
409         wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
410             dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
411         wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, itextsz);
412         wpi_mem_unlock(sc);
413
414         /* load firmware boot code */
415         if ((error = wpi_load_microcode(sc, btext, btextsz)) != 0) {
416             device_printf(sc->sc_dev, "Failed to load microcode\n");
417             goto fail;
418         }
419
420         /* now press "execute" */
421         WPI_WRITE(sc, WPI_RESET, 0);
422
423         /* wait at most one second for the first alive notification */
424         if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
425                 device_printf(sc->sc_dev,
426                     "timeout waiting for adapter to initialize\n");
427                 goto fail;
428         }
429
430         /* copy runtime images into pre-allocated DMA-sage memory */
431         memcpy(dma->vaddr, rdata, rdatasz);
432         memcpy(dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, rtext, rtextsz);
433         bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
434
435         /* tell adapter where to find runtime images */
436         wpi_mem_lock(sc);
437         wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
438         wpi_mem_write(sc, WPI_MEM_DATA_SIZE, rdatasz);
439         wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
440             dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
441         wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | rtextsz);
442         wpi_mem_unlock(sc);
443
444         /* wait at most one second for the first alive notification */
445         if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
446                 device_printf(sc->sc_dev,
447                     "timeout waiting for adapter to initialize2\n");
448                 goto fail;
449         }
450
451         DPRINTFN(WPI_DEBUG_FIRMWARE,
452             ("Firmware loaded to driver successfully\n"));
453         return error;
454 fail:
455         wpi_unload_firmware(sc);
456         return error;
457 }
458
459 /**
460  * Free the referenced firmware image
461  */
462 static void
463 wpi_unload_firmware(struct wpi_softc *sc)
464 {
465
466         if (sc->fw_fp) {
467                 WPI_UNLOCK(sc);
468                 firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
469                 WPI_LOCK(sc);
470                 sc->fw_fp = NULL;
471         }
472 }
473
474 static int
475 wpi_attach(device_t dev)
476 {
477         struct wpi_softc *sc = device_get_softc(dev);
478         struct ifnet *ifp;
479         struct ieee80211com *ic = &sc->sc_ic;
480         int ac, error, supportsa = 1;
481         uint32_t tmp;
482         const struct wpi_ident *ident;
483
484         sc->sc_dev = dev;
485
486         if (bootverbose || wpi_debug)
487             device_printf(sc->sc_dev,"Driver Revision %s\n", VERSION);
488
489         /*
490          * Some card's only support 802.11b/g not a, check to see if
491          * this is one such card. A 0x0 in the subdevice table indicates
492          * the entire subdevice range is to be ignored.
493          */
494         for (ident = wpi_ident_table; ident->name != NULL; ident++) {
495                 if (ident->subdevice &&
496                     pci_get_subdevice(dev) == ident->subdevice) {
497                     supportsa = 0;
498                     break;
499                 }
500         }
501
502 #if __FreeBSD_version >= 700000
503         /*
504          * Create the taskqueues used by the driver. Primarily
505          * sc_tq handles most the task
506          */
507         sc->sc_tq = taskqueue_create("wpi_taskq", M_NOWAIT | M_ZERO,
508             taskqueue_thread_enqueue, &sc->sc_tq);
509         taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq",
510             device_get_nameunit(dev));
511 #else
512 #error "Sorry, this driver is not yet ready for FreeBSD < 7.0"
513 #endif
514
515         /* Create the tasks that can be queued */
516         TASK_INIT(&sc->sc_opstask, 0, wpi_ops, sc);
517
518         WPI_LOCK_INIT(sc);
519         WPI_CMD_LOCK_INIT(sc);
520
521         callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
522         callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
523
524         if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
525                 device_printf(dev, "chip is in D%d power mode "
526                     "-- setting to D0\n", pci_get_powerstate(dev));
527                 pci_set_powerstate(dev, PCI_POWERSTATE_D0);
528         }
529
530         /* disable the retry timeout register */
531         pci_write_config(dev, 0x41, 0, 1);
532
533         /* enable bus-mastering */
534         pci_enable_busmaster(dev);
535
536         sc->mem_rid = PCIR_BAR(0);
537         sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
538             RF_ACTIVE);
539         if (sc->mem == NULL) {
540                 device_printf(dev, "could not allocate memory resource\n");
541                 error = ENOMEM;
542                 goto fail;
543         }
544
545         sc->sc_st = rman_get_bustag(sc->mem);
546         sc->sc_sh = rman_get_bushandle(sc->mem);
547
548         sc->irq_rid = 0;
549         sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
550             RF_ACTIVE | RF_SHAREABLE);
551         if (sc->irq == NULL) {
552                 device_printf(dev, "could not allocate interrupt resource\n");
553                 error = ENOMEM;
554                 goto fail;
555         }
556
557         /*
558          * Allocate DMA memory for firmware transfers.
559          */
560         if ((error = wpi_alloc_fwmem(sc)) != 0) {
561                 printf(": could not allocate firmware memory\n");
562                 error = ENOMEM;
563                 goto fail;
564         }
565
566         /*
567          * Put adapter into a known state.
568          */
569         if ((error = wpi_reset(sc)) != 0) {
570                 device_printf(dev, "could not reset adapter\n");
571                 goto fail;
572         }
573
574         wpi_mem_lock(sc);
575         tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
576         if (bootverbose || wpi_debug)
577             device_printf(sc->sc_dev, "Hardware Revision (0x%X)\n", tmp);
578
579         wpi_mem_unlock(sc);
580
581         /* Allocate shared page */
582         if ((error = wpi_alloc_shared(sc)) != 0) {
583                 device_printf(dev, "could not allocate shared page\n");
584                 goto fail;
585         }
586
587         /* tx data queues  - 4 for QoS purposes */
588         for (ac = 0; ac < WME_NUM_AC; ac++) {
589                 error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
590                 if (error != 0) {
591                     device_printf(dev, "could not allocate Tx ring %d\n",ac);
592                     goto fail;
593                 }
594         }
595
596         /* command queue to talk to the card's firmware */
597         error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
598         if (error != 0) {
599                 device_printf(dev, "could not allocate command ring\n");
600                 goto fail;
601         }
602
603         /* receive data queue */
604         error = wpi_alloc_rx_ring(sc, &sc->rxq);
605         if (error != 0) {
606                 device_printf(dev, "could not allocate Rx ring\n");
607                 goto fail;
608         }
609
610         ifp = sc->sc_ifp = if_alloc(IFT_ETHER);
611         if (ifp == NULL) {
612                 device_printf(dev, "can not if_alloc()\n");
613                 error = ENOMEM;
614                 goto fail;
615         }
616
617         ic->ic_ifp = ifp;
618         ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
619         ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
620         ic->ic_state = IEEE80211_S_INIT;
621
622         /* set device capabilities */
623         ic->ic_caps =
624                   IEEE80211_C_MONITOR           /* monitor mode supported */
625                 | IEEE80211_C_TXPMGT            /* tx power management */
626                 | IEEE80211_C_SHSLOT            /* short slot time supported */
627                 | IEEE80211_C_SHPREAMBLE        /* short preamble supported */
628                 | IEEE80211_C_WPA               /* 802.11i */
629 /* XXX looks like WME is partly supported? */
630 #if 0
631                 | IEEE80211_C_IBSS              /* IBSS mode support */
632                 | IEEE80211_C_BGSCAN            /* capable of bg scanning */
633                 | IEEE80211_C_WME               /* 802.11e */
634                 | IEEE80211_C_HOSTAP            /* Host access point mode */
635 #endif
636                 ;
637
638         /*
639          * Read in the eeprom and also setup the channels for
640          * net80211. We don't set the rates as net80211 does this for us
641          */
642         wpi_read_eeprom(sc);
643
644         if (bootverbose || wpi_debug) {
645             device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain);
646             device_printf(sc->sc_dev, "Hardware Type: %c\n",
647                           sc->type > 1 ? 'B': '?');
648             device_printf(sc->sc_dev, "Hardware Revision: %c\n",
649                           ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?');
650             device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
651                           supportsa ? "does" : "does not");
652
653             /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check
654                what sc->rev really represents - benjsc 20070615 */
655         }
656
657         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
658         ifp->if_softc = sc;
659         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
660         ifp->if_init = wpi_init;
661         ifp->if_ioctl = wpi_ioctl;
662         ifp->if_start = wpi_start;
663         IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
664         ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
665         IFQ_SET_READY(&ifp->if_snd);
666         ieee80211_ifattach(ic);
667
668         /* override default methods */
669         ic->ic_node_alloc = wpi_node_alloc;
670         ic->ic_newassoc = wpi_newassoc;
671         ic->ic_wme.wme_update = wpi_wme_update;
672         ic->ic_scan_start = wpi_scan_start;
673         ic->ic_scan_end = wpi_scan_end;
674         ic->ic_set_channel = wpi_set_channel;
675         ic->ic_scan_curchan = wpi_scan_curchan;
676         ic->ic_scan_mindwell = wpi_scan_mindwell;
677
678         /* override state transition machine */
679         sc->sc_newstate = ic->ic_newstate;
680         ic->ic_newstate = wpi_newstate;
681         ieee80211_media_init(ic, wpi_media_change, ieee80211_media_status);
682
683         ieee80211_amrr_init(&sc->amrr, ic,
684                            IEEE80211_AMRR_MIN_SUCCESS_THRESHOLD,
685                            IEEE80211_AMRR_MAX_SUCCESS_THRESHOLD);
686
687         /* whilst ieee80211_ifattach will listen for ieee80211 frames,
688          * we also want to listen for the lower level radio frames
689          */
690         bpfattach2(ifp, DLT_IEEE802_11_RADIO,
691             sizeof (struct ieee80211_frame) + sizeof (sc->sc_txtap),
692             &sc->sc_drvbpf);
693
694         sc->sc_rxtap_len = sizeof sc->sc_rxtap;
695         sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
696         sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
697
698         sc->sc_txtap_len = sizeof sc->sc_txtap;
699         sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
700         sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
701
702         /*
703          * Hook our interrupt after all initialization is complete.
704          */
705         error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET |INTR_MPSAFE,
706             NULL, wpi_intr, sc, &sc->sc_ih);
707         if (error != 0) {
708                 device_printf(dev, "could not set up interrupt\n");
709                 goto fail;
710         }
711
712         if (bootverbose)
713                 ieee80211_announce(ic);
714 #ifdef XXX_DEBUG
715         ieee80211_announce_channels(ic);
716 #endif
717
718         return 0;
719
720 fail:   wpi_detach(dev);
721         return ENXIO;
722 }
723
724 static int
725 wpi_detach(device_t dev)
726 {
727         struct wpi_softc *sc = device_get_softc(dev);
728         struct ieee80211com *ic = &sc->sc_ic;
729         struct ifnet *ifp = ic->ic_ifp;
730         int ac;
731
732         if (ifp != NULL) {
733                 wpi_stop(sc);
734                 callout_drain(&sc->watchdog_to);
735                 callout_drain(&sc->calib_to);
736                 bpfdetach(ifp);
737                 ieee80211_ifdetach(ic);
738         }
739
740         WPI_LOCK(sc);
741         if (sc->txq[0].data_dmat) {
742                 for (ac = 0; ac < WME_NUM_AC; ac++)
743                         wpi_free_tx_ring(sc, &sc->txq[ac]);
744
745                 wpi_free_tx_ring(sc, &sc->cmdq);
746                 wpi_free_rx_ring(sc, &sc->rxq);
747                 wpi_free_shared(sc);
748         }
749
750         if (sc->fw_fp != NULL) {
751                 wpi_unload_firmware(sc);
752         }
753
754         if (sc->fw_dma.tag)
755                 wpi_free_fwmem(sc);
756         WPI_UNLOCK(sc);
757
758         if (sc->irq != NULL) {
759                 bus_teardown_intr(dev, sc->irq, sc->sc_ih);
760                 bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
761         }
762
763         if (sc->mem != NULL)
764                 bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
765
766         if (ifp != NULL)
767                 if_free(ifp);
768
769         taskqueue_free(sc->sc_tq);
770
771         WPI_LOCK_DESTROY(sc);
772         WPI_CMD_LOCK_DESTROY(sc);
773
774         return 0;
775 }
776
777 static void
778 wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
779 {
780         if (error != 0)
781                 return;
782
783         KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
784
785         *(bus_addr_t *)arg = segs[0].ds_addr;
786 }
787
788 /*
789  * Allocates a contiguous block of dma memory of the requested size and
790  * alignment. Due to limitations of the FreeBSD dma subsystem as of 20071217,
791  * allocations greater than 4096 may fail. Hence if the requested alignment is
792  * greater we allocate 'alignment' size extra memory and shift the vaddr and
793  * paddr after the dma load. This bypasses the problem at the cost of a little
794  * more memory.
795  */
796 static int
797 wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
798     void **kvap, bus_size_t size, bus_size_t alignment, int flags)
799 {
800         int error;
801         bus_size_t align;
802         bus_size_t reqsize;
803
804         DPRINTFN(WPI_DEBUG_DMA,
805             ("Size: %zd - alignment %zd\n", size, alignment));
806
807         dma->size = size;
808         dma->tag = NULL;
809
810         if (alignment > 4096) {
811                 align = PAGE_SIZE;
812                 reqsize = size + alignment;
813         } else {
814                 align = alignment;
815                 reqsize = size;
816         }
817         error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), align,
818             0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
819             NULL, NULL, reqsize,
820             1, reqsize, flags,
821             NULL, NULL, &dma->tag);
822         if (error != 0) {
823                 device_printf(sc->sc_dev,
824                     "could not create shared page DMA tag\n");
825                 goto fail;
826         }
827         error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr_start,
828             flags | BUS_DMA_ZERO, &dma->map);
829         if (error != 0) {
830                 device_printf(sc->sc_dev,
831                     "could not allocate shared page DMA memory\n");
832                 goto fail;
833         }
834
835         error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr_start,
836             reqsize,  wpi_dma_map_addr, &dma->paddr_start, flags);
837
838         /* Save the original pointers so we can free all the memory */
839         dma->paddr = dma->paddr_start;
840         dma->vaddr = dma->vaddr_start;
841
842         /*
843          * Check the alignment and increment by 4096 until we get the
844          * requested alignment. Fail if can't obtain the alignment
845          * we requested.
846          */
847         if ((dma->paddr & (alignment -1 )) != 0) {
848                 int i;
849
850                 for (i = 0; i < alignment / 4096; i++) {
851                         if ((dma->paddr & (alignment - 1 )) == 0)
852                                 break;
853                         dma->paddr += 4096;
854                         dma->vaddr += 4096;
855                 }
856                 if (i == alignment / 4096) {
857                         device_printf(sc->sc_dev,
858                             "alignment requirement was not satisfied\n");
859                         goto fail;
860                 }
861         }
862
863         if (error != 0) {
864                 device_printf(sc->sc_dev,
865                     "could not load shared page DMA map\n");
866                 goto fail;
867         }
868
869         if (kvap != NULL)
870                 *kvap = dma->vaddr;
871
872         return 0;
873
874 fail:
875         wpi_dma_contig_free(dma);
876         return error;
877 }
878
879 static void
880 wpi_dma_contig_free(struct wpi_dma_info *dma)
881 {
882         if (dma->tag) {
883                 if (dma->map != NULL) {
884                         if (dma->paddr_start != 0) {
885                                 bus_dmamap_sync(dma->tag, dma->map,
886                                     BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
887                                 bus_dmamap_unload(dma->tag, dma->map);
888                         }
889                         bus_dmamem_free(dma->tag, &dma->vaddr_start, dma->map);
890                 }
891                 bus_dma_tag_destroy(dma->tag);
892         }
893 }
894
895 /*
896  * Allocate a shared page between host and NIC.
897  */
898 static int
899 wpi_alloc_shared(struct wpi_softc *sc)
900 {
901         int error;
902
903         error = wpi_dma_contig_alloc(sc, &sc->shared_dma,
904             (void **)&sc->shared, sizeof (struct wpi_shared),
905             PAGE_SIZE,
906             BUS_DMA_NOWAIT);
907
908         if (error != 0) {
909                 device_printf(sc->sc_dev,
910                     "could not allocate shared area DMA memory\n");
911         }
912
913         return error;
914 }
915
916 static void
917 wpi_free_shared(struct wpi_softc *sc)
918 {
919         wpi_dma_contig_free(&sc->shared_dma);
920 }
921
922 static int
923 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
924 {
925
926         int i, error;
927
928         ring->cur = 0;
929
930         error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
931             (void **)&ring->desc, WPI_RX_RING_COUNT * sizeof (uint32_t),
932             WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
933
934         if (error != 0) {
935                 device_printf(sc->sc_dev,
936                     "%s: could not allocate rx ring DMA memory, error %d\n",
937                     __func__, error);
938                 goto fail;
939         }
940
941         error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 
942             BUS_SPACE_MAXADDR_32BIT,
943             BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1,
944             MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL, &ring->data_dmat);
945         if (error != 0) {
946                 device_printf(sc->sc_dev,
947                     "%s: bus_dma_tag_create_failed, error %d\n",
948                     __func__, error);
949                 goto fail;
950         }
951
952         /*
953          * Setup Rx buffers.
954          */
955         for (i = 0; i < WPI_RX_RING_COUNT; i++) {
956                 struct wpi_rx_data *data = &ring->data[i];
957                 struct mbuf *m;
958                 bus_addr_t paddr;
959
960                 error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
961                 if (error != 0) {
962                         device_printf(sc->sc_dev,
963                             "%s: bus_dmamap_create failed, error %d\n",
964                             __func__, error);
965                         goto fail;
966                 }
967                 m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
968                 if (m == NULL) {
969                         device_printf(sc->sc_dev,
970                            "%s: could not allocate rx mbuf\n", __func__);
971                         error = ENOMEM;
972                         goto fail;
973                 }
974                 /* map page */
975                 error = bus_dmamap_load(ring->data_dmat, data->map,
976                     mtod(m, caddr_t), MJUMPAGESIZE,
977                     wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
978                 if (error != 0 && error != EFBIG) {
979                         device_printf(sc->sc_dev,
980                             "%s: bus_dmamap_load failed, error %d\n",
981                             __func__, error);
982                         m_freem(m);
983                         error = ENOMEM; /* XXX unique code */
984                         goto fail;
985                 }
986                 bus_dmamap_sync(ring->data_dmat, data->map, 
987                     BUS_DMASYNC_PREWRITE);
988
989                 data->m = m;
990                 ring->desc[i] = htole32(paddr);
991         }
992         bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
993             BUS_DMASYNC_PREWRITE);
994         return 0;
995 fail:
996         wpi_free_rx_ring(sc, ring);
997         return error;
998 }
999
1000 static void
1001 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1002 {
1003         int ntries;
1004
1005         wpi_mem_lock(sc);
1006
1007         WPI_WRITE(sc, WPI_RX_CONFIG, 0);
1008
1009         for (ntries = 0; ntries < 100; ntries++) {
1010                 if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
1011                         break;
1012                 DELAY(10);
1013         }
1014
1015         wpi_mem_unlock(sc);
1016
1017 #ifdef WPI_DEBUG
1018         if (ntries == 100)
1019                 device_printf(sc->sc_dev, "timeout resetting Rx ring\n");
1020 #endif
1021
1022         ring->cur = 0;
1023 }
1024
1025 static void
1026 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1027 {
1028         int i;
1029
1030         wpi_dma_contig_free(&ring->desc_dma);
1031
1032         for (i = 0; i < WPI_RX_RING_COUNT; i++)
1033                 if (ring->data[i].m != NULL)
1034                         m_freem(ring->data[i].m);
1035 }
1036
1037 static int
1038 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
1039         int qid)
1040 {
1041         struct wpi_tx_data *data;
1042         int i, error;
1043
1044         ring->qid = qid;
1045         ring->count = count;
1046         ring->queued = 0;
1047         ring->cur = 0;
1048         ring->data = NULL;
1049
1050         error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
1051                 (void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
1052                 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
1053
1054         if (error != 0) {
1055             device_printf(sc->sc_dev, "could not allocate tx dma memory\n");
1056             goto fail;
1057         }
1058
1059         /* update shared page with ring's base address */
1060         sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1061
1062         error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1063                 count * sizeof (struct wpi_tx_cmd), WPI_RING_DMA_ALIGN,
1064                 BUS_DMA_NOWAIT);
1065
1066         if (error != 0) {
1067                 device_printf(sc->sc_dev,
1068                     "could not allocate tx command DMA memory\n");
1069                 goto fail;
1070         }
1071
1072         ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
1073             M_NOWAIT | M_ZERO);
1074         if (ring->data == NULL) {
1075                 device_printf(sc->sc_dev,
1076                     "could not allocate tx data slots\n");
1077                 goto fail;
1078         }
1079
1080         error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1081             BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1082             WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
1083             &ring->data_dmat);
1084         if (error != 0) {
1085                 device_printf(sc->sc_dev, "could not create data DMA tag\n");
1086                 goto fail;
1087         }
1088
1089         for (i = 0; i < count; i++) {
1090                 data = &ring->data[i];
1091
1092                 error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1093                 if (error != 0) {
1094                         device_printf(sc->sc_dev,
1095                             "could not create tx buf DMA map\n");
1096                         goto fail;
1097                 }
1098                 bus_dmamap_sync(ring->data_dmat, data->map,
1099                     BUS_DMASYNC_PREWRITE);
1100         }
1101
1102         return 0;
1103
1104 fail:
1105         wpi_free_tx_ring(sc, ring);
1106         return error;
1107 }
1108
1109 static void
1110 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1111 {
1112         struct wpi_tx_data *data;
1113         int i, ntries;
1114
1115         wpi_mem_lock(sc);
1116
1117         WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
1118         for (ntries = 0; ntries < 100; ntries++) {
1119                 if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
1120                         break;
1121                 DELAY(10);
1122         }
1123 #ifdef WPI_DEBUG
1124         if (ntries == 100)
1125                 device_printf(sc->sc_dev, "timeout resetting Tx ring %d\n",
1126                     ring->qid);
1127 #endif
1128         wpi_mem_unlock(sc);
1129
1130         for (i = 0; i < ring->count; i++) {
1131                 data = &ring->data[i];
1132
1133                 if (data->m != NULL) {
1134                         bus_dmamap_unload(ring->data_dmat, data->map);
1135                         m_freem(data->m);
1136                         data->m = NULL;
1137                 }
1138         }
1139
1140         ring->queued = 0;
1141         ring->cur = 0;
1142 }
1143
1144 static void
1145 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1146 {
1147         struct wpi_tx_data *data;
1148         int i;
1149
1150         wpi_dma_contig_free(&ring->desc_dma);
1151         wpi_dma_contig_free(&ring->cmd_dma);
1152
1153         if (ring->data != NULL) {
1154                 for (i = 0; i < ring->count; i++) {
1155                         data = &ring->data[i];
1156
1157                         if (data->m != NULL) {
1158                                 bus_dmamap_sync(ring->data_dmat, data->map,
1159                                     BUS_DMASYNC_POSTWRITE);
1160                                 bus_dmamap_unload(ring->data_dmat, data->map);
1161                                 m_freem(data->m);
1162                                 data->m = NULL;
1163                         }
1164                 }
1165                 free(ring->data, M_DEVBUF);
1166         }
1167
1168         if (ring->data_dmat != NULL)
1169                 bus_dma_tag_destroy(ring->data_dmat);
1170 }
1171
1172 static int
1173 wpi_shutdown(device_t dev)
1174 {
1175         struct wpi_softc *sc = device_get_softc(dev);
1176
1177         WPI_LOCK(sc);
1178         wpi_stop_locked(sc);
1179         wpi_unload_firmware(sc);
1180         WPI_UNLOCK(sc);
1181
1182         return 0;
1183 }
1184
1185 static int
1186 wpi_suspend(device_t dev)
1187 {
1188         struct wpi_softc *sc = device_get_softc(dev);
1189
1190         wpi_stop(sc);
1191         return 0;
1192 }
1193
1194 static int
1195 wpi_resume(device_t dev)
1196 {
1197         struct wpi_softc *sc = device_get_softc(dev);
1198         struct ifnet *ifp = sc->sc_ic.ic_ifp;
1199
1200         pci_write_config(dev, 0x41, 0, 1);
1201
1202         if (ifp->if_flags & IFF_UP) {
1203                 wpi_init(ifp->if_softc);
1204                 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1205                         wpi_start(ifp);
1206         }
1207         return 0;
1208 }
1209
1210 /* ARGSUSED */
1211 static struct ieee80211_node *
1212 wpi_node_alloc(struct ieee80211_node_table *ic)
1213 {
1214         struct wpi_node *wn;
1215
1216         wn = malloc(sizeof (struct wpi_node), M_80211_NODE, M_NOWAIT |M_ZERO);
1217
1218         return &wn->ni;
1219 }
1220
1221 static int
1222 wpi_media_change(struct ifnet *ifp)
1223 {
1224         int error;
1225
1226         error = ieee80211_media_change(ifp);
1227         if (error != ENETRESET)
1228                 return error;
1229
1230         if ((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
1231                 wpi_init(ifp->if_softc);
1232
1233         return 0;
1234 }
1235
1236 /**
1237  * Called by net80211 when ever there is a change to 80211 state machine
1238  */
1239 static int
1240 wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
1241 {
1242         struct ifnet *ifp = ic->ic_ifp;
1243         struct wpi_softc *sc = ifp->if_softc;
1244
1245         DPRINTF(("%s: %s -> %s\n", __func__,
1246                  ieee80211_state_name[ic->ic_state],
1247                  ieee80211_state_name[nstate]));
1248
1249         switch (nstate) {
1250         case IEEE80211_S_SCAN:
1251                 /*
1252                  * Scanning is handled in net80211 via the scan_start,
1253                  * scan_end, scan_curchan functions. Hence all we do when
1254                  * changing to the SCAN state is update the leds
1255                  */
1256
1257                 /* make the link LED blink while we're scanning */
1258                 wpi_set_led(sc, WPI_LED_LINK, 20, 2);
1259                 break;
1260
1261         case IEEE80211_S_AUTH:
1262                 /* Delay the auth transition until we can update the firmware */
1263                 return wpi_queue_cmd(sc, WPI_AUTH, arg, WPI_QUEUE_NORMAL);
1264
1265         case IEEE80211_S_RUN:
1266                 if (ic->ic_opmode == IEEE80211_M_MONITOR) {
1267                         /* link LED blinks while monitoring */
1268                         wpi_set_led(sc, WPI_LED_LINK, 5, 5);
1269                         break;
1270                 }
1271                 if (ic->ic_state != IEEE80211_S_RUN)
1272                         /* set the association id first */
1273                         return wpi_queue_cmd(sc, WPI_RUN, arg,
1274                             WPI_QUEUE_NORMAL);
1275                 break;
1276
1277         default:
1278                 break;
1279         }
1280
1281         return sc->sc_newstate(ic, nstate, arg);
1282 }
1283
1284 /*
1285  * Grab exclusive access to NIC memory.
1286  */
1287 static void
1288 wpi_mem_lock(struct wpi_softc *sc)
1289 {
1290         int ntries;
1291         uint32_t tmp;
1292
1293         tmp = WPI_READ(sc, WPI_GPIO_CTL);
1294         WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1295
1296         /* spin until we actually get the lock */
1297         for (ntries = 0; ntries < 100; ntries++) {
1298                 if ((WPI_READ(sc, WPI_GPIO_CTL) &
1299                         (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1300                         break;
1301                 DELAY(10);
1302         }
1303         if (ntries == 100)
1304                 device_printf(sc->sc_dev, "could not lock memory\n");
1305 }
1306
1307 /*
1308  * Release lock on NIC memory.
1309  */
1310 static void
1311 wpi_mem_unlock(struct wpi_softc *sc)
1312 {
1313         uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1314         WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1315 }
1316
1317 static uint32_t
1318 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1319 {
1320         WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1321         return WPI_READ(sc, WPI_READ_MEM_DATA);
1322 }
1323
1324 static void
1325 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1326 {
1327         WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1328         WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1329 }
1330
1331 static void
1332 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1333     const uint32_t *data, int wlen)
1334 {
1335         for (; wlen > 0; wlen--, data++, addr+=4)
1336                 wpi_mem_write(sc, addr, *data);
1337 }
1338
1339 /*
1340  * Read data from the EEPROM.  We access EEPROM through the MAC instead of
1341  * using the traditional bit-bang method. Data is read up until len bytes have
1342  * been obtained.
1343  */
1344 static uint16_t
1345 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1346 {
1347         int ntries;
1348         uint32_t val;
1349         uint8_t *out = data;
1350
1351         wpi_mem_lock(sc);
1352
1353         for (; len > 0; len -= 2, addr++) {
1354                 WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1355
1356                 for (ntries = 0; ntries < 10; ntries++) {
1357                         if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY)
1358                                 break;
1359                         DELAY(5);
1360                 }
1361
1362                 if (ntries == 10) {
1363                         device_printf(sc->sc_dev, "could not read EEPROM\n");
1364                         return ETIMEDOUT;
1365                 }
1366
1367                 *out++= val >> 16;
1368                 if (len > 1)
1369                         *out ++= val >> 24;
1370         }
1371
1372         wpi_mem_unlock(sc);
1373
1374         return 0;
1375 }
1376
1377 /*
1378  * The firmware text and data segments are transferred to the NIC using DMA.
1379  * The driver just copies the firmware into DMA-safe memory and tells the NIC
1380  * where to find it.  Once the NIC has copied the firmware into its internal
1381  * memory, we can free our local copy in the driver.
1382  */
1383 static int
1384 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *fw, int size)
1385 {
1386         int error, ntries;
1387
1388         DPRINTFN(WPI_DEBUG_HW,("Loading microcode  size 0x%x\n", size));
1389
1390         size /= sizeof(uint32_t);
1391
1392         wpi_mem_lock(sc);
1393
1394         wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1395             (const uint32_t *)fw, size);
1396
1397         wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1398         wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1399         wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1400
1401         /* run microcode */
1402         wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1403
1404         /* wait while the adapter is busy copying the firmware */
1405         for (error = 0, ntries = 0; ntries < 1000; ntries++) {
1406                 uint32_t status = WPI_READ(sc, WPI_TX_STATUS);
1407                 DPRINTFN(WPI_DEBUG_HW,
1408                     ("firmware status=0x%x, val=0x%x, result=0x%x\n", status,
1409                      WPI_TX_IDLE(6), status & WPI_TX_IDLE(6)));
1410                 if (status & WPI_TX_IDLE(6)) {
1411                         DPRINTFN(WPI_DEBUG_HW,
1412                             ("Status Match! - ntries = %d\n", ntries));
1413                         break;
1414                 }
1415                 DELAY(10);
1416         }
1417         if (ntries == 1000) {
1418                 device_printf(sc->sc_dev, "timeout transferring firmware\n");
1419                 error = ETIMEDOUT;
1420         }
1421
1422         /* start the microcode executing */
1423         wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1424
1425         wpi_mem_unlock(sc);
1426
1427         return (error);
1428 }
1429
1430 static void
1431 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1432         struct wpi_rx_data *data)
1433 {
1434         struct ieee80211com *ic = &sc->sc_ic;
1435         struct ifnet *ifp = ic->ic_ifp;
1436         struct wpi_rx_ring *ring = &sc->rxq;
1437         struct wpi_rx_stat *stat;
1438         struct wpi_rx_head *head;
1439         struct wpi_rx_tail *tail;
1440         struct ieee80211_node *ni;
1441         struct mbuf *m, *mnew;
1442         bus_addr_t paddr;
1443         int error;
1444
1445         stat = (struct wpi_rx_stat *)(desc + 1);
1446
1447         if (stat->len > WPI_STAT_MAXLEN) {
1448                 device_printf(sc->sc_dev, "invalid rx statistic header\n");
1449                 ifp->if_ierrors++;
1450                 return;
1451         }
1452
1453         head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1454         tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len));
1455
1456         DPRINTFN(WPI_DEBUG_RX, ("rx intr: idx=%d len=%d stat len=%d rssi=%d "
1457             "rate=%x chan=%d tstamp=%ju\n", ring->cur, le32toh(desc->len),
1458             le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1459             (uintmax_t)le64toh(tail->tstamp)));
1460
1461         /* XXX don't need mbuf, just dma buffer */
1462         mnew = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1463         if (mnew == NULL) {
1464                 DPRINTFN(WPI_DEBUG_RX, ("%s: no mbuf to restock ring\n",
1465                     __func__));
1466                 ic->ic_stats.is_rx_nobuf++;
1467                 ifp->if_ierrors++;
1468                 return;
1469         }
1470         error = bus_dmamap_load(ring->data_dmat, data->map,
1471             mtod(mnew, caddr_t), MJUMPAGESIZE,
1472             wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1473         if (error != 0 && error != EFBIG) {
1474                 device_printf(sc->sc_dev,
1475                     "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1476                 m_freem(mnew);
1477                 ic->ic_stats.is_rx_nobuf++;     /* XXX need stat */
1478                 ifp->if_ierrors++;
1479                 return;
1480         }
1481         bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1482
1483         /* finalize mbuf and swap in new one */
1484         m = data->m;
1485         m->m_pkthdr.rcvif = ifp;
1486         m->m_data = (caddr_t)(head + 1);
1487         m->m_pkthdr.len = m->m_len = le16toh(head->len);
1488
1489         data->m = mnew;
1490         /* update Rx descriptor */
1491         ring->desc[ring->cur] = htole32(paddr);
1492
1493         if (bpf_peers_present(sc->sc_drvbpf)) {
1494                 struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1495
1496                 tap->wr_flags = 0;
1497                 tap->wr_chan_freq =
1498                         htole16(ic->ic_channels[head->chan].ic_freq);
1499                 tap->wr_chan_flags =
1500                         htole16(ic->ic_channels[head->chan].ic_flags);
1501                 tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1502                 tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1503                 tap->wr_tsft = tail->tstamp;
1504                 tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1505                 switch (head->rate) {
1506                 /* CCK rates */
1507                 case  10: tap->wr_rate =   2; break;
1508                 case  20: tap->wr_rate =   4; break;
1509                 case  55: tap->wr_rate =  11; break;
1510                 case 110: tap->wr_rate =  22; break;
1511                 /* OFDM rates */
1512                 case 0xd: tap->wr_rate =  12; break;
1513                 case 0xf: tap->wr_rate =  18; break;
1514                 case 0x5: tap->wr_rate =  24; break;
1515                 case 0x7: tap->wr_rate =  36; break;
1516                 case 0x9: tap->wr_rate =  48; break;
1517                 case 0xb: tap->wr_rate =  72; break;
1518                 case 0x1: tap->wr_rate =  96; break;
1519                 case 0x3: tap->wr_rate = 108; break;
1520                 /* unknown rate: should not happen */
1521                 default:  tap->wr_rate =   0;
1522                 }
1523                 if (le16toh(head->flags) & 0x4)
1524                         tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1525
1526                 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1527         }
1528
1529         WPI_UNLOCK(sc);
1530
1531         /* XXX frame length > sizeof(struct ieee80211_frame_min)? */
1532         /* grab a reference to the source node */
1533         ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
1534
1535         /* send the frame to the 802.11 layer */
1536         ieee80211_input(ic, m, ni, stat->rssi, 0, 0);
1537
1538         /* release node reference */
1539         ieee80211_free_node(ni);
1540         WPI_LOCK(sc);
1541 }
1542
1543 static void
1544 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1545 {
1546         struct ifnet *ifp = sc->sc_ic.ic_ifp;
1547         struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1548         struct wpi_tx_data *txdata = &ring->data[desc->idx];
1549         struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1550         struct wpi_node *wn = (struct wpi_node *)txdata->ni;
1551
1552         DPRINTFN(WPI_DEBUG_TX, ("tx done: qid=%d idx=%d retries=%d nkill=%d "
1553             "rate=%x duration=%d status=%x\n", desc->qid, desc->idx,
1554             stat->ntries, stat->nkill, stat->rate, le32toh(stat->duration),
1555             le32toh(stat->status)));
1556
1557         /*
1558          * Update rate control statistics for the node.
1559          * XXX we should not count mgmt frames since they're always sent at
1560          * the lowest available bit-rate.
1561          * XXX frames w/o ACK shouldn't be used either
1562          */
1563         wn->amn.amn_txcnt++;
1564         if (stat->ntries > 0) {
1565                 DPRINTFN(3, ("%d retries\n", stat->ntries));
1566                 wn->amn.amn_retrycnt++;
1567         }
1568
1569         /* XXX oerrors should only count errors !maxtries */
1570         if ((le32toh(stat->status) & 0xff) != 1)
1571                 ifp->if_oerrors++;
1572         else
1573                 ifp->if_opackets++;
1574
1575         bus_dmamap_sync(ring->data_dmat, txdata->map, BUS_DMASYNC_POSTWRITE);
1576         bus_dmamap_unload(ring->data_dmat, txdata->map);
1577         /* XXX handle M_TXCB? */
1578         m_freem(txdata->m);
1579         txdata->m = NULL;
1580         ieee80211_free_node(txdata->ni);
1581         txdata->ni = NULL;
1582
1583         ring->queued--;
1584
1585         sc->sc_tx_timer = 0;
1586         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1587         wpi_start(ifp);
1588 }
1589
1590 static void
1591 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1592 {
1593         struct wpi_tx_ring *ring = &sc->cmdq;
1594         struct wpi_tx_data *data;
1595
1596         DPRINTFN(WPI_DEBUG_CMD, ("cmd notification qid=%x idx=%d flags=%x "
1597                                  "type=%s len=%d\n", desc->qid, desc->idx,
1598                                  desc->flags, wpi_cmd_str(desc->type),
1599                                  le32toh(desc->len)));
1600
1601         if ((desc->qid & 7) != 4)
1602                 return; /* not a command ack */
1603
1604         data = &ring->data[desc->idx];
1605
1606         /* if the command was mapped in a mbuf, free it */
1607         if (data->m != NULL) {
1608                 bus_dmamap_unload(ring->data_dmat, data->map);
1609                 m_freem(data->m);
1610                 data->m = NULL;
1611         }
1612
1613         sc->flags &= ~WPI_FLAG_BUSY;
1614         wakeup(&ring->cmd[desc->idx]);
1615 }
1616
1617 static void
1618 wpi_notif_intr(struct wpi_softc *sc)
1619 {
1620         struct ieee80211com *ic = &sc->sc_ic;
1621         struct ifnet *ifp = ic->ic_ifp;
1622         struct wpi_rx_desc *desc;
1623         struct wpi_rx_data *data;
1624         uint32_t hw;
1625
1626         hw = le32toh(sc->shared->next);
1627         while (sc->rxq.cur != hw) {
1628                 data = &sc->rxq.data[sc->rxq.cur];
1629                 desc = (void *)data->m->m_ext.ext_buf;
1630
1631                 DPRINTFN(WPI_DEBUG_NOTIFY,
1632                          ("notify qid=%x idx=%d flags=%x type=%d len=%d\n",
1633                           desc->qid,
1634                           desc->idx,
1635                           desc->flags,
1636                           desc->type,
1637                           le32toh(desc->len)));
1638
1639                 if (!(desc->qid & 0x80))        /* reply to a command */
1640                         wpi_cmd_intr(sc, desc);
1641
1642                 switch (desc->type) {
1643                 case WPI_RX_DONE:
1644                         /* a 802.11 frame was received */
1645                         wpi_rx_intr(sc, desc, data);
1646                         break;
1647
1648                 case WPI_TX_DONE:
1649                         /* a 802.11 frame has been transmitted */
1650                         wpi_tx_intr(sc, desc);
1651                         break;
1652
1653                 case WPI_UC_READY:
1654                 {
1655                         struct wpi_ucode_info *uc =
1656                                 (struct wpi_ucode_info *)(desc + 1);
1657
1658                         /* the microcontroller is ready */
1659                         DPRINTF(("microcode alive notification version %x "
1660                                 "alive %x\n", le32toh(uc->version),
1661                                 le32toh(uc->valid)));
1662
1663                         if (le32toh(uc->valid) != 1) {
1664                                 device_printf(sc->sc_dev,
1665                                     "microcontroller initialization failed\n");
1666                                 wpi_stop_locked(sc);
1667                         }
1668                         break;
1669                 }
1670                 case WPI_STATE_CHANGED:
1671                 {
1672                         uint32_t *status = (uint32_t *)(desc + 1);
1673
1674                         /* enabled/disabled notification */
1675                         DPRINTF(("state changed to %x\n", le32toh(*status)));
1676
1677                         if (le32toh(*status) & 1) {
1678                                 device_printf(sc->sc_dev,
1679                                     "Radio transmitter is switched off\n");
1680                                 sc->flags |= WPI_FLAG_HW_RADIO_OFF;
1681                                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1682                                 /* Disable firmware commands */
1683                                 WPI_WRITE(sc, WPI_UCODE_SET, WPI_DISABLE_CMD);
1684                         }
1685                         break;
1686                 }
1687                 case WPI_START_SCAN:
1688                 {
1689                         struct wpi_start_scan *scan =
1690                                 (struct wpi_start_scan *)(desc + 1);
1691
1692                         DPRINTFN(WPI_DEBUG_SCANNING,
1693                                  ("scanning channel %d status %x\n",
1694                             scan->chan, le32toh(scan->status)));
1695                         break;
1696                 }
1697                 case WPI_STOP_SCAN:
1698                 {
1699                         struct wpi_stop_scan *scan =
1700                                 (struct wpi_stop_scan *)(desc + 1);
1701
1702                         DPRINTFN(WPI_DEBUG_SCANNING,
1703                             ("scan finished nchan=%d status=%d chan=%d\n",
1704                              scan->nchan, scan->status, scan->chan));
1705
1706                         sc->sc_scan_timer = 0;
1707                         ieee80211_scan_next(ic);
1708                         break;
1709                 }
1710                 case WPI_MISSED_BEACON:
1711                 {
1712                     struct wpi_missed_beacon *beacon =
1713                                 (struct wpi_missed_beacon *)(desc + 1);
1714
1715                     if (le32toh(beacon->consecutive) >=
1716                         ic->ic_bmissthreshold) {
1717                         DPRINTF(("Beacon miss: %u >= %u\n",
1718                                  le32toh(beacon->consecutive),
1719                                  ic->ic_bmissthreshold));
1720                         ieee80211_beacon_miss(ic);
1721                     }
1722                     break;
1723                 }
1724                 }
1725
1726                 sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1727         }
1728
1729         /* tell the firmware what we have processed */
1730         hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1731         WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1732 }
1733
1734 static void
1735 wpi_intr(void *arg)
1736 {
1737         struct wpi_softc *sc = arg;
1738         uint32_t r;
1739
1740         WPI_LOCK(sc);
1741
1742         r = WPI_READ(sc, WPI_INTR);
1743         if (r == 0 || r == 0xffffffff) {
1744                 WPI_UNLOCK(sc);
1745                 return;
1746         }
1747
1748         /* disable interrupts */
1749         WPI_WRITE(sc, WPI_MASK, 0);
1750         /* ack interrupts */
1751         WPI_WRITE(sc, WPI_INTR, r);
1752
1753         if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1754                 device_printf(sc->sc_dev, "fatal firmware error\n");
1755                 DPRINTFN(6,("(%s)\n", (r & WPI_SW_ERROR) ? "(Software Error)" :
1756                                 "(Hardware Error)"));
1757                 wpi_queue_cmd(sc, WPI_RESTART, 0, WPI_QUEUE_CLEAR);
1758                 sc->flags &= ~WPI_FLAG_BUSY;
1759                 WPI_UNLOCK(sc);
1760                 return;
1761         }
1762
1763         if (r & WPI_RX_INTR)
1764                 wpi_notif_intr(sc);
1765
1766         if (r & WPI_ALIVE_INTR) /* firmware initialized */
1767                 wakeup(sc);
1768
1769         /* re-enable interrupts */
1770         if (sc->sc_ifp->if_flags & IFF_UP)
1771                 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1772
1773         WPI_UNLOCK(sc);
1774 }
1775
1776 static uint8_t
1777 wpi_plcp_signal(int rate)
1778 {
1779         switch (rate) {
1780         /* CCK rates (returned values are device-dependent) */
1781         case 2:         return 10;
1782         case 4:         return 20;
1783         case 11:        return 55;
1784         case 22:        return 110;
1785
1786         /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1787         /* R1-R4 (ral/ural is R4-R1) */
1788         case 12:        return 0xd;
1789         case 18:        return 0xf;
1790         case 24:        return 0x5;
1791         case 36:        return 0x7;
1792         case 48:        return 0x9;
1793         case 72:        return 0xb;
1794         case 96:        return 0x1;
1795         case 108:       return 0x3;
1796
1797         /* unsupported rates (should not get there) */
1798         default:        return 0;
1799         }
1800 }
1801
1802 /* quickly determine if a given rate is CCK or OFDM */
1803 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1804
1805 /*
1806  * Construct the data packet for a transmit buffer and acutally put
1807  * the buffer onto the transmit ring, kicking the card to process the
1808  * the buffer.
1809  */
1810 static int
1811 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1812         int ac)
1813 {
1814         struct ieee80211com *ic = &sc->sc_ic;
1815         const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
1816         struct wpi_tx_ring *ring = &sc->txq[ac];
1817         struct wpi_tx_desc *desc;
1818         struct wpi_tx_data *data;
1819         struct wpi_tx_cmd *cmd;
1820         struct wpi_cmd_data *tx;
1821         struct ieee80211_frame *wh;
1822         struct ieee80211_key *k;
1823         struct mbuf *mnew;
1824         int i, error, nsegs, rate, hdrlen, ismcast;
1825         bus_dma_segment_t segs[WPI_MAX_SCATTER];
1826
1827         desc = &ring->desc[ring->cur];
1828         data = &ring->data[ring->cur];
1829
1830         wh = mtod(m0, struct ieee80211_frame *);
1831
1832         hdrlen = ieee80211_hdrsize(wh);
1833         ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1834
1835         if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1836                 k = ieee80211_crypto_encap(ic, ni, m0);
1837                 if (k == NULL) {
1838                         m_freem(m0);
1839                         return ENOBUFS;
1840                 }
1841                 /* packet header may have moved, reset our local pointer */
1842                 wh = mtod(m0, struct ieee80211_frame *);
1843         }
1844
1845         cmd = &ring->cmd[ring->cur];
1846         cmd->code = WPI_CMD_TX_DATA;
1847         cmd->flags = 0;
1848         cmd->qid = ring->qid;
1849         cmd->idx = ring->cur;
1850
1851         tx = (struct wpi_cmd_data *)cmd->data;
1852         tx->flags = htole32(WPI_TX_AUTO_SEQ);
1853         tx->timeout= htole16(0);
1854         tx->ofdm_mask = 0xff;
1855         tx->cck_mask = 0x0f;
1856         tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1857         tx->id = ismcast ? WPI_ID_BROADCAST : WPI_ID_BSS;
1858         tx->len = htole16(m0->m_pkthdr.len);
1859
1860         if (!ismcast) {
1861                 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0 ||
1862                     !cap->cap_wmeParams[ac].wmep_noackPolicy)
1863                         tx->flags |= htole32(WPI_TX_NEED_ACK);
1864                 if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) {
1865                         tx->flags |= htole32(WPI_TX_NEED_RTS|WPI_TX_FULL_TXOP);
1866                         tx->rts_ntries = 7;
1867                 }
1868         }
1869
1870         /* pick a rate */
1871         if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MASK) {
1872                 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1873                 /* tell h/w to set timestamp in probe responses */
1874                 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1875                         tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1876
1877                 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
1878                     subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
1879                         tx->timeout = htole16(3);
1880                 else
1881                         tx->timeout = htole16(2);
1882
1883                 rate = ni->ni_rates.rs_rates[0] & IEEE80211_RATE_VAL;
1884         } else if (ismcast) {
1885                 rate = ic->ic_mcast_rate;
1886         } else if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
1887                 rate = ic->ic_fixed_rate;
1888         } else {
1889                 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1890                 rate &= IEEE80211_RATE_VAL;
1891         }
1892         tx->rate = wpi_plcp_signal(rate);
1893
1894         /* be very persistant at sending frames out */
1895         tx->data_ntries = 15;   /* XXX Way too high */
1896
1897         if (bpf_peers_present(sc->sc_drvbpf)) {
1898                 struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1899                 tap->wt_flags = 0;
1900                 tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
1901                 tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
1902                 tap->wt_rate = rate;
1903                 tap->wt_hwqueue = ac;
1904                 if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1905                         tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1906                 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1907         }
1908
1909         /* save and trim IEEE802.11 header */
1910         m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh);
1911         m_adj(m0, hdrlen);
1912
1913         error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m0, segs,
1914             &nsegs, BUS_DMA_NOWAIT);
1915         if (error != 0 && error != EFBIG) {
1916                 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1917                     error);
1918                 m_freem(m0);
1919                 return error;
1920         }
1921         if (error != 0) {
1922                 /* XXX use m_collapse */
1923                 mnew = m_defrag(m0, M_DONTWAIT);
1924                 if (mnew == NULL) {
1925                         device_printf(sc->sc_dev,
1926                             "could not defragment mbuf\n");
1927                         m_freem(m0);
1928                         return ENOBUFS;
1929                 }
1930                 m0 = mnew;
1931
1932                 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
1933                     m0, segs, &nsegs, BUS_DMA_NOWAIT);
1934                 if (error != 0) {
1935                         device_printf(sc->sc_dev,
1936                             "could not map mbuf (error %d)\n", error);
1937                         m_freem(m0);
1938                         return error;
1939                 }
1940         }
1941
1942         data->m = m0;
1943         data->ni = ni;
1944
1945         DPRINTFN(WPI_DEBUG_TX, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
1946             ring->qid, ring->cur, m0->m_pkthdr.len, nsegs));
1947
1948         /* first scatter/gather segment is used by the tx data command */
1949         desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
1950             (1 + nsegs) << 24);
1951         desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
1952             ring->cur * sizeof (struct wpi_tx_cmd));
1953         desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data));
1954         for (i = 1; i <= nsegs; i++) {
1955                 desc->segs[i].addr = htole32(segs[i - 1].ds_addr);
1956                 desc->segs[i].len  = htole32(segs[i - 1].ds_len);
1957         }
1958
1959         bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1960         bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1961             BUS_DMASYNC_PREWRITE);
1962
1963         ring->queued++;
1964
1965         /* kick ring */
1966         ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
1967         WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
1968
1969         return 0;
1970 }
1971
1972 /**
1973  * Process data waiting to be sent on the IFNET output queue
1974  */
1975 static void
1976 wpi_start(struct ifnet *ifp)
1977 {
1978         struct wpi_softc *sc = ifp->if_softc;
1979         struct ieee80211com *ic = &sc->sc_ic;
1980         struct ieee80211_node *ni;
1981         struct ether_header *eh;
1982         struct mbuf *m0;
1983         int ac, waslocked;
1984
1985         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1986                 return;
1987
1988         waslocked = WPI_LOCK_OWNED(sc);
1989         if (!waslocked)
1990                 WPI_LOCK(sc);
1991
1992         for (;;) {
1993                 IF_DEQUEUE(&ic->ic_mgtq, m0);
1994                 if (m0 != NULL) {
1995                         ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1996                         m0->m_pkthdr.rcvif = NULL;
1997
1998                         /* management frames go into ring 0 */
1999                         if (sc->txq[0].queued > sc->txq[0].count - 8) {
2000                                 ifp->if_oerrors++;
2001                                 continue;
2002                         }
2003
2004                         if (wpi_tx_data(sc, m0, ni, 0) != 0) {
2005                                 ifp->if_oerrors++;
2006                                 break;
2007                         }
2008                 } else {
2009                         if (ic->ic_state != IEEE80211_S_RUN)
2010                                 break;
2011
2012                         IFQ_DRV_DEQUEUE(&ifp->if_snd, m0);
2013                         if (m0 == NULL)
2014                                 break;
2015
2016                         /*
2017                          * Cancel any background scan.
2018                          */
2019                         if (ic->ic_flags & IEEE80211_F_SCAN)
2020                                 ieee80211_cancel_scan(ic);
2021
2022                         if (m0->m_len < sizeof (*eh) &&
2023                             (m0 = m_pullup(m0, sizeof (*eh))) != NULL) {
2024                                 ifp->if_oerrors++;
2025                                 continue;
2026                         }
2027                         eh = mtod(m0, struct ether_header *);
2028                         ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2029                         if (ni == NULL) {
2030                                 m_freem(m0);
2031                                 ifp->if_oerrors++;
2032                                 continue;
2033                         }
2034
2035                         /* classify mbuf so we can find which tx ring to use */
2036                         if (ieee80211_classify(ic, m0, ni) != 0) {
2037                                 m_freem(m0);
2038                                 ieee80211_free_node(ni);
2039                                 ifp->if_oerrors++;
2040                                 continue;
2041                         }
2042
2043                         ac = M_WME_GETAC(m0);
2044                         if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2045                                 /* there is no place left in this ring */
2046                                 IFQ_DRV_PREPEND(&ifp->if_snd, m0);
2047                                 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2048                                 break;
2049                         }
2050
2051                         BPF_MTAP(ifp, m0);
2052
2053                         m0 = ieee80211_encap(ic, m0, ni);
2054                         if (m0 == NULL) {
2055                                 ieee80211_free_node(ni);
2056                                 ifp->if_oerrors++;
2057                                 continue;
2058                         }
2059
2060                         if (bpf_peers_present(ic->ic_rawbpf))
2061                                 bpf_mtap(ic->ic_rawbpf, m0);
2062
2063                         if (wpi_tx_data(sc, m0, ni, ac) != 0) {
2064                                 ieee80211_free_node(ni);
2065                                 ifp->if_oerrors++;
2066                                 break;
2067                         }
2068                 }
2069
2070                 sc->sc_tx_timer = 5;
2071                 ic->ic_lastdata = ticks;
2072         }
2073
2074         if (!waslocked)
2075                 WPI_UNLOCK(sc);
2076 }
2077
2078 static int
2079 wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2080 {
2081         struct wpi_softc *sc = ifp->if_softc;
2082         struct ieee80211com *ic = &sc->sc_ic;
2083         int error = 0;
2084
2085         WPI_LOCK(sc);
2086
2087         switch (cmd) {
2088         case SIOCSIFFLAGS:
2089                 if ((ifp->if_flags & IFF_UP)) {
2090                         if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
2091                                 wpi_init_locked(sc, 0);
2092                 } else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) ||
2093                            (sc->flags & WPI_FLAG_HW_RADIO_OFF))
2094                         wpi_stop_locked(sc);
2095                 break;
2096         default:
2097                 WPI_UNLOCK(sc);
2098                 error = ieee80211_ioctl(ic, cmd, data);
2099                 WPI_LOCK(sc);
2100         }
2101
2102         if (error == ENETRESET) {
2103                 if ((ifp->if_flags & IFF_UP) &&
2104                     (ifp->if_drv_flags & IFF_DRV_RUNNING) &&
2105                     ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
2106                         wpi_init_locked(sc, 0);
2107                 error = 0;
2108         }
2109
2110         WPI_UNLOCK(sc);
2111
2112         return error;
2113 }
2114
2115 /*
2116  * Extract various information from EEPROM.
2117  */
2118 static void
2119 wpi_read_eeprom(struct wpi_softc *sc)
2120 {
2121         struct ieee80211com *ic = &sc->sc_ic;
2122         int i;
2123
2124         /* read the hardware capabilities, revision and SKU type */
2125         wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap,1);
2126         wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,2);
2127         wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2128
2129         /* read the regulatory domain */
2130         wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 4);
2131
2132         /* read in the hw MAC address */
2133         wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6);
2134
2135         /* read the list of authorized channels */
2136         for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2137                 wpi_read_eeprom_channels(sc,i);
2138
2139         /* read the power level calibration info for each group */
2140         for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2141                 wpi_read_eeprom_group(sc,i);
2142 }
2143
2144 /*
2145  * Send a command to the firmware.
2146  */
2147 static int
2148 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2149 {
2150         struct wpi_tx_ring *ring = &sc->cmdq;
2151         struct wpi_tx_desc *desc;
2152         struct wpi_tx_cmd *cmd;
2153
2154 #ifdef WPI_DEBUG
2155         if (!async) {
2156                 WPI_LOCK_ASSERT(sc);
2157         }
2158 #endif
2159
2160         DPRINTFN(WPI_DEBUG_CMD,("wpi_cmd %d size %d async %d\n", code, size,
2161                     async));
2162
2163         if (sc->flags & WPI_FLAG_BUSY) {
2164                 device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
2165                     __func__, code);
2166                 return EAGAIN;
2167         }
2168         sc->flags|= WPI_FLAG_BUSY;
2169
2170         KASSERT(size <= sizeof cmd->data, ("command %d too large: %d bytes",
2171             code, size));
2172
2173         desc = &ring->desc[ring->cur];
2174         cmd = &ring->cmd[ring->cur];
2175
2176         cmd->code = code;
2177         cmd->flags = 0;
2178         cmd->qid = ring->qid;
2179         cmd->idx = ring->cur;
2180         memcpy(cmd->data, buf, size);
2181
2182         desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2183         desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2184                 ring->cur * sizeof (struct wpi_tx_cmd));
2185         desc->segs[0].len  = htole32(4 + size);
2186
2187         /* kick cmd ring */
2188         ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2189         WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2190
2191         if (async) {
2192                 sc->flags &= ~ WPI_FLAG_BUSY;
2193                 return 0;
2194         }
2195
2196         return msleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz);
2197 }
2198
2199 static int
2200 wpi_wme_update(struct ieee80211com *ic)
2201 {
2202 #define WPI_EXP2(v)     htole16((1 << (v)) - 1)
2203 #define WPI_USEC(v)     htole16(IEEE80211_TXOP_TO_US(v))
2204         struct wpi_softc *sc = ic->ic_ifp->if_softc;
2205         const struct wmeParams *wmep;
2206         struct wpi_wme_setup wme;
2207         int ac;
2208
2209         /* don't override default WME values if WME is not actually enabled */
2210         if (!(ic->ic_flags & IEEE80211_F_WME))
2211                 return 0;
2212
2213         wme.flags = 0;
2214         for (ac = 0; ac < WME_NUM_AC; ac++) {
2215                 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2216                 wme.ac[ac].aifsn = wmep->wmep_aifsn;
2217                 wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2218                 wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2219                 wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
2220
2221                 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2222                     "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2223                     wme.ac[ac].cwmax, wme.ac[ac].txop));
2224         }
2225
2226         return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2227 #undef WPI_USEC
2228 #undef WPI_EXP2
2229 }
2230
2231 /*
2232  * Configure h/w multi-rate retries.
2233  */
2234 static int
2235 wpi_mrr_setup(struct wpi_softc *sc)
2236 {
2237         struct ieee80211com *ic = &sc->sc_ic;
2238         struct wpi_mrr_setup mrr;
2239         int i, error;
2240
2241         memset(&mrr, 0, sizeof (struct wpi_mrr_setup));
2242
2243         /* CCK rates (not used with 802.11a) */
2244         for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2245                 mrr.rates[i].flags = 0;
2246                 mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2247                 /* fallback to the immediate lower CCK rate (if any) */
2248                 mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2249                 /* try one time at this rate before falling back to "next" */
2250                 mrr.rates[i].ntries = 1;
2251         }
2252
2253         /* OFDM rates (not used with 802.11b) */
2254         for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2255                 mrr.rates[i].flags = 0;
2256                 mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2257                 /* fallback to the immediate lower OFDM rate (if any) */
2258                 /* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2259                 mrr.rates[i].next = (i == WPI_OFDM6) ?
2260                     ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2261                         WPI_OFDM6 : WPI_CCK2) :
2262                     i - 1;
2263                 /* try one time at this rate before falling back to "next" */
2264                 mrr.rates[i].ntries = 1;
2265         }
2266
2267         /* setup MRR for control frames */
2268         mrr.which = htole32(WPI_MRR_CTL);
2269         error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2270         if (error != 0) {
2271                 device_printf(sc->sc_dev,
2272                     "could not setup MRR for control frames\n");
2273                 return error;
2274         }
2275
2276         /* setup MRR for data frames */
2277         mrr.which = htole32(WPI_MRR_DATA);
2278         error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2279         if (error != 0) {
2280                 device_printf(sc->sc_dev,
2281                     "could not setup MRR for data frames\n");
2282                 return error;
2283         }
2284
2285         return 0;
2286 }
2287
2288 static void
2289 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2290 {
2291         struct wpi_cmd_led led;
2292
2293         led.which = which;
2294         led.unit = htole32(100000);     /* on/off in unit of 100ms */
2295         led.off = off;
2296         led.on = on;
2297
2298         (void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2299 }
2300
2301 static void
2302 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2303 {
2304         struct wpi_cmd_tsf tsf;
2305         uint64_t val, mod;
2306
2307         memset(&tsf, 0, sizeof tsf);
2308         memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2309         tsf.bintval = htole16(ni->ni_intval);
2310         tsf.lintval = htole16(10);
2311
2312         /* compute remaining time until next beacon */
2313         val = (uint64_t)ni->ni_intval  * 1024;  /* msec -> usec */
2314         mod = le64toh(tsf.tstamp) % val;
2315         tsf.binitval = htole32((uint32_t)(val - mod));
2316
2317         if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2318                 device_printf(sc->sc_dev, "could not enable TSF\n");
2319 }
2320
2321 #if 0
2322 /*
2323  * Build a beacon frame that the firmware will broadcast periodically in
2324  * IBSS or HostAP modes.
2325  */
2326 static int
2327 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2328 {
2329         struct ieee80211com *ic = &sc->sc_ic;
2330         struct wpi_tx_ring *ring = &sc->cmdq;
2331         struct wpi_tx_desc *desc;
2332         struct wpi_tx_data *data;
2333         struct wpi_tx_cmd *cmd;
2334         struct wpi_cmd_beacon *bcn;
2335         struct ieee80211_beacon_offsets bo;
2336         struct mbuf *m0;
2337         bus_addr_t physaddr;
2338         int error;
2339
2340         desc = &ring->desc[ring->cur];
2341         data = &ring->data[ring->cur];
2342
2343         m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2344         if (m0 == NULL) {
2345                 device_printf(sc->sc_dev, "could not allocate beacon frame\n");
2346                 return ENOMEM;
2347         }
2348
2349         cmd = &ring->cmd[ring->cur];
2350         cmd->code = WPI_CMD_SET_BEACON;
2351         cmd->flags = 0;
2352         cmd->qid = ring->qid;
2353         cmd->idx = ring->cur;
2354
2355         bcn = (struct wpi_cmd_beacon *)cmd->data;
2356         memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2357         bcn->id = WPI_ID_BROADCAST;
2358         bcn->ofdm_mask = 0xff;
2359         bcn->cck_mask = 0x0f;
2360         bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2361         bcn->len = htole16(m0->m_pkthdr.len);
2362         bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2363                 wpi_plcp_signal(12) : wpi_plcp_signal(2);
2364         bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2365
2366         /* save and trim IEEE802.11 header */
2367         m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh);
2368         m_adj(m0, sizeof (struct ieee80211_frame));
2369
2370         /* assume beacon frame is contiguous */
2371         error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m0, void *),
2372             m0->m_pkthdr.len, wpi_dma_map_addr, &physaddr, 0);
2373         if (error != 0) {
2374                 device_printf(sc->sc_dev, "could not map beacon\n");
2375                 m_freem(m0);
2376                 return error;
2377         }
2378
2379         data->m = m0;
2380
2381         /* first scatter/gather segment is used by the beacon command */
2382         desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2383         desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2384                 ring->cur * sizeof (struct wpi_tx_cmd));
2385         desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
2386         desc->segs[1].addr = htole32(physaddr);
2387         desc->segs[1].len  = htole32(m0->m_pkthdr.len);
2388
2389         /* kick cmd ring */
2390         ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2391         WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2392
2393         return 0;
2394 }
2395 #endif
2396
2397 static int
2398 wpi_auth(struct wpi_softc *sc)
2399 {
2400         struct ieee80211com *ic = &sc->sc_ic;
2401         struct ieee80211_node *ni = ic->ic_bss;
2402         struct wpi_node_info node;
2403         int error;
2404
2405
2406         /* update adapter's configuration */
2407         sc->config.associd = 0;
2408         sc->config.filter &= ~htole32(WPI_FILTER_BSS);
2409         IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2410         sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2411         if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2412                 sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2413                     WPI_CONFIG_24GHZ);
2414         }
2415         switch (ic->ic_curmode) {
2416         case IEEE80211_MODE_11A:
2417                 sc->config.cck_mask  = 0;
2418                 sc->config.ofdm_mask = 0x15;
2419                 break;
2420         case IEEE80211_MODE_11B:
2421                 sc->config.cck_mask  = 0x03;
2422                 sc->config.ofdm_mask = 0;
2423                 break;
2424         default:        /* assume 802.11b/g */
2425                 sc->config.cck_mask  = 0x0f;
2426                 sc->config.ofdm_mask = 0x15;
2427         }
2428
2429         DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2430                 sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2431         error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2432                 sizeof (struct wpi_config), 1);
2433         if (error != 0) {
2434                 device_printf(sc->sc_dev, "could not configure\n");
2435                 return error;
2436         }
2437
2438         /* configuration has changed, set Tx power accordingly */
2439         if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2440                 device_printf(sc->sc_dev, "could not set Tx power\n");
2441                 return error;
2442         }
2443
2444         /* add default node */
2445         memset(&node, 0, sizeof node);
2446         IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2447         node.id = WPI_ID_BSS;
2448         node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2449             wpi_plcp_signal(12) : wpi_plcp_signal(2);
2450         node.action = htole32(WPI_ACTION_SET_RATE);
2451         node.antenna = WPI_ANTENNA_BOTH;
2452         error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2453         if (error != 0)
2454                 device_printf(sc->sc_dev, "could not add BSS node\n");
2455
2456         return (error);
2457 }
2458
2459 static int
2460 wpi_run(struct wpi_softc *sc)
2461 {
2462         struct ieee80211com *ic = &sc->sc_ic;
2463         struct ieee80211_node *ni = ic->ic_bss;
2464         int error;
2465
2466         ni = ic->ic_bss;
2467         wpi_enable_tsf(sc, ni);
2468
2469         /* update adapter's configuration */
2470         sc->config.associd = htole16(ni->ni_associd & ~0xc000);
2471         /* short preamble/slot time are negotiated when associating */
2472         sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
2473             WPI_CONFIG_SHSLOT);
2474         if (ic->ic_flags & IEEE80211_F_SHSLOT)
2475                 sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
2476         if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2477                 sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
2478         sc->config.filter |= htole32(WPI_FILTER_BSS);
2479
2480         /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
2481
2482         DPRINTF(("config chan %d flags %x\n", sc->config.chan,
2483                     sc->config.flags));
2484         error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, sizeof (struct
2485                     wpi_config), 1);
2486         if (error != 0) {
2487                 device_printf(sc->sc_dev, "could not update configuration\n");
2488                 return error;
2489         }
2490
2491         error = wpi_set_txpower(sc, ic->ic_bsschan, 1);
2492         if (error != 0) {
2493                 device_printf(sc->sc_dev, "could set txpower\n");
2494                 return error;
2495         }
2496
2497         if (ic->ic_opmode == IEEE80211_M_STA) {
2498                 /* fake a join to init the tx rate */
2499                 wpi_newassoc(ic->ic_bss, 1);
2500         }
2501
2502         /* link LED always on while associated */
2503         wpi_set_led(sc, WPI_LED_LINK, 0, 1);
2504
2505         /* start automatic rate control timer */
2506         callout_reset(&sc->calib_to, hz/2, wpi_calib_timeout, sc);
2507
2508         return (error);
2509 }
2510
2511 /*
2512  * Send a scan request to the firmware.  Since this command is huge, we map it
2513  * into a mbufcluster instead of using the pre-allocated set of commands. Note,
2514  * much of this code is similar to that in wpi_cmd but because we must manually
2515  * construct the probe & channels, we duplicate what's needed here. XXX In the
2516  * future, this function should be modified to use wpi_cmd to help cleanup the
2517  * code base.
2518  */
2519 static int
2520 wpi_scan(struct wpi_softc *sc)
2521 {
2522         struct ieee80211com *ic = &sc->sc_ic;
2523         struct ieee80211_scan_state *ss = ic->ic_scan;
2524         struct wpi_tx_ring *ring = &sc->cmdq;
2525         struct wpi_tx_desc *desc;
2526         struct wpi_tx_data *data;
2527         struct wpi_tx_cmd *cmd;
2528         struct wpi_scan_hdr *hdr;
2529         struct wpi_scan_chan *chan;
2530         struct ieee80211_frame *wh;
2531         struct ieee80211_rateset *rs;
2532         struct ieee80211_channel *c;
2533         enum ieee80211_phymode mode;
2534         uint8_t *frm;
2535         int nrates, pktlen, error, i, nssid;
2536         bus_addr_t physaddr;
2537         struct ifnet *ifp = ic->ic_ifp;
2538
2539         desc = &ring->desc[ring->cur];
2540         data = &ring->data[ring->cur];
2541
2542         data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2543         if (data->m == NULL) {
2544                 device_printf(sc->sc_dev,
2545                     "could not allocate mbuf for scan command\n");
2546                 return ENOMEM;
2547         }
2548
2549         cmd = mtod(data->m, struct wpi_tx_cmd *);
2550         cmd->code = WPI_CMD_SCAN;
2551         cmd->flags = 0;
2552         cmd->qid = ring->qid;
2553         cmd->idx = ring->cur;
2554
2555         hdr = (struct wpi_scan_hdr *)cmd->data;
2556         memset(hdr, 0, sizeof(struct wpi_scan_hdr));
2557
2558         /*
2559          * Move to the next channel if no packets are received within 5 msecs
2560          * after sending the probe request (this helps to reduce the duration
2561          * of active scans).
2562          */
2563         hdr->quiet = htole16(5);
2564         hdr->threshold = htole16(1);
2565
2566         if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) {
2567                 /* send probe requests at 6Mbps */
2568                 hdr->tx.rate = wpi_ridx_to_plcp[WPI_OFDM6];
2569
2570                 /* Enable crc checking */
2571                 hdr->promotion = htole16(1);
2572         } else {
2573                 hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2574                 /* send probe requests at 1Mbps */
2575                 hdr->tx.rate = wpi_ridx_to_plcp[WPI_CCK1];
2576         }
2577         hdr->tx.id = WPI_ID_BROADCAST;
2578         hdr->tx.lifetime = htole32(WPI_LIFETIME_INFINITE);
2579         hdr->tx.flags = htole32(WPI_TX_AUTO_SEQ);
2580
2581         /*XXX Need to cater for multiple essids */
2582         memset(&hdr->scan_essids, 0, sizeof(hdr->scan_essids));
2583         nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
2584         for (i = 0; i < nssid; i++ ){
2585                 hdr->scan_essids[i].id = IEEE80211_ELEMID_SSID;
2586                 hdr->scan_essids[i].esslen = MIN(ss->ss_ssid[i].len, 32);
2587                 memcpy(hdr->scan_essids[i].essid, ss->ss_ssid[i].ssid,
2588                     hdr->scan_essids[i].esslen);
2589 #ifdef WPI_DEBUG
2590                 if (wpi_debug & WPI_DEBUG_SCANNING) {
2591                         printf("Scanning Essid: ");
2592                         ieee80211_print_essid(ic->ic_des_ssid[i].ssid,
2593                             ic->ic_des_ssid[i].len);
2594                         printf("\n");
2595                 }
2596 #endif
2597         }
2598
2599         /*
2600          * Build a probe request frame.  Most of the following code is a
2601          * copy & paste of what is done in net80211.
2602          */
2603         wh = (struct ieee80211_frame *)&hdr->scan_essids[4];
2604         wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2605                 IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2606         wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2607         IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
2608         IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
2609         IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
2610         *(u_int16_t *)&wh->i_dur[0] = 0;        /* filled by h/w */
2611         *(u_int16_t *)&wh->i_seq[0] = 0;        /* filled by h/w */
2612
2613         frm = (uint8_t *)(wh + 1);
2614
2615         /* add essid IE, the hardware will fill this in for us */
2616         *frm++ = IEEE80211_ELEMID_SSID;
2617         *frm++ = 0;
2618
2619         mode = ieee80211_chan2mode(ic->ic_curchan);
2620         rs = &ic->ic_sup_rates[mode];
2621
2622         /* add supported rates IE */
2623         *frm++ = IEEE80211_ELEMID_RATES;
2624         nrates = rs->rs_nrates;
2625         if (nrates > IEEE80211_RATE_SIZE)
2626                 nrates = IEEE80211_RATE_SIZE;
2627         *frm++ = nrates;
2628         memcpy(frm, rs->rs_rates, nrates);
2629         frm += nrates;
2630
2631         /* add supported xrates IE */
2632         if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2633                 nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2634                 *frm++ = IEEE80211_ELEMID_XRATES;
2635                 *frm++ = nrates;
2636                 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2637                 frm += nrates;
2638         }
2639
2640         /* setup length of probe request */
2641         hdr->tx.len = htole16(frm - (uint8_t *)wh);
2642
2643         /*
2644          * Construct information about the channel that we
2645          * want to scan. The firmware expects this to be directly
2646          * after the scan probe request
2647          */
2648         c = ic->ic_curchan;
2649         chan = (struct wpi_scan_chan *)frm;
2650         chan->chan = ieee80211_chan2ieee(ic, c);
2651         chan->flags = 0;
2652         if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2653                 chan->flags |= WPI_CHAN_ACTIVE;
2654                 if (ic->ic_des_ssid[0].len != 0)
2655                         chan->flags |= WPI_CHAN_DIRECT;
2656         }
2657         chan->gain_dsp = 0x6e; /* Default level */
2658         if (IEEE80211_IS_CHAN_5GHZ(c)) {
2659                 chan->active = htole16(10);
2660                 chan->passive = htole16(sc->maxdwell);
2661                 chan->gain_radio = 0x3b;
2662         } else {
2663                 chan->active = htole16(20);
2664                 chan->passive = htole16(sc->maxdwell);
2665                 chan->gain_radio = 0x28;
2666         }
2667
2668         DPRINTFN(WPI_DEBUG_SCANNING,
2669             ("Scanning %u Passive: %d\n",
2670              chan->chan,
2671              c->ic_flags & IEEE80211_CHAN_PASSIVE));
2672
2673         hdr->nchan++;
2674         chan++;
2675
2676         frm += sizeof (struct wpi_scan_chan);
2677 #if 0
2678         // XXX All Channels....
2679         for (c  = &ic->ic_channels[1];
2680              c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2681                 if ((c->ic_flags & ic->ic_curchan->ic_flags) != ic->ic_curchan->ic_flags)
2682                         continue;
2683
2684                 chan->chan = ieee80211_chan2ieee(ic, c);
2685                 chan->flags = 0;
2686                 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2687                     chan->flags |= WPI_CHAN_ACTIVE;
2688                     if (ic->ic_des_ssid[0].len != 0)
2689                         chan->flags |= WPI_CHAN_DIRECT;
2690                 }
2691                 chan->gain_dsp = 0x6e; /* Default level */
2692                 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2693                         chan->active = htole16(10);
2694                         chan->passive = htole16(110);
2695                         chan->gain_radio = 0x3b;
2696                 } else {
2697                         chan->active = htole16(20);
2698                         chan->passive = htole16(120);
2699                         chan->gain_radio = 0x28;
2700                 }
2701
2702                 DPRINTFN(WPI_DEBUG_SCANNING,
2703                          ("Scanning %u Passive: %d\n",
2704                           chan->chan,
2705                           c->ic_flags & IEEE80211_CHAN_PASSIVE));
2706
2707                 hdr->nchan++;
2708                 chan++;
2709
2710                 frm += sizeof (struct wpi_scan_chan);
2711         }
2712 #endif
2713
2714         hdr->len = htole16(frm - (uint8_t *)hdr);
2715         pktlen = frm - (uint8_t *)cmd;
2716
2717         error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen,
2718             wpi_dma_map_addr, &physaddr, BUS_DMA_NOWAIT);
2719         if (error != 0) {
2720                 device_printf(sc->sc_dev, "could not map scan command\n");
2721                 m_freem(data->m);
2722                 data->m = NULL;
2723                 return error;
2724         }
2725
2726         desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2727         desc->segs[0].addr = htole32(physaddr);
2728         desc->segs[0].len  = htole32(pktlen);
2729
2730         bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2731             BUS_DMASYNC_PREWRITE);
2732         bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2733
2734         /* kick cmd ring */
2735         ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2736         WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2737
2738         sc->sc_scan_timer = 5;
2739         return 0;       /* will be notified async. of failure/success */
2740 }
2741
2742 /**
2743  * Configure the card to listen to a particular channel, this transisions the
2744  * card in to being able to receive frames from remote devices.
2745  */
2746 static int
2747 wpi_config(struct wpi_softc *sc)
2748 {
2749         struct ieee80211com *ic = &sc->sc_ic;
2750         struct ifnet *ifp = ic->ic_ifp;
2751         struct wpi_power power;
2752         struct wpi_bluetooth bluetooth;
2753         struct wpi_node_info node;
2754         int error;
2755
2756         /* set power mode */
2757         memset(&power, 0, sizeof power);
2758         power.flags = htole32(WPI_POWER_CAM|0x8);
2759         error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2760         if (error != 0) {
2761                 device_printf(sc->sc_dev, "could not set power mode\n");
2762                 return error;
2763         }
2764
2765         /* configure bluetooth coexistence */
2766         memset(&bluetooth, 0, sizeof bluetooth);
2767         bluetooth.flags = 3;
2768         bluetooth.lead = 0xaa;
2769         bluetooth.kill = 1;
2770         error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2771             0);
2772         if (error != 0) {
2773                 device_printf(sc->sc_dev,
2774                     "could not configure bluetooth coexistence\n");
2775                 return error;
2776         }
2777
2778         /* configure adapter */
2779         memset(&sc->config, 0, sizeof (struct wpi_config));
2780         IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
2781         /*set default channel*/
2782         sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan));
2783         sc->config.flags = htole32(WPI_CONFIG_TSF);
2784         if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
2785                 sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2786                     WPI_CONFIG_24GHZ);
2787         }
2788         sc->config.filter = 0;
2789         switch (ic->ic_opmode) {
2790         case IEEE80211_M_STA:
2791         case IEEE80211_M_WDS:   /* No know setup, use STA for now */
2792                 sc->config.mode = WPI_MODE_STA;
2793                 sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2794                 break;
2795         case IEEE80211_M_IBSS:
2796         case IEEE80211_M_AHDEMO:
2797                 sc->config.mode = WPI_MODE_IBSS;
2798                 sc->config.filter |= htole32(WPI_FILTER_BEACON |
2799                                              WPI_FILTER_MULTICAST);
2800                 break;
2801         case IEEE80211_M_HOSTAP:
2802                 sc->config.mode = WPI_MODE_HOSTAP;
2803                 break;
2804         case IEEE80211_M_MONITOR:
2805                 sc->config.mode = WPI_MODE_MONITOR;
2806                 sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2807                         WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2808                 break;
2809         }
2810         sc->config.cck_mask  = 0x0f;    /* not yet negotiated */
2811         sc->config.ofdm_mask = 0xff;    /* not yet negotiated */
2812         error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2813                 sizeof (struct wpi_config), 0);
2814         if (error != 0) {
2815                 device_printf(sc->sc_dev, "configure command failed\n");
2816                 return error;
2817         }
2818
2819         /* configuration has changed, set Tx power accordingly */
2820         if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) {
2821             device_printf(sc->sc_dev, "could not set Tx power\n");
2822             return error;
2823         }
2824
2825         /* add broadcast node */
2826         memset(&node, 0, sizeof node);
2827         IEEE80211_ADDR_COPY(node.bssid, ifp->if_broadcastaddr);
2828         node.id = WPI_ID_BROADCAST;
2829         node.rate = wpi_plcp_signal(2);
2830         error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2831         if (error != 0) {
2832                 device_printf(sc->sc_dev, "could not add broadcast node\n");
2833                 return error;
2834         }
2835
2836         /* Setup rate scalling */
2837         error = wpi_mrr_setup(sc);
2838         if (error != 0) {
2839                 device_printf(sc->sc_dev, "could not setup MRR\n");
2840                 return error;
2841         }
2842
2843         return 0;
2844 }
2845
2846 static void
2847 wpi_stop_master(struct wpi_softc *sc)
2848 {
2849         uint32_t tmp;
2850         int ntries;
2851
2852         DPRINTFN(WPI_DEBUG_HW,("Disabling Firmware execution\n"));
2853
2854         tmp = WPI_READ(sc, WPI_RESET);
2855         WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER | WPI_NEVO_RESET);
2856
2857         tmp = WPI_READ(sc, WPI_GPIO_CTL);
2858         if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2859                 return; /* already asleep */
2860
2861         for (ntries = 0; ntries < 100; ntries++) {
2862                 if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2863                         break;
2864                 DELAY(10);
2865         }
2866         if (ntries == 100) {
2867                 device_printf(sc->sc_dev, "timeout waiting for master\n");
2868         }
2869 }
2870
2871 static int
2872 wpi_power_up(struct wpi_softc *sc)
2873 {
2874         uint32_t tmp;
2875         int ntries;
2876
2877         wpi_mem_lock(sc);
2878         tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2879         wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2880         wpi_mem_unlock(sc);
2881
2882         for (ntries = 0; ntries < 5000; ntries++) {
2883                 if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
2884                         break;
2885                 DELAY(10);
2886         }
2887         if (ntries == 5000) {
2888                 device_printf(sc->sc_dev,
2889                     "timeout waiting for NIC to power up\n");
2890                 return ETIMEDOUT;
2891         }
2892         return 0;
2893 }
2894
2895 static int
2896 wpi_reset(struct wpi_softc *sc)
2897 {
2898         uint32_t tmp;
2899         int ntries;
2900
2901         DPRINTFN(WPI_DEBUG_HW,
2902             ("Resetting the card - clearing any uploaded firmware\n"));
2903
2904         /* clear any pending interrupts */
2905         WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2906
2907         tmp = WPI_READ(sc, WPI_PLL_CTL);
2908         WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
2909
2910         tmp = WPI_READ(sc, WPI_CHICKEN);
2911         WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
2912
2913         tmp = WPI_READ(sc, WPI_GPIO_CTL);
2914         WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
2915
2916         /* wait for clock stabilization */
2917         for (ntries = 0; ntries < 25000; ntries++) {
2918                 if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
2919                         break;
2920                 DELAY(10);
2921         }
2922         if (ntries == 25000) {
2923                 device_printf(sc->sc_dev,
2924                     "timeout waiting for clock stabilization\n");
2925                 return ETIMEDOUT;
2926         }
2927
2928         /* initialize EEPROM */
2929         tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
2930
2931         if ((tmp & WPI_EEPROM_VERSION) == 0) {
2932                 device_printf(sc->sc_dev, "EEPROM not found\n");
2933                 return EIO;
2934         }
2935         WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
2936
2937         return 0;
2938 }
2939
2940 static void
2941 wpi_hw_config(struct wpi_softc *sc)
2942 {
2943         uint32_t rev, hw;
2944
2945         /* voodoo from the Linux "driver".. */
2946         hw = WPI_READ(sc, WPI_HWCONFIG);
2947
2948         rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
2949         if ((rev & 0xc0) == 0x40)
2950                 hw |= WPI_HW_ALM_MB;
2951         else if (!(rev & 0x80))
2952                 hw |= WPI_HW_ALM_MM;
2953
2954         if (sc->cap == 0x80)
2955                 hw |= WPI_HW_SKU_MRC;
2956
2957         hw &= ~WPI_HW_REV_D;
2958         if ((le16toh(sc->rev) & 0xf0) == 0xd0)
2959                 hw |= WPI_HW_REV_D;
2960
2961         if (sc->type > 1)
2962                 hw |= WPI_HW_TYPE_B;
2963
2964         WPI_WRITE(sc, WPI_HWCONFIG, hw);
2965 }
2966
2967 static void
2968 wpi_rfkill_resume(struct wpi_softc *sc)
2969 {
2970         struct ifnet *ifp = sc->sc_ifp;
2971         struct ieee80211com *ic = &sc->sc_ic;
2972         int ntries;
2973
2974         /* enable firmware again */
2975         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
2976         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
2977
2978         /* wait for thermal sensors to calibrate */
2979         for (ntries = 0; ntries < 1000; ntries++) {
2980                 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
2981                         break;
2982                 DELAY(10);
2983         }
2984
2985         if (ntries == 1000) {
2986                 device_printf(sc->sc_dev,
2987                     "timeout waiting for thermal calibration\n");
2988                 WPI_UNLOCK(sc);
2989                 return;
2990         }
2991         DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
2992
2993         if (wpi_config(sc) != 0) {
2994                 device_printf(sc->sc_dev, "device config failed\n");
2995                 WPI_UNLOCK(sc);
2996                 return;
2997         }
2998
2999         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3000         ifp->if_drv_flags |= IFF_DRV_RUNNING;
3001         sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3002
3003         if (ic->ic_flags & IEEE80211_F_SCAN)
3004                 ieee80211_scan_next(ic);
3005
3006         ieee80211_beacon_miss(ic);
3007
3008         /* reset the led sequence */
3009         switch (ic->ic_state) {
3010                 case IEEE80211_S_SCAN:
3011                         wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3012                         break;
3013
3014                 case IEEE80211_S_RUN:
3015                         if (ic->ic_opmode == IEEE80211_M_MONITOR)
3016                                 wpi_set_led(sc, WPI_LED_LINK, 5, 5);
3017                         else
3018                                 wpi_set_led(sc, WPI_LED_LINK, 0, 1);
3019                         break;
3020
3021                 default:
3022                         break;  /* please compiler */
3023         }
3024
3025         callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3026 }
3027
3028 static void
3029 wpi_init(void *arg)
3030 {
3031         struct wpi_softc *sc = arg;
3032
3033         WPI_LOCK(sc);
3034         wpi_init_locked(sc, 0);
3035         WPI_UNLOCK(sc);
3036 }
3037
3038 static void
3039 wpi_init_locked(struct wpi_softc *sc, int force)
3040 {
3041         struct ieee80211com *ic = &sc->sc_ic;
3042         struct ifnet *ifp = ic->ic_ifp;
3043         uint32_t tmp;
3044         int ntries, qid;
3045
3046         wpi_stop_locked(sc);
3047         (void)wpi_reset(sc);
3048
3049         wpi_mem_lock(sc);
3050         wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3051         DELAY(20);
3052         tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3053         wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3054         wpi_mem_unlock(sc);
3055
3056         (void)wpi_power_up(sc);
3057         wpi_hw_config(sc);
3058
3059         /* init Rx ring */
3060         wpi_mem_lock(sc);
3061         WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3062         WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3063             offsetof(struct wpi_shared, next));
3064         WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3065         WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3066         wpi_mem_unlock(sc);
3067
3068         /* init Tx rings */
3069         wpi_mem_lock(sc);
3070         wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3071         wpi_mem_write(sc, WPI_MEM_RA, 1);   /* enable RA0 */
3072         wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3073         wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3074         wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3075         wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3076         wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3077
3078         WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3079         WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3080
3081         for (qid = 0; qid < 6; qid++) {
3082                 WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3083                 WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3084                 WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3085         }
3086         wpi_mem_unlock(sc);
3087
3088         /* clear "radio off" and "disable command" bits (reversed logic) */
3089         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3090         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3091         sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3092
3093         /* clear any pending interrupts */
3094         WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3095
3096         /* enable interrupts */
3097         WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3098
3099         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3100         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3101
3102         if ((wpi_load_firmware(sc)) != 0) {
3103             device_printf(sc->sc_dev,
3104                 "A problem occurred loading the firmware to the driver\n");
3105             return;
3106         }
3107
3108         /* At this point the firmware is up and running. If the hardware
3109          * RF switch is turned off thermal calibration will fail, though
3110          * the card is still happy to continue to accept commands, catch
3111          * this case and schedule a task to watch for it to be turned on.
3112          */
3113         wpi_mem_lock(sc);
3114         tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3115         wpi_mem_unlock(sc);
3116
3117         if (!(tmp & 0x1)) {
3118                 sc->flags |= WPI_FLAG_HW_RADIO_OFF;
3119                 device_printf(sc->sc_dev,"Radio Transmitter is switched off\n");
3120                 goto out;
3121         }
3122
3123         /* wait for thermal sensors to calibrate */
3124         for (ntries = 0; ntries < 1000; ntries++) {
3125                 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3126                         break;
3127                 DELAY(10);
3128         }
3129
3130         if (ntries == 1000) {
3131                 device_printf(sc->sc_dev,
3132                     "timeout waiting for thermal sensors calibration\n");
3133                 return;
3134         }
3135         DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3136
3137         if (wpi_config(sc) != 0) {
3138                 device_printf(sc->sc_dev, "device config failed\n");
3139                 return;
3140         }
3141
3142         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3143         ifp->if_drv_flags |= IFF_DRV_RUNNING;
3144 out:
3145         callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3146
3147         if (ic->ic_opmode == IEEE80211_M_MONITOR)
3148                 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
3149         else if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
3150                 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3151         return;
3152 }
3153
3154 static void
3155 wpi_stop(struct wpi_softc *sc)
3156 {
3157
3158         WPI_LOCK(sc);
3159         wpi_stop_locked(sc);
3160         WPI_UNLOCK(sc);
3161
3162 }
3163 static void
3164 wpi_stop_locked(struct wpi_softc *sc)
3165
3166 {
3167         struct ieee80211com *ic = &sc->sc_ic;
3168         struct ifnet *ifp = ic->ic_ifp;
3169         uint32_t tmp;
3170         int ac;
3171
3172         sc->sc_tx_timer = 0;
3173         sc->sc_scan_timer = 0;
3174         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3175         sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3176         callout_stop(&sc->watchdog_to);
3177         callout_stop(&sc->calib_to);
3178
3179
3180         /* disable interrupts */
3181         WPI_WRITE(sc, WPI_MASK, 0);
3182         WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3183         WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3184         WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3185
3186         /* Clear any commands left in the command buffer */
3187         memset(sc->sc_cmd, 0, sizeof(sc->sc_cmd));
3188         memset(sc->sc_cmd_arg, 0, sizeof(sc->sc_cmd_arg));
3189         sc->sc_cmd_cur = 0;
3190         sc->sc_cmd_next = 0;
3191
3192         wpi_mem_lock(sc);
3193         wpi_mem_write(sc, WPI_MEM_MODE, 0);
3194         wpi_mem_unlock(sc);
3195
3196         /* reset all Tx rings */
3197         for (ac = 0; ac < 4; ac++)
3198                 wpi_reset_tx_ring(sc, &sc->txq[ac]);
3199         wpi_reset_tx_ring(sc, &sc->cmdq);
3200
3201         /* reset Rx ring */
3202         wpi_reset_rx_ring(sc, &sc->rxq);
3203
3204         wpi_mem_lock(sc);
3205         wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3206         wpi_mem_unlock(sc);
3207
3208         DELAY(5);
3209
3210         wpi_stop_master(sc);
3211
3212         tmp = WPI_READ(sc, WPI_RESET);
3213         WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3214         sc->flags &= ~WPI_FLAG_BUSY;
3215
3216         ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
3217 }
3218
3219 static void
3220 wpi_iter_func(void *arg, struct ieee80211_node *ni)
3221 {
3222         struct wpi_softc *sc = arg;
3223         struct wpi_node *wn = (struct wpi_node *)ni;
3224
3225         ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
3226 }
3227
3228 static void
3229 wpi_newassoc(struct ieee80211_node *ni, int isnew)
3230 {
3231         struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
3232         int i;
3233
3234         ieee80211_amrr_node_init(&sc->amrr, &((struct wpi_node *)ni)->amn);
3235
3236         for (i = ni->ni_rates.rs_nrates - 1;
3237             i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
3238             i--);
3239         ni->ni_txrate = i;
3240 }
3241
3242 static void
3243 wpi_calib_timeout(void *arg)
3244 {
3245         struct wpi_softc *sc = arg;
3246         struct ieee80211com *ic = &sc->sc_ic;
3247         int temp;
3248
3249         if (ic->ic_state != IEEE80211_S_RUN)
3250                 return;
3251
3252         /* automatic rate control triggered every 500ms */
3253         if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) {
3254                 if (ic->ic_opmode == IEEE80211_M_STA)
3255                         wpi_iter_func(sc, ic->ic_bss);
3256                 else
3257                         ieee80211_iterate_nodes(&ic->ic_sta, wpi_iter_func, sc);
3258         }
3259
3260         /* update sensor data */
3261         temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
3262         DPRINTFN(WPI_DEBUG_TEMP,("Temp in calibration is: %d\n", temp));
3263 #if 0
3264         //XXX Used by OpenBSD Sensor Framework
3265         sc->sensor.value = temp + 260;
3266 #endif
3267
3268         /* automatic power calibration every 60s */
3269         if (++sc->calib_cnt >= 120) {
3270                 wpi_power_calibration(sc, temp);
3271                 sc->calib_cnt = 0;
3272         }
3273
3274         callout_reset(&sc->calib_to, hz/2, wpi_calib_timeout, sc);
3275 }
3276
3277 /*
3278  * This function is called periodically (every 60 seconds) to adjust output
3279  * power to temperature changes.
3280  */
3281 static void
3282 wpi_power_calibration(struct wpi_softc *sc, int temp)
3283 {
3284         /* sanity-check read value */
3285         if (temp < -260 || temp > 25) {
3286                 /* this can't be correct, ignore */
3287                 DPRINTFN(WPI_DEBUG_TEMP,
3288                     ("out-of-range temperature reported: %d\n", temp));
3289                 return;
3290         }
3291
3292         DPRINTFN(WPI_DEBUG_TEMP,("temperature %d->%d\n", sc->temp, temp));
3293
3294         /* adjust Tx power if need be */
3295         if (abs(temp - sc->temp) <= 6)
3296                 return;
3297
3298         sc->temp = temp;
3299
3300         if (wpi_set_txpower(sc, sc->sc_ic.ic_bss->ni_chan,1) != 0) {
3301                 /* just warn, too bad for the automatic calibration... */
3302                 device_printf(sc->sc_dev,"could not adjust Tx power\n");
3303         }
3304 }
3305
3306 /**
3307  * Read the eeprom to find out what channels are valid for the given
3308  * band and update net80211 with what we find.
3309  */
3310 static void
3311 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
3312 {
3313         struct ieee80211com *ic = &sc->sc_ic;
3314         const struct wpi_chan_band *band = &wpi_bands[n];
3315         struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
3316         int chan, i, offset, passive;
3317
3318         wpi_read_prom_data(sc, band->addr, channels,
3319             band->nchan * sizeof (struct wpi_eeprom_chan));
3320
3321         for (i = 0; i < band->nchan; i++) {
3322                 if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
3323                         DPRINTFN(WPI_DEBUG_HW,
3324                             ("Channel Not Valid: %d, band %d\n",
3325                              band->chan[i],n));
3326                         continue;
3327                 }
3328
3329                 passive = 0;
3330                 chan = band->chan[i];
3331                 offset = ic->ic_nchans;
3332
3333                 /* is active scan allowed on this channel? */
3334                 if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
3335                         passive = IEEE80211_CHAN_PASSIVE;
3336                 }
3337
3338                 if (n == 0) {   /* 2GHz band */
3339                         ic->ic_channels[offset].ic_ieee = chan;
3340                         ic->ic_channels[offset].ic_freq =
3341                         ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
3342                         ic->ic_channels[offset].ic_flags = IEEE80211_CHAN_B | passive;
3343                         offset++;
3344                         ic->ic_channels[offset].ic_ieee = chan;
3345                         ic->ic_channels[offset].ic_freq =
3346                         ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
3347                         ic->ic_channels[offset].ic_flags = IEEE80211_CHAN_G | passive;
3348                         offset++;
3349
3350                 } else {        /* 5GHz band */
3351                         /*
3352                          * Some 3945ABG adapters support channels 7, 8, 11
3353                          * and 12 in the 2GHz *and* 5GHz bands.
3354                          * Because of limitations in our net80211(9) stack,
3355                          * we can't support these channels in 5GHz band.
3356                          * XXX not true; just need to map to proper frequency
3357                          */
3358                         if (chan <= 14)
3359                                 continue;
3360
3361                         ic->ic_channels[offset].ic_ieee = chan;
3362                         ic->ic_channels[offset].ic_freq =
3363                         ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
3364                         ic->ic_channels[offset].ic_flags = IEEE80211_CHAN_A | passive;
3365                         offset++;
3366                 }
3367
3368                 /* save maximum allowed power for this channel */
3369                 sc->maxpwr[chan] = channels[i].maxpwr;
3370
3371                 ic->ic_nchans = offset;
3372
3373 #if 0
3374                 // XXX We can probably use this an get rid of maxpwr - ben 20070617
3375                 ic->ic_channels[chan].ic_maxpower = channels[i].maxpwr;
3376                 //ic->ic_channels[chan].ic_minpower...
3377                 //ic->ic_channels[chan].ic_maxregtxpower...
3378 #endif
3379
3380                 DPRINTF(("adding chan %d flags=0x%x maxpwr=%d, offset %d\n",
3381                             chan, channels[i].flags, sc->maxpwr[chan], offset));
3382         }
3383 }
3384
3385 static void
3386 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
3387 {
3388         struct wpi_power_group *group = &sc->groups[n];
3389         struct wpi_eeprom_group rgroup;
3390         int i;
3391
3392         wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
3393             sizeof rgroup);
3394
3395         /* save power group information */
3396         group->chan   = rgroup.chan;
3397         group->maxpwr = rgroup.maxpwr;
3398         /* temperature at which the samples were taken */
3399         group->temp   = (int16_t)le16toh(rgroup.temp);
3400
3401         DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
3402                     group->chan, group->maxpwr, group->temp));
3403
3404         for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
3405                 group->samples[i].index = rgroup.samples[i].index;
3406                 group->samples[i].power = rgroup.samples[i].power;
3407
3408                 DPRINTF(("\tsample %d: index=%d power=%d\n", i,
3409                             group->samples[i].index, group->samples[i].power));
3410         }
3411 }
3412
3413 /*
3414  * Update Tx power to match what is defined for channel `c'.
3415  */
3416 static int
3417 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
3418 {
3419         struct ieee80211com *ic = &sc->sc_ic;
3420         struct wpi_power_group *group;
3421         struct wpi_cmd_txpower txpower;
3422         u_int chan;
3423         int i;
3424
3425         /* get channel number */
3426         chan = ieee80211_chan2ieee(ic, c);
3427
3428         /* find the power group to which this channel belongs */
3429         if (IEEE80211_IS_CHAN_5GHZ(c)) {
3430                 for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3431                         if (chan <= group->chan)
3432                                 break;
3433         } else
3434                 group = &sc->groups[0];
3435
3436         memset(&txpower, 0, sizeof txpower);
3437         txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
3438         txpower.channel = htole16(chan);
3439
3440         /* set Tx power for all OFDM and CCK rates */
3441         for (i = 0; i <= 11 ; i++) {
3442                 /* retrieve Tx power for this channel/rate combination */
3443                 int idx = wpi_get_power_index(sc, group, c,
3444                     wpi_ridx_to_rate[i]);
3445
3446                 txpower.rates[i].rate = wpi_ridx_to_plcp[i];
3447
3448                 if (IEEE80211_IS_CHAN_5GHZ(c)) {
3449                         txpower.rates[i].gain_radio = wpi_rf_gain_5ghz[idx];
3450                         txpower.rates[i].gain_dsp = wpi_dsp_gain_5ghz[idx];
3451                 } else {
3452                         txpower.rates[i].gain_radio = wpi_rf_gain_2ghz[idx];
3453                         txpower.rates[i].gain_dsp = wpi_dsp_gain_2ghz[idx];
3454                 }
3455                 DPRINTFN(WPI_DEBUG_TEMP,("chan %d/rate %d: power index %d\n",
3456                             chan, wpi_ridx_to_rate[i], idx));
3457         }
3458
3459         return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
3460 }
3461
3462 /*
3463  * Determine Tx power index for a given channel/rate combination.
3464  * This takes into account the regulatory information from EEPROM and the
3465  * current temperature.
3466  */
3467 static int
3468 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3469     struct ieee80211_channel *c, int rate)
3470 {
3471 /* fixed-point arithmetic division using a n-bit fractional part */
3472 #define fdivround(a, b, n)      \
3473         ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3474
3475 /* linear interpolation */
3476 #define interpolate(x, x1, y1, x2, y2, n)       \
3477         ((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3478
3479         struct ieee80211com *ic = &sc->sc_ic;
3480         struct wpi_power_sample *sample;
3481         int pwr, idx;
3482         u_int chan;
3483
3484         /* get channel number */
3485         chan = ieee80211_chan2ieee(ic, c);
3486
3487         /* default power is group's maximum power - 3dB */
3488         pwr = group->maxpwr / 2;
3489
3490         /* decrease power for highest OFDM rates to reduce distortion */
3491         switch (rate) {
3492                 case 72:        /* 36Mb/s */
3493                         pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
3494                         break;
3495                 case 96:        /* 48Mb/s */
3496                         pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
3497                         break;
3498                 case 108:       /* 54Mb/s */
3499                         pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
3500                         break;
3501         }
3502
3503         /* never exceed channel's maximum allowed Tx power */
3504         pwr = min(pwr, sc->maxpwr[chan]);
3505
3506         /* retrieve power index into gain tables from samples */
3507         for (sample = group->samples; sample < &group->samples[3]; sample++)
3508                 if (pwr > sample[1].power)
3509                         break;
3510         /* fixed-point linear interpolation using a 19-bit fractional part */
3511         idx = interpolate(pwr, sample[0].power, sample[0].index,
3512             sample[1].power, sample[1].index, 19);
3513
3514         /*
3515          *  Adjust power index based on current temperature
3516          *      - if colder than factory-calibrated: decreate output power
3517          *      - if warmer than factory-calibrated: increase output power
3518          */
3519         idx -= (sc->temp - group->temp) * 11 / 100;
3520
3521         /* decrease power for CCK rates (-5dB) */
3522         if (!WPI_RATE_IS_OFDM(rate))
3523                 idx += 10;
3524
3525         /* keep power index in a valid range */
3526         if (idx < 0)
3527                 return 0;
3528         if (idx > WPI_MAX_PWR_INDEX)
3529                 return WPI_MAX_PWR_INDEX;
3530         return idx;
3531
3532 #undef interpolate
3533 #undef fdivround
3534 }
3535
3536 /**
3537  * Called by net80211 framework to indicate that a scan
3538  * is starting. This function doesn't actually do the scan,
3539  * wpi_scan_curchan starts things off. This function is more
3540  * of an early warning from the framework we should get ready
3541  * for the scan.
3542  */
3543 static void
3544 wpi_scan_start(struct ieee80211com *ic)
3545 {
3546         struct ifnet *ifp = ic->ic_ifp;
3547         struct wpi_softc *sc = ifp->if_softc;
3548
3549         wpi_queue_cmd(sc, WPI_SCAN_START, 0, WPI_QUEUE_NORMAL);
3550 }
3551
3552 /**
3553  * Called by the net80211 framework, indicates that the
3554  * scan has ended. If there is a scan in progress on the card
3555  * then it should be aborted.
3556  */
3557 static void
3558 wpi_scan_end(struct ieee80211com *ic)
3559 {
3560         struct ifnet *ifp = ic->ic_ifp;
3561         struct wpi_softc *sc = ifp->if_softc;
3562
3563         wpi_queue_cmd(sc, WPI_SCAN_STOP, 0, WPI_QUEUE_NORMAL);
3564 }
3565
3566 /**
3567  * Called by the net80211 framework to indicate to the driver
3568  * that the channel should be changed
3569  */
3570 static void
3571 wpi_set_channel(struct ieee80211com *ic)
3572 {
3573         struct ifnet *ifp = ic->ic_ifp;
3574         struct wpi_softc *sc = ifp->if_softc;
3575
3576         /*
3577          * Only need to set the channel in Monitor mode. AP scanning and auth
3578          * are already taken care of by their respective firmware commands.
3579          */
3580         if (ic->ic_opmode == IEEE80211_M_MONITOR)
3581                 wpi_queue_cmd(sc, WPI_SET_CHAN, 0, WPI_QUEUE_NORMAL);
3582 }
3583
3584 /**
3585  * Called by net80211 to indicate that we need to scan the current
3586  * channel. The channel is previously be set via the wpi_set_channel
3587  * callback.
3588  */
3589 static void
3590 wpi_scan_curchan(struct ieee80211com *ic, unsigned long maxdwell)
3591 {
3592         struct ifnet *ifp = ic->ic_ifp;
3593         struct wpi_softc *sc = ifp->if_softc;
3594
3595         sc->maxdwell = maxdwell;
3596
3597         wpi_queue_cmd(sc, WPI_SCAN_CURCHAN, 0, WPI_QUEUE_NORMAL);
3598 }
3599
3600 /**
3601  * Called by the net80211 framework to indicate
3602  * the minimum dwell time has been met, terminate the scan.
3603  * We don't actually terminate the scan as the firmware will notify
3604  * us when it's finished and we have no way to interrupt it.
3605  */
3606 static void
3607 wpi_scan_mindwell(struct ieee80211com *ic)
3608 {
3609         /* NB: don't try to abort scan; wait for firmware to finish */
3610 }
3611
3612 /**
3613  * The ops function is called to perform some actual work.
3614  * because we can't sleep from any of the ic callbacks, we queue an
3615  * op task with wpi_queue_cmd and have the taskqueue process that task.
3616  * The task that gets cued is a op task, which ends up calling this function.
3617  */
3618 static void
3619 wpi_ops(void *arg0, int pending)
3620 {
3621         struct wpi_softc *sc = arg0;
3622         struct ieee80211com *ic = &sc->sc_ic;
3623         int cmd, arg, error;
3624
3625 again:
3626         WPI_CMD_LOCK(sc);
3627         cmd = sc->sc_cmd[sc->sc_cmd_cur];
3628         arg = sc->sc_cmd_arg[sc->sc_cmd_cur];
3629
3630         if (cmd == 0) {
3631                 /* No more commands to process */
3632                 WPI_CMD_UNLOCK(sc);
3633                 return;
3634         }
3635         sc->sc_cmd[sc->sc_cmd_cur] = 0; /* free the slot */
3636         sc->sc_cmd_arg[sc->sc_cmd_cur] = 0; /* free the slot */
3637         sc->sc_cmd_cur = (sc->sc_cmd_cur + 1) % WPI_CMD_MAXOPS;
3638         WPI_CMD_UNLOCK(sc);
3639         WPI_LOCK(sc);
3640
3641         DPRINTFN(WPI_DEBUG_OPS,("wpi_ops: command: %d\n", cmd));
3642
3643         switch (cmd) {
3644         case WPI_RESTART:
3645                 wpi_init_locked(sc, 0);
3646                 WPI_UNLOCK(sc);
3647                 return;
3648
3649         case WPI_RF_RESTART:
3650                 wpi_rfkill_resume(sc);
3651                 WPI_UNLOCK(sc);
3652                 return;
3653         }
3654
3655         if (!(sc->sc_ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3656                 WPI_UNLOCK(sc);
3657                 return;
3658         }
3659
3660         switch (cmd) {
3661         case WPI_SCAN_START:
3662                 sc->flags |= WPI_FLAG_SCANNING;
3663                 break;
3664
3665         case WPI_SCAN_STOP:
3666                 sc->flags &= ~WPI_FLAG_SCANNING;
3667                 break;
3668
3669         case WPI_SCAN_CURCHAN:
3670                 if (wpi_scan(sc))
3671                         ieee80211_cancel_scan(ic);
3672                 break;
3673
3674         case WPI_SET_CHAN:
3675                 error = wpi_config(sc);
3676                 if (error != 0)
3677                         device_printf(sc->sc_dev,
3678                             "error %d settting channel\n", error);
3679                 break;
3680
3681         case WPI_AUTH:
3682                 /* The node must be registered in the firmware before auth */
3683                 error = wpi_auth(sc);
3684                 if (error != 0) {
3685                         device_printf(sc->sc_dev,
3686                             "%s: could not move to auth state, error %d\n",
3687                             __func__, error);
3688                         WPI_UNLOCK(sc);
3689                         return;
3690                 }
3691                 /* Send the auth frame now */
3692                 sc->sc_newstate(ic, IEEE80211_S_AUTH, arg);
3693                 break;
3694
3695         case WPI_RUN:
3696                 error = wpi_run(sc);
3697                 if (error != 0) {
3698                         device_printf(sc->sc_dev,
3699                             "%s: could not move to run state, error %d\n",
3700                             __func__, error);
3701                         WPI_UNLOCK(sc);
3702                         return;
3703                 }
3704                 sc->sc_newstate(ic, IEEE80211_S_RUN, arg);
3705                 break;
3706         }
3707         WPI_UNLOCK(sc);
3708
3709         /* Take another pass */
3710         goto again;
3711 }
3712
3713 /**
3714  * queue a command for later execution in a different thread.
3715  * This is needed as the net80211 callbacks do not allow
3716  * sleeping, since we need to sleep to confirm commands have
3717  * been processed by the firmware, we must defer execution to
3718  * a sleep enabled thread.
3719  */
3720 static int
3721 wpi_queue_cmd(struct wpi_softc *sc, int cmd, int arg, int flush)
3722 {
3723         WPI_CMD_LOCK(sc);
3724
3725         if (flush) {
3726                 memset(sc->sc_cmd, 0, sizeof (sc->sc_cmd));
3727                 memset(sc->sc_cmd_arg, 0, sizeof (sc->sc_cmd_arg));
3728                 sc->sc_cmd_cur = 0;
3729                 sc->sc_cmd_next = 0;
3730         }
3731
3732         if (sc->sc_cmd[sc->sc_cmd_next] != 0) {
3733                 WPI_CMD_UNLOCK(sc);
3734                 DPRINTF(("%s: command %d dropped\n", __func__, cmd));
3735                 return (EBUSY);
3736         }
3737
3738         sc->sc_cmd[sc->sc_cmd_next] = cmd;
3739         sc->sc_cmd_arg[sc->sc_cmd_next] = arg;
3740         sc->sc_cmd_next = (sc->sc_cmd_next + 1) % WPI_CMD_MAXOPS;
3741
3742         taskqueue_enqueue(sc->sc_tq, &sc->sc_opstask);
3743
3744         WPI_CMD_UNLOCK(sc);
3745
3746         return 0;
3747 }
3748
3749 /*
3750  * Allocate DMA-safe memory for firmware transfer.
3751  */
3752 static int
3753 wpi_alloc_fwmem(struct wpi_softc *sc)
3754 {
3755         /* allocate enough contiguous space to store text and data */
3756         return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
3757             WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 1,
3758             BUS_DMA_NOWAIT);
3759 }
3760
3761 static void
3762 wpi_free_fwmem(struct wpi_softc *sc)
3763 {
3764         wpi_dma_contig_free(&sc->fw_dma);
3765 }
3766
3767 /**
3768  * Called every second, wpi_watchdog used by the watch dog timer
3769  * to check that the card is still alive
3770  */
3771 static void
3772 wpi_watchdog(void *arg)
3773 {
3774         struct wpi_softc *sc = arg;
3775         struct ifnet *ifp = sc->sc_ifp;
3776         uint32_t tmp;
3777
3778         DPRINTFN(WPI_DEBUG_WATCHDOG,("Watchdog: tick\n"));
3779
3780         if (sc->flags & WPI_FLAG_HW_RADIO_OFF) {
3781                 /* No need to lock firmware memory */
3782                 tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3783
3784                 if ((tmp & 0x1) == 0) {
3785                         /* Radio kill switch is still off */
3786                         callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3787                         return;
3788                 }
3789
3790                 device_printf(sc->sc_dev, "Hardware Switch Enabled\n");
3791                 wpi_queue_cmd(sc, WPI_RF_RESTART, 0, WPI_QUEUE_CLEAR);
3792                 return;
3793         }
3794
3795         if (sc->sc_tx_timer > 0) {
3796                 if (--sc->sc_tx_timer == 0) {
3797                         device_printf(sc->sc_dev,"device timeout\n");
3798                         ifp->if_oerrors++;
3799                         wpi_queue_cmd(sc, WPI_RESTART, 0, WPI_QUEUE_CLEAR);
3800                 }
3801         }
3802         if (sc->sc_scan_timer > 0) {
3803                 if (--sc->sc_scan_timer == 0) {
3804                         device_printf(sc->sc_dev,"scan timeout\n");
3805                         ieee80211_cancel_scan(&sc->sc_ic);
3806                         wpi_queue_cmd(sc, WPI_RESTART, 0, WPI_QUEUE_CLEAR);
3807                 }
3808         }
3809
3810         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3811                 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3812 }
3813
3814 #ifdef WPI_DEBUG
3815 static const char *wpi_cmd_str(int cmd)
3816 {
3817         switch(cmd) {
3818                 case WPI_DISABLE_CMD:   return "WPI_DISABLE_CMD";
3819                 case WPI_CMD_CONFIGURE: return "WPI_CMD_CONFIGURE";
3820                 case WPI_CMD_ASSOCIATE: return "WPI_CMD_ASSOCIATE";
3821                 case WPI_CMD_SET_WME:   return "WPI_CMD_SET_WME";
3822                 case WPI_CMD_TSF:       return "WPI_CMD_TSF";
3823                 case WPI_CMD_ADD_NODE:  return "WPI_CMD_ADD_NODE";
3824                 case WPI_CMD_TX_DATA:   return "WPI_CMD_TX_DATA";
3825                 case WPI_CMD_MRR_SETUP: return "WPI_CMD_MRR_SETUP";
3826                 case WPI_CMD_SET_LED:   return "WPI_CMD_SET_LED";
3827                 case WPI_CMD_SET_POWER_MODE: return "WPI_CMD_SET_POWER_MODE";
3828                 case WPI_CMD_SCAN:      return "WPI_CMD_SCAN";
3829                 case WPI_CMD_SET_BEACON:return "WPI_CMD_SET_BEACON";
3830                 case WPI_CMD_TXPOWER:   return "WPI_CMD_TXPOWER";
3831                 case WPI_CMD_BLUETOOTH: return "WPI_CMD_BLUETOOTH";
3832
3833                 default:
3834                 KASSERT(1, ("Unknown Command: %d\n", cmd));
3835                 return "UNKNOWN CMD"; // Make the compiler happy
3836         }
3837 }
3838 #endif
3839
3840 MODULE_DEPEND(wpi, pci,  1, 1, 1);
3841 MODULE_DEPEND(wpi, wlan, 1, 1, 1);
3842 MODULE_DEPEND(wpi, firmware, 1, 1, 1);
3843 MODULE_DEPEND(wpi, wlan_amrr, 1, 1, 1);