]> CyberLeo.Net >> Repos - FreeBSD/releng/7.2.git/blob - sys/geom/raid3/g_raid3.c
Create releng/7.2 from stable/7 in preparation for 7.2-RELEASE.
[FreeBSD/releng/7.2.git] / sys / geom / raid3 / g_raid3.c
1 /*-
2  * Copyright (c) 2004-2006 Pawel Jakub Dawidek <pjd@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/kernel.h>
33 #include <sys/module.h>
34 #include <sys/limits.h>
35 #include <sys/lock.h>
36 #include <sys/mutex.h>
37 #include <sys/bio.h>
38 #include <sys/sysctl.h>
39 #include <sys/malloc.h>
40 #include <sys/eventhandler.h>
41 #include <vm/uma.h>
42 #include <geom/geom.h>
43 #include <sys/proc.h>
44 #include <sys/kthread.h>
45 #include <sys/sched.h>
46 #include <geom/raid3/g_raid3.h>
47
48
49 static MALLOC_DEFINE(M_RAID3, "raid3_data", "GEOM_RAID3 Data");
50
51 SYSCTL_DECL(_kern_geom);
52 SYSCTL_NODE(_kern_geom, OID_AUTO, raid3, CTLFLAG_RW, 0, "GEOM_RAID3 stuff");
53 u_int g_raid3_debug = 0;
54 TUNABLE_INT("kern.geom.raid3.debug", &g_raid3_debug);
55 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, debug, CTLFLAG_RW, &g_raid3_debug, 0,
56     "Debug level");
57 static u_int g_raid3_timeout = 4;
58 TUNABLE_INT("kern.geom.raid3.timeout", &g_raid3_timeout);
59 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, timeout, CTLFLAG_RW, &g_raid3_timeout,
60     0, "Time to wait on all raid3 components");
61 static u_int g_raid3_idletime = 5;
62 TUNABLE_INT("kern.geom.raid3.idletime", &g_raid3_idletime);
63 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, idletime, CTLFLAG_RW,
64     &g_raid3_idletime, 0, "Mark components as clean when idling");
65 static u_int g_raid3_disconnect_on_failure = 1;
66 TUNABLE_INT("kern.geom.raid3.disconnect_on_failure",
67     &g_raid3_disconnect_on_failure);
68 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, disconnect_on_failure, CTLFLAG_RW,
69     &g_raid3_disconnect_on_failure, 0, "Disconnect component on I/O failure.");
70 static u_int g_raid3_syncreqs = 2;
71 TUNABLE_INT("kern.geom.raid3.sync_requests", &g_raid3_syncreqs);
72 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, sync_requests, CTLFLAG_RDTUN,
73     &g_raid3_syncreqs, 0, "Parallel synchronization I/O requests.");
74 static u_int g_raid3_use_malloc = 0;
75 TUNABLE_INT("kern.geom.raid3.use_malloc", &g_raid3_use_malloc);
76 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, use_malloc, CTLFLAG_RDTUN,
77     &g_raid3_use_malloc, 0, "Use malloc(9) instead of uma(9).");
78
79 static u_int g_raid3_n64k = 50;
80 TUNABLE_INT("kern.geom.raid3.n64k", &g_raid3_n64k);
81 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, n64k, CTLFLAG_RD, &g_raid3_n64k, 0,
82     "Maximum number of 64kB allocations");
83 static u_int g_raid3_n16k = 200;
84 TUNABLE_INT("kern.geom.raid3.n16k", &g_raid3_n16k);
85 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, n16k, CTLFLAG_RD, &g_raid3_n16k, 0,
86     "Maximum number of 16kB allocations");
87 static u_int g_raid3_n4k = 1200;
88 TUNABLE_INT("kern.geom.raid3.n4k", &g_raid3_n4k);
89 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, n4k, CTLFLAG_RD, &g_raid3_n4k, 0,
90     "Maximum number of 4kB allocations");
91
92 SYSCTL_NODE(_kern_geom_raid3, OID_AUTO, stat, CTLFLAG_RW, 0,
93     "GEOM_RAID3 statistics");
94 static u_int g_raid3_parity_mismatch = 0;
95 SYSCTL_UINT(_kern_geom_raid3_stat, OID_AUTO, parity_mismatch, CTLFLAG_RD,
96     &g_raid3_parity_mismatch, 0, "Number of failures in VERIFY mode");
97
98 #define MSLEEP(ident, mtx, priority, wmesg, timeout)    do {            \
99         G_RAID3_DEBUG(4, "%s: Sleeping %p.", __func__, (ident));        \
100         msleep((ident), (mtx), (priority), (wmesg), (timeout));         \
101         G_RAID3_DEBUG(4, "%s: Woken up %p.", __func__, (ident));        \
102 } while (0)
103
104 static eventhandler_tag g_raid3_pre_sync = NULL;
105
106 static int g_raid3_destroy_geom(struct gctl_req *req, struct g_class *mp,
107     struct g_geom *gp);
108 static g_taste_t g_raid3_taste;
109 static void g_raid3_init(struct g_class *mp);
110 static void g_raid3_fini(struct g_class *mp);
111
112 struct g_class g_raid3_class = {
113         .name = G_RAID3_CLASS_NAME,
114         .version = G_VERSION,
115         .ctlreq = g_raid3_config,
116         .taste = g_raid3_taste,
117         .destroy_geom = g_raid3_destroy_geom,
118         .init = g_raid3_init,
119         .fini = g_raid3_fini
120 };
121
122
123 static void g_raid3_destroy_provider(struct g_raid3_softc *sc);
124 static int g_raid3_update_disk(struct g_raid3_disk *disk, u_int state);
125 static void g_raid3_update_device(struct g_raid3_softc *sc, boolean_t force);
126 static void g_raid3_dumpconf(struct sbuf *sb, const char *indent,
127     struct g_geom *gp, struct g_consumer *cp, struct g_provider *pp);
128 static void g_raid3_sync_stop(struct g_raid3_softc *sc, int type);
129 static int g_raid3_register_request(struct bio *pbp);
130 static void g_raid3_sync_release(struct g_raid3_softc *sc);
131
132
133 static const char *
134 g_raid3_disk_state2str(int state)
135 {
136
137         switch (state) {
138         case G_RAID3_DISK_STATE_NODISK:
139                 return ("NODISK");
140         case G_RAID3_DISK_STATE_NONE:
141                 return ("NONE");
142         case G_RAID3_DISK_STATE_NEW:
143                 return ("NEW");
144         case G_RAID3_DISK_STATE_ACTIVE:
145                 return ("ACTIVE");
146         case G_RAID3_DISK_STATE_STALE:
147                 return ("STALE");
148         case G_RAID3_DISK_STATE_SYNCHRONIZING:
149                 return ("SYNCHRONIZING");
150         case G_RAID3_DISK_STATE_DISCONNECTED:
151                 return ("DISCONNECTED");
152         default:
153                 return ("INVALID");
154         }
155 }
156
157 static const char *
158 g_raid3_device_state2str(int state)
159 {
160
161         switch (state) {
162         case G_RAID3_DEVICE_STATE_STARTING:
163                 return ("STARTING");
164         case G_RAID3_DEVICE_STATE_DEGRADED:
165                 return ("DEGRADED");
166         case G_RAID3_DEVICE_STATE_COMPLETE:
167                 return ("COMPLETE");
168         default:
169                 return ("INVALID");
170         }
171 }
172
173 const char *
174 g_raid3_get_diskname(struct g_raid3_disk *disk)
175 {
176
177         if (disk->d_consumer == NULL || disk->d_consumer->provider == NULL)
178                 return ("[unknown]");
179         return (disk->d_name);
180 }
181
182 static void *
183 g_raid3_alloc(struct g_raid3_softc *sc, size_t size, int flags)
184 {
185         void *ptr;
186
187         if (g_raid3_use_malloc)
188                 ptr = malloc(size, M_RAID3, flags);
189         else {
190                 ptr = uma_zalloc_arg(sc->sc_zones[g_raid3_zone(size)].sz_zone,
191                    &sc->sc_zones[g_raid3_zone(size)], flags);
192                 sc->sc_zones[g_raid3_zone(size)].sz_requested++;
193                 if (ptr == NULL)
194                         sc->sc_zones[g_raid3_zone(size)].sz_failed++;
195         }
196         return (ptr);
197 }
198
199 static void
200 g_raid3_free(struct g_raid3_softc *sc, void *ptr, size_t size)
201 {
202
203         if (g_raid3_use_malloc)
204                 free(ptr, M_RAID3);
205         else {
206                 uma_zfree_arg(sc->sc_zones[g_raid3_zone(size)].sz_zone,
207                     ptr, &sc->sc_zones[g_raid3_zone(size)]);
208         }
209 }
210
211 static int
212 g_raid3_uma_ctor(void *mem, int size, void *arg, int flags)
213 {
214         struct g_raid3_zone *sz = arg;
215
216         if (sz->sz_max > 0 && sz->sz_inuse == sz->sz_max)
217                 return (ENOMEM);
218         sz->sz_inuse++;
219         return (0);
220 }
221
222 static void
223 g_raid3_uma_dtor(void *mem, int size, void *arg)
224 {
225         struct g_raid3_zone *sz = arg;
226
227         sz->sz_inuse--;
228 }
229
230 #define g_raid3_xor(src1, src2, dst, size)                              \
231         _g_raid3_xor((uint64_t *)(src1), (uint64_t *)(src2),            \
232             (uint64_t *)(dst), (size_t)size)
233 static void
234 _g_raid3_xor(uint64_t *src1, uint64_t *src2, uint64_t *dst, size_t size)
235 {
236
237         KASSERT((size % 128) == 0, ("Invalid size: %zu.", size));
238         for (; size > 0; size -= 128) {
239                 *dst++ = (*src1++) ^ (*src2++);
240                 *dst++ = (*src1++) ^ (*src2++);
241                 *dst++ = (*src1++) ^ (*src2++);
242                 *dst++ = (*src1++) ^ (*src2++);
243                 *dst++ = (*src1++) ^ (*src2++);
244                 *dst++ = (*src1++) ^ (*src2++);
245                 *dst++ = (*src1++) ^ (*src2++);
246                 *dst++ = (*src1++) ^ (*src2++);
247                 *dst++ = (*src1++) ^ (*src2++);
248                 *dst++ = (*src1++) ^ (*src2++);
249                 *dst++ = (*src1++) ^ (*src2++);
250                 *dst++ = (*src1++) ^ (*src2++);
251                 *dst++ = (*src1++) ^ (*src2++);
252                 *dst++ = (*src1++) ^ (*src2++);
253                 *dst++ = (*src1++) ^ (*src2++);
254                 *dst++ = (*src1++) ^ (*src2++);
255         }
256 }
257
258 static int
259 g_raid3_is_zero(struct bio *bp)
260 {
261         static const uint64_t zeros[] = {
262             0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
263         };
264         u_char *addr;
265         ssize_t size;
266
267         size = bp->bio_length;
268         addr = (u_char *)bp->bio_data;
269         for (; size > 0; size -= sizeof(zeros), addr += sizeof(zeros)) {
270                 if (bcmp(addr, zeros, sizeof(zeros)) != 0)
271                         return (0);
272         }
273         return (1);
274 }
275
276 /*
277  * --- Events handling functions ---
278  * Events in geom_raid3 are used to maintain disks and device status
279  * from one thread to simplify locking.
280  */
281 static void
282 g_raid3_event_free(struct g_raid3_event *ep)
283 {
284
285         free(ep, M_RAID3);
286 }
287
288 int
289 g_raid3_event_send(void *arg, int state, int flags)
290 {
291         struct g_raid3_softc *sc;
292         struct g_raid3_disk *disk;
293         struct g_raid3_event *ep;
294         int error;
295
296         ep = malloc(sizeof(*ep), M_RAID3, M_WAITOK);
297         G_RAID3_DEBUG(4, "%s: Sending event %p.", __func__, ep);
298         if ((flags & G_RAID3_EVENT_DEVICE) != 0) {
299                 disk = NULL;
300                 sc = arg;
301         } else {
302                 disk = arg;
303                 sc = disk->d_softc;
304         }
305         ep->e_disk = disk;
306         ep->e_state = state;
307         ep->e_flags = flags;
308         ep->e_error = 0;
309         mtx_lock(&sc->sc_events_mtx);
310         TAILQ_INSERT_TAIL(&sc->sc_events, ep, e_next);
311         mtx_unlock(&sc->sc_events_mtx);
312         G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, sc);
313         mtx_lock(&sc->sc_queue_mtx);
314         wakeup(sc);
315         wakeup(&sc->sc_queue);
316         mtx_unlock(&sc->sc_queue_mtx);
317         if ((flags & G_RAID3_EVENT_DONTWAIT) != 0)
318                 return (0);
319         sx_assert(&sc->sc_lock, SX_XLOCKED);
320         G_RAID3_DEBUG(4, "%s: Sleeping %p.", __func__, ep);
321         sx_xunlock(&sc->sc_lock);
322         while ((ep->e_flags & G_RAID3_EVENT_DONE) == 0) {
323                 mtx_lock(&sc->sc_events_mtx);
324                 MSLEEP(ep, &sc->sc_events_mtx, PRIBIO | PDROP, "r3:event",
325                     hz * 5);
326         }
327         error = ep->e_error;
328         g_raid3_event_free(ep);
329         sx_xlock(&sc->sc_lock);
330         return (error);
331 }
332
333 static struct g_raid3_event *
334 g_raid3_event_get(struct g_raid3_softc *sc)
335 {
336         struct g_raid3_event *ep;
337
338         mtx_lock(&sc->sc_events_mtx);
339         ep = TAILQ_FIRST(&sc->sc_events);
340         mtx_unlock(&sc->sc_events_mtx);
341         return (ep);
342 }
343
344 static void
345 g_raid3_event_remove(struct g_raid3_softc *sc, struct g_raid3_event *ep)
346 {
347
348         mtx_lock(&sc->sc_events_mtx);
349         TAILQ_REMOVE(&sc->sc_events, ep, e_next);
350         mtx_unlock(&sc->sc_events_mtx);
351 }
352
353 static void
354 g_raid3_event_cancel(struct g_raid3_disk *disk)
355 {
356         struct g_raid3_softc *sc;
357         struct g_raid3_event *ep, *tmpep;
358
359         sc = disk->d_softc;
360         sx_assert(&sc->sc_lock, SX_XLOCKED);
361
362         mtx_lock(&sc->sc_events_mtx);
363         TAILQ_FOREACH_SAFE(ep, &sc->sc_events, e_next, tmpep) {
364                 if ((ep->e_flags & G_RAID3_EVENT_DEVICE) != 0)
365                         continue;
366                 if (ep->e_disk != disk)
367                         continue;
368                 TAILQ_REMOVE(&sc->sc_events, ep, e_next);
369                 if ((ep->e_flags & G_RAID3_EVENT_DONTWAIT) != 0)
370                         g_raid3_event_free(ep);
371                 else {
372                         ep->e_error = ECANCELED;
373                         wakeup(ep);
374                 }
375         }
376         mtx_unlock(&sc->sc_events_mtx);
377 }
378
379 /*
380  * Return the number of disks in the given state.
381  * If state is equal to -1, count all connected disks.
382  */
383 u_int
384 g_raid3_ndisks(struct g_raid3_softc *sc, int state)
385 {
386         struct g_raid3_disk *disk;
387         u_int n, ndisks;
388
389         sx_assert(&sc->sc_lock, SX_LOCKED);
390
391         for (n = ndisks = 0; n < sc->sc_ndisks; n++) {
392                 disk = &sc->sc_disks[n];
393                 if (disk->d_state == G_RAID3_DISK_STATE_NODISK)
394                         continue;
395                 if (state == -1 || disk->d_state == state)
396                         ndisks++;
397         }
398         return (ndisks);
399 }
400
401 static u_int
402 g_raid3_nrequests(struct g_raid3_softc *sc, struct g_consumer *cp)
403 {
404         struct bio *bp;
405         u_int nreqs = 0;
406
407         mtx_lock(&sc->sc_queue_mtx);
408         TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) {
409                 if (bp->bio_from == cp)
410                         nreqs++;
411         }
412         mtx_unlock(&sc->sc_queue_mtx);
413         return (nreqs);
414 }
415
416 static int
417 g_raid3_is_busy(struct g_raid3_softc *sc, struct g_consumer *cp)
418 {
419
420         if (cp->index > 0) {
421                 G_RAID3_DEBUG(2,
422                     "I/O requests for %s exist, can't destroy it now.",
423                     cp->provider->name);
424                 return (1);
425         }
426         if (g_raid3_nrequests(sc, cp) > 0) {
427                 G_RAID3_DEBUG(2,
428                     "I/O requests for %s in queue, can't destroy it now.",
429                     cp->provider->name);
430                 return (1);
431         }
432         return (0);
433 }
434
435 static void
436 g_raid3_destroy_consumer(void *arg, int flags __unused)
437 {
438         struct g_consumer *cp;
439
440         g_topology_assert();
441
442         cp = arg;
443         G_RAID3_DEBUG(1, "Consumer %s destroyed.", cp->provider->name);
444         g_detach(cp);
445         g_destroy_consumer(cp);
446 }
447
448 static void
449 g_raid3_kill_consumer(struct g_raid3_softc *sc, struct g_consumer *cp)
450 {
451         struct g_provider *pp;
452         int retaste_wait;
453
454         g_topology_assert();
455
456         cp->private = NULL;
457         if (g_raid3_is_busy(sc, cp))
458                 return;
459         G_RAID3_DEBUG(2, "Consumer %s destroyed.", cp->provider->name);
460         pp = cp->provider;
461         retaste_wait = 0;
462         if (cp->acw == 1) {
463                 if ((pp->geom->flags & G_GEOM_WITHER) == 0)
464                         retaste_wait = 1;
465         }
466         G_RAID3_DEBUG(2, "Access %s r%dw%de%d = %d", pp->name, -cp->acr,
467             -cp->acw, -cp->ace, 0);
468         if (cp->acr > 0 || cp->acw > 0 || cp->ace > 0)
469                 g_access(cp, -cp->acr, -cp->acw, -cp->ace);
470         if (retaste_wait) {
471                 /*
472                  * After retaste event was send (inside g_access()), we can send
473                  * event to detach and destroy consumer.
474                  * A class, which has consumer to the given provider connected
475                  * will not receive retaste event for the provider.
476                  * This is the way how I ignore retaste events when I close
477                  * consumers opened for write: I detach and destroy consumer
478                  * after retaste event is sent.
479                  */
480                 g_post_event(g_raid3_destroy_consumer, cp, M_WAITOK, NULL);
481                 return;
482         }
483         G_RAID3_DEBUG(1, "Consumer %s destroyed.", pp->name);
484         g_detach(cp);
485         g_destroy_consumer(cp);
486 }
487
488 static int
489 g_raid3_connect_disk(struct g_raid3_disk *disk, struct g_provider *pp)
490 {
491         struct g_consumer *cp;
492         int error;
493
494         g_topology_assert_not();
495         KASSERT(disk->d_consumer == NULL,
496             ("Disk already connected (device %s).", disk->d_softc->sc_name));
497
498         g_topology_lock();
499         cp = g_new_consumer(disk->d_softc->sc_geom);
500         error = g_attach(cp, pp);
501         if (error != 0) {
502                 g_destroy_consumer(cp);
503                 g_topology_unlock();
504                 return (error);
505         }
506         error = g_access(cp, 1, 1, 1);
507                 g_topology_unlock();
508         if (error != 0) {
509                 g_detach(cp);
510                 g_destroy_consumer(cp);
511                 G_RAID3_DEBUG(0, "Cannot open consumer %s (error=%d).",
512                     pp->name, error);
513                 return (error);
514         }
515         disk->d_consumer = cp;
516         disk->d_consumer->private = disk;
517         disk->d_consumer->index = 0;
518         G_RAID3_DEBUG(2, "Disk %s connected.", g_raid3_get_diskname(disk));
519         return (0);
520 }
521
522 static void
523 g_raid3_disconnect_consumer(struct g_raid3_softc *sc, struct g_consumer *cp)
524 {
525
526         g_topology_assert();
527
528         if (cp == NULL)
529                 return;
530         if (cp->provider != NULL)
531                 g_raid3_kill_consumer(sc, cp);
532         else
533                 g_destroy_consumer(cp);
534 }
535
536 /*
537  * Initialize disk. This means allocate memory, create consumer, attach it
538  * to the provider and open access (r1w1e1) to it.
539  */
540 static struct g_raid3_disk *
541 g_raid3_init_disk(struct g_raid3_softc *sc, struct g_provider *pp,
542     struct g_raid3_metadata *md, int *errorp)
543 {
544         struct g_raid3_disk *disk;
545         int error;
546
547         disk = &sc->sc_disks[md->md_no];
548         error = g_raid3_connect_disk(disk, pp);
549         if (error != 0) {
550                 if (errorp != NULL)
551                         *errorp = error;
552                 return (NULL);
553         }
554         disk->d_state = G_RAID3_DISK_STATE_NONE;
555         disk->d_flags = md->md_dflags;
556         if (md->md_provider[0] != '\0')
557                 disk->d_flags |= G_RAID3_DISK_FLAG_HARDCODED;
558         disk->d_sync.ds_consumer = NULL;
559         disk->d_sync.ds_offset = md->md_sync_offset;
560         disk->d_sync.ds_offset_done = md->md_sync_offset;
561         disk->d_genid = md->md_genid;
562         disk->d_sync.ds_syncid = md->md_syncid;
563         if (errorp != NULL)
564                 *errorp = 0;
565         return (disk);
566 }
567
568 static void
569 g_raid3_destroy_disk(struct g_raid3_disk *disk)
570 {
571         struct g_raid3_softc *sc;
572
573         g_topology_assert_not();
574         sc = disk->d_softc;
575         sx_assert(&sc->sc_lock, SX_XLOCKED);
576
577         if (disk->d_state == G_RAID3_DISK_STATE_NODISK)
578                 return;
579         g_raid3_event_cancel(disk);
580         switch (disk->d_state) {
581         case G_RAID3_DISK_STATE_SYNCHRONIZING:
582                 if (sc->sc_syncdisk != NULL)
583                         g_raid3_sync_stop(sc, 1);
584                 /* FALLTHROUGH */
585         case G_RAID3_DISK_STATE_NEW:
586         case G_RAID3_DISK_STATE_STALE:
587         case G_RAID3_DISK_STATE_ACTIVE:
588                 g_topology_lock();
589                 g_raid3_disconnect_consumer(sc, disk->d_consumer);
590                 g_topology_unlock();
591                 disk->d_consumer = NULL;
592                 break;
593         default:
594                 KASSERT(0 == 1, ("Wrong disk state (%s, %s).",
595                     g_raid3_get_diskname(disk),
596                     g_raid3_disk_state2str(disk->d_state)));
597         }
598         disk->d_state = G_RAID3_DISK_STATE_NODISK;
599 }
600
601 static void
602 g_raid3_destroy_device(struct g_raid3_softc *sc)
603 {
604         struct g_raid3_event *ep;
605         struct g_raid3_disk *disk;
606         struct g_geom *gp;
607         struct g_consumer *cp;
608         u_int n;
609
610         g_topology_assert_not();
611         sx_assert(&sc->sc_lock, SX_XLOCKED);
612
613         gp = sc->sc_geom;
614         if (sc->sc_provider != NULL)
615                 g_raid3_destroy_provider(sc);
616         for (n = 0; n < sc->sc_ndisks; n++) {
617                 disk = &sc->sc_disks[n];
618                 if (disk->d_state != G_RAID3_DISK_STATE_NODISK) {
619                         disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY;
620                         g_raid3_update_metadata(disk);
621                         g_raid3_destroy_disk(disk);
622                 }
623         }
624         while ((ep = g_raid3_event_get(sc)) != NULL) {
625                 g_raid3_event_remove(sc, ep);
626                 if ((ep->e_flags & G_RAID3_EVENT_DONTWAIT) != 0)
627                         g_raid3_event_free(ep);
628                 else {
629                         ep->e_error = ECANCELED;
630                         ep->e_flags |= G_RAID3_EVENT_DONE;
631                         G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, ep);
632                         mtx_lock(&sc->sc_events_mtx);
633                         wakeup(ep);
634                         mtx_unlock(&sc->sc_events_mtx);
635                 }
636         }
637         callout_drain(&sc->sc_callout);
638         cp = LIST_FIRST(&sc->sc_sync.ds_geom->consumer);
639         g_topology_lock();
640         if (cp != NULL)
641                 g_raid3_disconnect_consumer(sc, cp);
642         g_wither_geom(sc->sc_sync.ds_geom, ENXIO);
643         G_RAID3_DEBUG(0, "Device %s destroyed.", gp->name);
644         g_wither_geom(gp, ENXIO);
645         g_topology_unlock();
646         if (!g_raid3_use_malloc) {
647                 uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_64K].sz_zone);
648                 uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_16K].sz_zone);
649                 uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_4K].sz_zone);
650         }
651         mtx_destroy(&sc->sc_queue_mtx);
652         mtx_destroy(&sc->sc_events_mtx);
653         sx_xunlock(&sc->sc_lock);
654         sx_destroy(&sc->sc_lock);
655 }
656
657 static void
658 g_raid3_orphan(struct g_consumer *cp)
659 {
660         struct g_raid3_disk *disk;
661
662         g_topology_assert();
663
664         disk = cp->private;
665         if (disk == NULL)
666                 return;
667         disk->d_softc->sc_bump_id = G_RAID3_BUMP_SYNCID;
668         g_raid3_event_send(disk, G_RAID3_DISK_STATE_DISCONNECTED,
669             G_RAID3_EVENT_DONTWAIT);
670 }
671
672 static int
673 g_raid3_write_metadata(struct g_raid3_disk *disk, struct g_raid3_metadata *md)
674 {
675         struct g_raid3_softc *sc;
676         struct g_consumer *cp;
677         off_t offset, length;
678         u_char *sector;
679         int error = 0;
680
681         g_topology_assert_not();
682         sc = disk->d_softc;
683         sx_assert(&sc->sc_lock, SX_LOCKED);
684
685         cp = disk->d_consumer;
686         KASSERT(cp != NULL, ("NULL consumer (%s).", sc->sc_name));
687         KASSERT(cp->provider != NULL, ("NULL provider (%s).", sc->sc_name));
688         KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1,
689             ("Consumer %s closed? (r%dw%de%d).", cp->provider->name, cp->acr,
690             cp->acw, cp->ace));
691         length = cp->provider->sectorsize;
692         offset = cp->provider->mediasize - length;
693         sector = malloc((size_t)length, M_RAID3, M_WAITOK | M_ZERO);
694         if (md != NULL)
695                 raid3_metadata_encode(md, sector);
696         error = g_write_data(cp, offset, sector, length);
697         free(sector, M_RAID3);
698         if (error != 0) {
699                 if ((disk->d_flags & G_RAID3_DISK_FLAG_BROKEN) == 0) {
700                         G_RAID3_DEBUG(0, "Cannot write metadata on %s "
701                             "(device=%s, error=%d).",
702                             g_raid3_get_diskname(disk), sc->sc_name, error);
703                         disk->d_flags |= G_RAID3_DISK_FLAG_BROKEN;
704                 } else {
705                         G_RAID3_DEBUG(1, "Cannot write metadata on %s "
706                             "(device=%s, error=%d).",
707                             g_raid3_get_diskname(disk), sc->sc_name, error);
708                 }
709                 if (g_raid3_disconnect_on_failure &&
710                     sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) {
711                         sc->sc_bump_id |= G_RAID3_BUMP_GENID;
712                         g_raid3_event_send(disk,
713                             G_RAID3_DISK_STATE_DISCONNECTED,
714                             G_RAID3_EVENT_DONTWAIT);
715                 }
716         }
717         return (error);
718 }
719
720 int
721 g_raid3_clear_metadata(struct g_raid3_disk *disk)
722 {
723         int error;
724
725         g_topology_assert_not();
726         sx_assert(&disk->d_softc->sc_lock, SX_LOCKED);
727
728         error = g_raid3_write_metadata(disk, NULL);
729         if (error == 0) {
730                 G_RAID3_DEBUG(2, "Metadata on %s cleared.",
731                     g_raid3_get_diskname(disk));
732         } else {
733                 G_RAID3_DEBUG(0,
734                     "Cannot clear metadata on disk %s (error=%d).",
735                     g_raid3_get_diskname(disk), error);
736         }
737         return (error);
738 }
739
740 void
741 g_raid3_fill_metadata(struct g_raid3_disk *disk, struct g_raid3_metadata *md)
742 {
743         struct g_raid3_softc *sc;
744         struct g_provider *pp;
745
746         sc = disk->d_softc;
747         strlcpy(md->md_magic, G_RAID3_MAGIC, sizeof(md->md_magic));
748         md->md_version = G_RAID3_VERSION;
749         strlcpy(md->md_name, sc->sc_name, sizeof(md->md_name));
750         md->md_id = sc->sc_id;
751         md->md_all = sc->sc_ndisks;
752         md->md_genid = sc->sc_genid;
753         md->md_mediasize = sc->sc_mediasize;
754         md->md_sectorsize = sc->sc_sectorsize;
755         md->md_mflags = (sc->sc_flags & G_RAID3_DEVICE_FLAG_MASK);
756         md->md_no = disk->d_no;
757         md->md_syncid = disk->d_sync.ds_syncid;
758         md->md_dflags = (disk->d_flags & G_RAID3_DISK_FLAG_MASK);
759         if (disk->d_state != G_RAID3_DISK_STATE_SYNCHRONIZING)
760                 md->md_sync_offset = 0;
761         else {
762                 md->md_sync_offset =
763                     disk->d_sync.ds_offset_done / (sc->sc_ndisks - 1);
764         }
765         if (disk->d_consumer != NULL && disk->d_consumer->provider != NULL)
766                 pp = disk->d_consumer->provider;
767         else
768                 pp = NULL;
769         if ((disk->d_flags & G_RAID3_DISK_FLAG_HARDCODED) != 0 && pp != NULL)
770                 strlcpy(md->md_provider, pp->name, sizeof(md->md_provider));
771         else
772                 bzero(md->md_provider, sizeof(md->md_provider));
773         if (pp != NULL)
774                 md->md_provsize = pp->mediasize;
775         else
776                 md->md_provsize = 0;
777 }
778
779 void
780 g_raid3_update_metadata(struct g_raid3_disk *disk)
781 {
782         struct g_raid3_softc *sc;
783         struct g_raid3_metadata md;
784         int error;
785
786         g_topology_assert_not();
787         sc = disk->d_softc;
788         sx_assert(&sc->sc_lock, SX_LOCKED);
789
790         g_raid3_fill_metadata(disk, &md);
791         error = g_raid3_write_metadata(disk, &md);
792         if (error == 0) {
793                 G_RAID3_DEBUG(2, "Metadata on %s updated.",
794                     g_raid3_get_diskname(disk));
795         } else {
796                 G_RAID3_DEBUG(0,
797                     "Cannot update metadata on disk %s (error=%d).",
798                     g_raid3_get_diskname(disk), error);
799         }
800 }
801
802 static void
803 g_raid3_bump_syncid(struct g_raid3_softc *sc)
804 {
805         struct g_raid3_disk *disk;
806         u_int n;
807
808         g_topology_assert_not();
809         sx_assert(&sc->sc_lock, SX_XLOCKED);
810         KASSERT(g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) > 0,
811             ("%s called with no active disks (device=%s).", __func__,
812             sc->sc_name));
813
814         sc->sc_syncid++;
815         G_RAID3_DEBUG(1, "Device %s: syncid bumped to %u.", sc->sc_name,
816             sc->sc_syncid);
817         for (n = 0; n < sc->sc_ndisks; n++) {
818                 disk = &sc->sc_disks[n];
819                 if (disk->d_state == G_RAID3_DISK_STATE_ACTIVE ||
820                     disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) {
821                         disk->d_sync.ds_syncid = sc->sc_syncid;
822                         g_raid3_update_metadata(disk);
823                 }
824         }
825 }
826
827 static void
828 g_raid3_bump_genid(struct g_raid3_softc *sc)
829 {
830         struct g_raid3_disk *disk;
831         u_int n;
832
833         g_topology_assert_not();
834         sx_assert(&sc->sc_lock, SX_XLOCKED);
835         KASSERT(g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) > 0,
836             ("%s called with no active disks (device=%s).", __func__,
837             sc->sc_name));
838
839         sc->sc_genid++;
840         G_RAID3_DEBUG(1, "Device %s: genid bumped to %u.", sc->sc_name,
841             sc->sc_genid);
842         for (n = 0; n < sc->sc_ndisks; n++) {
843                 disk = &sc->sc_disks[n];
844                 if (disk->d_state == G_RAID3_DISK_STATE_ACTIVE ||
845                     disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) {
846                         disk->d_genid = sc->sc_genid;
847                         g_raid3_update_metadata(disk);
848                 }
849         }
850 }
851
852 static int
853 g_raid3_idle(struct g_raid3_softc *sc, int acw)
854 {
855         struct g_raid3_disk *disk;
856         u_int i;
857         int timeout;
858
859         g_topology_assert_not();
860         sx_assert(&sc->sc_lock, SX_XLOCKED);
861
862         if (sc->sc_provider == NULL)
863                 return (0);
864         if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOFAILSYNC) != 0)
865                 return (0);
866         if (sc->sc_idle)
867                 return (0);
868         if (sc->sc_writes > 0)
869                 return (0);
870         if (acw > 0 || (acw == -1 && sc->sc_provider->acw > 0)) {
871                 timeout = g_raid3_idletime - (time_uptime - sc->sc_last_write);
872                 if (timeout > 0)
873                         return (timeout);
874         }
875         sc->sc_idle = 1;
876         for (i = 0; i < sc->sc_ndisks; i++) {
877                 disk = &sc->sc_disks[i];
878                 if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE)
879                         continue;
880                 G_RAID3_DEBUG(1, "Disk %s (device %s) marked as clean.",
881                     g_raid3_get_diskname(disk), sc->sc_name);
882                 disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY;
883                 g_raid3_update_metadata(disk);
884         }
885         return (0);
886 }
887
888 static void
889 g_raid3_unidle(struct g_raid3_softc *sc)
890 {
891         struct g_raid3_disk *disk;
892         u_int i;
893
894         g_topology_assert_not();
895         sx_assert(&sc->sc_lock, SX_XLOCKED);
896
897         if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOFAILSYNC) != 0)
898                 return;
899         sc->sc_idle = 0;
900         sc->sc_last_write = time_uptime;
901         for (i = 0; i < sc->sc_ndisks; i++) {
902                 disk = &sc->sc_disks[i];
903                 if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE)
904                         continue;
905                 G_RAID3_DEBUG(1, "Disk %s (device %s) marked as dirty.",
906                     g_raid3_get_diskname(disk), sc->sc_name);
907                 disk->d_flags |= G_RAID3_DISK_FLAG_DIRTY;
908                 g_raid3_update_metadata(disk);
909         }
910 }
911
912 /*
913  * Treat bio_driver1 field in parent bio as list head and field bio_caller1
914  * in child bio as pointer to the next element on the list.
915  */
916 #define G_RAID3_HEAD_BIO(pbp)   (pbp)->bio_driver1
917
918 #define G_RAID3_NEXT_BIO(cbp)   (cbp)->bio_caller1
919
920 #define G_RAID3_FOREACH_BIO(pbp, bp)                                    \
921         for ((bp) = G_RAID3_HEAD_BIO(pbp); (bp) != NULL;                \
922             (bp) = G_RAID3_NEXT_BIO(bp))
923
924 #define G_RAID3_FOREACH_SAFE_BIO(pbp, bp, tmpbp)                        \
925         for ((bp) = G_RAID3_HEAD_BIO(pbp);                              \
926             (bp) != NULL && ((tmpbp) = G_RAID3_NEXT_BIO(bp), 1);        \
927             (bp) = (tmpbp))
928
929 static void
930 g_raid3_init_bio(struct bio *pbp)
931 {
932
933         G_RAID3_HEAD_BIO(pbp) = NULL;
934 }
935
936 static void
937 g_raid3_remove_bio(struct bio *cbp)
938 {
939         struct bio *pbp, *bp;
940
941         pbp = cbp->bio_parent;
942         if (G_RAID3_HEAD_BIO(pbp) == cbp)
943                 G_RAID3_HEAD_BIO(pbp) = G_RAID3_NEXT_BIO(cbp);
944         else {
945                 G_RAID3_FOREACH_BIO(pbp, bp) {
946                         if (G_RAID3_NEXT_BIO(bp) == cbp) {
947                                 G_RAID3_NEXT_BIO(bp) = G_RAID3_NEXT_BIO(cbp);
948                                 break;
949                         }
950                 }
951         }
952         G_RAID3_NEXT_BIO(cbp) = NULL;
953 }
954
955 static void
956 g_raid3_replace_bio(struct bio *sbp, struct bio *dbp)
957 {
958         struct bio *pbp, *bp;
959
960         g_raid3_remove_bio(sbp);
961         pbp = dbp->bio_parent;
962         G_RAID3_NEXT_BIO(sbp) = G_RAID3_NEXT_BIO(dbp);
963         if (G_RAID3_HEAD_BIO(pbp) == dbp)
964                 G_RAID3_HEAD_BIO(pbp) = sbp;
965         else {
966                 G_RAID3_FOREACH_BIO(pbp, bp) {
967                         if (G_RAID3_NEXT_BIO(bp) == dbp) {
968                                 G_RAID3_NEXT_BIO(bp) = sbp;
969                                 break;
970                         }
971                 }
972         }
973         G_RAID3_NEXT_BIO(dbp) = NULL;
974 }
975
976 static void
977 g_raid3_destroy_bio(struct g_raid3_softc *sc, struct bio *cbp)
978 {
979         struct bio *bp, *pbp;
980         size_t size;
981
982         pbp = cbp->bio_parent;
983         pbp->bio_children--;
984         KASSERT(cbp->bio_data != NULL, ("NULL bio_data"));
985         size = pbp->bio_length / (sc->sc_ndisks - 1);
986         g_raid3_free(sc, cbp->bio_data, size);
987         if (G_RAID3_HEAD_BIO(pbp) == cbp) {
988                 G_RAID3_HEAD_BIO(pbp) = G_RAID3_NEXT_BIO(cbp);
989                 G_RAID3_NEXT_BIO(cbp) = NULL;
990                 g_destroy_bio(cbp);
991         } else {
992                 G_RAID3_FOREACH_BIO(pbp, bp) {
993                         if (G_RAID3_NEXT_BIO(bp) == cbp)
994                                 break;
995                 }
996                 if (bp != NULL) {
997                         KASSERT(G_RAID3_NEXT_BIO(bp) != NULL,
998                             ("NULL bp->bio_driver1"));
999                         G_RAID3_NEXT_BIO(bp) = G_RAID3_NEXT_BIO(cbp);
1000                         G_RAID3_NEXT_BIO(cbp) = NULL;
1001                 }
1002                 g_destroy_bio(cbp);
1003         }
1004 }
1005
1006 static struct bio *
1007 g_raid3_clone_bio(struct g_raid3_softc *sc, struct bio *pbp)
1008 {
1009         struct bio *bp, *cbp;
1010         size_t size;
1011         int memflag;
1012
1013         cbp = g_clone_bio(pbp);
1014         if (cbp == NULL)
1015                 return (NULL);
1016         size = pbp->bio_length / (sc->sc_ndisks - 1);
1017         if ((pbp->bio_cflags & G_RAID3_BIO_CFLAG_REGULAR) != 0)
1018                 memflag = M_WAITOK;
1019         else
1020                 memflag = M_NOWAIT;
1021         cbp->bio_data = g_raid3_alloc(sc, size, memflag);
1022         if (cbp->bio_data == NULL) {
1023                 pbp->bio_children--;
1024                 g_destroy_bio(cbp);
1025                 return (NULL);
1026         }
1027         G_RAID3_NEXT_BIO(cbp) = NULL;
1028         if (G_RAID3_HEAD_BIO(pbp) == NULL)
1029                 G_RAID3_HEAD_BIO(pbp) = cbp;
1030         else {
1031                 G_RAID3_FOREACH_BIO(pbp, bp) {
1032                         if (G_RAID3_NEXT_BIO(bp) == NULL) {
1033                                 G_RAID3_NEXT_BIO(bp) = cbp;
1034                                 break;
1035                         }
1036                 }
1037         }
1038         return (cbp);
1039 }
1040
1041 static void
1042 g_raid3_scatter(struct bio *pbp)
1043 {
1044         struct g_raid3_softc *sc;
1045         struct g_raid3_disk *disk;
1046         struct bio *bp, *cbp, *tmpbp;
1047         off_t atom, cadd, padd, left;
1048
1049         sc = pbp->bio_to->geom->softc;
1050         bp = NULL;
1051         if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_NOPARITY) == 0) {
1052                 /*
1053                  * Find bio for which we should calculate data.
1054                  */
1055                 G_RAID3_FOREACH_BIO(pbp, cbp) {
1056                         if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_PARITY) != 0) {
1057                                 bp = cbp;
1058                                 break;
1059                         }
1060                 }
1061                 KASSERT(bp != NULL, ("NULL parity bio."));
1062         }
1063         atom = sc->sc_sectorsize / (sc->sc_ndisks - 1);
1064         cadd = padd = 0;
1065         for (left = pbp->bio_length; left > 0; left -= sc->sc_sectorsize) {
1066                 G_RAID3_FOREACH_BIO(pbp, cbp) {
1067                         if (cbp == bp)
1068                                 continue;
1069                         bcopy(pbp->bio_data + padd, cbp->bio_data + cadd, atom);
1070                         padd += atom;
1071                 }
1072                 cadd += atom;
1073         }
1074         if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_NOPARITY) == 0) {
1075                 /*
1076                  * Calculate parity.
1077                  */
1078                 bzero(bp->bio_data, bp->bio_length);
1079                 G_RAID3_FOREACH_SAFE_BIO(pbp, cbp, tmpbp) {
1080                         if (cbp == bp)
1081                                 continue;
1082                         g_raid3_xor(cbp->bio_data, bp->bio_data, bp->bio_data,
1083                             bp->bio_length);
1084                         if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_NODISK) != 0)
1085                                 g_raid3_destroy_bio(sc, cbp);
1086                 }
1087         }
1088         G_RAID3_FOREACH_SAFE_BIO(pbp, cbp, tmpbp) {
1089                 struct g_consumer *cp;
1090
1091                 disk = cbp->bio_caller2;
1092                 cp = disk->d_consumer;
1093                 cbp->bio_to = cp->provider;
1094                 G_RAID3_LOGREQ(3, cbp, "Sending request.");
1095                 KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1,
1096                     ("Consumer %s not opened (r%dw%de%d).", cp->provider->name,
1097                     cp->acr, cp->acw, cp->ace));
1098                 cp->index++;
1099                 sc->sc_writes++;
1100                 g_io_request(cbp, cp);
1101         }
1102 }
1103
1104 static void
1105 g_raid3_gather(struct bio *pbp)
1106 {
1107         struct g_raid3_softc *sc;
1108         struct g_raid3_disk *disk;
1109         struct bio *xbp, *fbp, *cbp;
1110         off_t atom, cadd, padd, left;
1111
1112         sc = pbp->bio_to->geom->softc;
1113         /*
1114          * Find bio for which we have to calculate data.
1115          * While going through this path, check if all requests
1116          * succeeded, if not, deny whole request.
1117          * If we're in COMPLETE mode, we allow one request to fail,
1118          * so if we find one, we're sending it to the parity consumer.
1119          * If there are more failed requests, we deny whole request.
1120          */
1121         xbp = fbp = NULL;
1122         G_RAID3_FOREACH_BIO(pbp, cbp) {
1123                 if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_PARITY) != 0) {
1124                         KASSERT(xbp == NULL, ("More than one parity bio."));
1125                         xbp = cbp;
1126                 }
1127                 if (cbp->bio_error == 0)
1128                         continue;
1129                 /*
1130                  * Found failed request.
1131                  */
1132                 if (fbp == NULL) {
1133                         if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_DEGRADED) != 0) {
1134                                 /*
1135                                  * We are already in degraded mode, so we can't
1136                                  * accept any failures.
1137                                  */
1138                                 if (pbp->bio_error == 0)
1139                                         pbp->bio_error = cbp->bio_error;
1140                         } else {
1141                                 fbp = cbp;
1142                         }
1143                 } else {
1144                         /*
1145                          * Next failed request, that's too many.
1146                          */
1147                         if (pbp->bio_error == 0)
1148                                 pbp->bio_error = fbp->bio_error;
1149                 }
1150                 disk = cbp->bio_caller2;
1151                 if (disk == NULL)
1152                         continue;
1153                 if ((disk->d_flags & G_RAID3_DISK_FLAG_BROKEN) == 0) {
1154                         disk->d_flags |= G_RAID3_DISK_FLAG_BROKEN;
1155                         G_RAID3_LOGREQ(0, cbp, "Request failed (error=%d).",
1156                             cbp->bio_error);
1157                 } else {
1158                         G_RAID3_LOGREQ(1, cbp, "Request failed (error=%d).",
1159                             cbp->bio_error);
1160                 }
1161                 if (g_raid3_disconnect_on_failure &&
1162                     sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) {
1163                         sc->sc_bump_id |= G_RAID3_BUMP_GENID;
1164                         g_raid3_event_send(disk,
1165                             G_RAID3_DISK_STATE_DISCONNECTED,
1166                             G_RAID3_EVENT_DONTWAIT);
1167                 }
1168         }
1169         if (pbp->bio_error != 0)
1170                 goto finish;
1171         if (fbp != NULL && (pbp->bio_pflags & G_RAID3_BIO_PFLAG_VERIFY) != 0) {
1172                 pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_VERIFY;
1173                 if (xbp != fbp)
1174                         g_raid3_replace_bio(xbp, fbp);
1175                 g_raid3_destroy_bio(sc, fbp);
1176         } else if (fbp != NULL) {
1177                 struct g_consumer *cp;
1178
1179                 /*
1180                  * One request failed, so send the same request to
1181                  * the parity consumer.
1182                  */
1183                 disk = pbp->bio_driver2;
1184                 if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE) {
1185                         pbp->bio_error = fbp->bio_error;
1186                         goto finish;
1187                 }
1188                 pbp->bio_pflags |= G_RAID3_BIO_PFLAG_DEGRADED;
1189                 pbp->bio_inbed--;
1190                 fbp->bio_flags &= ~(BIO_DONE | BIO_ERROR);
1191                 if (disk->d_no == sc->sc_ndisks - 1)
1192                         fbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY;
1193                 fbp->bio_error = 0;
1194                 fbp->bio_completed = 0;
1195                 fbp->bio_children = 0;
1196                 fbp->bio_inbed = 0;
1197                 cp = disk->d_consumer;
1198                 fbp->bio_caller2 = disk;
1199                 fbp->bio_to = cp->provider;
1200                 G_RAID3_LOGREQ(3, fbp, "Sending request (recover).");
1201                 KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1,
1202                     ("Consumer %s not opened (r%dw%de%d).", cp->provider->name,
1203                     cp->acr, cp->acw, cp->ace));
1204                 cp->index++;
1205                 g_io_request(fbp, cp);
1206                 return;
1207         }
1208         if (xbp != NULL) {
1209                 /*
1210                  * Calculate parity.
1211                  */
1212                 G_RAID3_FOREACH_BIO(pbp, cbp) {
1213                         if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_PARITY) != 0)
1214                                 continue;
1215                         g_raid3_xor(cbp->bio_data, xbp->bio_data, xbp->bio_data,
1216                             xbp->bio_length);
1217                 }
1218                 xbp->bio_cflags &= ~G_RAID3_BIO_CFLAG_PARITY;
1219                 if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_VERIFY) != 0) {
1220                         if (!g_raid3_is_zero(xbp)) {
1221                                 g_raid3_parity_mismatch++;
1222                                 pbp->bio_error = EIO;
1223                                 goto finish;
1224                         }
1225                         g_raid3_destroy_bio(sc, xbp);
1226                 }
1227         }
1228         atom = sc->sc_sectorsize / (sc->sc_ndisks - 1);
1229         cadd = padd = 0;
1230         for (left = pbp->bio_length; left > 0; left -= sc->sc_sectorsize) {
1231                 G_RAID3_FOREACH_BIO(pbp, cbp) {
1232                         bcopy(cbp->bio_data + cadd, pbp->bio_data + padd, atom);
1233                         pbp->bio_completed += atom;
1234                         padd += atom;
1235                 }
1236                 cadd += atom;
1237         }
1238 finish:
1239         if (pbp->bio_error == 0)
1240                 G_RAID3_LOGREQ(3, pbp, "Request finished.");
1241         else {
1242                 if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_VERIFY) != 0)
1243                         G_RAID3_LOGREQ(1, pbp, "Verification error.");
1244                 else
1245                         G_RAID3_LOGREQ(0, pbp, "Request failed.");
1246         }
1247         pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_MASK;
1248         while ((cbp = G_RAID3_HEAD_BIO(pbp)) != NULL)
1249                 g_raid3_destroy_bio(sc, cbp);
1250         g_io_deliver(pbp, pbp->bio_error);
1251 }
1252
1253 static void
1254 g_raid3_done(struct bio *bp)
1255 {
1256         struct g_raid3_softc *sc;
1257
1258         sc = bp->bio_from->geom->softc;
1259         bp->bio_cflags |= G_RAID3_BIO_CFLAG_REGULAR;
1260         G_RAID3_LOGREQ(3, bp, "Regular request done (error=%d).", bp->bio_error);
1261         mtx_lock(&sc->sc_queue_mtx);
1262         bioq_insert_head(&sc->sc_queue, bp);
1263         wakeup(sc);
1264         wakeup(&sc->sc_queue);
1265         mtx_unlock(&sc->sc_queue_mtx);
1266 }
1267
1268 static void
1269 g_raid3_regular_request(struct bio *cbp)
1270 {
1271         struct g_raid3_softc *sc;
1272         struct g_raid3_disk *disk;
1273         struct bio *pbp;
1274
1275         g_topology_assert_not();
1276
1277         pbp = cbp->bio_parent;
1278         sc = pbp->bio_to->geom->softc;
1279         cbp->bio_from->index--;
1280         if (cbp->bio_cmd == BIO_WRITE)
1281                 sc->sc_writes--;
1282         disk = cbp->bio_from->private;
1283         if (disk == NULL) {
1284                 g_topology_lock();
1285                 g_raid3_kill_consumer(sc, cbp->bio_from);
1286                 g_topology_unlock();
1287         }
1288
1289         G_RAID3_LOGREQ(3, cbp, "Request finished.");
1290         pbp->bio_inbed++;
1291         KASSERT(pbp->bio_inbed <= pbp->bio_children,
1292             ("bio_inbed (%u) is bigger than bio_children (%u).", pbp->bio_inbed,
1293             pbp->bio_children));
1294         if (pbp->bio_inbed != pbp->bio_children)
1295                 return;
1296         switch (pbp->bio_cmd) {
1297         case BIO_READ:
1298                 g_raid3_gather(pbp);
1299                 break;
1300         case BIO_WRITE:
1301         case BIO_DELETE:
1302             {
1303                 int error = 0;
1304
1305                 pbp->bio_completed = pbp->bio_length;
1306                 while ((cbp = G_RAID3_HEAD_BIO(pbp)) != NULL) {
1307                         if (cbp->bio_error == 0) {
1308                                 g_raid3_destroy_bio(sc, cbp);
1309                                 continue;
1310                         }
1311
1312                         if (error == 0)
1313                                 error = cbp->bio_error;
1314                         else if (pbp->bio_error == 0) {
1315                                 /*
1316                                  * Next failed request, that's too many.
1317                                  */
1318                                 pbp->bio_error = error;
1319                         }
1320
1321                         disk = cbp->bio_caller2;
1322                         if (disk == NULL) {
1323                                 g_raid3_destroy_bio(sc, cbp);
1324                                 continue;
1325                         }
1326
1327                         if ((disk->d_flags & G_RAID3_DISK_FLAG_BROKEN) == 0) {
1328                                 disk->d_flags |= G_RAID3_DISK_FLAG_BROKEN;
1329                                 G_RAID3_LOGREQ(0, cbp,
1330                                     "Request failed (error=%d).",
1331                                     cbp->bio_error);
1332                         } else {
1333                                 G_RAID3_LOGREQ(1, cbp,
1334                                     "Request failed (error=%d).",
1335                                     cbp->bio_error);
1336                         }
1337                         if (g_raid3_disconnect_on_failure &&
1338                             sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) {
1339                                 sc->sc_bump_id |= G_RAID3_BUMP_GENID;
1340                                 g_raid3_event_send(disk,
1341                                     G_RAID3_DISK_STATE_DISCONNECTED,
1342                                     G_RAID3_EVENT_DONTWAIT);
1343                         }
1344                         g_raid3_destroy_bio(sc, cbp);
1345                 }
1346                 if (pbp->bio_error == 0)
1347                         G_RAID3_LOGREQ(3, pbp, "Request finished.");
1348                 else
1349                         G_RAID3_LOGREQ(0, pbp, "Request failed.");
1350                 pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_DEGRADED;
1351                 pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_NOPARITY;
1352                 bioq_remove(&sc->sc_inflight, pbp);
1353                 /* Release delayed sync requests if possible. */
1354                 g_raid3_sync_release(sc);
1355                 g_io_deliver(pbp, pbp->bio_error);
1356                 break;
1357             }
1358         }
1359 }
1360
1361 static void
1362 g_raid3_sync_done(struct bio *bp)
1363 {
1364         struct g_raid3_softc *sc;
1365
1366         G_RAID3_LOGREQ(3, bp, "Synchronization request delivered.");
1367         sc = bp->bio_from->geom->softc;
1368         bp->bio_cflags |= G_RAID3_BIO_CFLAG_SYNC;
1369         mtx_lock(&sc->sc_queue_mtx);
1370         bioq_insert_head(&sc->sc_queue, bp);
1371         wakeup(sc);
1372         wakeup(&sc->sc_queue);
1373         mtx_unlock(&sc->sc_queue_mtx);
1374 }
1375
1376 static void
1377 g_raid3_flush(struct g_raid3_softc *sc, struct bio *bp)
1378 {
1379         struct bio_queue_head queue;
1380         struct g_raid3_disk *disk;
1381         struct g_consumer *cp;
1382         struct bio *cbp;
1383         u_int i;
1384
1385         bioq_init(&queue);
1386         for (i = 0; i < sc->sc_ndisks; i++) {
1387                 disk = &sc->sc_disks[i];
1388                 if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE)
1389                         continue;
1390                 cbp = g_clone_bio(bp);
1391                 if (cbp == NULL) {
1392                         for (cbp = bioq_first(&queue); cbp != NULL;
1393                             cbp = bioq_first(&queue)) {
1394                                 bioq_remove(&queue, cbp);
1395                                 g_destroy_bio(cbp);
1396                         }
1397                         if (bp->bio_error == 0)
1398                                 bp->bio_error = ENOMEM;
1399                         g_io_deliver(bp, bp->bio_error);
1400                         return;
1401                 }
1402                 bioq_insert_tail(&queue, cbp);
1403                 cbp->bio_done = g_std_done;
1404                 cbp->bio_caller1 = disk;
1405                 cbp->bio_to = disk->d_consumer->provider;
1406         }
1407         for (cbp = bioq_first(&queue); cbp != NULL; cbp = bioq_first(&queue)) {
1408                 bioq_remove(&queue, cbp);
1409                 G_RAID3_LOGREQ(3, cbp, "Sending request.");
1410                 disk = cbp->bio_caller1;
1411                 cbp->bio_caller1 = NULL;
1412                 cp = disk->d_consumer;
1413                 KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1,
1414                     ("Consumer %s not opened (r%dw%de%d).", cp->provider->name,
1415                     cp->acr, cp->acw, cp->ace));
1416                 g_io_request(cbp, disk->d_consumer);
1417         }
1418 }
1419
1420 static void
1421 g_raid3_start(struct bio *bp)
1422 {
1423         struct g_raid3_softc *sc;
1424
1425         sc = bp->bio_to->geom->softc;
1426         /*
1427          * If sc == NULL or there are no valid disks, provider's error
1428          * should be set and g_raid3_start() should not be called at all.
1429          */
1430         KASSERT(sc != NULL && (sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED ||
1431             sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE),
1432             ("Provider's error should be set (error=%d)(device=%s).",
1433             bp->bio_to->error, bp->bio_to->name));
1434         G_RAID3_LOGREQ(3, bp, "Request received.");
1435
1436         switch (bp->bio_cmd) {
1437         case BIO_READ:
1438         case BIO_WRITE:
1439         case BIO_DELETE:
1440                 break;
1441         case BIO_FLUSH:
1442                 g_raid3_flush(sc, bp);
1443                 return;
1444         case BIO_GETATTR:
1445         default:
1446                 g_io_deliver(bp, EOPNOTSUPP);
1447                 return;
1448         }
1449         mtx_lock(&sc->sc_queue_mtx);
1450         bioq_insert_tail(&sc->sc_queue, bp);
1451         G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, sc);
1452         wakeup(sc);
1453         mtx_unlock(&sc->sc_queue_mtx);
1454 }
1455
1456 /*
1457  * Return TRUE if the given request is colliding with a in-progress
1458  * synchronization request.
1459  */
1460 static int
1461 g_raid3_sync_collision(struct g_raid3_softc *sc, struct bio *bp)
1462 {
1463         struct g_raid3_disk *disk;
1464         struct bio *sbp;
1465         off_t rstart, rend, sstart, send;
1466         int i;
1467
1468         disk = sc->sc_syncdisk;
1469         if (disk == NULL)
1470                 return (0);
1471         rstart = bp->bio_offset;
1472         rend = bp->bio_offset + bp->bio_length;
1473         for (i = 0; i < g_raid3_syncreqs; i++) {
1474                 sbp = disk->d_sync.ds_bios[i];
1475                 if (sbp == NULL)
1476                         continue;
1477                 sstart = sbp->bio_offset;
1478                 send = sbp->bio_length;
1479                 if (sbp->bio_cmd == BIO_WRITE) {
1480                         sstart *= sc->sc_ndisks - 1;
1481                         send *= sc->sc_ndisks - 1;
1482                 }
1483                 send += sstart;
1484                 if (rend > sstart && rstart < send)
1485                         return (1);
1486         }
1487         return (0);
1488 }
1489
1490 /*
1491  * Return TRUE if the given sync request is colliding with a in-progress regular
1492  * request.
1493  */
1494 static int
1495 g_raid3_regular_collision(struct g_raid3_softc *sc, struct bio *sbp)
1496 {
1497         off_t rstart, rend, sstart, send;
1498         struct bio *bp;
1499
1500         if (sc->sc_syncdisk == NULL)
1501                 return (0);
1502         sstart = sbp->bio_offset;
1503         send = sstart + sbp->bio_length;
1504         TAILQ_FOREACH(bp, &sc->sc_inflight.queue, bio_queue) {
1505                 rstart = bp->bio_offset;
1506                 rend = bp->bio_offset + bp->bio_length;
1507                 if (rend > sstart && rstart < send)
1508                         return (1);
1509         }
1510         return (0);
1511 }
1512
1513 /*
1514  * Puts request onto delayed queue.
1515  */
1516 static void
1517 g_raid3_regular_delay(struct g_raid3_softc *sc, struct bio *bp)
1518 {
1519
1520         G_RAID3_LOGREQ(2, bp, "Delaying request.");
1521         bioq_insert_head(&sc->sc_regular_delayed, bp);
1522 }
1523
1524 /*
1525  * Puts synchronization request onto delayed queue.
1526  */
1527 static void
1528 g_raid3_sync_delay(struct g_raid3_softc *sc, struct bio *bp)
1529 {
1530
1531         G_RAID3_LOGREQ(2, bp, "Delaying synchronization request.");
1532         bioq_insert_tail(&sc->sc_sync_delayed, bp);
1533 }
1534
1535 /*
1536  * Releases delayed regular requests which don't collide anymore with sync
1537  * requests.
1538  */
1539 static void
1540 g_raid3_regular_release(struct g_raid3_softc *sc)
1541 {
1542         struct bio *bp, *bp2;
1543
1544         TAILQ_FOREACH_SAFE(bp, &sc->sc_regular_delayed.queue, bio_queue, bp2) {
1545                 if (g_raid3_sync_collision(sc, bp))
1546                         continue;
1547                 bioq_remove(&sc->sc_regular_delayed, bp);
1548                 G_RAID3_LOGREQ(2, bp, "Releasing delayed request (%p).", bp);
1549                 mtx_lock(&sc->sc_queue_mtx);
1550                 bioq_insert_head(&sc->sc_queue, bp);
1551 #if 0
1552                 /*
1553                  * wakeup() is not needed, because this function is called from
1554                  * the worker thread.
1555                  */
1556                 wakeup(&sc->sc_queue);
1557 #endif
1558                 mtx_unlock(&sc->sc_queue_mtx);
1559         }
1560 }
1561
1562 /*
1563  * Releases delayed sync requests which don't collide anymore with regular
1564  * requests.
1565  */
1566 static void
1567 g_raid3_sync_release(struct g_raid3_softc *sc)
1568 {
1569         struct bio *bp, *bp2;
1570
1571         TAILQ_FOREACH_SAFE(bp, &sc->sc_sync_delayed.queue, bio_queue, bp2) {
1572                 if (g_raid3_regular_collision(sc, bp))
1573                         continue;
1574                 bioq_remove(&sc->sc_sync_delayed, bp);
1575                 G_RAID3_LOGREQ(2, bp,
1576                     "Releasing delayed synchronization request.");
1577                 g_io_request(bp, bp->bio_from);
1578         }
1579 }
1580
1581 /*
1582  * Handle synchronization requests.
1583  * Every synchronization request is two-steps process: first, READ request is
1584  * send to active provider and then WRITE request (with read data) to the provider
1585  * beeing synchronized. When WRITE is finished, new synchronization request is
1586  * send.
1587  */
1588 static void
1589 g_raid3_sync_request(struct bio *bp)
1590 {
1591         struct g_raid3_softc *sc;
1592         struct g_raid3_disk *disk;
1593
1594         bp->bio_from->index--;
1595         sc = bp->bio_from->geom->softc;
1596         disk = bp->bio_from->private;
1597         if (disk == NULL) {
1598                 sx_xunlock(&sc->sc_lock); /* Avoid recursion on sc_lock. */
1599                 g_topology_lock();
1600                 g_raid3_kill_consumer(sc, bp->bio_from);
1601                 g_topology_unlock();
1602                 free(bp->bio_data, M_RAID3);
1603                 g_destroy_bio(bp);
1604                 sx_xlock(&sc->sc_lock);
1605                 return;
1606         }
1607
1608         /*
1609          * Synchronization request.
1610          */
1611         switch (bp->bio_cmd) {
1612         case BIO_READ:
1613             {
1614                 struct g_consumer *cp;
1615                 u_char *dst, *src;
1616                 off_t left;
1617                 u_int atom;
1618
1619                 if (bp->bio_error != 0) {
1620                         G_RAID3_LOGREQ(0, bp,
1621                             "Synchronization request failed (error=%d).",
1622                             bp->bio_error);
1623                         g_destroy_bio(bp);
1624                         return;
1625                 }
1626                 G_RAID3_LOGREQ(3, bp, "Synchronization request finished.");
1627                 atom = sc->sc_sectorsize / (sc->sc_ndisks - 1);
1628                 dst = src = bp->bio_data;
1629                 if (disk->d_no == sc->sc_ndisks - 1) {
1630                         u_int n;
1631
1632                         /* Parity component. */
1633                         for (left = bp->bio_length; left > 0;
1634                             left -= sc->sc_sectorsize) {
1635                                 bcopy(src, dst, atom);
1636                                 src += atom;
1637                                 for (n = 1; n < sc->sc_ndisks - 1; n++) {
1638                                         g_raid3_xor(src, dst, dst, atom);
1639                                         src += atom;
1640                                 }
1641                                 dst += atom;
1642                         }
1643                 } else {
1644                         /* Regular component. */
1645                         src += atom * disk->d_no;
1646                         for (left = bp->bio_length; left > 0;
1647                             left -= sc->sc_sectorsize) {
1648                                 bcopy(src, dst, atom);
1649                                 src += sc->sc_sectorsize;
1650                                 dst += atom;
1651                         }
1652                 }
1653                 bp->bio_driver1 = bp->bio_driver2 = NULL;
1654                 bp->bio_pflags = 0;
1655                 bp->bio_offset /= sc->sc_ndisks - 1;
1656                 bp->bio_length /= sc->sc_ndisks - 1;
1657                 bp->bio_cmd = BIO_WRITE;
1658                 bp->bio_cflags = 0;
1659                 bp->bio_children = bp->bio_inbed = 0;
1660                 cp = disk->d_consumer;
1661                 KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1,
1662                     ("Consumer %s not opened (r%dw%de%d).", cp->provider->name,
1663                     cp->acr, cp->acw, cp->ace));
1664                 cp->index++;
1665                 g_io_request(bp, cp);
1666                 return;
1667             }
1668         case BIO_WRITE:
1669             {
1670                 struct g_raid3_disk_sync *sync;
1671                 off_t boffset, moffset;
1672                 void *data;
1673                 int i;
1674
1675                 if (bp->bio_error != 0) {
1676                         G_RAID3_LOGREQ(0, bp,
1677                             "Synchronization request failed (error=%d).",
1678                             bp->bio_error);
1679                         g_destroy_bio(bp);
1680                         sc->sc_bump_id |= G_RAID3_BUMP_GENID;
1681                         g_raid3_event_send(disk,
1682                             G_RAID3_DISK_STATE_DISCONNECTED,
1683                             G_RAID3_EVENT_DONTWAIT);
1684                         return;
1685                 }
1686                 G_RAID3_LOGREQ(3, bp, "Synchronization request finished.");
1687                 sync = &disk->d_sync;
1688                 if (sync->ds_offset == sc->sc_mediasize / (sc->sc_ndisks - 1) ||
1689                     sync->ds_consumer == NULL ||
1690                     (sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROY) != 0) {
1691                         /* Don't send more synchronization requests. */
1692                         sync->ds_inflight--;
1693                         if (sync->ds_bios != NULL) {
1694                                 i = (int)(uintptr_t)bp->bio_caller1;
1695                                 sync->ds_bios[i] = NULL;
1696                         }
1697                         free(bp->bio_data, M_RAID3);
1698                         g_destroy_bio(bp);
1699                         if (sync->ds_inflight > 0)
1700                                 return;
1701                         if (sync->ds_consumer == NULL ||
1702                             (sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROY) != 0) {
1703                                 return;
1704                         }
1705                         /*
1706                          * Disk up-to-date, activate it.
1707                          */
1708                         g_raid3_event_send(disk, G_RAID3_DISK_STATE_ACTIVE,
1709                             G_RAID3_EVENT_DONTWAIT);
1710                         return;
1711                 }
1712
1713                 /* Send next synchronization request. */
1714                 data = bp->bio_data;
1715                 bzero(bp, sizeof(*bp));
1716                 bp->bio_cmd = BIO_READ;
1717                 bp->bio_offset = sync->ds_offset * (sc->sc_ndisks - 1);
1718                 bp->bio_length = MIN(MAXPHYS, sc->sc_mediasize - bp->bio_offset);
1719                 sync->ds_offset += bp->bio_length / (sc->sc_ndisks - 1);
1720                 bp->bio_done = g_raid3_sync_done;
1721                 bp->bio_data = data;
1722                 bp->bio_from = sync->ds_consumer;
1723                 bp->bio_to = sc->sc_provider;
1724                 G_RAID3_LOGREQ(3, bp, "Sending synchronization request.");
1725                 sync->ds_consumer->index++;
1726                 /*
1727                  * Delay the request if it is colliding with a regular request.
1728                  */
1729                 if (g_raid3_regular_collision(sc, bp))
1730                         g_raid3_sync_delay(sc, bp);
1731                 else
1732                         g_io_request(bp, sync->ds_consumer);
1733
1734                 /* Release delayed requests if possible. */
1735                 g_raid3_regular_release(sc);
1736
1737                 /* Find the smallest offset. */
1738                 moffset = sc->sc_mediasize;
1739                 for (i = 0; i < g_raid3_syncreqs; i++) {
1740                         bp = sync->ds_bios[i];
1741                         boffset = bp->bio_offset;
1742                         if (bp->bio_cmd == BIO_WRITE)
1743                                 boffset *= sc->sc_ndisks - 1;
1744                         if (boffset < moffset)
1745                                 moffset = boffset;
1746                 }
1747                 if (sync->ds_offset_done + (MAXPHYS * 100) < moffset) {
1748                         /* Update offset_done on every 100 blocks. */
1749                         sync->ds_offset_done = moffset;
1750                         g_raid3_update_metadata(disk);
1751                 }
1752                 return;
1753             }
1754         default:
1755                 KASSERT(1 == 0, ("Invalid command here: %u (device=%s)",
1756                     bp->bio_cmd, sc->sc_name));
1757                 break;
1758         }
1759 }
1760
1761 static int
1762 g_raid3_register_request(struct bio *pbp)
1763 {
1764         struct g_raid3_softc *sc;
1765         struct g_raid3_disk *disk;
1766         struct g_consumer *cp;
1767         struct bio *cbp, *tmpbp;
1768         off_t offset, length;
1769         u_int n, ndisks;
1770         int round_robin, verify;
1771
1772         ndisks = 0;
1773         sc = pbp->bio_to->geom->softc;
1774         if ((pbp->bio_cflags & G_RAID3_BIO_CFLAG_REGSYNC) != 0 &&
1775             sc->sc_syncdisk == NULL) {
1776                 g_io_deliver(pbp, EIO);
1777                 return (0);
1778         }
1779         g_raid3_init_bio(pbp);
1780         length = pbp->bio_length / (sc->sc_ndisks - 1);
1781         offset = pbp->bio_offset / (sc->sc_ndisks - 1);
1782         round_robin = verify = 0;
1783         switch (pbp->bio_cmd) {
1784         case BIO_READ:
1785                 if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_VERIFY) != 0 &&
1786                     sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) {
1787                         pbp->bio_pflags |= G_RAID3_BIO_PFLAG_VERIFY;
1788                         verify = 1;
1789                         ndisks = sc->sc_ndisks;
1790                 } else {
1791                         verify = 0;
1792                         ndisks = sc->sc_ndisks - 1;
1793                 }
1794                 if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_ROUND_ROBIN) != 0 &&
1795                     sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) {
1796                         round_robin = 1;
1797                 } else {
1798                         round_robin = 0;
1799                 }
1800                 KASSERT(!round_robin || !verify,
1801                     ("ROUND-ROBIN and VERIFY are mutually exclusive."));
1802                 pbp->bio_driver2 = &sc->sc_disks[sc->sc_ndisks - 1];
1803                 break;
1804         case BIO_WRITE:
1805         case BIO_DELETE:
1806                 /*
1807                  * Delay the request if it is colliding with a synchronization
1808                  * request.
1809                  */
1810                 if (g_raid3_sync_collision(sc, pbp)) {
1811                         g_raid3_regular_delay(sc, pbp);
1812                         return (0);
1813                 }
1814
1815                 if (sc->sc_idle)
1816                         g_raid3_unidle(sc);
1817                 else
1818                         sc->sc_last_write = time_uptime;
1819
1820                 ndisks = sc->sc_ndisks;
1821                 break;
1822         }
1823         for (n = 0; n < ndisks; n++) {
1824                 disk = &sc->sc_disks[n];
1825                 cbp = g_raid3_clone_bio(sc, pbp);
1826                 if (cbp == NULL) {
1827                         while ((cbp = G_RAID3_HEAD_BIO(pbp)) != NULL)
1828                                 g_raid3_destroy_bio(sc, cbp);
1829                         /*
1830                          * To prevent deadlock, we must run back up
1831                          * with the ENOMEM for failed requests of any
1832                          * of our consumers.  Our own sync requests
1833                          * can stick around, as they are finite.
1834                          */
1835                         if ((pbp->bio_cflags &
1836                             G_RAID3_BIO_CFLAG_REGULAR) != 0) {
1837                                 g_io_deliver(pbp, ENOMEM);
1838                                 return (0);
1839                         }
1840                         return (ENOMEM);
1841                 }
1842                 cbp->bio_offset = offset;
1843                 cbp->bio_length = length;
1844                 cbp->bio_done = g_raid3_done;
1845                 switch (pbp->bio_cmd) {
1846                 case BIO_READ:
1847                         if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE) {
1848                                 /*
1849                                  * Replace invalid component with the parity
1850                                  * component.
1851                                  */
1852                                 disk = &sc->sc_disks[sc->sc_ndisks - 1];
1853                                 cbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY;
1854                                 pbp->bio_pflags |= G_RAID3_BIO_PFLAG_DEGRADED;
1855                         } else if (round_robin &&
1856                             disk->d_no == sc->sc_round_robin) {
1857                                 /*
1858                                  * In round-robin mode skip one data component
1859                                  * and use parity component when reading.
1860                                  */
1861                                 pbp->bio_driver2 = disk;
1862                                 disk = &sc->sc_disks[sc->sc_ndisks - 1];
1863                                 cbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY;
1864                                 sc->sc_round_robin++;
1865                                 round_robin = 0;
1866                         } else if (verify && disk->d_no == sc->sc_ndisks - 1) {
1867                                 cbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY;
1868                         }
1869                         break;
1870                 case BIO_WRITE:
1871                 case BIO_DELETE:
1872                         if (disk->d_state == G_RAID3_DISK_STATE_ACTIVE ||
1873                             disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) {
1874                                 if (n == ndisks - 1) {
1875                                         /*
1876                                          * Active parity component, mark it as such.
1877                                          */
1878                                         cbp->bio_cflags |=
1879                                             G_RAID3_BIO_CFLAG_PARITY;
1880                                 }
1881                         } else {
1882                                 pbp->bio_pflags |= G_RAID3_BIO_PFLAG_DEGRADED;
1883                                 if (n == ndisks - 1) {
1884                                         /*
1885                                          * Parity component is not connected,
1886                                          * so destroy its request.
1887                                          */
1888                                         pbp->bio_pflags |=
1889                                             G_RAID3_BIO_PFLAG_NOPARITY;
1890                                         g_raid3_destroy_bio(sc, cbp);
1891                                         cbp = NULL;
1892                                 } else {
1893                                         cbp->bio_cflags |=
1894                                             G_RAID3_BIO_CFLAG_NODISK;
1895                                         disk = NULL;
1896                                 }
1897                         }
1898                         break;
1899                 }
1900                 if (cbp != NULL)
1901                         cbp->bio_caller2 = disk;
1902         }
1903         switch (pbp->bio_cmd) {
1904         case BIO_READ:
1905                 if (round_robin) {
1906                         /*
1907                          * If we are in round-robin mode and 'round_robin' is
1908                          * still 1, it means, that we skipped parity component
1909                          * for this read and must reset sc_round_robin field.
1910                          */
1911                         sc->sc_round_robin = 0;
1912                 }
1913                 G_RAID3_FOREACH_SAFE_BIO(pbp, cbp, tmpbp) {
1914                         disk = cbp->bio_caller2;
1915                         cp = disk->d_consumer;
1916                         cbp->bio_to = cp->provider;
1917                         G_RAID3_LOGREQ(3, cbp, "Sending request.");
1918                         KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1,
1919                             ("Consumer %s not opened (r%dw%de%d).",
1920                             cp->provider->name, cp->acr, cp->acw, cp->ace));
1921                         cp->index++;
1922                         g_io_request(cbp, cp);
1923                 }
1924                 break;
1925         case BIO_WRITE:
1926         case BIO_DELETE:
1927                 /*
1928                  * Put request onto inflight queue, so we can check if new
1929                  * synchronization requests don't collide with it.
1930                  */
1931                 bioq_insert_tail(&sc->sc_inflight, pbp);
1932
1933                 /*
1934                  * Bump syncid on first write.
1935                  */
1936                 if ((sc->sc_bump_id & G_RAID3_BUMP_SYNCID) != 0) {
1937                         sc->sc_bump_id &= ~G_RAID3_BUMP_SYNCID;
1938                         g_raid3_bump_syncid(sc);
1939                 }
1940                 g_raid3_scatter(pbp);
1941                 break;
1942         }
1943         return (0);
1944 }
1945
1946 static int
1947 g_raid3_can_destroy(struct g_raid3_softc *sc)
1948 {
1949         struct g_geom *gp;
1950         struct g_consumer *cp;
1951
1952         g_topology_assert();
1953         gp = sc->sc_geom;
1954         if (gp->softc == NULL)
1955                 return (1);
1956         LIST_FOREACH(cp, &gp->consumer, consumer) {
1957                 if (g_raid3_is_busy(sc, cp))
1958                         return (0);
1959         }
1960         gp = sc->sc_sync.ds_geom;
1961         LIST_FOREACH(cp, &gp->consumer, consumer) {
1962                 if (g_raid3_is_busy(sc, cp))
1963                         return (0);
1964         }
1965         G_RAID3_DEBUG(2, "No I/O requests for %s, it can be destroyed.",
1966             sc->sc_name);
1967         return (1);
1968 }
1969
1970 static int
1971 g_raid3_try_destroy(struct g_raid3_softc *sc)
1972 {
1973
1974         g_topology_assert_not();
1975         sx_assert(&sc->sc_lock, SX_XLOCKED);
1976
1977         if (sc->sc_rootmount != NULL) {
1978                 G_RAID3_DEBUG(1, "root_mount_rel[%u] %p", __LINE__,
1979                     sc->sc_rootmount);
1980                 root_mount_rel(sc->sc_rootmount);
1981                 sc->sc_rootmount = NULL;
1982         }
1983
1984         g_topology_lock();
1985         if (!g_raid3_can_destroy(sc)) {
1986                 g_topology_unlock();
1987                 return (0);
1988         }
1989         sc->sc_geom->softc = NULL;
1990         sc->sc_sync.ds_geom->softc = NULL;
1991         if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_WAIT) != 0) {
1992                 g_topology_unlock();
1993                 G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__,
1994                     &sc->sc_worker);
1995                 /* Unlock sc_lock here, as it can be destroyed after wakeup. */
1996                 sx_xunlock(&sc->sc_lock);
1997                 wakeup(&sc->sc_worker);
1998                 sc->sc_worker = NULL;
1999         } else {
2000                 g_topology_unlock();
2001                 g_raid3_destroy_device(sc);
2002                 free(sc->sc_disks, M_RAID3);
2003                 free(sc, M_RAID3);
2004         }
2005         return (1);
2006 }
2007
2008 /*
2009  * Worker thread.
2010  */
2011 static void
2012 g_raid3_worker(void *arg)
2013 {
2014         struct g_raid3_softc *sc;
2015         struct g_raid3_event *ep;
2016         struct bio *bp;
2017         int timeout;
2018
2019         sc = arg;
2020         thread_lock(curthread);
2021         sched_prio(curthread, PRIBIO);
2022         thread_unlock(curthread);
2023
2024         sx_xlock(&sc->sc_lock);
2025         for (;;) {
2026                 G_RAID3_DEBUG(5, "%s: Let's see...", __func__);
2027                 /*
2028                  * First take a look at events.
2029                  * This is important to handle events before any I/O requests.
2030                  */
2031                 ep = g_raid3_event_get(sc);
2032                 if (ep != NULL) {
2033                         g_raid3_event_remove(sc, ep);
2034                         if ((ep->e_flags & G_RAID3_EVENT_DEVICE) != 0) {
2035                                 /* Update only device status. */
2036                                 G_RAID3_DEBUG(3,
2037                                     "Running event for device %s.",
2038                                     sc->sc_name);
2039                                 ep->e_error = 0;
2040                                 g_raid3_update_device(sc, 1);
2041                         } else {
2042                                 /* Update disk status. */
2043                                 G_RAID3_DEBUG(3, "Running event for disk %s.",
2044                                      g_raid3_get_diskname(ep->e_disk));
2045                                 ep->e_error = g_raid3_update_disk(ep->e_disk,
2046                                     ep->e_state);
2047                                 if (ep->e_error == 0)
2048                                         g_raid3_update_device(sc, 0);
2049                         }
2050                         if ((ep->e_flags & G_RAID3_EVENT_DONTWAIT) != 0) {
2051                                 KASSERT(ep->e_error == 0,
2052                                     ("Error cannot be handled."));
2053                                 g_raid3_event_free(ep);
2054                         } else {
2055                                 ep->e_flags |= G_RAID3_EVENT_DONE;
2056                                 G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__,
2057                                     ep);
2058                                 mtx_lock(&sc->sc_events_mtx);
2059                                 wakeup(ep);
2060                                 mtx_unlock(&sc->sc_events_mtx);
2061                         }
2062                         if ((sc->sc_flags &
2063                             G_RAID3_DEVICE_FLAG_DESTROY) != 0) {
2064                                 if (g_raid3_try_destroy(sc)) {
2065                                         curthread->td_pflags &= ~TDP_GEOM;
2066                                         G_RAID3_DEBUG(1, "Thread exiting.");
2067                                         kthread_exit(0);
2068                                 }
2069                         }
2070                         G_RAID3_DEBUG(5, "%s: I'm here 1.", __func__);
2071                         continue;
2072                 }
2073                 /*
2074                  * Check if we can mark array as CLEAN and if we can't take
2075                  * how much seconds should we wait.
2076                  */
2077                 timeout = g_raid3_idle(sc, -1);
2078                 /*
2079                  * Now I/O requests.
2080                  */
2081                 /* Get first request from the queue. */
2082                 mtx_lock(&sc->sc_queue_mtx);
2083                 bp = bioq_first(&sc->sc_queue);
2084                 if (bp == NULL) {
2085                         if ((sc->sc_flags &
2086                             G_RAID3_DEVICE_FLAG_DESTROY) != 0) {
2087                                 mtx_unlock(&sc->sc_queue_mtx);
2088                                 if (g_raid3_try_destroy(sc)) {
2089                                         curthread->td_pflags &= ~TDP_GEOM;
2090                                         G_RAID3_DEBUG(1, "Thread exiting.");
2091                                         kthread_exit(0);
2092                                 }
2093                                 mtx_lock(&sc->sc_queue_mtx);
2094                         }
2095                         sx_xunlock(&sc->sc_lock);
2096                         /*
2097                          * XXX: We can miss an event here, because an event
2098                          *      can be added without sx-device-lock and without
2099                          *      mtx-queue-lock. Maybe I should just stop using
2100                          *      dedicated mutex for events synchronization and
2101                          *      stick with the queue lock?
2102                          *      The event will hang here until next I/O request
2103                          *      or next event is received.
2104                          */
2105                         MSLEEP(sc, &sc->sc_queue_mtx, PRIBIO | PDROP, "r3:w1",
2106                             timeout * hz);
2107                         sx_xlock(&sc->sc_lock);
2108                         G_RAID3_DEBUG(5, "%s: I'm here 4.", __func__);
2109                         continue;
2110                 }
2111 process:
2112                 bioq_remove(&sc->sc_queue, bp);
2113                 mtx_unlock(&sc->sc_queue_mtx);
2114
2115                 if (bp->bio_from->geom == sc->sc_sync.ds_geom &&
2116                     (bp->bio_cflags & G_RAID3_BIO_CFLAG_SYNC) != 0) {
2117                         g_raid3_sync_request(bp);       /* READ */
2118                 } else if (bp->bio_to != sc->sc_provider) {
2119                         if ((bp->bio_cflags & G_RAID3_BIO_CFLAG_REGULAR) != 0)
2120                                 g_raid3_regular_request(bp);
2121                         else if ((bp->bio_cflags & G_RAID3_BIO_CFLAG_SYNC) != 0)
2122                                 g_raid3_sync_request(bp);       /* WRITE */
2123                         else {
2124                                 KASSERT(0,
2125                                     ("Invalid request cflags=0x%hhx to=%s.",
2126                                     bp->bio_cflags, bp->bio_to->name));
2127                         }
2128                 } else if (g_raid3_register_request(bp) != 0) {
2129                         mtx_lock(&sc->sc_queue_mtx);
2130                         bioq_insert_head(&sc->sc_queue, bp);
2131                         /*
2132                          * We are short in memory, let see if there are finished
2133                          * request we can free.
2134                          */
2135                         TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) {
2136                                 if (bp->bio_cflags & G_RAID3_BIO_CFLAG_REGULAR)
2137                                         goto process;
2138                         }
2139                         /*
2140                          * No finished regular request, so at least keep
2141                          * synchronization running.
2142                          */
2143                         TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) {
2144                                 if (bp->bio_cflags & G_RAID3_BIO_CFLAG_SYNC)
2145                                         goto process;
2146                         }
2147                         sx_xunlock(&sc->sc_lock);
2148                         MSLEEP(&sc->sc_queue, &sc->sc_queue_mtx, PRIBIO | PDROP,
2149                             "r3:lowmem", hz / 10);
2150                         sx_xlock(&sc->sc_lock);
2151                 }
2152                 G_RAID3_DEBUG(5, "%s: I'm here 9.", __func__);
2153         }
2154 }
2155
2156 static void
2157 g_raid3_update_idle(struct g_raid3_softc *sc, struct g_raid3_disk *disk)
2158 {
2159
2160         sx_assert(&sc->sc_lock, SX_LOCKED);
2161         if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOFAILSYNC) != 0)
2162                 return;
2163         if (!sc->sc_idle && (disk->d_flags & G_RAID3_DISK_FLAG_DIRTY) == 0) {
2164                 G_RAID3_DEBUG(1, "Disk %s (device %s) marked as dirty.",
2165                     g_raid3_get_diskname(disk), sc->sc_name);
2166                 disk->d_flags |= G_RAID3_DISK_FLAG_DIRTY;
2167         } else if (sc->sc_idle &&
2168             (disk->d_flags & G_RAID3_DISK_FLAG_DIRTY) != 0) {
2169                 G_RAID3_DEBUG(1, "Disk %s (device %s) marked as clean.",
2170                     g_raid3_get_diskname(disk), sc->sc_name);
2171                 disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY;
2172         }
2173 }
2174
2175 static void
2176 g_raid3_sync_start(struct g_raid3_softc *sc)
2177 {
2178         struct g_raid3_disk *disk;
2179         struct g_consumer *cp;
2180         struct bio *bp;
2181         int error;
2182         u_int n;
2183
2184         g_topology_assert_not();
2185         sx_assert(&sc->sc_lock, SX_XLOCKED);
2186
2187         KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED,
2188             ("Device not in DEGRADED state (%s, %u).", sc->sc_name,
2189             sc->sc_state));
2190         KASSERT(sc->sc_syncdisk == NULL, ("Syncdisk is not NULL (%s, %u).",
2191             sc->sc_name, sc->sc_state));
2192         disk = NULL;
2193         for (n = 0; n < sc->sc_ndisks; n++) {
2194                 if (sc->sc_disks[n].d_state != G_RAID3_DISK_STATE_SYNCHRONIZING)
2195                         continue;
2196                 disk = &sc->sc_disks[n];
2197                 break;
2198         }
2199         if (disk == NULL)
2200                 return;
2201
2202         sx_xunlock(&sc->sc_lock);
2203         g_topology_lock();
2204         cp = g_new_consumer(sc->sc_sync.ds_geom);
2205         error = g_attach(cp, sc->sc_provider);
2206         KASSERT(error == 0,
2207             ("Cannot attach to %s (error=%d).", sc->sc_name, error));
2208         error = g_access(cp, 1, 0, 0);
2209         KASSERT(error == 0, ("Cannot open %s (error=%d).", sc->sc_name, error));
2210         g_topology_unlock();
2211         sx_xlock(&sc->sc_lock);
2212
2213         G_RAID3_DEBUG(0, "Device %s: rebuilding provider %s.", sc->sc_name,
2214             g_raid3_get_diskname(disk));
2215         if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOFAILSYNC) == 0)
2216                 disk->d_flags |= G_RAID3_DISK_FLAG_DIRTY;
2217         KASSERT(disk->d_sync.ds_consumer == NULL,
2218             ("Sync consumer already exists (device=%s, disk=%s).",
2219             sc->sc_name, g_raid3_get_diskname(disk)));
2220
2221         disk->d_sync.ds_consumer = cp;
2222         disk->d_sync.ds_consumer->private = disk;
2223         disk->d_sync.ds_consumer->index = 0;
2224         sc->sc_syncdisk = disk;
2225
2226         /*
2227          * Allocate memory for synchronization bios and initialize them.
2228          */
2229         disk->d_sync.ds_bios = malloc(sizeof(struct bio *) * g_raid3_syncreqs,
2230             M_RAID3, M_WAITOK);
2231         for (n = 0; n < g_raid3_syncreqs; n++) {
2232                 bp = g_alloc_bio();
2233                 disk->d_sync.ds_bios[n] = bp;
2234                 bp->bio_parent = NULL;
2235                 bp->bio_cmd = BIO_READ;
2236                 bp->bio_data = malloc(MAXPHYS, M_RAID3, M_WAITOK);
2237                 bp->bio_cflags = 0;
2238                 bp->bio_offset = disk->d_sync.ds_offset * (sc->sc_ndisks - 1);
2239                 bp->bio_length = MIN(MAXPHYS, sc->sc_mediasize - bp->bio_offset);
2240                 disk->d_sync.ds_offset += bp->bio_length / (sc->sc_ndisks - 1);
2241                 bp->bio_done = g_raid3_sync_done;
2242                 bp->bio_from = disk->d_sync.ds_consumer;
2243                 bp->bio_to = sc->sc_provider;
2244                 bp->bio_caller1 = (void *)(uintptr_t)n;
2245         }
2246
2247         /* Set the number of in-flight synchronization requests. */
2248         disk->d_sync.ds_inflight = g_raid3_syncreqs;
2249
2250         /*
2251          * Fire off first synchronization requests.
2252          */
2253         for (n = 0; n < g_raid3_syncreqs; n++) {
2254                 bp = disk->d_sync.ds_bios[n];
2255                 G_RAID3_LOGREQ(3, bp, "Sending synchronization request.");
2256                 disk->d_sync.ds_consumer->index++;
2257                 /*
2258                  * Delay the request if it is colliding with a regular request.
2259                  */
2260                 if (g_raid3_regular_collision(sc, bp))
2261                         g_raid3_sync_delay(sc, bp);
2262                 else
2263                         g_io_request(bp, disk->d_sync.ds_consumer);
2264         }
2265 }
2266
2267 /*
2268  * Stop synchronization process.
2269  * type: 0 - synchronization finished
2270  *       1 - synchronization stopped
2271  */
2272 static void
2273 g_raid3_sync_stop(struct g_raid3_softc *sc, int type)
2274 {
2275         struct g_raid3_disk *disk;
2276         struct g_consumer *cp;
2277
2278         g_topology_assert_not();
2279         sx_assert(&sc->sc_lock, SX_LOCKED);
2280
2281         KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED,
2282             ("Device not in DEGRADED state (%s, %u).", sc->sc_name,
2283             sc->sc_state));
2284         disk = sc->sc_syncdisk;
2285         sc->sc_syncdisk = NULL;
2286         KASSERT(disk != NULL, ("No disk was synchronized (%s).", sc->sc_name));
2287         KASSERT(disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING,
2288             ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk),
2289             g_raid3_disk_state2str(disk->d_state)));
2290         if (disk->d_sync.ds_consumer == NULL)
2291                 return;
2292
2293         if (type == 0) {
2294                 G_RAID3_DEBUG(0, "Device %s: rebuilding provider %s finished.",
2295                     sc->sc_name, g_raid3_get_diskname(disk));
2296         } else /* if (type == 1) */ {
2297                 G_RAID3_DEBUG(0, "Device %s: rebuilding provider %s stopped.",
2298                     sc->sc_name, g_raid3_get_diskname(disk));
2299         }
2300         free(disk->d_sync.ds_bios, M_RAID3);
2301         disk->d_sync.ds_bios = NULL;
2302         cp = disk->d_sync.ds_consumer;
2303         disk->d_sync.ds_consumer = NULL;
2304         disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY;
2305         sx_xunlock(&sc->sc_lock); /* Avoid recursion on sc_lock. */
2306         g_topology_lock();
2307         g_raid3_kill_consumer(sc, cp);
2308         g_topology_unlock();
2309         sx_xlock(&sc->sc_lock);
2310 }
2311
2312 static void
2313 g_raid3_launch_provider(struct g_raid3_softc *sc)
2314 {
2315         struct g_provider *pp;
2316
2317         sx_assert(&sc->sc_lock, SX_LOCKED);
2318
2319         g_topology_lock();
2320         pp = g_new_providerf(sc->sc_geom, "raid3/%s", sc->sc_name);
2321         pp->mediasize = sc->sc_mediasize;
2322         pp->sectorsize = sc->sc_sectorsize;
2323         sc->sc_provider = pp;
2324         g_error_provider(pp, 0);
2325         g_topology_unlock();
2326         G_RAID3_DEBUG(0, "Device %s launched (%u/%u).", pp->name,
2327             g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE), sc->sc_ndisks);
2328
2329         if (sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED)
2330                 g_raid3_sync_start(sc);
2331 }
2332
2333 static void
2334 g_raid3_destroy_provider(struct g_raid3_softc *sc)
2335 {
2336         struct bio *bp;
2337
2338         g_topology_assert_not();
2339         KASSERT(sc->sc_provider != NULL, ("NULL provider (device=%s).",
2340             sc->sc_name));
2341
2342         g_topology_lock();
2343         g_error_provider(sc->sc_provider, ENXIO);
2344         mtx_lock(&sc->sc_queue_mtx);
2345         while ((bp = bioq_first(&sc->sc_queue)) != NULL) {
2346                 bioq_remove(&sc->sc_queue, bp);
2347                 g_io_deliver(bp, ENXIO);
2348         }
2349         mtx_unlock(&sc->sc_queue_mtx);
2350         G_RAID3_DEBUG(0, "Device %s: provider %s destroyed.", sc->sc_name,
2351             sc->sc_provider->name);
2352         sc->sc_provider->flags |= G_PF_WITHER;
2353         g_orphan_provider(sc->sc_provider, ENXIO);
2354         g_topology_unlock();
2355         sc->sc_provider = NULL;
2356         if (sc->sc_syncdisk != NULL)
2357                 g_raid3_sync_stop(sc, 1);
2358 }
2359
2360 static void
2361 g_raid3_go(void *arg)
2362 {
2363         struct g_raid3_softc *sc;
2364
2365         sc = arg;
2366         G_RAID3_DEBUG(0, "Force device %s start due to timeout.", sc->sc_name);
2367         g_raid3_event_send(sc, 0,
2368             G_RAID3_EVENT_DONTWAIT | G_RAID3_EVENT_DEVICE);
2369 }
2370
2371 static u_int
2372 g_raid3_determine_state(struct g_raid3_disk *disk)
2373 {
2374         struct g_raid3_softc *sc;
2375         u_int state;
2376
2377         sc = disk->d_softc;
2378         if (sc->sc_syncid == disk->d_sync.ds_syncid) {
2379                 if ((disk->d_flags &
2380                     G_RAID3_DISK_FLAG_SYNCHRONIZING) == 0) {
2381                         /* Disk does not need synchronization. */
2382                         state = G_RAID3_DISK_STATE_ACTIVE;
2383                 } else {
2384                         if ((sc->sc_flags &
2385                              G_RAID3_DEVICE_FLAG_NOAUTOSYNC) == 0 ||
2386                             (disk->d_flags &
2387                              G_RAID3_DISK_FLAG_FORCE_SYNC) != 0) {
2388                                 /*
2389                                  * We can start synchronization from
2390                                  * the stored offset.
2391                                  */
2392                                 state = G_RAID3_DISK_STATE_SYNCHRONIZING;
2393                         } else {
2394                                 state = G_RAID3_DISK_STATE_STALE;
2395                         }
2396                 }
2397         } else if (disk->d_sync.ds_syncid < sc->sc_syncid) {
2398                 /*
2399                  * Reset all synchronization data for this disk,
2400                  * because if it even was synchronized, it was
2401                  * synchronized to disks with different syncid.
2402                  */
2403                 disk->d_flags |= G_RAID3_DISK_FLAG_SYNCHRONIZING;
2404                 disk->d_sync.ds_offset = 0;
2405                 disk->d_sync.ds_offset_done = 0;
2406                 disk->d_sync.ds_syncid = sc->sc_syncid;
2407                 if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOAUTOSYNC) == 0 ||
2408                     (disk->d_flags & G_RAID3_DISK_FLAG_FORCE_SYNC) != 0) {
2409                         state = G_RAID3_DISK_STATE_SYNCHRONIZING;
2410                 } else {
2411                         state = G_RAID3_DISK_STATE_STALE;
2412                 }
2413         } else /* if (sc->sc_syncid < disk->d_sync.ds_syncid) */ {
2414                 /*
2415                  * Not good, NOT GOOD!
2416                  * It means that device was started on stale disks
2417                  * and more fresh disk just arrive.
2418                  * If there were writes, device is broken, sorry.
2419                  * I think the best choice here is don't touch
2420                  * this disk and inform the user loudly.
2421                  */
2422                 G_RAID3_DEBUG(0, "Device %s was started before the freshest "
2423                     "disk (%s) arrives!! It will not be connected to the "
2424                     "running device.", sc->sc_name,
2425                     g_raid3_get_diskname(disk));
2426                 g_raid3_destroy_disk(disk);
2427                 state = G_RAID3_DISK_STATE_NONE;
2428                 /* Return immediately, because disk was destroyed. */
2429                 return (state);
2430         }
2431         G_RAID3_DEBUG(3, "State for %s disk: %s.",
2432             g_raid3_get_diskname(disk), g_raid3_disk_state2str(state));
2433         return (state);
2434 }
2435
2436 /*
2437  * Update device state.
2438  */
2439 static void
2440 g_raid3_update_device(struct g_raid3_softc *sc, boolean_t force)
2441 {
2442         struct g_raid3_disk *disk;
2443         u_int state;
2444
2445         sx_assert(&sc->sc_lock, SX_XLOCKED);
2446
2447         switch (sc->sc_state) {
2448         case G_RAID3_DEVICE_STATE_STARTING:
2449             {
2450                 u_int n, ndirty, ndisks, genid, syncid;
2451
2452                 KASSERT(sc->sc_provider == NULL,
2453                     ("Non-NULL provider in STARTING state (%s).", sc->sc_name));
2454                 /*
2455                  * Are we ready? We are, if all disks are connected or
2456                  * one disk is missing and 'force' is true.
2457                  */
2458                 if (g_raid3_ndisks(sc, -1) + force == sc->sc_ndisks) {
2459                         if (!force)
2460                                 callout_drain(&sc->sc_callout);
2461                 } else {
2462                         if (force) {
2463                                 /*
2464                                  * Timeout expired, so destroy device.
2465                                  */
2466                                 sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY;
2467                                 G_RAID3_DEBUG(1, "root_mount_rel[%u] %p",
2468                                     __LINE__, sc->sc_rootmount);
2469                                 root_mount_rel(sc->sc_rootmount);
2470                                 sc->sc_rootmount = NULL;
2471                         }
2472                         return;
2473                 }
2474
2475                 /*
2476                  * Find the biggest genid.
2477                  */
2478                 genid = 0;
2479                 for (n = 0; n < sc->sc_ndisks; n++) {
2480                         disk = &sc->sc_disks[n];
2481                         if (disk->d_state == G_RAID3_DISK_STATE_NODISK)
2482                                 continue;
2483                         if (disk->d_genid > genid)
2484                                 genid = disk->d_genid;
2485                 }
2486                 sc->sc_genid = genid;
2487                 /*
2488                  * Remove all disks without the biggest genid.
2489                  */
2490                 for (n = 0; n < sc->sc_ndisks; n++) {
2491                         disk = &sc->sc_disks[n];
2492                         if (disk->d_state == G_RAID3_DISK_STATE_NODISK)
2493                                 continue;
2494                         if (disk->d_genid < genid) {
2495                                 G_RAID3_DEBUG(0,
2496                                     "Component %s (device %s) broken, skipping.",
2497                                     g_raid3_get_diskname(disk), sc->sc_name);
2498                                 g_raid3_destroy_disk(disk);
2499                         }
2500                 }
2501
2502                 /*
2503                  * There must be at least 'sc->sc_ndisks - 1' components
2504                  * with the same syncid and without SYNCHRONIZING flag.
2505                  */
2506
2507                 /*
2508                  * Find the biggest syncid, number of valid components and
2509                  * number of dirty components.
2510                  */
2511                 ndirty = ndisks = syncid = 0;
2512                 for (n = 0; n < sc->sc_ndisks; n++) {
2513                         disk = &sc->sc_disks[n];
2514                         if (disk->d_state == G_RAID3_DISK_STATE_NODISK)
2515                                 continue;
2516                         if ((disk->d_flags & G_RAID3_DISK_FLAG_DIRTY) != 0)
2517                                 ndirty++;
2518                         if (disk->d_sync.ds_syncid > syncid) {
2519                                 syncid = disk->d_sync.ds_syncid;
2520                                 ndisks = 0;
2521                         } else if (disk->d_sync.ds_syncid < syncid) {
2522                                 continue;
2523                         }
2524                         if ((disk->d_flags &
2525                             G_RAID3_DISK_FLAG_SYNCHRONIZING) != 0) {
2526                                 continue;
2527                         }
2528                         ndisks++;
2529                 }
2530                 /*
2531                  * Do we have enough valid components?
2532                  */
2533                 if (ndisks + 1 < sc->sc_ndisks) {
2534                         G_RAID3_DEBUG(0,
2535                             "Device %s is broken, too few valid components.",
2536                             sc->sc_name);
2537                         sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY;
2538                         return;
2539                 }
2540                 /*
2541                  * If there is one DIRTY component and all disks are present,
2542                  * mark it for synchronization. If there is more than one DIRTY
2543                  * component, mark parity component for synchronization.
2544                  */
2545                 if (ndisks == sc->sc_ndisks && ndirty == 1) {
2546                         for (n = 0; n < sc->sc_ndisks; n++) {
2547                                 disk = &sc->sc_disks[n];
2548                                 if ((disk->d_flags &
2549                                     G_RAID3_DISK_FLAG_DIRTY) == 0) {
2550                                         continue;
2551                                 }
2552                                 disk->d_flags |=
2553                                     G_RAID3_DISK_FLAG_SYNCHRONIZING;
2554                         }
2555                 } else if (ndisks == sc->sc_ndisks && ndirty > 1) {
2556                         disk = &sc->sc_disks[sc->sc_ndisks - 1];
2557                         disk->d_flags |= G_RAID3_DISK_FLAG_SYNCHRONIZING;
2558                 }
2559
2560                 sc->sc_syncid = syncid;
2561                 if (force) {
2562                         /* Remember to bump syncid on first write. */
2563                         sc->sc_bump_id |= G_RAID3_BUMP_SYNCID;
2564                 }
2565                 if (ndisks == sc->sc_ndisks)
2566                         state = G_RAID3_DEVICE_STATE_COMPLETE;
2567                 else /* if (ndisks == sc->sc_ndisks - 1) */
2568                         state = G_RAID3_DEVICE_STATE_DEGRADED;
2569                 G_RAID3_DEBUG(1, "Device %s state changed from %s to %s.",
2570                     sc->sc_name, g_raid3_device_state2str(sc->sc_state),
2571                     g_raid3_device_state2str(state));
2572                 sc->sc_state = state;
2573                 for (n = 0; n < sc->sc_ndisks; n++) {
2574                         disk = &sc->sc_disks[n];
2575                         if (disk->d_state == G_RAID3_DISK_STATE_NODISK)
2576                                 continue;
2577                         state = g_raid3_determine_state(disk);
2578                         g_raid3_event_send(disk, state, G_RAID3_EVENT_DONTWAIT);
2579                         if (state == G_RAID3_DISK_STATE_STALE)
2580                                 sc->sc_bump_id |= G_RAID3_BUMP_SYNCID;
2581                 }
2582                 break;
2583             }
2584         case G_RAID3_DEVICE_STATE_DEGRADED:
2585                 /*
2586                  * Genid need to be bumped immediately, so do it here.
2587                  */
2588                 if ((sc->sc_bump_id & G_RAID3_BUMP_GENID) != 0) {
2589                         sc->sc_bump_id &= ~G_RAID3_BUMP_GENID;
2590                         g_raid3_bump_genid(sc);
2591                 }
2592
2593                 if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_NEW) > 0)
2594                         return;
2595                 if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) <
2596                     sc->sc_ndisks - 1) {
2597                         if (sc->sc_provider != NULL)
2598                                 g_raid3_destroy_provider(sc);
2599                         sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY;
2600                         return;
2601                 }
2602                 if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) ==
2603                     sc->sc_ndisks) {
2604                         state = G_RAID3_DEVICE_STATE_COMPLETE;
2605                         G_RAID3_DEBUG(1,
2606                             "Device %s state changed from %s to %s.",
2607                             sc->sc_name, g_raid3_device_state2str(sc->sc_state),
2608                             g_raid3_device_state2str(state));
2609                         sc->sc_state = state;
2610                 }
2611                 if (sc->sc_provider == NULL)
2612                         g_raid3_launch_provider(sc);
2613                 if (sc->sc_rootmount != NULL) {
2614                         G_RAID3_DEBUG(1, "root_mount_rel[%u] %p", __LINE__,
2615                             sc->sc_rootmount);
2616                         root_mount_rel(sc->sc_rootmount);
2617                         sc->sc_rootmount = NULL;
2618                 }
2619                 break;
2620         case G_RAID3_DEVICE_STATE_COMPLETE:
2621                 /*
2622                  * Genid need to be bumped immediately, so do it here.
2623                  */
2624                 if ((sc->sc_bump_id & G_RAID3_BUMP_GENID) != 0) {
2625                         sc->sc_bump_id &= ~G_RAID3_BUMP_GENID;
2626                         g_raid3_bump_genid(sc);
2627                 }
2628
2629                 if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_NEW) > 0)
2630                         return;
2631                 KASSERT(g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) >=
2632                     sc->sc_ndisks - 1,
2633                     ("Too few ACTIVE components in COMPLETE state (device %s).",
2634                     sc->sc_name));
2635                 if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) ==
2636                     sc->sc_ndisks - 1) {
2637                         state = G_RAID3_DEVICE_STATE_DEGRADED;
2638                         G_RAID3_DEBUG(1,
2639                             "Device %s state changed from %s to %s.",
2640                             sc->sc_name, g_raid3_device_state2str(sc->sc_state),
2641                             g_raid3_device_state2str(state));
2642                         sc->sc_state = state;
2643                 }
2644                 if (sc->sc_provider == NULL)
2645                         g_raid3_launch_provider(sc);
2646                 if (sc->sc_rootmount != NULL) {
2647                         G_RAID3_DEBUG(1, "root_mount_rel[%u] %p", __LINE__,
2648                             sc->sc_rootmount);
2649                         root_mount_rel(sc->sc_rootmount);
2650                         sc->sc_rootmount = NULL;
2651                 }
2652                 break;
2653         default:
2654                 KASSERT(1 == 0, ("Wrong device state (%s, %s).", sc->sc_name,
2655                     g_raid3_device_state2str(sc->sc_state)));
2656                 break;
2657         }
2658 }
2659
2660 /*
2661  * Update disk state and device state if needed.
2662  */
2663 #define DISK_STATE_CHANGED()    G_RAID3_DEBUG(1,                        \
2664         "Disk %s state changed from %s to %s (device %s).",             \
2665         g_raid3_get_diskname(disk),                                     \
2666         g_raid3_disk_state2str(disk->d_state),                          \
2667         g_raid3_disk_state2str(state), sc->sc_name)
2668 static int
2669 g_raid3_update_disk(struct g_raid3_disk *disk, u_int state)
2670 {
2671         struct g_raid3_softc *sc;
2672
2673         sc = disk->d_softc;
2674         sx_assert(&sc->sc_lock, SX_XLOCKED);
2675
2676 again:
2677         G_RAID3_DEBUG(3, "Changing disk %s state from %s to %s.",
2678             g_raid3_get_diskname(disk), g_raid3_disk_state2str(disk->d_state),
2679             g_raid3_disk_state2str(state));
2680         switch (state) {
2681         case G_RAID3_DISK_STATE_NEW:
2682                 /*
2683                  * Possible scenarios:
2684                  * 1. New disk arrive.
2685                  */
2686                 /* Previous state should be NONE. */
2687                 KASSERT(disk->d_state == G_RAID3_DISK_STATE_NONE,
2688                     ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk),
2689                     g_raid3_disk_state2str(disk->d_state)));
2690                 DISK_STATE_CHANGED();
2691
2692                 disk->d_state = state;
2693                 G_RAID3_DEBUG(1, "Device %s: provider %s detected.",
2694                     sc->sc_name, g_raid3_get_diskname(disk));
2695                 if (sc->sc_state == G_RAID3_DEVICE_STATE_STARTING)
2696                         break;
2697                 KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED ||
2698                     sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE,
2699                     ("Wrong device state (%s, %s, %s, %s).", sc->sc_name,
2700                     g_raid3_device_state2str(sc->sc_state),
2701                     g_raid3_get_diskname(disk),
2702                     g_raid3_disk_state2str(disk->d_state)));
2703                 state = g_raid3_determine_state(disk);
2704                 if (state != G_RAID3_DISK_STATE_NONE)
2705                         goto again;
2706                 break;
2707         case G_RAID3_DISK_STATE_ACTIVE:
2708                 /*
2709                  * Possible scenarios:
2710                  * 1. New disk does not need synchronization.
2711                  * 2. Synchronization process finished successfully.
2712                  */
2713                 KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED ||
2714                     sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE,
2715                     ("Wrong device state (%s, %s, %s, %s).", sc->sc_name,
2716                     g_raid3_device_state2str(sc->sc_state),
2717                     g_raid3_get_diskname(disk),
2718                     g_raid3_disk_state2str(disk->d_state)));
2719                 /* Previous state should be NEW or SYNCHRONIZING. */
2720                 KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW ||
2721                     disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING,
2722                     ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk),
2723                     g_raid3_disk_state2str(disk->d_state)));
2724                 DISK_STATE_CHANGED();
2725
2726                 if (disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) {
2727                         disk->d_flags &= ~G_RAID3_DISK_FLAG_SYNCHRONIZING;
2728                         disk->d_flags &= ~G_RAID3_DISK_FLAG_FORCE_SYNC;
2729                         g_raid3_sync_stop(sc, 0);
2730                 }
2731                 disk->d_state = state;
2732                 disk->d_sync.ds_offset = 0;
2733                 disk->d_sync.ds_offset_done = 0;
2734                 g_raid3_update_idle(sc, disk);
2735                 g_raid3_update_metadata(disk);
2736                 G_RAID3_DEBUG(1, "Device %s: provider %s activated.",
2737                     sc->sc_name, g_raid3_get_diskname(disk));
2738                 break;
2739         case G_RAID3_DISK_STATE_STALE:
2740                 /*
2741                  * Possible scenarios:
2742                  * 1. Stale disk was connected.
2743                  */
2744                 /* Previous state should be NEW. */
2745                 KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW,
2746                     ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk),
2747                     g_raid3_disk_state2str(disk->d_state)));
2748                 KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED ||
2749                     sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE,
2750                     ("Wrong device state (%s, %s, %s, %s).", sc->sc_name,
2751                     g_raid3_device_state2str(sc->sc_state),
2752                     g_raid3_get_diskname(disk),
2753                     g_raid3_disk_state2str(disk->d_state)));
2754                 /*
2755                  * STALE state is only possible if device is marked
2756                  * NOAUTOSYNC.
2757                  */
2758                 KASSERT((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOAUTOSYNC) != 0,
2759                     ("Wrong device state (%s, %s, %s, %s).", sc->sc_name,
2760                     g_raid3_device_state2str(sc->sc_state),
2761                     g_raid3_get_diskname(disk),
2762                     g_raid3_disk_state2str(disk->d_state)));
2763                 DISK_STATE_CHANGED();
2764
2765                 disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY;
2766                 disk->d_state = state;
2767                 g_raid3_update_metadata(disk);
2768                 G_RAID3_DEBUG(0, "Device %s: provider %s is stale.",
2769                     sc->sc_name, g_raid3_get_diskname(disk));
2770                 break;
2771         case G_RAID3_DISK_STATE_SYNCHRONIZING:
2772                 /*
2773                  * Possible scenarios:
2774                  * 1. Disk which needs synchronization was connected.
2775                  */
2776                 /* Previous state should be NEW. */
2777                 KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW,
2778                     ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk),
2779                     g_raid3_disk_state2str(disk->d_state)));
2780                 KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED ||
2781                     sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE,
2782                     ("Wrong device state (%s, %s, %s, %s).", sc->sc_name,
2783                     g_raid3_device_state2str(sc->sc_state),
2784                     g_raid3_get_diskname(disk),
2785                     g_raid3_disk_state2str(disk->d_state)));
2786                 DISK_STATE_CHANGED();
2787
2788                 if (disk->d_state == G_RAID3_DISK_STATE_NEW)
2789                         disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY;
2790                 disk->d_state = state;
2791                 if (sc->sc_provider != NULL) {
2792                         g_raid3_sync_start(sc);
2793                         g_raid3_update_metadata(disk);
2794                 }
2795                 break;
2796         case G_RAID3_DISK_STATE_DISCONNECTED:
2797                 /*
2798                  * Possible scenarios:
2799                  * 1. Device wasn't running yet, but disk disappear.
2800                  * 2. Disk was active and disapppear.
2801                  * 3. Disk disappear during synchronization process.
2802                  */
2803                 if (sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED ||
2804                     sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) {
2805                         /*
2806                          * Previous state should be ACTIVE, STALE or
2807                          * SYNCHRONIZING.
2808                          */
2809                         KASSERT(disk->d_state == G_RAID3_DISK_STATE_ACTIVE ||
2810                             disk->d_state == G_RAID3_DISK_STATE_STALE ||
2811                             disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING,
2812                             ("Wrong disk state (%s, %s).",
2813                             g_raid3_get_diskname(disk),
2814                             g_raid3_disk_state2str(disk->d_state)));
2815                 } else if (sc->sc_state == G_RAID3_DEVICE_STATE_STARTING) {
2816                         /* Previous state should be NEW. */
2817                         KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW,
2818                             ("Wrong disk state (%s, %s).",
2819                             g_raid3_get_diskname(disk),
2820                             g_raid3_disk_state2str(disk->d_state)));
2821                         /*
2822                          * Reset bumping syncid if disk disappeared in STARTING
2823                          * state.
2824                          */
2825                         if ((sc->sc_bump_id & G_RAID3_BUMP_SYNCID) != 0)
2826                                 sc->sc_bump_id &= ~G_RAID3_BUMP_SYNCID;
2827 #ifdef  INVARIANTS
2828                 } else {
2829                         KASSERT(1 == 0, ("Wrong device state (%s, %s, %s, %s).",
2830                             sc->sc_name,
2831                             g_raid3_device_state2str(sc->sc_state),
2832                             g_raid3_get_diskname(disk),
2833                             g_raid3_disk_state2str(disk->d_state)));
2834 #endif
2835                 }
2836                 DISK_STATE_CHANGED();
2837                 G_RAID3_DEBUG(0, "Device %s: provider %s disconnected.",
2838                     sc->sc_name, g_raid3_get_diskname(disk));
2839
2840                 g_raid3_destroy_disk(disk);
2841                 break;
2842         default:
2843                 KASSERT(1 == 0, ("Unknown state (%u).", state));
2844                 break;
2845         }
2846         return (0);
2847 }
2848 #undef  DISK_STATE_CHANGED
2849
2850 int
2851 g_raid3_read_metadata(struct g_consumer *cp, struct g_raid3_metadata *md)
2852 {
2853         struct g_provider *pp;
2854         u_char *buf;
2855         int error;
2856
2857         g_topology_assert();
2858
2859         error = g_access(cp, 1, 0, 0);
2860         if (error != 0)
2861                 return (error);
2862         pp = cp->provider;
2863         g_topology_unlock();
2864         /* Metadata are stored on last sector. */
2865         buf = g_read_data(cp, pp->mediasize - pp->sectorsize, pp->sectorsize,
2866             &error);
2867         g_topology_lock();
2868         g_access(cp, -1, 0, 0);
2869         if (buf == NULL) {
2870                 G_RAID3_DEBUG(1, "Cannot read metadata from %s (error=%d).",
2871                     cp->provider->name, error);
2872                 return (error);
2873         }
2874
2875         /* Decode metadata. */
2876         error = raid3_metadata_decode(buf, md);
2877         g_free(buf);
2878         if (strcmp(md->md_magic, G_RAID3_MAGIC) != 0)
2879                 return (EINVAL);
2880         if (md->md_version > G_RAID3_VERSION) {
2881                 G_RAID3_DEBUG(0,
2882                     "Kernel module is too old to handle metadata from %s.",
2883                     cp->provider->name);
2884                 return (EINVAL);
2885         }
2886         if (error != 0) {
2887                 G_RAID3_DEBUG(1, "MD5 metadata hash mismatch for provider %s.",
2888                     cp->provider->name);
2889                 return (error);
2890         }
2891
2892         return (0);
2893 }
2894
2895 static int
2896 g_raid3_check_metadata(struct g_raid3_softc *sc, struct g_provider *pp,
2897     struct g_raid3_metadata *md)
2898 {
2899
2900         if (md->md_no >= sc->sc_ndisks) {
2901                 G_RAID3_DEBUG(1, "Invalid disk %s number (no=%u), skipping.",
2902                     pp->name, md->md_no);
2903                 return (EINVAL);
2904         }
2905         if (sc->sc_disks[md->md_no].d_state != G_RAID3_DISK_STATE_NODISK) {
2906                 G_RAID3_DEBUG(1, "Disk %s (no=%u) already exists, skipping.",
2907                     pp->name, md->md_no);
2908                 return (EEXIST);
2909         }
2910         if (md->md_all != sc->sc_ndisks) {
2911                 G_RAID3_DEBUG(1,
2912                     "Invalid '%s' field on disk %s (device %s), skipping.",
2913                     "md_all", pp->name, sc->sc_name);
2914                 return (EINVAL);
2915         }
2916         if ((md->md_mediasize % md->md_sectorsize) != 0) {
2917                 G_RAID3_DEBUG(1, "Invalid metadata (mediasize %% sectorsize != "
2918                     "0) on disk %s (device %s), skipping.", pp->name,
2919                     sc->sc_name);
2920                 return (EINVAL);
2921         }
2922         if (md->md_mediasize != sc->sc_mediasize) {
2923                 G_RAID3_DEBUG(1,
2924                     "Invalid '%s' field on disk %s (device %s), skipping.",
2925                     "md_mediasize", pp->name, sc->sc_name);
2926                 return (EINVAL);
2927         }
2928         if ((md->md_mediasize % (sc->sc_ndisks - 1)) != 0) {
2929                 G_RAID3_DEBUG(1,
2930                     "Invalid '%s' field on disk %s (device %s), skipping.",
2931                     "md_mediasize", pp->name, sc->sc_name);
2932                 return (EINVAL);
2933         }
2934         if ((sc->sc_mediasize / (sc->sc_ndisks - 1)) > pp->mediasize) {
2935                 G_RAID3_DEBUG(1,
2936                     "Invalid size of disk %s (device %s), skipping.", pp->name,
2937                     sc->sc_name);
2938                 return (EINVAL);
2939         }
2940         if ((md->md_sectorsize / pp->sectorsize) < sc->sc_ndisks - 1) {
2941                 G_RAID3_DEBUG(1,
2942                     "Invalid '%s' field on disk %s (device %s), skipping.",
2943                     "md_sectorsize", pp->name, sc->sc_name);
2944                 return (EINVAL);
2945         }
2946         if (md->md_sectorsize != sc->sc_sectorsize) {
2947                 G_RAID3_DEBUG(1,
2948                     "Invalid '%s' field on disk %s (device %s), skipping.",
2949                     "md_sectorsize", pp->name, sc->sc_name);
2950                 return (EINVAL);
2951         }
2952         if ((sc->sc_sectorsize % pp->sectorsize) != 0) {
2953                 G_RAID3_DEBUG(1,
2954                     "Invalid sector size of disk %s (device %s), skipping.",
2955                     pp->name, sc->sc_name);
2956                 return (EINVAL);
2957         }
2958         if ((md->md_mflags & ~G_RAID3_DEVICE_FLAG_MASK) != 0) {
2959                 G_RAID3_DEBUG(1,
2960                     "Invalid device flags on disk %s (device %s), skipping.",
2961                     pp->name, sc->sc_name);
2962                 return (EINVAL);
2963         }
2964         if ((md->md_mflags & G_RAID3_DEVICE_FLAG_VERIFY) != 0 &&
2965             (md->md_mflags & G_RAID3_DEVICE_FLAG_ROUND_ROBIN) != 0) {
2966                 /*
2967                  * VERIFY and ROUND-ROBIN options are mutally exclusive.
2968                  */
2969                 G_RAID3_DEBUG(1, "Both VERIFY and ROUND-ROBIN flags exist on "
2970                     "disk %s (device %s), skipping.", pp->name, sc->sc_name);
2971                 return (EINVAL);
2972         }
2973         if ((md->md_dflags & ~G_RAID3_DISK_FLAG_MASK) != 0) {
2974                 G_RAID3_DEBUG(1,
2975                     "Invalid disk flags on disk %s (device %s), skipping.",
2976                     pp->name, sc->sc_name);
2977                 return (EINVAL);
2978         }
2979         return (0);
2980 }
2981
2982 int
2983 g_raid3_add_disk(struct g_raid3_softc *sc, struct g_provider *pp,
2984     struct g_raid3_metadata *md)
2985 {
2986         struct g_raid3_disk *disk;
2987         int error;
2988
2989         g_topology_assert_not();
2990         G_RAID3_DEBUG(2, "Adding disk %s.", pp->name);
2991
2992         error = g_raid3_check_metadata(sc, pp, md);
2993         if (error != 0)
2994                 return (error);
2995         if (sc->sc_state != G_RAID3_DEVICE_STATE_STARTING &&
2996             md->md_genid < sc->sc_genid) {
2997                 G_RAID3_DEBUG(0, "Component %s (device %s) broken, skipping.",
2998                     pp->name, sc->sc_name);
2999                 return (EINVAL);
3000         }
3001         disk = g_raid3_init_disk(sc, pp, md, &error);
3002         if (disk == NULL)
3003                 return (error);
3004         error = g_raid3_event_send(disk, G_RAID3_DISK_STATE_NEW,
3005             G_RAID3_EVENT_WAIT);
3006         if (error != 0)
3007                 return (error);
3008         if (md->md_version < G_RAID3_VERSION) {
3009                 G_RAID3_DEBUG(0, "Upgrading metadata on %s (v%d->v%d).",
3010                     pp->name, md->md_version, G_RAID3_VERSION);
3011                 g_raid3_update_metadata(disk);
3012         }
3013         return (0);
3014 }
3015
3016 static void
3017 g_raid3_destroy_delayed(void *arg, int flag)
3018 {
3019         struct g_raid3_softc *sc;
3020         int error;
3021
3022         if (flag == EV_CANCEL) {
3023                 G_RAID3_DEBUG(1, "Destroying canceled.");
3024                 return;
3025         }
3026         sc = arg;
3027         g_topology_unlock();
3028         sx_xlock(&sc->sc_lock);
3029         KASSERT((sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROY) == 0,
3030             ("DESTROY flag set on %s.", sc->sc_name));
3031         KASSERT((sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROYING) != 0,
3032             ("DESTROYING flag not set on %s.", sc->sc_name));
3033         G_RAID3_DEBUG(0, "Destroying %s (delayed).", sc->sc_name);
3034         error = g_raid3_destroy(sc, G_RAID3_DESTROY_SOFT);
3035         if (error != 0) {
3036                 G_RAID3_DEBUG(0, "Cannot destroy %s.", sc->sc_name);
3037                 sx_xunlock(&sc->sc_lock);
3038         }
3039         g_topology_lock();
3040 }
3041
3042 static int
3043 g_raid3_access(struct g_provider *pp, int acr, int acw, int ace)
3044 {
3045         struct g_raid3_softc *sc;
3046         int dcr, dcw, dce, error = 0;
3047
3048         g_topology_assert();
3049         G_RAID3_DEBUG(2, "Access request for %s: r%dw%de%d.", pp->name, acr,
3050             acw, ace);
3051
3052         sc = pp->geom->softc;
3053         if (sc == NULL && acr <= 0 && acw <= 0 && ace <= 0)
3054                 return (0);
3055         KASSERT(sc != NULL, ("NULL softc (provider=%s).", pp->name));
3056
3057         dcr = pp->acr + acr;
3058         dcw = pp->acw + acw;
3059         dce = pp->ace + ace;
3060
3061         g_topology_unlock();
3062         sx_xlock(&sc->sc_lock);
3063         if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROY) != 0 ||
3064             g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) < sc->sc_ndisks - 1) {
3065                 if (acr > 0 || acw > 0 || ace > 0)
3066                         error = ENXIO;
3067                 goto end;
3068         }
3069         if (dcw == 0 && !sc->sc_idle)
3070                 g_raid3_idle(sc, dcw);
3071         if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROYING) != 0) {
3072                 if (acr > 0 || acw > 0 || ace > 0) {
3073                         error = ENXIO;
3074                         goto end;
3075                 }
3076                 if (dcr == 0 && dcw == 0 && dce == 0) {
3077                         g_post_event(g_raid3_destroy_delayed, sc, M_WAITOK,
3078                             sc, NULL);
3079                 }
3080         }
3081 end:
3082         sx_xunlock(&sc->sc_lock);
3083         g_topology_lock();
3084         return (error);
3085 }
3086
3087 static struct g_geom *
3088 g_raid3_create(struct g_class *mp, const struct g_raid3_metadata *md)
3089 {
3090         struct g_raid3_softc *sc;
3091         struct g_geom *gp;
3092         int error, timeout;
3093         u_int n;
3094
3095         g_topology_assert();
3096         G_RAID3_DEBUG(1, "Creating device %s (id=%u).", md->md_name, md->md_id);
3097
3098         /* One disk is minimum. */
3099         if (md->md_all < 1)
3100                 return (NULL);
3101         /*
3102          * Action geom.
3103          */
3104         gp = g_new_geomf(mp, "%s", md->md_name);
3105         sc = malloc(sizeof(*sc), M_RAID3, M_WAITOK | M_ZERO);
3106         sc->sc_disks = malloc(sizeof(struct g_raid3_disk) * md->md_all, M_RAID3,
3107             M_WAITOK | M_ZERO);
3108         gp->start = g_raid3_start;
3109         gp->orphan = g_raid3_orphan;
3110         gp->access = g_raid3_access;
3111         gp->dumpconf = g_raid3_dumpconf;
3112
3113         sc->sc_id = md->md_id;
3114         sc->sc_mediasize = md->md_mediasize;
3115         sc->sc_sectorsize = md->md_sectorsize;
3116         sc->sc_ndisks = md->md_all;
3117         sc->sc_round_robin = 0;
3118         sc->sc_flags = md->md_mflags;
3119         sc->sc_bump_id = 0;
3120         sc->sc_idle = 1;
3121         sc->sc_last_write = time_uptime;
3122         sc->sc_writes = 0;
3123         for (n = 0; n < sc->sc_ndisks; n++) {
3124                 sc->sc_disks[n].d_softc = sc;
3125                 sc->sc_disks[n].d_no = n;
3126                 sc->sc_disks[n].d_state = G_RAID3_DISK_STATE_NODISK;
3127         }
3128         sx_init(&sc->sc_lock, "graid3:lock");
3129         bioq_init(&sc->sc_queue);
3130         mtx_init(&sc->sc_queue_mtx, "graid3:queue", NULL, MTX_DEF);
3131         bioq_init(&sc->sc_regular_delayed);
3132         bioq_init(&sc->sc_inflight);
3133         bioq_init(&sc->sc_sync_delayed);
3134         TAILQ_INIT(&sc->sc_events);
3135         mtx_init(&sc->sc_events_mtx, "graid3:events", NULL, MTX_DEF);
3136         callout_init(&sc->sc_callout, CALLOUT_MPSAFE);
3137         sc->sc_state = G_RAID3_DEVICE_STATE_STARTING;
3138         gp->softc = sc;
3139         sc->sc_geom = gp;
3140         sc->sc_provider = NULL;
3141         /*
3142          * Synchronization geom.
3143          */
3144         gp = g_new_geomf(mp, "%s.sync", md->md_name);
3145         gp->softc = sc;
3146         gp->orphan = g_raid3_orphan;
3147         sc->sc_sync.ds_geom = gp;
3148
3149         if (!g_raid3_use_malloc) {
3150                 sc->sc_zones[G_RAID3_ZONE_64K].sz_zone = uma_zcreate("gr3:64k",
3151                     65536, g_raid3_uma_ctor, g_raid3_uma_dtor, NULL, NULL,
3152                     UMA_ALIGN_PTR, 0);
3153                 sc->sc_zones[G_RAID3_ZONE_64K].sz_inuse = 0;
3154                 sc->sc_zones[G_RAID3_ZONE_64K].sz_max = g_raid3_n64k;
3155                 sc->sc_zones[G_RAID3_ZONE_64K].sz_requested =
3156                     sc->sc_zones[G_RAID3_ZONE_64K].sz_failed = 0;
3157                 sc->sc_zones[G_RAID3_ZONE_16K].sz_zone = uma_zcreate("gr3:16k",
3158                     16384, g_raid3_uma_ctor, g_raid3_uma_dtor, NULL, NULL,
3159                     UMA_ALIGN_PTR, 0);
3160                 sc->sc_zones[G_RAID3_ZONE_16K].sz_inuse = 0;
3161                 sc->sc_zones[G_RAID3_ZONE_16K].sz_max = g_raid3_n16k;
3162                 sc->sc_zones[G_RAID3_ZONE_16K].sz_requested =
3163                     sc->sc_zones[G_RAID3_ZONE_16K].sz_failed = 0;
3164                 sc->sc_zones[G_RAID3_ZONE_4K].sz_zone = uma_zcreate("gr3:4k",
3165                     4096, g_raid3_uma_ctor, g_raid3_uma_dtor, NULL, NULL,
3166                     UMA_ALIGN_PTR, 0);
3167                 sc->sc_zones[G_RAID3_ZONE_4K].sz_inuse = 0;
3168                 sc->sc_zones[G_RAID3_ZONE_4K].sz_max = g_raid3_n4k;
3169                 sc->sc_zones[G_RAID3_ZONE_4K].sz_requested =
3170                     sc->sc_zones[G_RAID3_ZONE_4K].sz_failed = 0;
3171         }
3172
3173         error = kthread_create(g_raid3_worker, sc, &sc->sc_worker, 0, 0,
3174             "g_raid3 %s", md->md_name);
3175         if (error != 0) {
3176                 G_RAID3_DEBUG(1, "Cannot create kernel thread for %s.",
3177                     sc->sc_name);
3178                 if (!g_raid3_use_malloc) {
3179                         uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_64K].sz_zone);
3180                         uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_16K].sz_zone);
3181                         uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_4K].sz_zone);
3182                 }
3183                 g_destroy_geom(sc->sc_sync.ds_geom);
3184                 mtx_destroy(&sc->sc_events_mtx);
3185                 mtx_destroy(&sc->sc_queue_mtx);
3186                 sx_destroy(&sc->sc_lock);
3187                 g_destroy_geom(sc->sc_geom);
3188                 free(sc->sc_disks, M_RAID3);
3189                 free(sc, M_RAID3);
3190                 return (NULL);
3191         }
3192
3193         G_RAID3_DEBUG(1, "Device %s created (%u components, id=%u).",
3194             sc->sc_name, sc->sc_ndisks, sc->sc_id);
3195
3196         sc->sc_rootmount = root_mount_hold("GRAID3");
3197         G_RAID3_DEBUG(1, "root_mount_hold %p", sc->sc_rootmount);
3198
3199         /*
3200          * Run timeout.
3201          */
3202         timeout = atomic_load_acq_int(&g_raid3_timeout);
3203         callout_reset(&sc->sc_callout, timeout * hz, g_raid3_go, sc);
3204         return (sc->sc_geom);
3205 }
3206
3207 int
3208 g_raid3_destroy(struct g_raid3_softc *sc, int how)
3209 {
3210         struct g_provider *pp;
3211
3212         g_topology_assert_not();
3213         if (sc == NULL)
3214                 return (ENXIO);
3215         sx_assert(&sc->sc_lock, SX_XLOCKED);
3216
3217         pp = sc->sc_provider;
3218         if (pp != NULL && (pp->acr != 0 || pp->acw != 0 || pp->ace != 0)) {
3219                 switch (how) {
3220                 case G_RAID3_DESTROY_SOFT:
3221                         G_RAID3_DEBUG(1,
3222                             "Device %s is still open (r%dw%de%d).", pp->name,
3223                             pp->acr, pp->acw, pp->ace);
3224                         return (EBUSY);
3225                 case G_RAID3_DESTROY_DELAYED:
3226                         G_RAID3_DEBUG(1,
3227                             "Device %s will be destroyed on last close.",
3228                             pp->name);
3229                         if (sc->sc_syncdisk != NULL)
3230                                 g_raid3_sync_stop(sc, 1);
3231                         sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROYING;
3232                         return (EBUSY);
3233                 case G_RAID3_DESTROY_HARD:
3234                         G_RAID3_DEBUG(1, "Device %s is still open, so it "
3235                             "can't be definitely removed.", pp->name);
3236                         break;
3237                 }
3238         }
3239
3240         g_topology_lock();
3241         if (sc->sc_geom->softc == NULL) {
3242                 g_topology_unlock();
3243                 return (0);
3244         }
3245         sc->sc_geom->softc = NULL;
3246         sc->sc_sync.ds_geom->softc = NULL;
3247         g_topology_unlock();
3248
3249         sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY;
3250         sc->sc_flags |= G_RAID3_DEVICE_FLAG_WAIT;
3251         G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, sc);
3252         sx_xunlock(&sc->sc_lock);
3253         mtx_lock(&sc->sc_queue_mtx);
3254         wakeup(sc);
3255         wakeup(&sc->sc_queue);
3256         mtx_unlock(&sc->sc_queue_mtx);
3257         G_RAID3_DEBUG(4, "%s: Sleeping %p.", __func__, &sc->sc_worker);
3258         while (sc->sc_worker != NULL)
3259                 tsleep(&sc->sc_worker, PRIBIO, "r3:destroy", hz / 5);
3260         G_RAID3_DEBUG(4, "%s: Woken up %p.", __func__, &sc->sc_worker);
3261         sx_xlock(&sc->sc_lock);
3262         g_raid3_destroy_device(sc);
3263         free(sc->sc_disks, M_RAID3);
3264         free(sc, M_RAID3);
3265         return (0);
3266 }
3267
3268 static void
3269 g_raid3_taste_orphan(struct g_consumer *cp)
3270 {
3271
3272         KASSERT(1 == 0, ("%s called while tasting %s.", __func__,
3273             cp->provider->name));
3274 }
3275
3276 static struct g_geom *
3277 g_raid3_taste(struct g_class *mp, struct g_provider *pp, int flags __unused)
3278 {
3279         struct g_raid3_metadata md;
3280         struct g_raid3_softc *sc;
3281         struct g_consumer *cp;
3282         struct g_geom *gp;
3283         int error;
3284
3285         g_topology_assert();
3286         g_trace(G_T_TOPOLOGY, "%s(%s, %s)", __func__, mp->name, pp->name);
3287         G_RAID3_DEBUG(2, "Tasting %s.", pp->name);
3288
3289         gp = g_new_geomf(mp, "raid3:taste");
3290         /* This orphan function should be never called. */
3291         gp->orphan = g_raid3_taste_orphan;
3292         cp = g_new_consumer(gp);
3293         g_attach(cp, pp);
3294         error = g_raid3_read_metadata(cp, &md);
3295         g_detach(cp);
3296         g_destroy_consumer(cp);
3297         g_destroy_geom(gp);
3298         if (error != 0)
3299                 return (NULL);
3300         gp = NULL;
3301
3302         if (md.md_provider[0] != '\0' && strcmp(md.md_provider, pp->name) != 0)
3303                 return (NULL);
3304         if (md.md_provsize != 0 && md.md_provsize != pp->mediasize)
3305                 return (NULL);
3306         if (g_raid3_debug >= 2)
3307                 raid3_metadata_dump(&md);
3308
3309         /*
3310          * Let's check if device already exists.
3311          */
3312         sc = NULL;
3313         LIST_FOREACH(gp, &mp->geom, geom) {
3314                 sc = gp->softc;
3315                 if (sc == NULL)
3316                         continue;
3317                 if (sc->sc_sync.ds_geom == gp)
3318                         continue;
3319                 if (strcmp(md.md_name, sc->sc_name) != 0)
3320                         continue;
3321                 if (md.md_id != sc->sc_id) {
3322                         G_RAID3_DEBUG(0, "Device %s already configured.",
3323                             sc->sc_name);
3324                         return (NULL);
3325                 }
3326                 break;
3327         }
3328         if (gp == NULL) {
3329                 gp = g_raid3_create(mp, &md);
3330                 if (gp == NULL) {
3331                         G_RAID3_DEBUG(0, "Cannot create device %s.",
3332                             md.md_name);
3333                         return (NULL);
3334                 }
3335                 sc = gp->softc;
3336         }
3337         G_RAID3_DEBUG(1, "Adding disk %s to %s.", pp->name, gp->name);
3338         g_topology_unlock();
3339         sx_xlock(&sc->sc_lock);
3340         error = g_raid3_add_disk(sc, pp, &md);
3341         if (error != 0) {
3342                 G_RAID3_DEBUG(0, "Cannot add disk %s to %s (error=%d).",
3343                     pp->name, gp->name, error);
3344                 if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_NODISK) ==
3345                     sc->sc_ndisks) {
3346                         g_cancel_event(sc);
3347                         g_raid3_destroy(sc, G_RAID3_DESTROY_HARD);
3348                         g_topology_lock();
3349                         return (NULL);
3350                 }
3351                 gp = NULL;
3352         }
3353         sx_xunlock(&sc->sc_lock);
3354         g_topology_lock();
3355         return (gp);
3356 }
3357
3358 static int
3359 g_raid3_destroy_geom(struct gctl_req *req __unused, struct g_class *mp __unused,
3360     struct g_geom *gp)
3361 {
3362         struct g_raid3_softc *sc;
3363         int error;
3364
3365         g_topology_unlock();
3366         sc = gp->softc;
3367         sx_xlock(&sc->sc_lock);
3368         g_cancel_event(sc);
3369         error = g_raid3_destroy(gp->softc, G_RAID3_DESTROY_SOFT);
3370         if (error != 0)
3371                 sx_xunlock(&sc->sc_lock);
3372         g_topology_lock();
3373         return (error);
3374 }
3375
3376 static void
3377 g_raid3_dumpconf(struct sbuf *sb, const char *indent, struct g_geom *gp,
3378     struct g_consumer *cp, struct g_provider *pp)
3379 {
3380         struct g_raid3_softc *sc;
3381
3382         g_topology_assert();
3383
3384         sc = gp->softc;
3385         if (sc == NULL)
3386                 return;
3387         /* Skip synchronization geom. */
3388         if (gp == sc->sc_sync.ds_geom)
3389                 return;
3390         if (pp != NULL) {
3391                 /* Nothing here. */
3392         } else if (cp != NULL) {
3393                 struct g_raid3_disk *disk;
3394
3395                 disk = cp->private;
3396                 if (disk == NULL)
3397                         return;
3398                 g_topology_unlock();
3399                 sx_xlock(&sc->sc_lock);
3400                 sbuf_printf(sb, "%s<Type>", indent);
3401                 if (disk->d_no == sc->sc_ndisks - 1)
3402                         sbuf_printf(sb, "PARITY");
3403                 else
3404                         sbuf_printf(sb, "DATA");
3405                 sbuf_printf(sb, "</Type>\n");
3406                 sbuf_printf(sb, "%s<Number>%u</Number>\n", indent,
3407                     (u_int)disk->d_no);
3408                 if (disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) {
3409                         sbuf_printf(sb, "%s<Synchronized>", indent);
3410                         if (disk->d_sync.ds_offset == 0)
3411                                 sbuf_printf(sb, "0%%");
3412                         else {
3413                                 sbuf_printf(sb, "%u%%",
3414                                     (u_int)((disk->d_sync.ds_offset * 100) /
3415                                     (sc->sc_mediasize / (sc->sc_ndisks - 1))));
3416                         }
3417                         sbuf_printf(sb, "</Synchronized>\n");
3418                 }
3419                 sbuf_printf(sb, "%s<SyncID>%u</SyncID>\n", indent,
3420                     disk->d_sync.ds_syncid);
3421                 sbuf_printf(sb, "%s<GenID>%u</GenID>\n", indent, disk->d_genid);
3422                 sbuf_printf(sb, "%s<Flags>", indent);
3423                 if (disk->d_flags == 0)
3424                         sbuf_printf(sb, "NONE");
3425                 else {
3426                         int first = 1;
3427
3428 #define ADD_FLAG(flag, name)    do {                                    \
3429         if ((disk->d_flags & (flag)) != 0) {                            \
3430                 if (!first)                                             \
3431                         sbuf_printf(sb, ", ");                          \
3432                 else                                                    \
3433                         first = 0;                                      \
3434                 sbuf_printf(sb, name);                                  \
3435         }                                                               \
3436 } while (0)
3437                         ADD_FLAG(G_RAID3_DISK_FLAG_DIRTY, "DIRTY");
3438                         ADD_FLAG(G_RAID3_DISK_FLAG_HARDCODED, "HARDCODED");
3439                         ADD_FLAG(G_RAID3_DISK_FLAG_SYNCHRONIZING,
3440                             "SYNCHRONIZING");
3441                         ADD_FLAG(G_RAID3_DISK_FLAG_FORCE_SYNC, "FORCE_SYNC");
3442                         ADD_FLAG(G_RAID3_DISK_FLAG_BROKEN, "BROKEN");
3443 #undef  ADD_FLAG
3444                 }
3445                 sbuf_printf(sb, "</Flags>\n");
3446                 sbuf_printf(sb, "%s<State>%s</State>\n", indent,
3447                     g_raid3_disk_state2str(disk->d_state));
3448                 sx_xunlock(&sc->sc_lock);
3449                 g_topology_lock();
3450         } else {
3451                 g_topology_unlock();
3452                 sx_xlock(&sc->sc_lock);
3453                 if (!g_raid3_use_malloc) {
3454                         sbuf_printf(sb,
3455                             "%s<Zone4kRequested>%u</Zone4kRequested>\n", indent,
3456                             sc->sc_zones[G_RAID3_ZONE_4K].sz_requested);
3457                         sbuf_printf(sb,
3458                             "%s<Zone4kFailed>%u</Zone4kFailed>\n", indent,
3459                             sc->sc_zones[G_RAID3_ZONE_4K].sz_failed);
3460                         sbuf_printf(sb,
3461                             "%s<Zone16kRequested>%u</Zone16kRequested>\n", indent,
3462                             sc->sc_zones[G_RAID3_ZONE_16K].sz_requested);
3463                         sbuf_printf(sb,
3464                             "%s<Zone16kFailed>%u</Zone16kFailed>\n", indent,
3465                             sc->sc_zones[G_RAID3_ZONE_16K].sz_failed);
3466                         sbuf_printf(sb,
3467                             "%s<Zone64kRequested>%u</Zone64kRequested>\n", indent,
3468                             sc->sc_zones[G_RAID3_ZONE_64K].sz_requested);
3469                         sbuf_printf(sb,
3470                             "%s<Zone64kFailed>%u</Zone64kFailed>\n", indent,
3471                             sc->sc_zones[G_RAID3_ZONE_64K].sz_failed);
3472                 }
3473                 sbuf_printf(sb, "%s<ID>%u</ID>\n", indent, (u_int)sc->sc_id);
3474                 sbuf_printf(sb, "%s<SyncID>%u</SyncID>\n", indent, sc->sc_syncid);
3475                 sbuf_printf(sb, "%s<GenID>%u</GenID>\n", indent, sc->sc_genid);
3476                 sbuf_printf(sb, "%s<Flags>", indent);
3477                 if (sc->sc_flags == 0)
3478                         sbuf_printf(sb, "NONE");
3479                 else {
3480                         int first = 1;
3481
3482 #define ADD_FLAG(flag, name)    do {                                    \
3483         if ((sc->sc_flags & (flag)) != 0) {                             \
3484                 if (!first)                                             \
3485                         sbuf_printf(sb, ", ");                          \
3486                 else                                                    \
3487                         first = 0;                                      \
3488                 sbuf_printf(sb, name);                                  \
3489         }                                                               \
3490 } while (0)
3491                         ADD_FLAG(G_RAID3_DEVICE_FLAG_NOFAILSYNC, "NOFAILSYNC");
3492                         ADD_FLAG(G_RAID3_DEVICE_FLAG_NOAUTOSYNC, "NOAUTOSYNC");
3493                         ADD_FLAG(G_RAID3_DEVICE_FLAG_ROUND_ROBIN,
3494                             "ROUND-ROBIN");
3495                         ADD_FLAG(G_RAID3_DEVICE_FLAG_VERIFY, "VERIFY");
3496 #undef  ADD_FLAG
3497                 }
3498                 sbuf_printf(sb, "</Flags>\n");
3499                 sbuf_printf(sb, "%s<Components>%u</Components>\n", indent,
3500                     sc->sc_ndisks);
3501                 sbuf_printf(sb, "%s<State>%s</State>\n", indent,
3502                     g_raid3_device_state2str(sc->sc_state));
3503                 sx_xunlock(&sc->sc_lock);
3504                 g_topology_lock();
3505         }
3506 }
3507
3508 static void
3509 g_raid3_shutdown_pre_sync(void *arg, int howto)
3510 {
3511         struct g_class *mp;
3512         struct g_geom *gp, *gp2;
3513         struct g_raid3_softc *sc;
3514         int error;
3515
3516         mp = arg;
3517         DROP_GIANT();
3518         g_topology_lock();
3519         LIST_FOREACH_SAFE(gp, &mp->geom, geom, gp2) {
3520                 if ((sc = gp->softc) == NULL)
3521                         continue;
3522                 /* Skip synchronization geom. */
3523                 if (gp == sc->sc_sync.ds_geom)
3524                         continue;
3525                 g_topology_unlock();
3526                 sx_xlock(&sc->sc_lock);
3527                 g_cancel_event(sc);
3528                 error = g_raid3_destroy(sc, G_RAID3_DESTROY_DELAYED);
3529                 if (error != 0)
3530                         sx_xunlock(&sc->sc_lock);
3531                 g_topology_lock();
3532         }
3533         g_topology_unlock();
3534         PICKUP_GIANT();
3535 }
3536
3537 static void
3538 g_raid3_init(struct g_class *mp)
3539 {
3540
3541         g_raid3_pre_sync = EVENTHANDLER_REGISTER(shutdown_pre_sync,
3542             g_raid3_shutdown_pre_sync, mp, SHUTDOWN_PRI_FIRST);
3543         if (g_raid3_pre_sync == NULL)
3544                 G_RAID3_DEBUG(0, "Warning! Cannot register shutdown event.");
3545 }
3546
3547 static void
3548 g_raid3_fini(struct g_class *mp)
3549 {
3550
3551         if (g_raid3_pre_sync != NULL)
3552                 EVENTHANDLER_DEREGISTER(shutdown_pre_sync, g_raid3_pre_sync);
3553 }
3554
3555 DECLARE_GEOM_CLASS(g_raid3_class, g_raid3);