]> CyberLeo.Net >> Repos - FreeBSD/releng/7.2.git/blob - sys/kern/kern_tc.c
Create releng/7.2 from stable/7 in preparation for 7.2-RELEASE.
[FreeBSD/releng/7.2.git] / sys / kern / kern_tc.c
1 /*-
2  * ----------------------------------------------------------------------------
3  * "THE BEER-WARE LICENSE" (Revision 42):
4  * <phk@FreeBSD.ORG> wrote this file.  As long as you retain this notice you
5  * can do whatever you want with this stuff. If we meet some day, and you think
6  * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
7  * ----------------------------------------------------------------------------
8  */
9
10 #include <sys/cdefs.h>
11 __FBSDID("$FreeBSD$");
12
13 #include "opt_ntp.h"
14
15 #include <sys/param.h>
16 #include <sys/kernel.h>
17 #include <sys/sysctl.h>
18 #include <sys/syslog.h>
19 #include <sys/systm.h>
20 #include <sys/timepps.h>
21 #include <sys/timetc.h>
22 #include <sys/timex.h>
23
24 /*
25  * A large step happens on boot.  This constant detects such steps.
26  * It is relatively small so that ntp_update_second gets called enough
27  * in the typical 'missed a couple of seconds' case, but doesn't loop
28  * forever when the time step is large.
29  */
30 #define LARGE_STEP      200
31
32 /*
33  * Implement a dummy timecounter which we can use until we get a real one
34  * in the air.  This allows the console and other early stuff to use
35  * time services.
36  */
37
38 static u_int
39 dummy_get_timecount(struct timecounter *tc)
40 {
41         static u_int now;
42
43         return (++now);
44 }
45
46 static struct timecounter dummy_timecounter = {
47         dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000
48 };
49
50 struct timehands {
51         /* These fields must be initialized by the driver. */
52         struct timecounter      *th_counter;
53         int64_t                 th_adjustment;
54         u_int64_t               th_scale;
55         u_int                   th_offset_count;
56         struct bintime          th_offset;
57         struct timeval          th_microtime;
58         struct timespec         th_nanotime;
59         /* Fields not to be copied in tc_windup start with th_generation. */
60         volatile u_int          th_generation;
61         struct timehands        *th_next;
62 };
63
64 static struct timehands th0;
65 static struct timehands th9 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th0};
66 static struct timehands th8 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th9};
67 static struct timehands th7 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th8};
68 static struct timehands th6 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th7};
69 static struct timehands th5 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th6};
70 static struct timehands th4 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th5};
71 static struct timehands th3 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th4};
72 static struct timehands th2 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th3};
73 static struct timehands th1 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th2};
74 static struct timehands th0 = {
75         &dummy_timecounter,
76         0,
77         (uint64_t)-1 / 1000000,
78         0,
79         {1, 0},
80         {0, 0},
81         {0, 0},
82         1,
83         &th1
84 };
85
86 static struct timehands *volatile timehands = &th0;
87 struct timecounter *timecounter = &dummy_timecounter;
88 static struct timecounter *timecounters = &dummy_timecounter;
89
90 time_t time_second = 1;
91 time_t time_uptime = 1;
92
93 static struct bintime boottimebin;
94 struct timeval boottime;
95 static int sysctl_kern_boottime(SYSCTL_HANDLER_ARGS);
96 SYSCTL_PROC(_kern, KERN_BOOTTIME, boottime, CTLTYPE_STRUCT|CTLFLAG_RD,
97     NULL, 0, sysctl_kern_boottime, "S,timeval", "System boottime");
98
99 SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0, "");
100 SYSCTL_NODE(_kern_timecounter, OID_AUTO, tc, CTLFLAG_RW, 0, "");
101
102 static int timestepwarnings;
103 SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
104     &timestepwarnings, 0, "");
105
106 #ifdef TC_COUNTERS
107 #define TC_STATS(foo) \
108         static u_int foo; \
109         SYSCTL_UINT(_kern_timecounter, OID_AUTO, foo, CTLFLAG_RD, &foo, 0, "");\
110         struct __hack
111
112 TC_STATS(nbinuptime);    TC_STATS(nnanouptime);    TC_STATS(nmicrouptime);
113 TC_STATS(nbintime);      TC_STATS(nnanotime);      TC_STATS(nmicrotime);
114 TC_STATS(ngetbinuptime); TC_STATS(ngetnanouptime); TC_STATS(ngetmicrouptime);
115 TC_STATS(ngetbintime);   TC_STATS(ngetnanotime);   TC_STATS(ngetmicrotime);
116 TC_STATS(nsetclock);
117
118 #define TC_COUNT(var)   var++
119 #undef TC_STATS
120 #else
121 #define TC_COUNT(var)   /* nothing */
122 #endif /* TC_COUNTERS */
123
124 static void tc_windup(void);
125 static void cpu_tick_calibrate(int);
126
127 static int
128 sysctl_kern_boottime(SYSCTL_HANDLER_ARGS)
129 {
130 #ifdef SCTL_MASK32
131         int tv[2];
132
133         if (req->flags & SCTL_MASK32) {
134                 tv[0] = boottime.tv_sec;
135                 tv[1] = boottime.tv_usec;
136                 return SYSCTL_OUT(req, tv, sizeof(tv));
137         } else
138 #endif
139                 return SYSCTL_OUT(req, &boottime, sizeof(boottime));
140 }
141
142 static int
143 sysctl_kern_timecounter_get(SYSCTL_HANDLER_ARGS)
144 {
145         u_int ncount;
146         struct timecounter *tc = arg1;
147
148         ncount = tc->tc_get_timecount(tc);
149         return sysctl_handle_int(oidp, &ncount, 0, req);
150 }
151
152 static int
153 sysctl_kern_timecounter_freq(SYSCTL_HANDLER_ARGS)
154 {
155         u_int64_t freq;
156         struct timecounter *tc = arg1;
157
158         freq = tc->tc_frequency;
159         return sysctl_handle_quad(oidp, &freq, 0, req);
160 }
161
162 /*
163  * Return the difference between the timehands' counter value now and what
164  * was when we copied it to the timehands' offset_count.
165  */
166 static __inline u_int
167 tc_delta(struct timehands *th)
168 {
169         struct timecounter *tc;
170
171         tc = th->th_counter;
172         return ((tc->tc_get_timecount(tc) - th->th_offset_count) &
173             tc->tc_counter_mask);
174 }
175
176 /*
177  * Functions for reading the time.  We have to loop until we are sure that
178  * the timehands that we operated on was not updated under our feet.  See
179  * the comment in <sys/time.h> for a description of these 12 functions.
180  */
181
182 void
183 binuptime(struct bintime *bt)
184 {
185         struct timehands *th;
186         u_int gen;
187
188         TC_COUNT(nbinuptime);
189         do {
190                 th = timehands;
191                 gen = th->th_generation;
192                 *bt = th->th_offset;
193                 bintime_addx(bt, th->th_scale * tc_delta(th));
194         } while (gen == 0 || gen != th->th_generation);
195 }
196
197 void
198 nanouptime(struct timespec *tsp)
199 {
200         struct bintime bt;
201
202         TC_COUNT(nnanouptime);
203         binuptime(&bt);
204         bintime2timespec(&bt, tsp);
205 }
206
207 void
208 microuptime(struct timeval *tvp)
209 {
210         struct bintime bt;
211
212         TC_COUNT(nmicrouptime);
213         binuptime(&bt);
214         bintime2timeval(&bt, tvp);
215 }
216
217 void
218 bintime(struct bintime *bt)
219 {
220
221         TC_COUNT(nbintime);
222         binuptime(bt);
223         bintime_add(bt, &boottimebin);
224 }
225
226 void
227 nanotime(struct timespec *tsp)
228 {
229         struct bintime bt;
230
231         TC_COUNT(nnanotime);
232         bintime(&bt);
233         bintime2timespec(&bt, tsp);
234 }
235
236 void
237 microtime(struct timeval *tvp)
238 {
239         struct bintime bt;
240
241         TC_COUNT(nmicrotime);
242         bintime(&bt);
243         bintime2timeval(&bt, tvp);
244 }
245
246 void
247 getbinuptime(struct bintime *bt)
248 {
249         struct timehands *th;
250         u_int gen;
251
252         TC_COUNT(ngetbinuptime);
253         do {
254                 th = timehands;
255                 gen = th->th_generation;
256                 *bt = th->th_offset;
257         } while (gen == 0 || gen != th->th_generation);
258 }
259
260 void
261 getnanouptime(struct timespec *tsp)
262 {
263         struct timehands *th;
264         u_int gen;
265
266         TC_COUNT(ngetnanouptime);
267         do {
268                 th = timehands;
269                 gen = th->th_generation;
270                 bintime2timespec(&th->th_offset, tsp);
271         } while (gen == 0 || gen != th->th_generation);
272 }
273
274 void
275 getmicrouptime(struct timeval *tvp)
276 {
277         struct timehands *th;
278         u_int gen;
279
280         TC_COUNT(ngetmicrouptime);
281         do {
282                 th = timehands;
283                 gen = th->th_generation;
284                 bintime2timeval(&th->th_offset, tvp);
285         } while (gen == 0 || gen != th->th_generation);
286 }
287
288 void
289 getbintime(struct bintime *bt)
290 {
291         struct timehands *th;
292         u_int gen;
293
294         TC_COUNT(ngetbintime);
295         do {
296                 th = timehands;
297                 gen = th->th_generation;
298                 *bt = th->th_offset;
299         } while (gen == 0 || gen != th->th_generation);
300         bintime_add(bt, &boottimebin);
301 }
302
303 void
304 getnanotime(struct timespec *tsp)
305 {
306         struct timehands *th;
307         u_int gen;
308
309         TC_COUNT(ngetnanotime);
310         do {
311                 th = timehands;
312                 gen = th->th_generation;
313                 *tsp = th->th_nanotime;
314         } while (gen == 0 || gen != th->th_generation);
315 }
316
317 void
318 getmicrotime(struct timeval *tvp)
319 {
320         struct timehands *th;
321         u_int gen;
322
323         TC_COUNT(ngetmicrotime);
324         do {
325                 th = timehands;
326                 gen = th->th_generation;
327                 *tvp = th->th_microtime;
328         } while (gen == 0 || gen != th->th_generation);
329 }
330
331 /*
332  * Initialize a new timecounter and possibly use it.
333  */
334 void
335 tc_init(struct timecounter *tc)
336 {
337         u_int u;
338         struct sysctl_oid *tc_root;
339
340         u = tc->tc_frequency / tc->tc_counter_mask;
341         /* XXX: We need some margin here, 10% is a guess */
342         u *= 11;
343         u /= 10;
344         if (u > hz && tc->tc_quality >= 0) {
345                 tc->tc_quality = -2000;
346                 if (bootverbose) {
347                         printf("Timecounter \"%s\" frequency %ju Hz",
348                             tc->tc_name, (uintmax_t)tc->tc_frequency);
349                         printf(" -- Insufficient hz, needs at least %u\n", u);
350                 }
351         } else if (tc->tc_quality >= 0 || bootverbose) {
352                 printf("Timecounter \"%s\" frequency %ju Hz quality %d\n",
353                     tc->tc_name, (uintmax_t)tc->tc_frequency,
354                     tc->tc_quality);
355         }
356
357         tc->tc_next = timecounters;
358         timecounters = tc;
359         /*
360          * Set up sysctl tree for this counter.
361          */
362         tc_root = SYSCTL_ADD_NODE(NULL,
363             SYSCTL_STATIC_CHILDREN(_kern_timecounter_tc), OID_AUTO, tc->tc_name,
364             CTLFLAG_RW, 0, "timecounter description");
365         SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
366             "mask", CTLFLAG_RD, &(tc->tc_counter_mask), 0,
367             "mask for implemented bits");
368         SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
369             "counter", CTLTYPE_UINT | CTLFLAG_RD, tc, sizeof(*tc),
370             sysctl_kern_timecounter_get, "IU", "current timecounter value");
371         SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
372             "frequency", CTLTYPE_QUAD | CTLFLAG_RD, tc, sizeof(*tc),
373              sysctl_kern_timecounter_freq, "QU", "timecounter frequency");
374         SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
375             "quality", CTLFLAG_RD, &(tc->tc_quality), 0,
376             "goodness of time counter");
377         /*
378          * Never automatically use a timecounter with negative quality.
379          * Even though we run on the dummy counter, switching here may be
380          * worse since this timecounter may not be monotonous.
381          */
382         if (tc->tc_quality < 0)
383                 return;
384         if (tc->tc_quality < timecounter->tc_quality)
385                 return;
386         if (tc->tc_quality == timecounter->tc_quality &&
387             tc->tc_frequency < timecounter->tc_frequency)
388                 return;
389         (void)tc->tc_get_timecount(tc);
390         (void)tc->tc_get_timecount(tc);
391         timecounter = tc;
392 }
393
394 /* Report the frequency of the current timecounter. */
395 u_int64_t
396 tc_getfrequency(void)
397 {
398
399         return (timehands->th_counter->tc_frequency);
400 }
401
402 /*
403  * Step our concept of UTC.  This is done by modifying our estimate of
404  * when we booted.
405  * XXX: not locked.
406  */
407 void
408 tc_setclock(struct timespec *ts)
409 {
410         struct timespec tbef, taft;
411         struct bintime bt, bt2;
412
413         cpu_tick_calibrate(1);
414         TC_COUNT(nsetclock);
415         nanotime(&tbef);
416         timespec2bintime(ts, &bt);
417         binuptime(&bt2);
418         bintime_sub(&bt, &bt2);
419         bintime_add(&bt2, &boottimebin);
420         boottimebin = bt;
421         bintime2timeval(&bt, &boottime);
422
423         /* XXX fiddle all the little crinkly bits around the fiords... */
424         tc_windup();
425         nanotime(&taft);
426         if (timestepwarnings) {
427                 log(LOG_INFO,
428                     "Time stepped from %jd.%09ld to %jd.%09ld (%jd.%09ld)\n",
429                     (intmax_t)tbef.tv_sec, tbef.tv_nsec,
430                     (intmax_t)taft.tv_sec, taft.tv_nsec,
431                     (intmax_t)ts->tv_sec, ts->tv_nsec);
432         }
433         cpu_tick_calibrate(1);
434 }
435
436 /*
437  * Initialize the next struct timehands in the ring and make
438  * it the active timehands.  Along the way we might switch to a different
439  * timecounter and/or do seconds processing in NTP.  Slightly magic.
440  */
441 static void
442 tc_windup(void)
443 {
444         struct bintime bt;
445         struct timehands *th, *tho;
446         u_int64_t scale;
447         u_int delta, ncount, ogen;
448         int i;
449         time_t t;
450
451         /*
452          * Make the next timehands a copy of the current one, but do not
453          * overwrite the generation or next pointer.  While we update
454          * the contents, the generation must be zero.
455          */
456         tho = timehands;
457         th = tho->th_next;
458         ogen = th->th_generation;
459         th->th_generation = 0;
460         bcopy(tho, th, offsetof(struct timehands, th_generation));
461
462         /*
463          * Capture a timecounter delta on the current timecounter and if
464          * changing timecounters, a counter value from the new timecounter.
465          * Update the offset fields accordingly.
466          */
467         delta = tc_delta(th);
468         if (th->th_counter != timecounter)
469                 ncount = timecounter->tc_get_timecount(timecounter);
470         else
471                 ncount = 0;
472         th->th_offset_count += delta;
473         th->th_offset_count &= th->th_counter->tc_counter_mask;
474         bintime_addx(&th->th_offset, th->th_scale * delta);
475
476         /*
477          * Hardware latching timecounters may not generate interrupts on
478          * PPS events, so instead we poll them.  There is a finite risk that
479          * the hardware might capture a count which is later than the one we
480          * got above, and therefore possibly in the next NTP second which might
481          * have a different rate than the current NTP second.  It doesn't
482          * matter in practice.
483          */
484         if (tho->th_counter->tc_poll_pps)
485                 tho->th_counter->tc_poll_pps(tho->th_counter);
486
487         /*
488          * Deal with NTP second processing.  The for loop normally
489          * iterates at most once, but in extreme situations it might
490          * keep NTP sane if timeouts are not run for several seconds.
491          * At boot, the time step can be large when the TOD hardware
492          * has been read, so on really large steps, we call
493          * ntp_update_second only twice.  We need to call it twice in
494          * case we missed a leap second.
495          */
496         bt = th->th_offset;
497         bintime_add(&bt, &boottimebin);
498         i = bt.sec - tho->th_microtime.tv_sec;
499         if (i > LARGE_STEP)
500                 i = 2;
501         for (; i > 0; i--) {
502                 t = bt.sec;
503                 ntp_update_second(&th->th_adjustment, &bt.sec);
504                 if (bt.sec != t)
505                         boottimebin.sec += bt.sec - t;
506         }
507         /* Update the UTC timestamps used by the get*() functions. */
508         /* XXX shouldn't do this here.  Should force non-`get' versions. */
509         bintime2timeval(&bt, &th->th_microtime);
510         bintime2timespec(&bt, &th->th_nanotime);
511
512         /* Now is a good time to change timecounters. */
513         if (th->th_counter != timecounter) {
514                 th->th_counter = timecounter;
515                 th->th_offset_count = ncount;
516         }
517
518         /*-
519          * Recalculate the scaling factor.  We want the number of 1/2^64
520          * fractions of a second per period of the hardware counter, taking
521          * into account the th_adjustment factor which the NTP PLL/adjtime(2)
522          * processing provides us with.
523          *
524          * The th_adjustment is nanoseconds per second with 32 bit binary
525          * fraction and we want 64 bit binary fraction of second:
526          *
527          *       x = a * 2^32 / 10^9 = a * 4.294967296
528          *
529          * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
530          * we can only multiply by about 850 without overflowing, that
531          * leaves no suitably precise fractions for multiply before divide.
532          *
533          * Divide before multiply with a fraction of 2199/512 results in a
534          * systematic undercompensation of 10PPM of th_adjustment.  On a
535          * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
536          *
537          * We happily sacrifice the lowest of the 64 bits of our result
538          * to the goddess of code clarity.
539          *
540          */
541         scale = (u_int64_t)1 << 63;
542         scale += (th->th_adjustment / 1024) * 2199;
543         scale /= th->th_counter->tc_frequency;
544         th->th_scale = scale * 2;
545
546         /*
547          * Now that the struct timehands is again consistent, set the new
548          * generation number, making sure to not make it zero.
549          */
550         if (++ogen == 0)
551                 ogen = 1;
552         th->th_generation = ogen;
553
554         /* Go live with the new struct timehands. */
555         time_second = th->th_microtime.tv_sec;
556         time_uptime = th->th_offset.sec;
557         timehands = th;
558 }
559
560 /* Report or change the active timecounter hardware. */
561 static int
562 sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS)
563 {
564         char newname[32];
565         struct timecounter *newtc, *tc;
566         int error;
567
568         tc = timecounter;
569         strlcpy(newname, tc->tc_name, sizeof(newname));
570
571         error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req);
572         if (error != 0 || req->newptr == NULL ||
573             strcmp(newname, tc->tc_name) == 0)
574                 return (error);
575         for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
576                 if (strcmp(newname, newtc->tc_name) != 0)
577                         continue;
578
579                 /* Warm up new timecounter. */
580                 (void)newtc->tc_get_timecount(newtc);
581                 (void)newtc->tc_get_timecount(newtc);
582
583                 timecounter = newtc;
584                 return (0);
585         }
586         return (EINVAL);
587 }
588
589 SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW,
590     0, 0, sysctl_kern_timecounter_hardware, "A", "");
591
592
593 /* Report or change the active timecounter hardware. */
594 static int
595 sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS)
596 {
597         char buf[32], *spc;
598         struct timecounter *tc;
599         int error;
600
601         spc = "";
602         error = 0;
603         for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
604                 sprintf(buf, "%s%s(%d)",
605                     spc, tc->tc_name, tc->tc_quality);
606                 error = SYSCTL_OUT(req, buf, strlen(buf));
607                 spc = " ";
608         }
609         return (error);
610 }
611
612 SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice, CTLTYPE_STRING | CTLFLAG_RD,
613     0, 0, sysctl_kern_timecounter_choice, "A", "");
614
615 /*
616  * RFC 2783 PPS-API implementation.
617  */
618
619 int
620 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
621 {
622         pps_params_t *app;
623         struct pps_fetch_args *fapi;
624 #ifdef PPS_SYNC
625         struct pps_kcbind_args *kapi;
626 #endif
627
628         KASSERT(pps != NULL, ("NULL pps pointer in pps_ioctl"));
629         switch (cmd) {
630         case PPS_IOC_CREATE:
631                 return (0);
632         case PPS_IOC_DESTROY:
633                 return (0);
634         case PPS_IOC_SETPARAMS:
635                 app = (pps_params_t *)data;
636                 if (app->mode & ~pps->ppscap)
637                         return (EINVAL);
638                 pps->ppsparam = *app;
639                 return (0);
640         case PPS_IOC_GETPARAMS:
641                 app = (pps_params_t *)data;
642                 *app = pps->ppsparam;
643                 app->api_version = PPS_API_VERS_1;
644                 return (0);
645         case PPS_IOC_GETCAP:
646                 *(int*)data = pps->ppscap;
647                 return (0);
648         case PPS_IOC_FETCH:
649                 fapi = (struct pps_fetch_args *)data;
650                 if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
651                         return (EINVAL);
652                 if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec)
653                         return (EOPNOTSUPP);
654                 pps->ppsinfo.current_mode = pps->ppsparam.mode;
655                 fapi->pps_info_buf = pps->ppsinfo;
656                 return (0);
657         case PPS_IOC_KCBIND:
658 #ifdef PPS_SYNC
659                 kapi = (struct pps_kcbind_args *)data;
660                 /* XXX Only root should be able to do this */
661                 if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
662                         return (EINVAL);
663                 if (kapi->kernel_consumer != PPS_KC_HARDPPS)
664                         return (EINVAL);
665                 if (kapi->edge & ~pps->ppscap)
666                         return (EINVAL);
667                 pps->kcmode = kapi->edge;
668                 return (0);
669 #else
670                 return (EOPNOTSUPP);
671 #endif
672         default:
673                 return (ENOIOCTL);
674         }
675 }
676
677 void
678 pps_init(struct pps_state *pps)
679 {
680         pps->ppscap |= PPS_TSFMT_TSPEC;
681         if (pps->ppscap & PPS_CAPTUREASSERT)
682                 pps->ppscap |= PPS_OFFSETASSERT;
683         if (pps->ppscap & PPS_CAPTURECLEAR)
684                 pps->ppscap |= PPS_OFFSETCLEAR;
685 }
686
687 void
688 pps_capture(struct pps_state *pps)
689 {
690         struct timehands *th;
691
692         KASSERT(pps != NULL, ("NULL pps pointer in pps_capture"));
693         th = timehands;
694         pps->capgen = th->th_generation;
695         pps->capth = th;
696         pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
697         if (pps->capgen != th->th_generation)
698                 pps->capgen = 0;
699 }
700
701 void
702 pps_event(struct pps_state *pps, int event)
703 {
704         struct bintime bt;
705         struct timespec ts, *tsp, *osp;
706         u_int tcount, *pcount;
707         int foff, fhard;
708         pps_seq_t *pseq;
709
710         KASSERT(pps != NULL, ("NULL pps pointer in pps_event"));
711         /* If the timecounter was wound up underneath us, bail out. */
712         if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation)
713                 return;
714
715         /* Things would be easier with arrays. */
716         if (event == PPS_CAPTUREASSERT) {
717                 tsp = &pps->ppsinfo.assert_timestamp;
718                 osp = &pps->ppsparam.assert_offset;
719                 foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
720                 fhard = pps->kcmode & PPS_CAPTUREASSERT;
721                 pcount = &pps->ppscount[0];
722                 pseq = &pps->ppsinfo.assert_sequence;
723         } else {
724                 tsp = &pps->ppsinfo.clear_timestamp;
725                 osp = &pps->ppsparam.clear_offset;
726                 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
727                 fhard = pps->kcmode & PPS_CAPTURECLEAR;
728                 pcount = &pps->ppscount[1];
729                 pseq = &pps->ppsinfo.clear_sequence;
730         }
731
732         /*
733          * If the timecounter changed, we cannot compare the count values, so
734          * we have to drop the rest of the PPS-stuff until the next event.
735          */
736         if (pps->ppstc != pps->capth->th_counter) {
737                 pps->ppstc = pps->capth->th_counter;
738                 *pcount = pps->capcount;
739                 pps->ppscount[2] = pps->capcount;
740                 return;
741         }
742
743         /* Convert the count to a timespec. */
744         tcount = pps->capcount - pps->capth->th_offset_count;
745         tcount &= pps->capth->th_counter->tc_counter_mask;
746         bt = pps->capth->th_offset;
747         bintime_addx(&bt, pps->capth->th_scale * tcount);
748         bintime_add(&bt, &boottimebin);
749         bintime2timespec(&bt, &ts);
750
751         /* If the timecounter was wound up underneath us, bail out. */
752         if (pps->capgen != pps->capth->th_generation)
753                 return;
754
755         *pcount = pps->capcount;
756         (*pseq)++;
757         *tsp = ts;
758
759         if (foff) {
760                 timespecadd(tsp, osp);
761                 if (tsp->tv_nsec < 0) {
762                         tsp->tv_nsec += 1000000000;
763                         tsp->tv_sec -= 1;
764                 }
765         }
766 #ifdef PPS_SYNC
767         if (fhard) {
768                 u_int64_t scale;
769
770                 /*
771                  * Feed the NTP PLL/FLL.
772                  * The FLL wants to know how many (hardware) nanoseconds
773                  * elapsed since the previous event.
774                  */
775                 tcount = pps->capcount - pps->ppscount[2];
776                 pps->ppscount[2] = pps->capcount;
777                 tcount &= pps->capth->th_counter->tc_counter_mask;
778                 scale = (u_int64_t)1 << 63;
779                 scale /= pps->capth->th_counter->tc_frequency;
780                 scale *= 2;
781                 bt.sec = 0;
782                 bt.frac = 0;
783                 bintime_addx(&bt, scale * tcount);
784                 bintime2timespec(&bt, &ts);
785                 hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
786         }
787 #endif
788 }
789
790 /*
791  * Timecounters need to be updated every so often to prevent the hardware
792  * counter from overflowing.  Updating also recalculates the cached values
793  * used by the get*() family of functions, so their precision depends on
794  * the update frequency.
795  */
796
797 static int tc_tick;
798 SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0, "");
799
800 void
801 tc_ticktock(void)
802 {
803         static int count;
804         static time_t last_calib;
805
806         if (++count < tc_tick)
807                 return;
808         count = 0;
809         tc_windup();
810         if (time_uptime != last_calib && !(time_uptime & 0xf)) {
811                 cpu_tick_calibrate(0);
812                 last_calib = time_uptime;
813         }
814 }
815
816 static void
817 inittimecounter(void *dummy)
818 {
819         u_int p;
820
821         /*
822          * Set the initial timeout to
823          * max(1, <approx. number of hardclock ticks in a millisecond>).
824          * People should probably not use the sysctl to set the timeout
825          * to smaller than its inital value, since that value is the
826          * smallest reasonable one.  If they want better timestamps they
827          * should use the non-"get"* functions.
828          */
829         if (hz > 1000)
830                 tc_tick = (hz + 500) / 1000;
831         else
832                 tc_tick = 1;
833         p = (tc_tick * 1000000) / hz;
834         printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000);
835
836         /* warm up new timecounter (again) and get rolling. */
837         (void)timecounter->tc_get_timecount(timecounter);
838         (void)timecounter->tc_get_timecount(timecounter);
839 }
840
841 SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL);
842
843 /* Cpu tick handling -------------------------------------------------*/
844
845 static int cpu_tick_variable;
846 static uint64_t cpu_tick_frequency;
847
848 static uint64_t
849 tc_cpu_ticks(void)
850 {
851         static uint64_t base;
852         static unsigned last;
853         unsigned u;
854         struct timecounter *tc;
855
856         tc = timehands->th_counter;
857         u = tc->tc_get_timecount(tc) & tc->tc_counter_mask;
858         if (u < last)
859                 base += (uint64_t)tc->tc_counter_mask + 1;
860         last = u;
861         return (u + base);
862 }
863
864 /*
865  * This function gets called ever 16 seconds on only one designated
866  * CPU in the system from hardclock() via tc_ticktock().
867  *
868  * Whenever the real time clock is stepped we get called with reset=1
869  * to make sure we handle suspend/resume and similar events correctly.
870  */
871
872 static void
873 cpu_tick_calibrate(int reset)
874 {
875         static uint64_t c_last;
876         uint64_t c_this, c_delta;
877         static struct bintime  t_last;
878         struct bintime t_this, t_delta;
879         uint32_t divi;
880
881         if (reset) {
882                 /* The clock was stepped, abort & reset */
883                 t_last.sec = 0;
884                 return;
885         }
886
887         /* we don't calibrate fixed rate cputicks */
888         if (!cpu_tick_variable)
889                 return;
890
891         getbinuptime(&t_this);
892         c_this = cpu_ticks();
893         if (t_last.sec != 0) {
894                 c_delta = c_this - c_last;
895                 t_delta = t_this;
896                 bintime_sub(&t_delta, &t_last);
897                 /*
898                  * Validate that 16 +/- 1/256 seconds passed. 
899                  * After division by 16 this gives us a precision of
900                  * roughly 250PPM which is sufficient
901                  */
902                 if (t_delta.sec > 16 || (
903                     t_delta.sec == 16 && t_delta.frac >= (0x01LL << 56))) {
904                         /* too long */
905                         if (bootverbose)
906                                 printf("t_delta %ju.%016jx too long\n",
907                                     (uintmax_t)t_delta.sec,
908                                     (uintmax_t)t_delta.frac);
909                 } else if (t_delta.sec < 15 ||
910                     (t_delta.sec == 15 && t_delta.frac <= (0xffLL << 56))) {
911                         /* too short */
912                         if (bootverbose)
913                                 printf("t_delta %ju.%016jx too short\n",
914                                     (uintmax_t)t_delta.sec,
915                                     (uintmax_t)t_delta.frac);
916                 } else {
917                         /* just right */
918                         /*
919                          * Headroom:
920                          *      2^(64-20) / 16[s] =
921                          *      2^(44) / 16[s] =
922                          *      17.592.186.044.416 / 16 =
923                          *      1.099.511.627.776 [Hz]
924                          */
925                         divi = t_delta.sec << 20;
926                         divi |= t_delta.frac >> (64 - 20);
927                         c_delta <<= 20;
928                         c_delta /= divi;
929                         if (c_delta  > cpu_tick_frequency) {
930                                 if (0 && bootverbose)
931                                         printf("cpu_tick increased to %ju Hz\n",
932                                             c_delta);
933                                 cpu_tick_frequency = c_delta;
934                         }
935                 }
936         }
937         c_last = c_this;
938         t_last = t_this;
939 }
940
941 void
942 set_cputicker(cpu_tick_f *func, uint64_t freq, unsigned var)
943 {
944
945         if (func == NULL) {
946                 cpu_ticks = tc_cpu_ticks;
947         } else {
948                 cpu_tick_frequency = freq;
949                 cpu_tick_variable = var;
950                 cpu_ticks = func;
951         }
952 }
953
954 uint64_t
955 cpu_tickrate(void)
956 {
957
958         if (cpu_ticks == tc_cpu_ticks) 
959                 return (tc_getfrequency());
960         return (cpu_tick_frequency);
961 }
962
963 /*
964  * We need to be slightly careful converting cputicks to microseconds.
965  * There is plenty of margin in 64 bits of microseconds (half a million
966  * years) and in 64 bits at 4 GHz (146 years), but if we do a multiply
967  * before divide conversion (to retain precision) we find that the
968  * margin shrinks to 1.5 hours (one millionth of 146y).
969  * With a three prong approach we never lose significant bits, no
970  * matter what the cputick rate and length of timeinterval is.
971  */
972
973 uint64_t
974 cputick2usec(uint64_t tick)
975 {
976
977         if (tick > 18446744073709551LL)         /* floor(2^64 / 1000) */
978                 return (tick / (cpu_tickrate() / 1000000LL));
979         else if (tick > 18446744073709LL)       /* floor(2^64 / 1000000) */
980                 return ((tick * 1000LL) / (cpu_tickrate() / 1000LL));
981         else
982                 return ((tick * 1000000LL) / cpu_tickrate());
983 }
984
985 cpu_tick_f      *cpu_ticks = tc_cpu_ticks;