]> CyberLeo.Net >> Repos - FreeBSD/releng/7.2.git/blob - sys/kern/subr_witness.c
Create releng/7.2 from stable/7 in preparation for 7.2-RELEASE.
[FreeBSD/releng/7.2.git] / sys / kern / subr_witness.c
1 /*-
2  * Copyright (c) 1998 Berkeley Software Design, Inc. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  * 3. Berkeley Software Design Inc's name may not be used to endorse or
13  *    promote products derived from this software without specific prior
14  *    written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  *      from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
29  *      and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
30  */
31
32 /*
33  * Implementation of the `witness' lock verifier.  Originally implemented for
34  * mutexes in BSD/OS.  Extended to handle generic lock objects and lock
35  * classes in FreeBSD.
36  */
37
38 /*
39  *      Main Entry: witness
40  *      Pronunciation: 'wit-n&s
41  *      Function: noun
42  *      Etymology: Middle English witnesse, from Old English witnes knowledge,
43  *          testimony, witness, from 2wit
44  *      Date: before 12th century
45  *      1 : attestation of a fact or event : TESTIMONY
46  *      2 : one that gives evidence; specifically : one who testifies in
47  *          a cause or before a judicial tribunal
48  *      3 : one asked to be present at a transaction so as to be able to
49  *          testify to its having taken place
50  *      4 : one who has personal knowledge of something
51  *      5 a : something serving as evidence or proof : SIGN
52  *        b : public affirmation by word or example of usually
53  *            religious faith or conviction <the heroic witness to divine
54  *            life -- Pilot>
55  *      6 capitalized : a member of the Jehovah's Witnesses 
56  */
57
58 /*
59  * Special rules concerning Giant and lock orders:
60  *
61  * 1) Giant must be acquired before any other mutexes.  Stated another way,
62  *    no other mutex may be held when Giant is acquired.
63  *
64  * 2) Giant must be released when blocking on a sleepable lock.
65  *
66  * This rule is less obvious, but is a result of Giant providing the same
67  * semantics as spl().  Basically, when a thread sleeps, it must release
68  * Giant.  When a thread blocks on a sleepable lock, it sleeps.  Hence rule
69  * 2).
70  *
71  * 3) Giant may be acquired before or after sleepable locks.
72  *
73  * This rule is also not quite as obvious.  Giant may be acquired after
74  * a sleepable lock because it is a non-sleepable lock and non-sleepable
75  * locks may always be acquired while holding a sleepable lock.  The second
76  * case, Giant before a sleepable lock, follows from rule 2) above.  Suppose
77  * you have two threads T1 and T2 and a sleepable lock X.  Suppose that T1
78  * acquires X and blocks on Giant.  Then suppose that T2 acquires Giant and
79  * blocks on X.  When T2 blocks on X, T2 will release Giant allowing T1 to
80  * execute.  Thus, acquiring Giant both before and after a sleepable lock
81  * will not result in a lock order reversal.
82  */
83
84 #include <sys/cdefs.h>
85 __FBSDID("$FreeBSD$");
86
87 #include "opt_ddb.h"
88 #include "opt_hwpmc_hooks.h"
89 #include "opt_witness.h"
90
91 #include <sys/param.h>
92 #include <sys/bus.h>
93 #include <sys/kdb.h>
94 #include <sys/kernel.h>
95 #include <sys/ktr.h>
96 #include <sys/lock.h>
97 #include <sys/malloc.h>
98 #include <sys/mutex.h>
99 #include <sys/priv.h>
100 #include <sys/proc.h>
101 #include <sys/sysctl.h>
102 #include <sys/systm.h>
103
104 #include <ddb/ddb.h>
105
106 #include <machine/stdarg.h>
107
108 /* Note that these traces do not work with KTR_ALQ. */
109 #if 0
110 #define KTR_WITNESS     KTR_SUBSYS
111 #else
112 #define KTR_WITNESS     0
113 #endif
114
115 /* Easier to stay with the old names. */
116 #define lo_list         lo_witness_data.lod_list
117 #define lo_witness      lo_witness_data.lod_witness
118
119 /* Define this to check for blessed mutexes */
120 #undef BLESSING
121
122 #define WITNESS_COUNT 1024
123 #define WITNESS_CHILDCOUNT (WITNESS_COUNT * 4)
124 /*
125  * XXX: This is somewhat bogus, as we assume here that at most 1024 threads
126  * will hold LOCK_NCHILDREN * 2 locks.  We handle failure ok, and we should
127  * probably be safe for the most part, but it's still a SWAG.
128  */
129 #define LOCK_CHILDCOUNT (MAXCPU + 1024) * 2
130
131 #define WITNESS_NCHILDREN 6
132
133 struct witness_child_list_entry;
134
135 struct witness {
136         const   char *w_name;
137         struct  lock_class *w_class;
138         STAILQ_ENTRY(witness) w_list;           /* List of all witnesses. */
139         STAILQ_ENTRY(witness) w_typelist;       /* Witnesses of a type. */
140         struct  witness_child_list_entry *w_children;   /* Great evilness... */
141         const   char *w_file;
142         int     w_line;
143         u_int   w_level;
144         u_int   w_refcount;
145         u_char  w_Giant_squawked:1;
146         u_char  w_other_squawked:1;
147         u_char  w_same_squawked:1;
148         u_char  w_displayed:1;
149 };
150
151 struct witness_child_list_entry {
152         struct  witness_child_list_entry *wcl_next;
153         struct  witness *wcl_children[WITNESS_NCHILDREN];
154         u_int   wcl_count;
155 };
156
157 STAILQ_HEAD(witness_list, witness);
158
159 #ifdef BLESSING
160 struct witness_blessed {
161         const   char *b_lock1;
162         const   char *b_lock2;
163 };
164 #endif
165
166 struct witness_order_list_entry {
167         const   char *w_name;
168         struct  lock_class *w_class;
169 };
170
171 #ifdef BLESSING
172 static int      blessed(struct witness *, struct witness *);
173 #endif
174 static int      depart(struct witness *w);
175 static struct   witness *enroll(const char *description,
176                                 struct lock_class *lock_class);
177 static int      insertchild(struct witness *parent, struct witness *child);
178 static int      isitmychild(struct witness *parent, struct witness *child);
179 static int      isitmydescendant(struct witness *parent, struct witness *child);
180 static int      itismychild(struct witness *parent, struct witness *child);
181 static void     removechild(struct witness *parent, struct witness *child);
182 static int      sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS);
183 static const char *fixup_filename(const char *file);
184 static struct   witness *witness_get(void);
185 static void     witness_free(struct witness *m);
186 static struct   witness_child_list_entry *witness_child_get(void);
187 static void     witness_child_free(struct witness_child_list_entry *wcl);
188 static struct   lock_list_entry *witness_lock_list_get(void);
189 static void     witness_lock_list_free(struct lock_list_entry *lle);
190 static struct   lock_instance *find_instance(struct lock_list_entry *lock_list,
191                                              struct lock_object *lock);
192 static void     witness_list_lock(struct lock_instance *instance);
193 #ifdef DDB
194 static void     witness_leveldescendents(struct witness *parent, int level);
195 static void     witness_levelall(void);
196 static void     witness_displaydescendants(void(*)(const char *fmt, ...),
197                                            struct witness *, int indent);
198 static void     witness_display_list(void(*prnt)(const char *fmt, ...),
199                                      struct witness_list *list);
200 static void     witness_display(void(*)(const char *fmt, ...));
201 static void     witness_list(struct thread *td);
202 #endif
203
204 SYSCTL_NODE(_debug, OID_AUTO, witness, CTLFLAG_RW, 0, "Witness Locking");
205
206 /*
207  * If set to 0, witness is disabled.  If set to a non-zero value, witness
208  * performs full lock order checking for all locks.  At runtime, this
209  * value may be set to 0 to turn off witness.  witness is not allowed be
210  * turned on once it is turned off, however.
211  */
212 static int witness_watch = 1;
213 TUNABLE_INT("debug.witness.watch", &witness_watch);
214 SYSCTL_PROC(_debug_witness, OID_AUTO, watch, CTLFLAG_RW | CTLTYPE_INT, NULL, 0,
215     sysctl_debug_witness_watch, "I", "witness is watching lock operations");
216
217 #ifdef KDB
218 /*
219  * When KDB is enabled and witness_kdb is set to 1, it will cause the system
220  * to drop into kdebug() when:
221  *      - a lock hierarchy violation occurs
222  *      - locks are held when going to sleep.
223  */
224 #ifdef WITNESS_KDB
225 int     witness_kdb = 1;
226 #else
227 int     witness_kdb = 0;
228 #endif
229 TUNABLE_INT("debug.witness.kdb", &witness_kdb);
230 SYSCTL_INT(_debug_witness, OID_AUTO, kdb, CTLFLAG_RW, &witness_kdb, 0, "");
231
232 /*
233  * When KDB is enabled and witness_trace is set to 1, it will cause the system
234  * to print a stack trace:
235  *      - a lock hierarchy violation occurs
236  *      - locks are held when going to sleep.
237  */
238 int     witness_trace = 1;
239 TUNABLE_INT("debug.witness.trace", &witness_trace);
240 SYSCTL_INT(_debug_witness, OID_AUTO, trace, CTLFLAG_RW, &witness_trace, 0, "");
241 #endif /* KDB */
242
243 #ifdef WITNESS_SKIPSPIN
244 int     witness_skipspin = 1;
245 #else
246 int     witness_skipspin = 0;
247 #endif
248 TUNABLE_INT("debug.witness.skipspin", &witness_skipspin);
249 SYSCTL_INT(_debug_witness, OID_AUTO, skipspin, CTLFLAG_RDTUN,
250     &witness_skipspin, 0, "");
251
252 static struct mtx w_mtx;
253 static struct witness_list w_free = STAILQ_HEAD_INITIALIZER(w_free);
254 static struct witness_list w_all = STAILQ_HEAD_INITIALIZER(w_all);
255 static struct witness_list w_spin = STAILQ_HEAD_INITIALIZER(w_spin);
256 static struct witness_list w_sleep = STAILQ_HEAD_INITIALIZER(w_sleep);
257 static struct witness_child_list_entry *w_child_free = NULL;
258 static struct lock_list_entry *w_lock_list_free = NULL;
259
260 static int w_free_cnt, w_spin_cnt, w_sleep_cnt, w_child_free_cnt, w_child_cnt;
261 SYSCTL_INT(_debug_witness, OID_AUTO, free_cnt, CTLFLAG_RD, &w_free_cnt, 0, "");
262 SYSCTL_INT(_debug_witness, OID_AUTO, spin_cnt, CTLFLAG_RD, &w_spin_cnt, 0, "");
263 SYSCTL_INT(_debug_witness, OID_AUTO, sleep_cnt, CTLFLAG_RD, &w_sleep_cnt, 0,
264     "");
265 SYSCTL_INT(_debug_witness, OID_AUTO, child_free_cnt, CTLFLAG_RD,
266     &w_child_free_cnt, 0, "");
267 SYSCTL_INT(_debug_witness, OID_AUTO, child_cnt, CTLFLAG_RD, &w_child_cnt, 0,
268     "");
269
270 static struct witness w_data[WITNESS_COUNT];
271 static struct witness_child_list_entry w_childdata[WITNESS_CHILDCOUNT];
272 static struct lock_list_entry w_locklistdata[LOCK_CHILDCOUNT];
273
274 static struct witness_order_list_entry order_lists[] = {
275         /*
276          * sx locks
277          */
278         { "proctree", &lock_class_sx },
279         { "allproc", &lock_class_sx },
280         { "allprison", &lock_class_sx },
281         { NULL, NULL },
282         /*
283          * Various mutexes
284          */
285         { "Giant", &lock_class_mtx_sleep },
286         { "pipe mutex", &lock_class_mtx_sleep },
287         { "sigio lock", &lock_class_mtx_sleep },
288         { "process group", &lock_class_mtx_sleep },
289         { "process lock", &lock_class_mtx_sleep },
290         { "session", &lock_class_mtx_sleep },
291         { "uidinfo hash", &lock_class_mtx_sleep },
292         { "uidinfo struct", &lock_class_mtx_sleep },
293 #ifdef  HWPMC_HOOKS
294         { "pmc-sleep", &lock_class_mtx_sleep },
295 #endif
296         { NULL, NULL },
297         /*
298          * Sockets
299          */
300         { "accept", &lock_class_mtx_sleep },
301         { "so_snd", &lock_class_mtx_sleep },
302         { "so_rcv", &lock_class_mtx_sleep },
303         { "sellck", &lock_class_mtx_sleep },
304         { NULL, NULL },
305         /*
306          * Routing
307          */
308         { "so_rcv", &lock_class_mtx_sleep },
309         { "radix node head", &lock_class_mtx_sleep },
310         { "rtentry", &lock_class_mtx_sleep },
311         { "ifaddr", &lock_class_mtx_sleep },
312         { NULL, NULL },
313         /*
314          * Multicast - protocol locks before interface locks, after UDP locks.
315          */
316         { "udpinp", &lock_class_rw },
317         { "in_multi_mtx", &lock_class_mtx_sleep },
318         { "igmp_mtx", &lock_class_mtx_sleep },
319         { "if_addr_mtx", &lock_class_mtx_sleep },
320         { NULL, NULL },
321         /*
322          * UNIX Domain Sockets
323          */
324         { "unp", &lock_class_mtx_sleep },
325         { "so_snd", &lock_class_mtx_sleep },
326         { NULL, NULL },
327         /*
328          * UDP/IP
329          */
330         { "udp", &lock_class_rw },
331         { "udpinp", &lock_class_rw },
332         { "so_snd", &lock_class_mtx_sleep },
333         { NULL, NULL },
334         /*
335          * TCP/IP
336          */
337         { "tcp", &lock_class_rw },
338         { "tcpinp", &lock_class_rw },
339         { "so_snd", &lock_class_mtx_sleep },
340         { NULL, NULL },
341         /*
342          * SLIP
343          */
344         { "slip_mtx", &lock_class_mtx_sleep },
345         { "slip sc_mtx", &lock_class_mtx_sleep },
346         { NULL, NULL },
347         /*
348          * netatalk
349          */
350         { "ddp_list_mtx", &lock_class_mtx_sleep },
351         { "ddp_mtx", &lock_class_mtx_sleep },
352         { NULL, NULL },
353         /*
354          * BPF
355          */
356         { "bpf global lock", &lock_class_mtx_sleep },
357         { "bpf interface lock", &lock_class_mtx_sleep },
358         { "bpf cdev lock", &lock_class_mtx_sleep },
359         { NULL, NULL },
360         /*
361          * NFS server
362          */
363         { "nfsd_mtx", &lock_class_mtx_sleep },
364         { "so_snd", &lock_class_mtx_sleep },
365         { NULL, NULL },
366
367         /*
368          * IEEE 802.11
369          */
370         { "802.11 com lock", &lock_class_mtx_sleep},
371         { NULL, NULL },
372         /*
373          * Network drivers
374          */
375         { "network driver", &lock_class_mtx_sleep},
376         { NULL, NULL },
377
378         /*
379          * Netgraph
380          */
381         { "ng_node", &lock_class_mtx_sleep },
382         { "ng_worklist", &lock_class_mtx_sleep },
383         { NULL, NULL },
384         /*
385          * CDEV
386          */
387         { "system map", &lock_class_mtx_sleep },
388         { "vm page queue mutex", &lock_class_mtx_sleep },
389         { "vnode interlock", &lock_class_mtx_sleep },
390         { "cdev", &lock_class_mtx_sleep },
391         { NULL, NULL },
392         /*
393          * kqueue/VFS interaction
394          */
395         { "kqueue", &lock_class_mtx_sleep },
396         { "struct mount mtx", &lock_class_mtx_sleep },
397         { "vnode interlock", &lock_class_mtx_sleep },
398         { NULL, NULL },
399         /*
400          * spin locks
401          */
402 #ifdef SMP
403         { "ap boot", &lock_class_mtx_spin },
404 #endif
405         { "rm.mutex_mtx", &lock_class_mtx_spin },
406         { "sio", &lock_class_mtx_spin },
407         { "scrlock", &lock_class_mtx_spin },
408 #ifdef __i386__
409         { "cy", &lock_class_mtx_spin },
410 #endif
411 #ifdef __sparc64__
412         { "pcib_mtx", &lock_class_mtx_spin },
413         { "rtc_mtx", &lock_class_mtx_spin },
414 #endif
415         { "scc_hwmtx", &lock_class_mtx_spin },
416         { "uart_hwmtx", &lock_class_mtx_spin },
417         { "fast_taskqueue", &lock_class_mtx_spin },
418         { "intr table", &lock_class_mtx_spin },
419 #ifdef  HWPMC_HOOKS
420         { "pmc-per-proc", &lock_class_mtx_spin },
421 #endif
422         { "process slock", &lock_class_mtx_spin },
423         { "sleepq chain", &lock_class_mtx_spin },
424         { "umtx lock", &lock_class_mtx_spin },
425         { "turnstile chain", &lock_class_mtx_spin },
426         { "turnstile lock", &lock_class_mtx_spin },
427         { "sched lock", &lock_class_mtx_spin },
428         { "td_contested", &lock_class_mtx_spin },
429         { "callout", &lock_class_mtx_spin },
430         { "entropy harvest mutex", &lock_class_mtx_spin },
431         { "syscons video lock", &lock_class_mtx_spin },
432         { "time lock", &lock_class_mtx_spin },
433 #ifdef SMP
434         { "smp rendezvous", &lock_class_mtx_spin },
435 #endif
436         /*
437          * leaf locks
438          */
439         { "icu", &lock_class_mtx_spin },
440 #if defined(SMP) && defined(__sparc64__)
441         { "ipi", &lock_class_mtx_spin },
442 #endif
443 #ifdef __i386__
444         { "allpmaps", &lock_class_mtx_spin },
445         { "descriptor tables", &lock_class_mtx_spin },
446 #endif
447         { "clk", &lock_class_mtx_spin },
448         { "mprof lock", &lock_class_mtx_spin },
449         { "kse lock", &lock_class_mtx_spin },
450         { "zombie lock", &lock_class_mtx_spin },
451         { "ALD Queue", &lock_class_mtx_spin },
452 #ifdef __ia64__
453         { "MCA spin lock", &lock_class_mtx_spin },
454 #endif
455 #if defined(__i386__) || defined(__amd64__)
456         { "pcicfg", &lock_class_mtx_spin },
457         { "NDIS thread lock", &lock_class_mtx_spin },
458 #endif
459         { "tw_osl_io_lock", &lock_class_mtx_spin },
460         { "tw_osl_q_lock", &lock_class_mtx_spin },
461         { "tw_cl_io_lock", &lock_class_mtx_spin },
462         { "tw_cl_intr_lock", &lock_class_mtx_spin },
463         { "tw_cl_gen_lock", &lock_class_mtx_spin },
464 #ifdef  HWPMC_HOOKS
465         { "pmc-leaf", &lock_class_mtx_spin },
466 #endif
467         { "blocked lock", &lock_class_mtx_spin },
468         { NULL, NULL },
469         { NULL, NULL }
470 };
471
472 #ifdef BLESSING
473 /*
474  * Pairs of locks which have been blessed
475  * Don't complain about order problems with blessed locks
476  */
477 static struct witness_blessed blessed_list[] = {
478 };
479 static int blessed_count =
480         sizeof(blessed_list) / sizeof(struct witness_blessed);
481 #endif
482
483 /*
484  * List of locks initialized prior to witness being initialized whose
485  * enrollment is currently deferred.
486  */
487 STAILQ_HEAD(, lock_object) pending_locks =
488     STAILQ_HEAD_INITIALIZER(pending_locks);
489
490 /*
491  * This global is set to 0 once it becomes safe to use the witness code.
492  */
493 static int witness_cold = 1;
494
495 /*
496  * This global is set to 1 once the static lock orders have been enrolled
497  * so that a warning can be issued for any spin locks enrolled later.
498  */
499 static int witness_spin_warn = 0;
500
501 /*
502  * The WITNESS-enabled diagnostic code.  Note that the witness code does
503  * assume that the early boot is single-threaded at least until after this
504  * routine is completed.
505  */
506 static void
507 witness_initialize(void *dummy __unused)
508 {
509         struct lock_object *lock;
510         struct witness_order_list_entry *order;
511         struct witness *w, *w1;
512         int i;
513
514         /*
515          * We have to release Giant before initializing its witness
516          * structure so that WITNESS doesn't get confused.
517          */
518         mtx_unlock(&Giant);
519         mtx_assert(&Giant, MA_NOTOWNED);
520
521         CTR1(KTR_WITNESS, "%s: initializing witness", __func__);
522         mtx_init(&w_mtx, "witness lock", NULL, MTX_SPIN | MTX_QUIET |
523             MTX_NOWITNESS | MTX_NOPROFILE);
524         for (i = 0; i < WITNESS_COUNT; i++)
525                 witness_free(&w_data[i]);
526         for (i = 0; i < WITNESS_CHILDCOUNT; i++)
527                 witness_child_free(&w_childdata[i]);
528         for (i = 0; i < LOCK_CHILDCOUNT; i++)
529                 witness_lock_list_free(&w_locklistdata[i]);
530
531         /* First add in all the specified order lists. */
532         for (order = order_lists; order->w_name != NULL; order++) {
533                 w = enroll(order->w_name, order->w_class);
534                 if (w == NULL)
535                         continue;
536                 w->w_file = "order list";
537                 for (order++; order->w_name != NULL; order++) {
538                         w1 = enroll(order->w_name, order->w_class);
539                         if (w1 == NULL)
540                                 continue;
541                         w1->w_file = "order list";
542                         if (!itismychild(w, w1))
543                                 panic("Not enough memory for static orders!");
544                         w = w1;
545                 }
546         }
547         witness_spin_warn = 1;
548
549         /* Iterate through all locks and add them to witness. */
550         while (!STAILQ_EMPTY(&pending_locks)) {
551                 lock = STAILQ_FIRST(&pending_locks);
552                 STAILQ_REMOVE_HEAD(&pending_locks, lo_list);
553                 KASSERT(lock->lo_flags & LO_WITNESS,
554                     ("%s: lock %s is on pending list but not LO_WITNESS",
555                     __func__, lock->lo_name));
556                 lock->lo_witness = enroll(lock->lo_type, LOCK_CLASS(lock));
557         }
558
559         /* Mark the witness code as being ready for use. */
560         witness_cold = 0;
561
562         mtx_lock(&Giant);
563 }
564 SYSINIT(witness_init, SI_SUB_WITNESS, SI_ORDER_FIRST, witness_initialize,
565     NULL);
566
567 static int
568 sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS)
569 {
570         int error, value;
571
572         value = witness_watch;
573         error = sysctl_handle_int(oidp, &value, 0, req);
574         if (error != 0 || req->newptr == NULL)
575                 return (error);
576         if (value == witness_watch)
577                 return (0);
578         if (value != 0)
579                 return (EINVAL);
580         witness_watch = 0;
581         return (0);
582 }
583
584 void
585 witness_init(struct lock_object *lock)
586 {
587         struct lock_class *class;
588
589         /* Various sanity checks. */
590         class = LOCK_CLASS(lock);
591         if ((lock->lo_flags & LO_RECURSABLE) != 0 &&
592             (class->lc_flags & LC_RECURSABLE) == 0)
593                 panic("%s: lock (%s) %s can not be recursable", __func__,
594                     class->lc_name, lock->lo_name);
595         if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
596             (class->lc_flags & LC_SLEEPABLE) == 0)
597                 panic("%s: lock (%s) %s can not be sleepable", __func__,
598                     class->lc_name, lock->lo_name);
599         if ((lock->lo_flags & LO_UPGRADABLE) != 0 &&
600             (class->lc_flags & LC_UPGRADABLE) == 0)
601                 panic("%s: lock (%s) %s can not be upgradable", __func__,
602                     class->lc_name, lock->lo_name);
603
604         /*
605          * If we shouldn't watch this lock, then just clear lo_witness.
606          * Otherwise, if witness_cold is set, then it is too early to
607          * enroll this lock, so defer it to witness_initialize() by adding
608          * it to the pending_locks list.  If it is not too early, then enroll
609          * the lock now.
610          */
611         if (witness_watch == 0 || panicstr != NULL ||
612             (lock->lo_flags & LO_WITNESS) == 0)
613                 lock->lo_witness = NULL;
614         else if (witness_cold) {
615                 STAILQ_INSERT_TAIL(&pending_locks, lock, lo_list);
616                 lock->lo_flags |= LO_ENROLLPEND;
617         } else
618                 lock->lo_witness = enroll(lock->lo_type, class);
619 }
620
621 void
622 witness_destroy(struct lock_object *lock)
623 {
624         struct lock_class *class;
625         struct witness *w;
626
627         class = LOCK_CLASS(lock);
628         if (witness_cold)
629                 panic("lock (%s) %s destroyed while witness_cold",
630                     class->lc_name, lock->lo_name);
631
632         /* XXX: need to verify that no one holds the lock */
633         if ((lock->lo_flags & (LO_WITNESS | LO_ENROLLPEND)) == LO_WITNESS &&
634             lock->lo_witness != NULL) {
635                 w = lock->lo_witness;
636                 mtx_lock_spin(&w_mtx);
637                 MPASS(w->w_refcount > 0);
638                 w->w_refcount--;
639
640                 /*
641                  * Lock is already released if we have an allocation failure
642                  * and depart() fails.
643                  */
644                 if (w->w_refcount != 0 || depart(w))
645                         mtx_unlock_spin(&w_mtx);
646         }
647
648         /*
649          * If this lock is destroyed before witness is up and running,
650          * remove it from the pending list.
651          */
652         if (lock->lo_flags & LO_ENROLLPEND) {
653                 STAILQ_REMOVE(&pending_locks, lock, lock_object, lo_list);
654                 lock->lo_flags &= ~LO_ENROLLPEND;
655         }
656 }
657
658 #ifdef DDB
659 static void
660 witness_levelall (void)
661 {
662         struct witness_list *list;
663         struct witness *w, *w1;
664
665         /*
666          * First clear all levels.
667          */
668         STAILQ_FOREACH(w, &w_all, w_list) {
669                 w->w_level = 0;
670         }
671
672         /*
673          * Look for locks with no parent and level all their descendants.
674          */
675         STAILQ_FOREACH(w, &w_all, w_list) {
676                 /*
677                  * This is just an optimization, technically we could get
678                  * away just walking the all list each time.
679                  */
680                 if (w->w_class->lc_flags & LC_SLEEPLOCK)
681                         list = &w_sleep;
682                 else
683                         list = &w_spin;
684                 STAILQ_FOREACH(w1, list, w_typelist) {
685                         if (isitmychild(w1, w))
686                                 goto skip;
687                 }
688                 witness_leveldescendents(w, 0);
689         skip:
690                 ;       /* silence GCC 3.x */
691         }
692 }
693
694 static void
695 witness_leveldescendents(struct witness *parent, int level)
696 {
697         struct witness_child_list_entry *wcl;
698         int i;
699
700         if (parent->w_level < level)
701                 parent->w_level = level;
702         level++;
703         for (wcl = parent->w_children; wcl != NULL; wcl = wcl->wcl_next)
704                 for (i = 0; i < wcl->wcl_count; i++)
705                         witness_leveldescendents(wcl->wcl_children[i], level);
706 }
707
708 static void
709 witness_displaydescendants(void(*prnt)(const char *fmt, ...),
710                            struct witness *parent, int indent)
711 {
712         struct witness_child_list_entry *wcl;
713         int i, level;
714
715         level = parent->w_level;
716         prnt("%-2d", level);
717         for (i = 0; i < indent; i++)
718                 prnt(" ");
719         if (parent->w_refcount > 0)
720                 prnt("%s", parent->w_name);
721         else
722                 prnt("(dead)");
723         if (parent->w_displayed) {
724                 prnt(" -- (already displayed)\n");
725                 return;
726         }
727         parent->w_displayed = 1;
728         if (parent->w_refcount > 0) {
729                 if (parent->w_file != NULL)
730                         prnt(" -- last acquired @ %s:%d", parent->w_file,
731                             parent->w_line);
732         }
733         prnt("\n");
734         for (wcl = parent->w_children; wcl != NULL; wcl = wcl->wcl_next)
735                 for (i = 0; i < wcl->wcl_count; i++)
736                             witness_displaydescendants(prnt,
737                                 wcl->wcl_children[i], indent + 1);
738 }
739
740 static void
741 witness_display_list(void(*prnt)(const char *fmt, ...),
742                      struct witness_list *list)
743 {
744         struct witness *w;
745
746         STAILQ_FOREACH(w, list, w_typelist) {
747                 if (w->w_file == NULL || w->w_level > 0)
748                         continue;
749                 /*
750                  * This lock has no anscestors, display its descendants. 
751                  */
752                 witness_displaydescendants(prnt, w, 0);
753         }
754 }
755         
756 static void
757 witness_display(void(*prnt)(const char *fmt, ...))
758 {
759         struct witness *w;
760
761         KASSERT(!witness_cold, ("%s: witness_cold", __func__));
762         witness_levelall();
763
764         /* Clear all the displayed flags. */
765         STAILQ_FOREACH(w, &w_all, w_list) {
766                 w->w_displayed = 0;
767         }
768
769         /*
770          * First, handle sleep locks which have been acquired at least
771          * once.
772          */
773         prnt("Sleep locks:\n");
774         witness_display_list(prnt, &w_sleep);
775         
776         /*
777          * Now do spin locks which have been acquired at least once.
778          */
779         prnt("\nSpin locks:\n");
780         witness_display_list(prnt, &w_spin);
781         
782         /*
783          * Finally, any locks which have not been acquired yet.
784          */
785         prnt("\nLocks which were never acquired:\n");
786         STAILQ_FOREACH(w, &w_all, w_list) {
787                 if (w->w_file != NULL || w->w_refcount == 0)
788                         continue;
789                 prnt("%s\n", w->w_name);
790         }
791 }
792 #endif /* DDB */
793
794 /* Trim useless garbage from filenames. */
795 static const char *
796 fixup_filename(const char *file)
797 {
798
799         if (file == NULL)
800                 return (NULL);
801         while (strncmp(file, "../", 3) == 0)
802                 file += 3;
803         return (file);
804 }
805
806 int
807 witness_defineorder(struct lock_object *lock1, struct lock_object *lock2)
808 {
809
810         if (witness_watch == 0 || panicstr != NULL)
811                 return (0);
812
813         /* Require locks that witness knows about. */
814         if (lock1 == NULL || lock1->lo_witness == NULL || lock2 == NULL ||
815             lock2->lo_witness == NULL)
816                 return (EINVAL);
817
818         MPASS(!mtx_owned(&w_mtx));
819         mtx_lock_spin(&w_mtx);
820
821         /*
822          * If we already have either an explicit or implied lock order that
823          * is the other way around, then return an error.
824          */
825         if (isitmydescendant(lock2->lo_witness, lock1->lo_witness)) {
826                 mtx_unlock_spin(&w_mtx);
827                 return (EDOOFUS);
828         }
829         
830         /* Try to add the new order. */
831         CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
832             lock2->lo_type, lock1->lo_type);
833         if (!itismychild(lock1->lo_witness, lock2->lo_witness))
834                 return (ENOMEM);
835         mtx_unlock_spin(&w_mtx);
836         return (0);
837 }
838
839 void
840 witness_checkorder(struct lock_object *lock, int flags, const char *file,
841     int line)
842 {
843         struct lock_list_entry **lock_list, *lle;
844         struct lock_instance *lock1, *lock2;
845         struct lock_class *class;
846         struct witness *w, *w1;
847         struct thread *td;
848         int i, j;
849
850         if (witness_cold || witness_watch == 0 || lock->lo_witness == NULL ||
851             panicstr != NULL)
852                 return;
853
854         /*
855          * Try locks do not block if they fail to acquire the lock, thus
856          * there is no danger of deadlocks or of switching while holding a
857          * spin lock if we acquire a lock via a try operation.  This
858          * function shouldn't even be called for try locks, so panic if
859          * that happens.
860          */
861         if (flags & LOP_TRYLOCK)
862                 panic("%s should not be called for try lock operations",
863                     __func__);
864
865         w = lock->lo_witness;
866         class = LOCK_CLASS(lock);
867         td = curthread;
868         file = fixup_filename(file);
869
870         if (class->lc_flags & LC_SLEEPLOCK) {
871                 /*
872                  * Since spin locks include a critical section, this check
873                  * implicitly enforces a lock order of all sleep locks before
874                  * all spin locks.
875                  */
876                 if (td->td_critnest != 0 && !kdb_active)
877                         panic("blockable sleep lock (%s) %s @ %s:%d",
878                             class->lc_name, lock->lo_name, file, line);
879
880                 /*
881                  * If this is the first lock acquired then just return as
882                  * no order checking is needed.
883                  */
884                 if (td->td_sleeplocks == NULL)
885                         return;
886                 lock_list = &td->td_sleeplocks;
887         } else {
888                 /*
889                  * If this is the first lock, just return as no order
890                  * checking is needed.  We check this in both if clauses
891                  * here as unifying the check would require us to use a
892                  * critical section to ensure we don't migrate while doing
893                  * the check.  Note that if this is not the first lock, we
894                  * are already in a critical section and are safe for the
895                  * rest of the check.
896                  */
897                 if (PCPU_GET(spinlocks) == NULL)
898                         return;
899                 lock_list = PCPU_PTR(spinlocks);
900         }
901
902         /*
903          * Check to see if we are recursing on a lock we already own.  If
904          * so, make sure that we don't mismatch exclusive and shared lock
905          * acquires.
906          */
907         lock1 = find_instance(*lock_list, lock);
908         if (lock1 != NULL) {
909                 if ((lock1->li_flags & LI_EXCLUSIVE) != 0 &&
910                     (flags & LOP_EXCLUSIVE) == 0) {
911                         printf("shared lock of (%s) %s @ %s:%d\n",
912                             class->lc_name, lock->lo_name, file, line);
913                         printf("while exclusively locked from %s:%d\n",
914                             lock1->li_file, lock1->li_line);
915                         panic("share->excl");
916                 }
917                 if ((lock1->li_flags & LI_EXCLUSIVE) == 0 &&
918                     (flags & LOP_EXCLUSIVE) != 0) {
919                         printf("exclusive lock of (%s) %s @ %s:%d\n",
920                             class->lc_name, lock->lo_name, file, line);
921                         printf("while share locked from %s:%d\n",
922                             lock1->li_file, lock1->li_line);
923                         panic("excl->share");
924                 }
925                 return;
926         }
927
928         /*
929          * Try locks do not block if they fail to acquire the lock, thus
930          * there is no danger of deadlocks or of switching while holding a
931          * spin lock if we acquire a lock via a try operation.
932          */
933         if (flags & LOP_TRYLOCK)
934                 return;
935
936         /*
937          * Check for duplicate locks of the same type.  Note that we only
938          * have to check for this on the last lock we just acquired.  Any
939          * other cases will be caught as lock order violations.
940          */
941         lock1 = &(*lock_list)->ll_children[(*lock_list)->ll_count - 1];
942         w1 = lock1->li_lock->lo_witness;
943         if (w1 == w) {
944                 if (w->w_same_squawked || (lock->lo_flags & LO_DUPOK) ||
945                     (flags & LOP_DUPOK))
946                         return;
947                 w->w_same_squawked = 1;
948                 printf("acquiring duplicate lock of same type: \"%s\"\n", 
949                         lock->lo_type);
950                 printf(" 1st %s @ %s:%d\n", lock1->li_lock->lo_name,
951                     lock1->li_file, lock1->li_line);
952                 printf(" 2nd %s @ %s:%d\n", lock->lo_name, file, line);
953 #ifdef KDB
954                 goto debugger;
955 #else
956                 return;
957 #endif
958         }
959         MPASS(!mtx_owned(&w_mtx));
960         mtx_lock_spin(&w_mtx);
961         /*
962          * If we know that the the lock we are acquiring comes after
963          * the lock we most recently acquired in the lock order tree,
964          * then there is no need for any further checks.
965          */
966         if (isitmychild(w1, w)) {
967                 mtx_unlock_spin(&w_mtx);
968                 return;
969         }
970         for (j = 0, lle = *lock_list; lle != NULL; lle = lle->ll_next) {
971                 for (i = lle->ll_count - 1; i >= 0; i--, j++) {
972
973                         MPASS(j < WITNESS_COUNT);
974                         lock1 = &lle->ll_children[i];
975                         w1 = lock1->li_lock->lo_witness;
976
977                         /*
978                          * If this lock doesn't undergo witness checking,
979                          * then skip it.
980                          */
981                         if (w1 == NULL) {
982                                 KASSERT((lock1->li_lock->lo_flags & LO_WITNESS) == 0,
983                                     ("lock missing witness structure"));
984                                 continue;
985                         }
986                         /*
987                          * If we are locking Giant and this is a sleepable
988                          * lock, then skip it.
989                          */
990                         if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0 &&
991                             lock == &Giant.lock_object)
992                                 continue;
993                         /*
994                          * If we are locking a sleepable lock and this lock
995                          * is Giant, then skip it.
996                          */
997                         if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
998                             lock1->li_lock == &Giant.lock_object)
999                                 continue;
1000                         /*
1001                          * If we are locking a sleepable lock and this lock
1002                          * isn't sleepable, we want to treat it as a lock
1003                          * order violation to enfore a general lock order of
1004                          * sleepable locks before non-sleepable locks.
1005                          */
1006                         if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1007                             (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
1008                                 goto reversal;
1009                         /*
1010                          * If we are locking Giant and this is a non-sleepable
1011                          * lock, then treat it as a reversal.
1012                          */
1013                         if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0 &&
1014                             lock == &Giant.lock_object)
1015                                 goto reversal;
1016                         /*
1017                          * Check the lock order hierarchy for a reveresal.
1018                          */
1019                         if (!isitmydescendant(w, w1))
1020                                 continue;
1021                 reversal:
1022                         /*
1023                          * We have a lock order violation, check to see if it
1024                          * is allowed or has already been yelled about.
1025                          */
1026                         mtx_unlock_spin(&w_mtx);
1027 #ifdef BLESSING
1028                         /*
1029                          * If the lock order is blessed, just bail.  We don't
1030                          * look for other lock order violations though, which
1031                          * may be a bug.
1032                          */
1033                         if (blessed(w, w1))
1034                                 return;
1035 #endif
1036                         if (lock1->li_lock == &Giant.lock_object) {
1037                                 if (w1->w_Giant_squawked)
1038                                         return;
1039                                 else
1040                                         w1->w_Giant_squawked = 1;
1041                         } else {
1042                                 if (w1->w_other_squawked)
1043                                         return;
1044                                 else
1045                                         w1->w_other_squawked = 1;
1046                         }
1047                         /*
1048                          * Ok, yell about it.
1049                          */
1050                         if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1051                             (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
1052                                 printf(
1053                 "lock order reversal: (sleepable after non-sleepable)\n");
1054                         else if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0
1055                             && lock == &Giant.lock_object)
1056                                 printf(
1057                 "lock order reversal: (Giant after non-sleepable)\n");
1058                         else
1059                                 printf("lock order reversal:\n");
1060                         /*
1061                          * Try to locate an earlier lock with
1062                          * witness w in our list.
1063                          */
1064                         do {
1065                                 lock2 = &lle->ll_children[i];
1066                                 MPASS(lock2->li_lock != NULL);
1067                                 if (lock2->li_lock->lo_witness == w)
1068                                         break;
1069                                 if (i == 0 && lle->ll_next != NULL) {
1070                                         lle = lle->ll_next;
1071                                         i = lle->ll_count - 1;
1072                                         MPASS(i >= 0 && i < LOCK_NCHILDREN);
1073                                 } else
1074                                         i--;
1075                         } while (i >= 0);
1076                         if (i < 0) {
1077                                 printf(" 1st %p %s (%s) @ %s:%d\n",
1078                                     lock1->li_lock, lock1->li_lock->lo_name,
1079                                     lock1->li_lock->lo_type, lock1->li_file,
1080                                     lock1->li_line);
1081                                 printf(" 2nd %p %s (%s) @ %s:%d\n", lock,
1082                                     lock->lo_name, lock->lo_type, file, line);
1083                         } else {
1084                                 printf(" 1st %p %s (%s) @ %s:%d\n",
1085                                     lock2->li_lock, lock2->li_lock->lo_name,
1086                                     lock2->li_lock->lo_type, lock2->li_file,
1087                                     lock2->li_line);
1088                                 printf(" 2nd %p %s (%s) @ %s:%d\n",
1089                                     lock1->li_lock, lock1->li_lock->lo_name,
1090                                     lock1->li_lock->lo_type, lock1->li_file,
1091                                     lock1->li_line);
1092                                 printf(" 3rd %p %s (%s) @ %s:%d\n", lock,
1093                                     lock->lo_name, lock->lo_type, file, line);
1094                         }
1095 #ifdef KDB
1096                         goto debugger;
1097 #else
1098                         return;
1099 #endif
1100                 }
1101         }
1102         lock1 = &(*lock_list)->ll_children[(*lock_list)->ll_count - 1];
1103         /*
1104          * If requested, build a new lock order.  However, don't build a new
1105          * relationship between a sleepable lock and Giant if it is in the
1106          * wrong direction.  The correct lock order is that sleepable locks
1107          * always come before Giant.
1108          */
1109         if (flags & LOP_NEWORDER &&
1110             !(lock1->li_lock == &Giant.lock_object &&
1111             (lock->lo_flags & LO_SLEEPABLE) != 0)) {
1112                 CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1113                     lock->lo_type, lock1->li_lock->lo_type);
1114                 if (!itismychild(lock1->li_lock->lo_witness, w))
1115                         /* Witness is dead. */
1116                         return;
1117         } 
1118         mtx_unlock_spin(&w_mtx);
1119         return;
1120
1121 #ifdef KDB
1122 debugger:
1123         if (witness_trace)
1124                 kdb_backtrace();
1125         if (witness_kdb)
1126                 kdb_enter_why(KDB_WHY_WITNESS, __func__);
1127 #endif
1128 }
1129
1130 void
1131 witness_lock(struct lock_object *lock, int flags, const char *file, int line)
1132 {
1133         struct lock_list_entry **lock_list, *lle;
1134         struct lock_instance *instance;
1135         struct witness *w;
1136         struct thread *td;
1137
1138         if (witness_cold || witness_watch == 0 || lock->lo_witness == NULL ||
1139             panicstr != NULL)
1140                 return;
1141         w = lock->lo_witness;
1142         td = curthread;
1143         file = fixup_filename(file);
1144
1145         /* Determine lock list for this lock. */
1146         if (LOCK_CLASS(lock)->lc_flags & LC_SLEEPLOCK)
1147                 lock_list = &td->td_sleeplocks;
1148         else
1149                 lock_list = PCPU_PTR(spinlocks);
1150
1151         /* Check to see if we are recursing on a lock we already own. */
1152         instance = find_instance(*lock_list, lock);
1153         if (instance != NULL) {
1154                 instance->li_flags++;
1155                 CTR4(KTR_WITNESS, "%s: pid %d recursed on %s r=%d", __func__,
1156                     td->td_proc->p_pid, lock->lo_name,
1157                     instance->li_flags & LI_RECURSEMASK);
1158                 instance->li_file = file;
1159                 instance->li_line = line;
1160                 return;
1161         }
1162
1163         /* Update per-witness last file and line acquire. */
1164         w->w_file = file;
1165         w->w_line = line;
1166
1167         /* Find the next open lock instance in the list and fill it. */
1168         lle = *lock_list;
1169         if (lle == NULL || lle->ll_count == LOCK_NCHILDREN) {
1170                 lle = witness_lock_list_get();
1171                 if (lle == NULL)
1172                         return;
1173                 lle->ll_next = *lock_list;
1174                 CTR3(KTR_WITNESS, "%s: pid %d added lle %p", __func__,
1175                     td->td_proc->p_pid, lle);
1176                 *lock_list = lle;
1177         }
1178         instance = &lle->ll_children[lle->ll_count++];
1179         instance->li_lock = lock;
1180         instance->li_line = line;
1181         instance->li_file = file;
1182         if ((flags & LOP_EXCLUSIVE) != 0)
1183                 instance->li_flags = LI_EXCLUSIVE;
1184         else
1185                 instance->li_flags = 0;
1186         CTR4(KTR_WITNESS, "%s: pid %d added %s as lle[%d]", __func__,
1187             td->td_proc->p_pid, lock->lo_name, lle->ll_count - 1);
1188 }
1189
1190 void
1191 witness_upgrade(struct lock_object *lock, int flags, const char *file, int line)
1192 {
1193         struct lock_instance *instance;
1194         struct lock_class *class;
1195
1196         KASSERT(!witness_cold, ("%s: witness_cold", __func__));
1197         if (lock->lo_witness == NULL || witness_watch == 0 || panicstr != NULL)
1198                 return;
1199         class = LOCK_CLASS(lock);
1200         file = fixup_filename(file);
1201         if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1202                 panic("upgrade of non-upgradable lock (%s) %s @ %s:%d",
1203                     class->lc_name, lock->lo_name, file, line);
1204         if ((flags & LOP_TRYLOCK) == 0)
1205                 panic("non-try upgrade of lock (%s) %s @ %s:%d", class->lc_name,
1206                     lock->lo_name, file, line);
1207         if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1208                 panic("upgrade of non-sleep lock (%s) %s @ %s:%d",
1209                     class->lc_name, lock->lo_name, file, line);
1210         instance = find_instance(curthread->td_sleeplocks, lock);
1211         if (instance == NULL)
1212                 panic("upgrade of unlocked lock (%s) %s @ %s:%d",
1213                     class->lc_name, lock->lo_name, file, line);
1214         if ((instance->li_flags & LI_EXCLUSIVE) != 0)
1215                 panic("upgrade of exclusive lock (%s) %s @ %s:%d",
1216                     class->lc_name, lock->lo_name, file, line);
1217         if ((instance->li_flags & LI_RECURSEMASK) != 0)
1218                 panic("upgrade of recursed lock (%s) %s r=%d @ %s:%d",
1219                     class->lc_name, lock->lo_name,
1220                     instance->li_flags & LI_RECURSEMASK, file, line);
1221         instance->li_flags |= LI_EXCLUSIVE;
1222 }
1223
1224 void
1225 witness_downgrade(struct lock_object *lock, int flags, const char *file,
1226     int line)
1227 {
1228         struct lock_instance *instance;
1229         struct lock_class *class;
1230
1231         KASSERT(!witness_cold, ("%s: witness_cold", __func__));
1232         if (lock->lo_witness == NULL || witness_watch == 0 || panicstr != NULL)
1233                 return;
1234         class = LOCK_CLASS(lock);
1235         file = fixup_filename(file);
1236         if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1237                 panic("downgrade of non-upgradable lock (%s) %s @ %s:%d",
1238                     class->lc_name, lock->lo_name, file, line);
1239         if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1240                 panic("downgrade of non-sleep lock (%s) %s @ %s:%d",
1241                     class->lc_name, lock->lo_name, file, line);
1242         instance = find_instance(curthread->td_sleeplocks, lock);
1243         if (instance == NULL)
1244                 panic("downgrade of unlocked lock (%s) %s @ %s:%d",
1245                     class->lc_name, lock->lo_name, file, line);
1246         if ((instance->li_flags & LI_EXCLUSIVE) == 0)
1247                 panic("downgrade of shared lock (%s) %s @ %s:%d",
1248                     class->lc_name, lock->lo_name, file, line);
1249         if ((instance->li_flags & LI_RECURSEMASK) != 0)
1250                 panic("downgrade of recursed lock (%s) %s r=%d @ %s:%d",
1251                     class->lc_name, lock->lo_name,
1252                     instance->li_flags & LI_RECURSEMASK, file, line);
1253         instance->li_flags &= ~LI_EXCLUSIVE;
1254 }
1255
1256 void
1257 witness_unlock(struct lock_object *lock, int flags, const char *file, int line)
1258 {
1259         struct lock_list_entry **lock_list, *lle;
1260         struct lock_instance *instance;
1261         struct lock_class *class;
1262         struct thread *td;
1263         register_t s;
1264         int i, j;
1265
1266         if (witness_cold || witness_watch == 0 || lock->lo_witness == NULL ||
1267             panicstr != NULL)
1268                 return;
1269         td = curthread;
1270         class = LOCK_CLASS(lock);
1271         file = fixup_filename(file);
1272
1273         /* Find lock instance associated with this lock. */
1274         if (class->lc_flags & LC_SLEEPLOCK)
1275                 lock_list = &td->td_sleeplocks;
1276         else
1277                 lock_list = PCPU_PTR(spinlocks);
1278         for (; *lock_list != NULL; lock_list = &(*lock_list)->ll_next)
1279                 for (i = 0; i < (*lock_list)->ll_count; i++) {
1280                         instance = &(*lock_list)->ll_children[i];
1281                         if (instance->li_lock == lock)
1282                                 goto found;
1283                 }
1284         panic("lock (%s) %s not locked @ %s:%d", class->lc_name, lock->lo_name,
1285             file, line);
1286 found:
1287
1288         /* First, check for shared/exclusive mismatches. */
1289         if ((instance->li_flags & LI_EXCLUSIVE) != 0 &&
1290             (flags & LOP_EXCLUSIVE) == 0) {
1291                 printf("shared unlock of (%s) %s @ %s:%d\n", class->lc_name,
1292                     lock->lo_name, file, line);
1293                 printf("while exclusively locked from %s:%d\n",
1294                     instance->li_file, instance->li_line);
1295                 panic("excl->ushare");
1296         }
1297         if ((instance->li_flags & LI_EXCLUSIVE) == 0 &&
1298             (flags & LOP_EXCLUSIVE) != 0) {
1299                 printf("exclusive unlock of (%s) %s @ %s:%d\n", class->lc_name,
1300                     lock->lo_name, file, line);
1301                 printf("while share locked from %s:%d\n", instance->li_file,
1302                     instance->li_line);
1303                 panic("share->uexcl");
1304         }
1305
1306         /* If we are recursed, unrecurse. */
1307         if ((instance->li_flags & LI_RECURSEMASK) > 0) {
1308                 CTR4(KTR_WITNESS, "%s: pid %d unrecursed on %s r=%d", __func__,
1309                     td->td_proc->p_pid, instance->li_lock->lo_name,
1310                     instance->li_flags);
1311                 instance->li_flags--;
1312                 return;
1313         }
1314
1315         /* Otherwise, remove this item from the list. */
1316         s = intr_disable();
1317         CTR4(KTR_WITNESS, "%s: pid %d removed %s from lle[%d]", __func__,
1318             td->td_proc->p_pid, instance->li_lock->lo_name,
1319             (*lock_list)->ll_count - 1);
1320         for (j = i; j < (*lock_list)->ll_count - 1; j++)
1321                 (*lock_list)->ll_children[j] =
1322                     (*lock_list)->ll_children[j + 1];
1323         (*lock_list)->ll_count--;
1324         intr_restore(s);
1325
1326         /* If this lock list entry is now empty, free it. */
1327         if ((*lock_list)->ll_count == 0) {
1328                 lle = *lock_list;
1329                 *lock_list = lle->ll_next;
1330                 CTR3(KTR_WITNESS, "%s: pid %d removed lle %p", __func__,
1331                     td->td_proc->p_pid, lle);
1332                 witness_lock_list_free(lle);
1333         }
1334 }
1335
1336 /*
1337  * Warn if any locks other than 'lock' are held.  Flags can be passed in to
1338  * exempt Giant and sleepable locks from the checks as well.  If any
1339  * non-exempt locks are held, then a supplied message is printed to the
1340  * console along with a list of the offending locks.  If indicated in the
1341  * flags then a failure results in a panic as well.
1342  */
1343 int
1344 witness_warn(int flags, struct lock_object *lock, const char *fmt, ...)
1345 {
1346         struct lock_list_entry *lle;
1347         struct lock_instance *lock1;
1348         struct thread *td;
1349         va_list ap;
1350         int i, n;
1351
1352         if (witness_cold || witness_watch == 0 || panicstr != NULL)
1353                 return (0);
1354         n = 0;
1355         td = curthread;
1356         for (lle = td->td_sleeplocks; lle != NULL; lle = lle->ll_next)
1357                 for (i = lle->ll_count - 1; i >= 0; i--) {
1358                         lock1 = &lle->ll_children[i];
1359                         if (lock1->li_lock == lock)
1360                                 continue;
1361                         if (flags & WARN_GIANTOK &&
1362                             lock1->li_lock == &Giant.lock_object)
1363                                 continue;
1364                         if (flags & WARN_SLEEPOK &&
1365                             (lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0)
1366                                 continue;
1367                         if (n == 0) {
1368                                 va_start(ap, fmt);
1369                                 vprintf(fmt, ap);
1370                                 va_end(ap);
1371                                 printf(" with the following");
1372                                 if (flags & WARN_SLEEPOK)
1373                                         printf(" non-sleepable");
1374                                 printf(" locks held:\n");
1375                         }
1376                         n++;
1377                         witness_list_lock(lock1);
1378                 }
1379         if (PCPU_GET(spinlocks) != NULL) {
1380                 /*
1381                  * Since we already hold a spinlock preemption is
1382                  * already blocked.
1383                  */
1384                 if (n == 0) {
1385                         va_start(ap, fmt);
1386                         vprintf(fmt, ap);
1387                         va_end(ap);
1388                         printf(" with the following");
1389                         if (flags & WARN_SLEEPOK)
1390                                 printf(" non-sleepable");
1391                         printf(" locks held:\n");
1392                 }
1393                 n += witness_list_locks(PCPU_PTR(spinlocks));
1394         }
1395         if (flags & WARN_PANIC && n)
1396                 panic("witness_warn");
1397 #ifdef KDB
1398         else if (witness_kdb && n)
1399                 kdb_enter_why(KDB_WHY_WITNESS, __func__);
1400         else if (witness_trace && n)
1401                 kdb_backtrace();
1402 #endif
1403         return (n);
1404 }
1405
1406 const char *
1407 witness_file(struct lock_object *lock)
1408 {
1409         struct witness *w;
1410
1411         if (witness_cold || witness_watch == 0 || lock->lo_witness == NULL)
1412                 return ("?");
1413         w = lock->lo_witness;
1414         return (w->w_file);
1415 }
1416
1417 int
1418 witness_line(struct lock_object *lock)
1419 {
1420         struct witness *w;
1421
1422         if (witness_cold || witness_watch == 0 || lock->lo_witness == NULL)
1423                 return (0);
1424         w = lock->lo_witness;
1425         return (w->w_line);
1426 }
1427
1428 static struct witness *
1429 enroll(const char *description, struct lock_class *lock_class)
1430 {
1431         struct witness *w;
1432
1433         if (witness_watch == 0 || panicstr != NULL)
1434                 return (NULL);
1435         if ((lock_class->lc_flags & LC_SPINLOCK) && witness_skipspin)
1436                 return (NULL);
1437         mtx_lock_spin(&w_mtx);
1438         STAILQ_FOREACH(w, &w_all, w_list) {
1439                 if (w->w_name == description || (w->w_refcount > 0 &&
1440                     strcmp(description, w->w_name) == 0)) {
1441                         w->w_refcount++;
1442                         mtx_unlock_spin(&w_mtx);
1443                         if (lock_class != w->w_class)
1444                                 panic(
1445                                 "lock (%s) %s does not match earlier (%s) lock",
1446                                     description, lock_class->lc_name,
1447                                     w->w_class->lc_name);
1448                         return (w);
1449                 }
1450         }
1451         if ((w = witness_get()) == NULL)
1452                 goto out;
1453         w->w_name = description;
1454         w->w_class = lock_class;
1455         w->w_refcount = 1;
1456         STAILQ_INSERT_HEAD(&w_all, w, w_list);
1457         if (lock_class->lc_flags & LC_SPINLOCK) {
1458                 STAILQ_INSERT_HEAD(&w_spin, w, w_typelist);
1459                 w_spin_cnt++;
1460         } else if (lock_class->lc_flags & LC_SLEEPLOCK) {
1461                 STAILQ_INSERT_HEAD(&w_sleep, w, w_typelist);
1462                 w_sleep_cnt++;
1463         } else {
1464                 mtx_unlock_spin(&w_mtx);
1465                 panic("lock class %s is not sleep or spin",
1466                     lock_class->lc_name);
1467         }
1468         mtx_unlock_spin(&w_mtx);
1469 out:
1470         /*
1471          * We issue a warning for any spin locks not defined in the static
1472          * order list as a way to discourage their use (folks should really
1473          * be using non-spin mutexes most of the time).  However, several
1474          * 3rd part device drivers use spin locks because that is all they
1475          * have available on Windows and Linux and they think that normal
1476          * mutexes are insufficient.
1477          */
1478         if ((lock_class->lc_flags & LC_SPINLOCK) && witness_spin_warn)
1479                 printf("WITNESS: spin lock %s not in order list\n",
1480                     description);
1481         return (w);
1482 }
1483
1484 /* Don't let the door bang you on the way out... */
1485 static int
1486 depart(struct witness *w)
1487 {
1488         struct witness_child_list_entry *wcl, *nwcl;
1489         struct witness_list *list;
1490         struct witness *parent;
1491
1492         MPASS(w->w_refcount == 0);
1493         if (w->w_class->lc_flags & LC_SLEEPLOCK) {
1494                 list = &w_sleep;
1495                 w_sleep_cnt--;
1496         } else {
1497                 list = &w_spin;
1498                 w_spin_cnt--;
1499         }
1500         /*
1501          * First, we run through the entire tree looking for any
1502          * witnesses that the outgoing witness is a child of.  For
1503          * each parent that we find, we reparent all the direct
1504          * children of the outgoing witness to its parent.
1505          */
1506         STAILQ_FOREACH(parent, list, w_typelist) {
1507                 if (!isitmychild(parent, w))
1508                         continue;
1509                 removechild(parent, w);
1510         }
1511
1512         /*
1513          * Now we go through and free up the child list of the
1514          * outgoing witness.
1515          */
1516         for (wcl = w->w_children; wcl != NULL; wcl = nwcl) {
1517                 nwcl = wcl->wcl_next;
1518                 w_child_cnt--;
1519                 witness_child_free(wcl);
1520         }
1521
1522         /*
1523          * Detach from various lists and free.
1524          */
1525         STAILQ_REMOVE(list, w, witness, w_typelist);
1526         STAILQ_REMOVE(&w_all, w, witness, w_list);
1527         witness_free(w);
1528
1529         return (1);
1530 }
1531
1532 /*
1533  * Add "child" as a direct child of "parent".  Returns false if
1534  * we fail due to out of memory.
1535  */
1536 static int
1537 insertchild(struct witness *parent, struct witness *child)
1538 {
1539         struct witness_child_list_entry **wcl;
1540
1541         MPASS(child != NULL && parent != NULL);
1542
1543         /*
1544          * Insert "child" after "parent"
1545          */
1546         wcl = &parent->w_children;
1547         while (*wcl != NULL && (*wcl)->wcl_count == WITNESS_NCHILDREN)
1548                 wcl = &(*wcl)->wcl_next;
1549         if (*wcl == NULL) {
1550                 *wcl = witness_child_get();
1551                 if (*wcl == NULL)
1552                         return (0);
1553                 w_child_cnt++;
1554         }
1555         (*wcl)->wcl_children[(*wcl)->wcl_count++] = child;
1556
1557         return (1);
1558 }
1559
1560
1561 static int
1562 itismychild(struct witness *parent, struct witness *child)
1563 {
1564         struct witness_list *list;
1565
1566         MPASS(child != NULL && parent != NULL);
1567         if ((parent->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)) !=
1568             (child->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)))
1569                 panic(
1570                 "%s: parent (%s) and child (%s) are not the same lock type",
1571                     __func__, parent->w_class->lc_name,
1572                     child->w_class->lc_name);
1573
1574         if (!insertchild(parent, child))
1575                 return (0);
1576
1577         if (parent->w_class->lc_flags & LC_SLEEPLOCK)
1578                 list = &w_sleep;
1579         else
1580                 list = &w_spin;
1581         return (1);
1582 }
1583
1584 static void
1585 removechild(struct witness *parent, struct witness *child)
1586 {
1587         struct witness_child_list_entry **wcl, *wcl1;
1588         int i;
1589
1590         for (wcl = &parent->w_children; *wcl != NULL; wcl = &(*wcl)->wcl_next)
1591                 for (i = 0; i < (*wcl)->wcl_count; i++)
1592                         if ((*wcl)->wcl_children[i] == child)
1593                                 goto found;
1594         return;
1595 found:
1596         (*wcl)->wcl_count--;
1597         if ((*wcl)->wcl_count > i)
1598                 (*wcl)->wcl_children[i] =
1599                     (*wcl)->wcl_children[(*wcl)->wcl_count];
1600         MPASS((*wcl)->wcl_children[i] != NULL);
1601         if ((*wcl)->wcl_count != 0)
1602                 return;
1603         wcl1 = *wcl;
1604         *wcl = wcl1->wcl_next;
1605         w_child_cnt--;
1606         witness_child_free(wcl1);
1607 }
1608
1609 static int
1610 isitmychild(struct witness *parent, struct witness *child)
1611 {
1612         struct witness_child_list_entry *wcl;
1613         int i;
1614
1615         for (wcl = parent->w_children; wcl != NULL; wcl = wcl->wcl_next) {
1616                 for (i = 0; i < wcl->wcl_count; i++) {
1617                         if (wcl->wcl_children[i] == child)
1618                                 return (1);
1619                 }
1620         }
1621         return (0);
1622 }
1623
1624 static int
1625 isitmydescendant(struct witness *parent, struct witness *child)
1626 {
1627         struct witness_child_list_entry *wcl;
1628         int i, j;
1629
1630         if (isitmychild(parent, child))
1631                 return (1);
1632         j = 0;
1633         for (wcl = parent->w_children; wcl != NULL; wcl = wcl->wcl_next) {
1634                 MPASS(j < 1000);
1635                 for (i = 0; i < wcl->wcl_count; i++) {
1636                         if (isitmydescendant(wcl->wcl_children[i], child))
1637                                 return (1);
1638                 }
1639                 j++;
1640         }
1641         return (0);
1642 }
1643
1644 #ifdef BLESSING
1645 static int
1646 blessed(struct witness *w1, struct witness *w2)
1647 {
1648         int i;
1649         struct witness_blessed *b;
1650
1651         for (i = 0; i < blessed_count; i++) {
1652                 b = &blessed_list[i];
1653                 if (strcmp(w1->w_name, b->b_lock1) == 0) {
1654                         if (strcmp(w2->w_name, b->b_lock2) == 0)
1655                                 return (1);
1656                         continue;
1657                 }
1658                 if (strcmp(w1->w_name, b->b_lock2) == 0)
1659                         if (strcmp(w2->w_name, b->b_lock1) == 0)
1660                                 return (1);
1661         }
1662         return (0);
1663 }
1664 #endif
1665
1666 static struct witness *
1667 witness_get(void)
1668 {
1669         struct witness *w;
1670
1671         if (witness_watch == 0) {
1672                 mtx_unlock_spin(&w_mtx);
1673                 return (NULL);
1674         }
1675         if (STAILQ_EMPTY(&w_free)) {
1676                 witness_watch = 0;
1677                 mtx_unlock_spin(&w_mtx);
1678                 printf("%s: witness exhausted\n", __func__);
1679                 return (NULL);
1680         }
1681         w = STAILQ_FIRST(&w_free);
1682         STAILQ_REMOVE_HEAD(&w_free, w_list);
1683         w_free_cnt--;
1684         bzero(w, sizeof(*w));
1685         return (w);
1686 }
1687
1688 static void
1689 witness_free(struct witness *w)
1690 {
1691
1692         STAILQ_INSERT_HEAD(&w_free, w, w_list);
1693         w_free_cnt++;
1694 }
1695
1696 static struct witness_child_list_entry *
1697 witness_child_get(void)
1698 {
1699         struct witness_child_list_entry *wcl;
1700
1701         if (witness_watch == 0) {
1702                 mtx_unlock_spin(&w_mtx);
1703                 return (NULL);
1704         }
1705         wcl = w_child_free;
1706         if (wcl == NULL) {
1707                 witness_watch = 0;
1708                 mtx_unlock_spin(&w_mtx);
1709                 printf("%s: witness exhausted\n", __func__);
1710                 return (NULL);
1711         }
1712         w_child_free = wcl->wcl_next;
1713         w_child_free_cnt--;
1714         bzero(wcl, sizeof(*wcl));
1715         return (wcl);
1716 }
1717
1718 static void
1719 witness_child_free(struct witness_child_list_entry *wcl)
1720 {
1721
1722         wcl->wcl_next = w_child_free;
1723         w_child_free = wcl;
1724         w_child_free_cnt++;
1725 }
1726
1727 static struct lock_list_entry *
1728 witness_lock_list_get(void)
1729 {
1730         struct lock_list_entry *lle;
1731
1732         if (witness_watch == 0)
1733                 return (NULL);
1734         mtx_lock_spin(&w_mtx);
1735         lle = w_lock_list_free;
1736         if (lle == NULL) {
1737                 witness_watch = 0;
1738                 mtx_unlock_spin(&w_mtx);
1739                 printf("%s: witness exhausted\n", __func__);
1740                 return (NULL);
1741         }
1742         w_lock_list_free = lle->ll_next;
1743         mtx_unlock_spin(&w_mtx);
1744         bzero(lle, sizeof(*lle));
1745         return (lle);
1746 }
1747                 
1748 static void
1749 witness_lock_list_free(struct lock_list_entry *lle)
1750 {
1751
1752         mtx_lock_spin(&w_mtx);
1753         lle->ll_next = w_lock_list_free;
1754         w_lock_list_free = lle;
1755         mtx_unlock_spin(&w_mtx);
1756 }
1757
1758 static struct lock_instance *
1759 find_instance(struct lock_list_entry *lock_list, struct lock_object *lock)
1760 {
1761         struct lock_list_entry *lle;
1762         struct lock_instance *instance;
1763         int i;
1764
1765         for (lle = lock_list; lle != NULL; lle = lle->ll_next)
1766                 for (i = lle->ll_count - 1; i >= 0; i--) {
1767                         instance = &lle->ll_children[i];
1768                         if (instance->li_lock == lock)
1769                                 return (instance);
1770                 }
1771         return (NULL);
1772 }
1773
1774 static void
1775 witness_list_lock(struct lock_instance *instance)
1776 {
1777         struct lock_object *lock;
1778
1779         lock = instance->li_lock;
1780         printf("%s %s %s", (instance->li_flags & LI_EXCLUSIVE) != 0 ?
1781             "exclusive" : "shared", LOCK_CLASS(lock)->lc_name, lock->lo_name);
1782         if (lock->lo_type != lock->lo_name)
1783                 printf(" (%s)", lock->lo_type);
1784         printf(" r = %d (%p) locked @ %s:%d\n",
1785             instance->li_flags & LI_RECURSEMASK, lock, instance->li_file,
1786             instance->li_line);
1787 }
1788
1789 #ifdef DDB
1790 static int
1791 witness_thread_has_locks(struct thread *td)
1792 {
1793
1794         return (td->td_sleeplocks != NULL);
1795 }
1796
1797 static int
1798 witness_proc_has_locks(struct proc *p)
1799 {
1800         struct thread *td;
1801
1802         FOREACH_THREAD_IN_PROC(p, td) {
1803                 if (witness_thread_has_locks(td))
1804                         return (1);
1805         }
1806         return (0);
1807 }
1808 #endif
1809
1810 int
1811 witness_list_locks(struct lock_list_entry **lock_list)
1812 {
1813         struct lock_list_entry *lle;
1814         int i, nheld;
1815
1816         nheld = 0;
1817         for (lle = *lock_list; lle != NULL; lle = lle->ll_next)
1818                 for (i = lle->ll_count - 1; i >= 0; i--) {
1819                         witness_list_lock(&lle->ll_children[i]);
1820                         nheld++;
1821                 }
1822         return (nheld);
1823 }
1824
1825 /*
1826  * This is a bit risky at best.  We call this function when we have timed
1827  * out acquiring a spin lock, and we assume that the other CPU is stuck
1828  * with this lock held.  So, we go groveling around in the other CPU's
1829  * per-cpu data to try to find the lock instance for this spin lock to
1830  * see when it was last acquired.
1831  */
1832 void
1833 witness_display_spinlock(struct lock_object *lock, struct thread *owner)
1834 {
1835         struct lock_instance *instance;
1836         struct pcpu *pc;
1837
1838         if (owner->td_critnest == 0 || owner->td_oncpu == NOCPU)
1839                 return;
1840         pc = pcpu_find(owner->td_oncpu);
1841         instance = find_instance(pc->pc_spinlocks, lock);
1842         if (instance != NULL)
1843                 witness_list_lock(instance);
1844 }
1845
1846 void
1847 witness_save(struct lock_object *lock, const char **filep, int *linep)
1848 {
1849         struct lock_list_entry *lock_list;
1850         struct lock_instance *instance;
1851         struct lock_class *class;
1852
1853         KASSERT(!witness_cold, ("%s: witness_cold", __func__));
1854         if (lock->lo_witness == NULL || witness_watch == 0 || panicstr != NULL)
1855                 return;
1856         class = LOCK_CLASS(lock);
1857         if (class->lc_flags & LC_SLEEPLOCK)
1858                 lock_list = curthread->td_sleeplocks;
1859         else {
1860                 if (witness_skipspin)
1861                         return;
1862                 lock_list = PCPU_GET(spinlocks);
1863         }
1864         instance = find_instance(lock_list, lock);
1865         if (instance == NULL)
1866                 panic("%s: lock (%s) %s not locked", __func__,
1867                     class->lc_name, lock->lo_name);
1868         *filep = instance->li_file;
1869         *linep = instance->li_line;
1870 }
1871
1872 void
1873 witness_restore(struct lock_object *lock, const char *file, int line)
1874 {
1875         struct lock_list_entry *lock_list;
1876         struct lock_instance *instance;
1877         struct lock_class *class;
1878
1879         KASSERT(!witness_cold, ("%s: witness_cold", __func__));
1880         if (lock->lo_witness == NULL || witness_watch == 0 || panicstr != NULL)
1881                 return;
1882         class = LOCK_CLASS(lock);
1883         if (class->lc_flags & LC_SLEEPLOCK)
1884                 lock_list = curthread->td_sleeplocks;
1885         else {
1886                 if (witness_skipspin)
1887                         return;
1888                 lock_list = PCPU_GET(spinlocks);
1889         }
1890         instance = find_instance(lock_list, lock);
1891         if (instance == NULL)
1892                 panic("%s: lock (%s) %s not locked", __func__,
1893                     class->lc_name, lock->lo_name);
1894         lock->lo_witness->w_file = file;
1895         lock->lo_witness->w_line = line;
1896         instance->li_file = file;
1897         instance->li_line = line;
1898 }
1899
1900 void
1901 witness_assert(struct lock_object *lock, int flags, const char *file, int line)
1902 {
1903 #ifdef INVARIANT_SUPPORT
1904         struct lock_instance *instance;
1905         struct lock_class *class;
1906
1907         if (lock->lo_witness == NULL || witness_watch == 0 || panicstr != NULL)
1908                 return;
1909         class = LOCK_CLASS(lock);
1910         if ((class->lc_flags & LC_SLEEPLOCK) != 0)
1911                 instance = find_instance(curthread->td_sleeplocks, lock);
1912         else if ((class->lc_flags & LC_SPINLOCK) != 0)
1913                 instance = find_instance(PCPU_GET(spinlocks), lock);
1914         else {
1915                 panic("Lock (%s) %s is not sleep or spin!",
1916                     class->lc_name, lock->lo_name);
1917         }
1918         file = fixup_filename(file);
1919         switch (flags) {
1920         case LA_UNLOCKED:
1921                 if (instance != NULL)
1922                         panic("Lock (%s) %s locked @ %s:%d.",
1923                             class->lc_name, lock->lo_name, file, line);
1924                 break;
1925         case LA_LOCKED:
1926         case LA_LOCKED | LA_RECURSED:
1927         case LA_LOCKED | LA_NOTRECURSED:
1928         case LA_SLOCKED:
1929         case LA_SLOCKED | LA_RECURSED:
1930         case LA_SLOCKED | LA_NOTRECURSED:
1931         case LA_XLOCKED:
1932         case LA_XLOCKED | LA_RECURSED:
1933         case LA_XLOCKED | LA_NOTRECURSED:
1934                 if (instance == NULL) {
1935                         panic("Lock (%s) %s not locked @ %s:%d.",
1936                             class->lc_name, lock->lo_name, file, line);
1937                         break;
1938                 }
1939                 if ((flags & LA_XLOCKED) != 0 &&
1940                     (instance->li_flags & LI_EXCLUSIVE) == 0)
1941                         panic("Lock (%s) %s not exclusively locked @ %s:%d.",
1942                             class->lc_name, lock->lo_name, file, line);
1943                 if ((flags & LA_SLOCKED) != 0 &&
1944                     (instance->li_flags & LI_EXCLUSIVE) != 0)
1945                         panic("Lock (%s) %s exclusively locked @ %s:%d.",
1946                             class->lc_name, lock->lo_name, file, line);
1947                 if ((flags & LA_RECURSED) != 0 &&
1948                     (instance->li_flags & LI_RECURSEMASK) == 0)
1949                         panic("Lock (%s) %s not recursed @ %s:%d.",
1950                             class->lc_name, lock->lo_name, file, line);
1951                 if ((flags & LA_NOTRECURSED) != 0 &&
1952                     (instance->li_flags & LI_RECURSEMASK) != 0)
1953                         panic("Lock (%s) %s recursed @ %s:%d.",
1954                             class->lc_name, lock->lo_name, file, line);
1955                 break;
1956         default:
1957                 panic("Invalid lock assertion at %s:%d.", file, line);
1958
1959         }
1960 #endif  /* INVARIANT_SUPPORT */
1961 }
1962
1963 #ifdef DDB
1964 static void
1965 witness_list(struct thread *td)
1966 {
1967
1968         KASSERT(!witness_cold, ("%s: witness_cold", __func__));
1969         KASSERT(kdb_active, ("%s: not in the debugger", __func__));
1970
1971         if (witness_watch == 0)
1972                 return;
1973
1974         witness_list_locks(&td->td_sleeplocks);
1975
1976         /*
1977          * We only handle spinlocks if td == curthread.  This is somewhat broken
1978          * if td is currently executing on some other CPU and holds spin locks
1979          * as we won't display those locks.  If we had a MI way of getting
1980          * the per-cpu data for a given cpu then we could use
1981          * td->td_oncpu to get the list of spinlocks for this thread
1982          * and "fix" this.
1983          *
1984          * That still wouldn't really fix this unless we locked the scheduler
1985          * lock or stopped the other CPU to make sure it wasn't changing the
1986          * list out from under us.  It is probably best to just not try to
1987          * handle threads on other CPU's for now.
1988          */
1989         if (td == curthread && PCPU_GET(spinlocks) != NULL)
1990                 witness_list_locks(PCPU_PTR(spinlocks));
1991 }
1992
1993 DB_SHOW_COMMAND(locks, db_witness_list)
1994 {
1995         struct thread *td;
1996
1997         if (have_addr)
1998                 td = db_lookup_thread(addr, TRUE);
1999         else
2000                 td = kdb_thread;
2001         witness_list(td);
2002 }
2003
2004 DB_SHOW_COMMAND(alllocks, db_witness_list_all)
2005 {
2006         struct thread *td;
2007         struct proc *p;
2008
2009         /*
2010          * It would be nice to list only threads and processes that actually
2011          * held sleep locks, but that information is currently not exported
2012          * by WITNESS.
2013          */
2014         FOREACH_PROC_IN_SYSTEM(p) {
2015                 if (!witness_proc_has_locks(p))
2016                         continue;
2017                 FOREACH_THREAD_IN_PROC(p, td) {
2018                         if (!witness_thread_has_locks(td))
2019                                 continue;
2020                         db_printf("Process %d (%s) thread %p (%d)\n", p->p_pid,
2021                             p->p_comm, td, td->td_tid);
2022                         witness_list(td);
2023                 }
2024         }
2025 }
2026
2027 DB_SHOW_COMMAND(witness, db_witness_display)
2028 {
2029
2030         witness_display(db_printf);
2031 }
2032 #endif