]> CyberLeo.Net >> Repos - FreeBSD/releng/7.2.git/blob - sys/vm/vm_map.c
Create releng/7.2 from stable/7 in preparation for 7.2-RELEASE.
[FreeBSD/releng/7.2.git] / sys / vm / vm_map.c
1 /*-
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *      from: @(#)vm_map.c      8.3 (Berkeley) 1/12/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60
61 /*
62  *      Virtual memory mapping module.
63  */
64
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/ktr.h>
71 #include <sys/lock.h>
72 #include <sys/mutex.h>
73 #include <sys/proc.h>
74 #include <sys/vmmeter.h>
75 #include <sys/mman.h>
76 #include <sys/vnode.h>
77 #include <sys/resourcevar.h>
78 #include <sys/file.h>
79 #include <sys/sysent.h>
80 #include <sys/shm.h>
81
82 #include <vm/vm.h>
83 #include <vm/vm_param.h>
84 #include <vm/pmap.h>
85 #include <vm/vm_map.h>
86 #include <vm/vm_page.h>
87 #include <vm/vm_object.h>
88 #include <vm/vm_pager.h>
89 #include <vm/vm_kern.h>
90 #include <vm/vm_extern.h>
91 #include <vm/swap_pager.h>
92 #include <vm/uma.h>
93
94 /*
95  *      Virtual memory maps provide for the mapping, protection,
96  *      and sharing of virtual memory objects.  In addition,
97  *      this module provides for an efficient virtual copy of
98  *      memory from one map to another.
99  *
100  *      Synchronization is required prior to most operations.
101  *
102  *      Maps consist of an ordered doubly-linked list of simple
103  *      entries; a single hint is used to speed up lookups.
104  *
105  *      Since portions of maps are specified by start/end addresses,
106  *      which may not align with existing map entries, all
107  *      routines merely "clip" entries to these start/end values.
108  *      [That is, an entry is split into two, bordering at a
109  *      start or end value.]  Note that these clippings may not
110  *      always be necessary (as the two resulting entries are then
111  *      not changed); however, the clipping is done for convenience.
112  *
113  *      As mentioned above, virtual copy operations are performed
114  *      by copying VM object references from one map to
115  *      another, and then marking both regions as copy-on-write.
116  */
117
118 /*
119  *      vm_map_startup:
120  *
121  *      Initialize the vm_map module.  Must be called before
122  *      any other vm_map routines.
123  *
124  *      Map and entry structures are allocated from the general
125  *      purpose memory pool with some exceptions:
126  *
127  *      - The kernel map and kmem submap are allocated statically.
128  *      - Kernel map entries are allocated out of a static pool.
129  *
130  *      These restrictions are necessary since malloc() uses the
131  *      maps and requires map entries.
132  */
133
134 static struct mtx map_sleep_mtx;
135 static uma_zone_t mapentzone;
136 static uma_zone_t kmapentzone;
137 static uma_zone_t mapzone;
138 static uma_zone_t vmspace_zone;
139 static struct vm_object kmapentobj;
140 static int vmspace_zinit(void *mem, int size, int flags);
141 static void vmspace_zfini(void *mem, int size);
142 static int vm_map_zinit(void *mem, int ize, int flags);
143 static void vm_map_zfini(void *mem, int size);
144 static void _vm_map_init(vm_map_t map, vm_offset_t min, vm_offset_t max);
145
146 #ifdef INVARIANTS
147 static void vm_map_zdtor(void *mem, int size, void *arg);
148 static void vmspace_zdtor(void *mem, int size, void *arg);
149 #endif
150
151 /* 
152  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
153  * stable.
154  */
155 #define PROC_VMSPACE_LOCK(p) do { } while (0)
156 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
157
158 /*
159  *      VM_MAP_RANGE_CHECK:     [ internal use only ]
160  *
161  *      Asserts that the starting and ending region
162  *      addresses fall within the valid range of the map.
163  */
164 #define VM_MAP_RANGE_CHECK(map, start, end)             \
165                 {                                       \
166                 if (start < vm_map_min(map))            \
167                         start = vm_map_min(map);        \
168                 if (end > vm_map_max(map))              \
169                         end = vm_map_max(map);          \
170                 if (start > end)                        \
171                         start = end;                    \
172                 }
173
174 void
175 vm_map_startup(void)
176 {
177         mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
178         mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
179 #ifdef INVARIANTS
180             vm_map_zdtor,
181 #else
182             NULL,
183 #endif
184             vm_map_zinit, vm_map_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
185         uma_prealloc(mapzone, MAX_KMAP);
186         kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
187             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
188             UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
189         uma_prealloc(kmapentzone, MAX_KMAPENT);
190         mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
191             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
192 }
193
194 static void
195 vmspace_zfini(void *mem, int size)
196 {
197         struct vmspace *vm;
198
199         vm = (struct vmspace *)mem;
200         vm_map_zfini(&vm->vm_map, sizeof(vm->vm_map));
201 }
202
203 static int
204 vmspace_zinit(void *mem, int size, int flags)
205 {
206         struct vmspace *vm;
207
208         vm = (struct vmspace *)mem;
209
210         vm->vm_map.pmap = NULL;
211         (void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
212         return (0);
213 }
214
215 static void
216 vm_map_zfini(void *mem, int size)
217 {
218         vm_map_t map;
219
220         map = (vm_map_t)mem;
221         mtx_destroy(&map->system_mtx);
222         sx_destroy(&map->lock);
223 }
224
225 static int
226 vm_map_zinit(void *mem, int size, int flags)
227 {
228         vm_map_t map;
229
230         map = (vm_map_t)mem;
231         map->nentries = 0;
232         map->size = 0;
233         mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
234         sx_init(&map->lock, "user map");
235         return (0);
236 }
237
238 #ifdef INVARIANTS
239 static void
240 vmspace_zdtor(void *mem, int size, void *arg)
241 {
242         struct vmspace *vm;
243
244         vm = (struct vmspace *)mem;
245
246         vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
247 }
248 static void
249 vm_map_zdtor(void *mem, int size, void *arg)
250 {
251         vm_map_t map;
252
253         map = (vm_map_t)mem;
254         KASSERT(map->nentries == 0,
255             ("map %p nentries == %d on free.",
256             map, map->nentries));
257         KASSERT(map->size == 0,
258             ("map %p size == %lu on free.",
259             map, (unsigned long)map->size));
260 }
261 #endif  /* INVARIANTS */
262
263 /*
264  * Allocate a vmspace structure, including a vm_map and pmap,
265  * and initialize those structures.  The refcnt is set to 1.
266  */
267 struct vmspace *
268 vmspace_alloc(min, max)
269         vm_offset_t min, max;
270 {
271         struct vmspace *vm;
272
273         vm = uma_zalloc(vmspace_zone, M_WAITOK);
274         if (vm->vm_map.pmap == NULL && !pmap_pinit(vmspace_pmap(vm))) {
275                 uma_zfree(vmspace_zone, vm);
276                 return (NULL);
277         }
278         CTR1(KTR_VM, "vmspace_alloc: %p", vm);
279         _vm_map_init(&vm->vm_map, min, max);
280         vm->vm_map.pmap = vmspace_pmap(vm);             /* XXX */
281         vm->vm_refcnt = 1;
282         vm->vm_shm = NULL;
283         vm->vm_swrss = 0;
284         vm->vm_tsize = 0;
285         vm->vm_dsize = 0;
286         vm->vm_ssize = 0;
287         vm->vm_taddr = 0;
288         vm->vm_daddr = 0;
289         vm->vm_maxsaddr = 0;
290         return (vm);
291 }
292
293 void
294 vm_init2(void)
295 {
296         uma_zone_set_obj(kmapentzone, &kmapentobj, lmin(cnt.v_page_count,
297             (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) / PAGE_SIZE) / 8 +
298              maxproc * 2 + maxfiles);
299         vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
300 #ifdef INVARIANTS
301             vmspace_zdtor,
302 #else
303             NULL,
304 #endif
305             vmspace_zinit, vmspace_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
306 }
307
308 static inline void
309 vmspace_dofree(struct vmspace *vm)
310 {
311         CTR1(KTR_VM, "vmspace_free: %p", vm);
312
313         /*
314          * Make sure any SysV shm is freed, it might not have been in
315          * exit1().
316          */
317         shmexit(vm);
318
319         /*
320          * Lock the map, to wait out all other references to it.
321          * Delete all of the mappings and pages they hold, then call
322          * the pmap module to reclaim anything left.
323          */
324         (void)vm_map_remove(&vm->vm_map, vm->vm_map.min_offset,
325             vm->vm_map.max_offset);
326
327         /*
328          * XXX Comment out the pmap_release call for now. The
329          * vmspace_zone is marked as UMA_ZONE_NOFREE, and bugs cause
330          * pmap.resident_count to be != 0 on exit sometimes.
331          */
332 /*      pmap_release(vmspace_pmap(vm)); */
333         uma_zfree(vmspace_zone, vm);
334 }
335
336 void
337 vmspace_free(struct vmspace *vm)
338 {
339         int refcnt;
340
341         if (vm->vm_refcnt == 0)
342                 panic("vmspace_free: attempt to free already freed vmspace");
343
344         do
345                 refcnt = vm->vm_refcnt;
346         while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1));
347         if (refcnt == 1)
348                 vmspace_dofree(vm);
349 }
350
351 void
352 vmspace_exitfree(struct proc *p)
353 {
354         struct vmspace *vm;
355
356         PROC_VMSPACE_LOCK(p);
357         vm = p->p_vmspace;
358         p->p_vmspace = NULL;
359         PROC_VMSPACE_UNLOCK(p);
360         KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
361         vmspace_free(vm);
362 }
363
364 void
365 vmspace_exit(struct thread *td)
366 {
367         int refcnt;
368         struct vmspace *vm;
369         struct proc *p;
370
371         /*
372          * Release user portion of address space.
373          * This releases references to vnodes,
374          * which could cause I/O if the file has been unlinked.
375          * Need to do this early enough that we can still sleep.
376          *
377          * The last exiting process to reach this point releases as
378          * much of the environment as it can. vmspace_dofree() is the
379          * slower fallback in case another process had a temporary
380          * reference to the vmspace.
381          */
382
383         p = td->td_proc;
384         vm = p->p_vmspace;
385         atomic_add_int(&vmspace0.vm_refcnt, 1);
386         do {
387                 refcnt = vm->vm_refcnt;
388                 if (refcnt > 1 && p->p_vmspace != &vmspace0) {
389                         /* Switch now since other proc might free vmspace */
390                         PROC_VMSPACE_LOCK(p);
391                         p->p_vmspace = &vmspace0;
392                         PROC_VMSPACE_UNLOCK(p);
393                         pmap_activate(td);
394                 }
395         } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1));
396         if (refcnt == 1) {
397                 if (p->p_vmspace != vm) {
398                         /* vmspace not yet freed, switch back */
399                         PROC_VMSPACE_LOCK(p);
400                         p->p_vmspace = vm;
401                         PROC_VMSPACE_UNLOCK(p);
402                         pmap_activate(td);
403                 }
404                 pmap_remove_pages(vmspace_pmap(vm));
405                 /* Switch now since this proc will free vmspace */
406                 PROC_VMSPACE_LOCK(p);
407                 p->p_vmspace = &vmspace0;
408                 PROC_VMSPACE_UNLOCK(p);
409                 pmap_activate(td);
410                 vmspace_dofree(vm);
411         }
412 }
413
414 /* Acquire reference to vmspace owned by another process. */
415
416 struct vmspace *
417 vmspace_acquire_ref(struct proc *p)
418 {
419         struct vmspace *vm;
420         int refcnt;
421
422         PROC_VMSPACE_LOCK(p);
423         vm = p->p_vmspace;
424         if (vm == NULL) {
425                 PROC_VMSPACE_UNLOCK(p);
426                 return (NULL);
427         }
428         do {
429                 refcnt = vm->vm_refcnt;
430                 if (refcnt <= 0) {      /* Avoid 0->1 transition */
431                         PROC_VMSPACE_UNLOCK(p);
432                         return (NULL);
433                 }
434         } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1));
435         if (vm != p->p_vmspace) {
436                 PROC_VMSPACE_UNLOCK(p);
437                 vmspace_free(vm);
438                 return (NULL);
439         }
440         PROC_VMSPACE_UNLOCK(p);
441         return (vm);
442 }
443
444 void
445 _vm_map_lock(vm_map_t map, const char *file, int line)
446 {
447
448         if (map->system_map)
449                 _mtx_lock_flags(&map->system_mtx, 0, file, line);
450         else
451                 (void)_sx_xlock(&map->lock, 0, file, line);
452         map->timestamp++;
453 }
454
455 void
456 _vm_map_unlock(vm_map_t map, const char *file, int line)
457 {
458
459         if (map->system_map)
460                 _mtx_unlock_flags(&map->system_mtx, 0, file, line);
461         else
462                 _sx_xunlock(&map->lock, file, line);
463 }
464
465 void
466 _vm_map_lock_read(vm_map_t map, const char *file, int line)
467 {
468
469         if (map->system_map)
470                 _mtx_lock_flags(&map->system_mtx, 0, file, line);
471         else
472                 (void)_sx_xlock(&map->lock, 0, file, line);
473 }
474
475 void
476 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
477 {
478
479         if (map->system_map)
480                 _mtx_unlock_flags(&map->system_mtx, 0, file, line);
481         else
482                 _sx_xunlock(&map->lock, file, line);
483 }
484
485 int
486 _vm_map_trylock(vm_map_t map, const char *file, int line)
487 {
488         int error;
489
490         error = map->system_map ?
491             !_mtx_trylock(&map->system_mtx, 0, file, line) :
492             !_sx_try_xlock(&map->lock, file, line);
493         if (error == 0)
494                 map->timestamp++;
495         return (error == 0);
496 }
497
498 int
499 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
500 {
501         int error;
502
503         error = map->system_map ?
504             !_mtx_trylock(&map->system_mtx, 0, file, line) :
505             !_sx_try_xlock(&map->lock, file, line);
506         return (error == 0);
507 }
508
509 int
510 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
511 {
512
513 #ifdef INVARIANTS
514         if (map->system_map) {
515                 _mtx_assert(&map->system_mtx, MA_OWNED, file, line);
516         } else
517                 _sx_assert(&map->lock, SX_XLOCKED, file, line);
518 #endif
519         map->timestamp++;
520         return (0);
521 }
522
523 void
524 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
525 {
526
527 #ifdef INVARIANTS
528         if (map->system_map) {
529                 _mtx_assert(&map->system_mtx, MA_OWNED, file, line);
530         } else
531                 _sx_assert(&map->lock, SX_XLOCKED, file, line);
532 #endif
533 }
534
535 /*
536  *      vm_map_unlock_and_wait:
537  */
538 int
539 vm_map_unlock_and_wait(vm_map_t map, boolean_t user_wait)
540 {
541
542         mtx_lock(&map_sleep_mtx);
543         vm_map_unlock(map);
544         return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps", 0));
545 }
546
547 /*
548  *      vm_map_wakeup:
549  */
550 void
551 vm_map_wakeup(vm_map_t map)
552 {
553
554         /*
555          * Acquire and release map_sleep_mtx to prevent a wakeup()
556          * from being performed (and lost) between the vm_map_unlock()
557          * and the msleep() in vm_map_unlock_and_wait().
558          */
559         mtx_lock(&map_sleep_mtx);
560         mtx_unlock(&map_sleep_mtx);
561         wakeup(&map->root);
562 }
563
564 long
565 vmspace_resident_count(struct vmspace *vmspace)
566 {
567         return pmap_resident_count(vmspace_pmap(vmspace));
568 }
569
570 long
571 vmspace_wired_count(struct vmspace *vmspace)
572 {
573         return pmap_wired_count(vmspace_pmap(vmspace));
574 }
575
576 /*
577  *      vm_map_create:
578  *
579  *      Creates and returns a new empty VM map with
580  *      the given physical map structure, and having
581  *      the given lower and upper address bounds.
582  */
583 vm_map_t
584 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
585 {
586         vm_map_t result;
587
588         result = uma_zalloc(mapzone, M_WAITOK);
589         CTR1(KTR_VM, "vm_map_create: %p", result);
590         _vm_map_init(result, min, max);
591         result->pmap = pmap;
592         return (result);
593 }
594
595 /*
596  * Initialize an existing vm_map structure
597  * such as that in the vmspace structure.
598  * The pmap is set elsewhere.
599  */
600 static void
601 _vm_map_init(vm_map_t map, vm_offset_t min, vm_offset_t max)
602 {
603
604         map->header.next = map->header.prev = &map->header;
605         map->needs_wakeup = FALSE;
606         map->system_map = 0;
607         map->min_offset = min;
608         map->max_offset = max;
609         map->flags = 0;
610         map->root = NULL;
611         map->timestamp = 0;
612 }
613
614 void
615 vm_map_init(vm_map_t map, vm_offset_t min, vm_offset_t max)
616 {
617         _vm_map_init(map, min, max);
618         mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
619         sx_init(&map->lock, "user map");
620 }
621
622 /*
623  *      vm_map_entry_dispose:   [ internal use only ]
624  *
625  *      Inverse of vm_map_entry_create.
626  */
627 static void
628 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
629 {
630         uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
631 }
632
633 /*
634  *      vm_map_entry_create:    [ internal use only ]
635  *
636  *      Allocates a VM map entry for insertion.
637  *      No entry fields are filled in.
638  */
639 static vm_map_entry_t
640 vm_map_entry_create(vm_map_t map)
641 {
642         vm_map_entry_t new_entry;
643
644         if (map->system_map)
645                 new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
646         else
647                 new_entry = uma_zalloc(mapentzone, M_WAITOK);
648         if (new_entry == NULL)
649                 panic("vm_map_entry_create: kernel resources exhausted");
650         return (new_entry);
651 }
652
653 /*
654  *      vm_map_entry_set_behavior:
655  *
656  *      Set the expected access behavior, either normal, random, or
657  *      sequential.
658  */
659 static inline void
660 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
661 {
662         entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
663             (behavior & MAP_ENTRY_BEHAV_MASK);
664 }
665
666 /*
667  *      vm_map_entry_set_max_free:
668  *
669  *      Set the max_free field in a vm_map_entry.
670  */
671 static inline void
672 vm_map_entry_set_max_free(vm_map_entry_t entry)
673 {
674
675         entry->max_free = entry->adj_free;
676         if (entry->left != NULL && entry->left->max_free > entry->max_free)
677                 entry->max_free = entry->left->max_free;
678         if (entry->right != NULL && entry->right->max_free > entry->max_free)
679                 entry->max_free = entry->right->max_free;
680 }
681
682 /*
683  *      vm_map_entry_splay:
684  *
685  *      The Sleator and Tarjan top-down splay algorithm with the
686  *      following variation.  Max_free must be computed bottom-up, so
687  *      on the downward pass, maintain the left and right spines in
688  *      reverse order.  Then, make a second pass up each side to fix
689  *      the pointers and compute max_free.  The time bound is O(log n)
690  *      amortized.
691  *
692  *      The new root is the vm_map_entry containing "addr", or else an
693  *      adjacent entry (lower or higher) if addr is not in the tree.
694  *
695  *      The map must be locked, and leaves it so.
696  *
697  *      Returns: the new root.
698  */
699 static vm_map_entry_t
700 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root)
701 {
702         vm_map_entry_t llist, rlist;
703         vm_map_entry_t ltree, rtree;
704         vm_map_entry_t y;
705
706         /* Special case of empty tree. */
707         if (root == NULL)
708                 return (root);
709
710         /*
711          * Pass One: Splay down the tree until we find addr or a NULL
712          * pointer where addr would go.  llist and rlist are the two
713          * sides in reverse order (bottom-up), with llist linked by
714          * the right pointer and rlist linked by the left pointer in
715          * the vm_map_entry.  Wait until Pass Two to set max_free on
716          * the two spines.
717          */
718         llist = NULL;
719         rlist = NULL;
720         for (;;) {
721                 /* root is never NULL in here. */
722                 if (addr < root->start) {
723                         y = root->left;
724                         if (y == NULL)
725                                 break;
726                         if (addr < y->start && y->left != NULL) {
727                                 /* Rotate right and put y on rlist. */
728                                 root->left = y->right;
729                                 y->right = root;
730                                 vm_map_entry_set_max_free(root);
731                                 root = y->left;
732                                 y->left = rlist;
733                                 rlist = y;
734                         } else {
735                                 /* Put root on rlist. */
736                                 root->left = rlist;
737                                 rlist = root;
738                                 root = y;
739                         }
740                 } else {
741                         y = root->right;
742                         if (addr < root->end || y == NULL)
743                                 break;
744                         if (addr >= y->end && y->right != NULL) {
745                                 /* Rotate left and put y on llist. */
746                                 root->right = y->left;
747                                 y->left = root;
748                                 vm_map_entry_set_max_free(root);
749                                 root = y->right;
750                                 y->right = llist;
751                                 llist = y;
752                         } else {
753                                 /* Put root on llist. */
754                                 root->right = llist;
755                                 llist = root;
756                                 root = y;
757                         }
758                 }
759         }
760
761         /*
762          * Pass Two: Walk back up the two spines, flip the pointers
763          * and set max_free.  The subtrees of the root go at the
764          * bottom of llist and rlist.
765          */
766         ltree = root->left;
767         while (llist != NULL) {
768                 y = llist->right;
769                 llist->right = ltree;
770                 vm_map_entry_set_max_free(llist);
771                 ltree = llist;
772                 llist = y;
773         }
774         rtree = root->right;
775         while (rlist != NULL) {
776                 y = rlist->left;
777                 rlist->left = rtree;
778                 vm_map_entry_set_max_free(rlist);
779                 rtree = rlist;
780                 rlist = y;
781         }
782
783         /*
784          * Final assembly: add ltree and rtree as subtrees of root.
785          */
786         root->left = ltree;
787         root->right = rtree;
788         vm_map_entry_set_max_free(root);
789
790         return (root);
791 }
792
793 /*
794  *      vm_map_entry_{un,}link:
795  *
796  *      Insert/remove entries from maps.
797  */
798 static void
799 vm_map_entry_link(vm_map_t map,
800                   vm_map_entry_t after_where,
801                   vm_map_entry_t entry)
802 {
803
804         CTR4(KTR_VM,
805             "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map,
806             map->nentries, entry, after_where);
807         map->nentries++;
808         entry->prev = after_where;
809         entry->next = after_where->next;
810         entry->next->prev = entry;
811         after_where->next = entry;
812
813         if (after_where != &map->header) {
814                 if (after_where != map->root)
815                         vm_map_entry_splay(after_where->start, map->root);
816                 entry->right = after_where->right;
817                 entry->left = after_where;
818                 after_where->right = NULL;
819                 after_where->adj_free = entry->start - after_where->end;
820                 vm_map_entry_set_max_free(after_where);
821         } else {
822                 entry->right = map->root;
823                 entry->left = NULL;
824         }
825         entry->adj_free = (entry->next == &map->header ? map->max_offset :
826             entry->next->start) - entry->end;
827         vm_map_entry_set_max_free(entry);
828         map->root = entry;
829 }
830
831 static void
832 vm_map_entry_unlink(vm_map_t map,
833                     vm_map_entry_t entry)
834 {
835         vm_map_entry_t next, prev, root;
836
837         if (entry != map->root)
838                 vm_map_entry_splay(entry->start, map->root);
839         if (entry->left == NULL)
840                 root = entry->right;
841         else {
842                 root = vm_map_entry_splay(entry->start, entry->left);
843                 root->right = entry->right;
844                 root->adj_free = (entry->next == &map->header ? map->max_offset :
845                     entry->next->start) - root->end;
846                 vm_map_entry_set_max_free(root);
847         }
848         map->root = root;
849
850         prev = entry->prev;
851         next = entry->next;
852         next->prev = prev;
853         prev->next = next;
854         map->nentries--;
855         CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
856             map->nentries, entry);
857 }
858
859 /*
860  *      vm_map_entry_resize_free:
861  *
862  *      Recompute the amount of free space following a vm_map_entry
863  *      and propagate that value up the tree.  Call this function after
864  *      resizing a map entry in-place, that is, without a call to
865  *      vm_map_entry_link() or _unlink().
866  *
867  *      The map must be locked, and leaves it so.
868  */
869 static void
870 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry)
871 {
872
873         /*
874          * Using splay trees without parent pointers, propagating
875          * max_free up the tree is done by moving the entry to the
876          * root and making the change there.
877          */
878         if (entry != map->root)
879                 map->root = vm_map_entry_splay(entry->start, map->root);
880
881         entry->adj_free = (entry->next == &map->header ? map->max_offset :
882             entry->next->start) - entry->end;
883         vm_map_entry_set_max_free(entry);
884 }
885
886 /*
887  *      vm_map_lookup_entry:    [ internal use only ]
888  *
889  *      Finds the map entry containing (or
890  *      immediately preceding) the specified address
891  *      in the given map; the entry is returned
892  *      in the "entry" parameter.  The boolean
893  *      result indicates whether the address is
894  *      actually contained in the map.
895  */
896 boolean_t
897 vm_map_lookup_entry(
898         vm_map_t map,
899         vm_offset_t address,
900         vm_map_entry_t *entry)  /* OUT */
901 {
902         vm_map_entry_t cur;
903
904         cur = vm_map_entry_splay(address, map->root);
905         if (cur == NULL)
906                 *entry = &map->header;
907         else {
908                 map->root = cur;
909
910                 if (address >= cur->start) {
911                         *entry = cur;
912                         if (cur->end > address)
913                                 return (TRUE);
914                 } else
915                         *entry = cur->prev;
916         }
917         return (FALSE);
918 }
919
920 /*
921  *      vm_map_insert:
922  *
923  *      Inserts the given whole VM object into the target
924  *      map at the specified address range.  The object's
925  *      size should match that of the address range.
926  *
927  *      Requires that the map be locked, and leaves it so.
928  *
929  *      If object is non-NULL, ref count must be bumped by caller
930  *      prior to making call to account for the new entry.
931  */
932 int
933 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
934               vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max,
935               int cow)
936 {
937         vm_map_entry_t new_entry;
938         vm_map_entry_t prev_entry;
939         vm_map_entry_t temp_entry;
940         vm_eflags_t protoeflags;
941
942         /*
943          * Check that the start and end points are not bogus.
944          */
945         if ((start < map->min_offset) || (end > map->max_offset) ||
946             (start >= end))
947                 return (KERN_INVALID_ADDRESS);
948
949         /*
950          * Find the entry prior to the proposed starting address; if it's part
951          * of an existing entry, this range is bogus.
952          */
953         if (vm_map_lookup_entry(map, start, &temp_entry))
954                 return (KERN_NO_SPACE);
955
956         prev_entry = temp_entry;
957
958         /*
959          * Assert that the next entry doesn't overlap the end point.
960          */
961         if ((prev_entry->next != &map->header) &&
962             (prev_entry->next->start < end))
963                 return (KERN_NO_SPACE);
964
965         protoeflags = 0;
966
967         if (cow & MAP_COPY_ON_WRITE)
968                 protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
969
970         if (cow & MAP_NOFAULT) {
971                 protoeflags |= MAP_ENTRY_NOFAULT;
972
973                 KASSERT(object == NULL,
974                         ("vm_map_insert: paradoxical MAP_NOFAULT request"));
975         }
976         if (cow & MAP_DISABLE_SYNCER)
977                 protoeflags |= MAP_ENTRY_NOSYNC;
978         if (cow & MAP_DISABLE_COREDUMP)
979                 protoeflags |= MAP_ENTRY_NOCOREDUMP;
980
981         if (object != NULL) {
982                 /*
983                  * OBJ_ONEMAPPING must be cleared unless this mapping
984                  * is trivially proven to be the only mapping for any
985                  * of the object's pages.  (Object granularity
986                  * reference counting is insufficient to recognize
987                  * aliases with precision.)
988                  */
989                 VM_OBJECT_LOCK(object);
990                 if (object->ref_count > 1 || object->shadow_count != 0)
991                         vm_object_clear_flag(object, OBJ_ONEMAPPING);
992                 VM_OBJECT_UNLOCK(object);
993         }
994         else if ((prev_entry != &map->header) &&
995                  (prev_entry->eflags == protoeflags) &&
996                  (prev_entry->end == start) &&
997                  (prev_entry->wired_count == 0) &&
998                  ((prev_entry->object.vm_object == NULL) ||
999                   vm_object_coalesce(prev_entry->object.vm_object,
1000                                      prev_entry->offset,
1001                                      (vm_size_t)(prev_entry->end - prev_entry->start),
1002                                      (vm_size_t)(end - prev_entry->end)))) {
1003                 /*
1004                  * We were able to extend the object.  Determine if we
1005                  * can extend the previous map entry to include the
1006                  * new range as well.
1007                  */
1008                 if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) &&
1009                     (prev_entry->protection == prot) &&
1010                     (prev_entry->max_protection == max)) {
1011                         map->size += (end - prev_entry->end);
1012                         prev_entry->end = end;
1013                         vm_map_entry_resize_free(map, prev_entry);
1014                         vm_map_simplify_entry(map, prev_entry);
1015                         return (KERN_SUCCESS);
1016                 }
1017
1018                 /*
1019                  * If we can extend the object but cannot extend the
1020                  * map entry, we have to create a new map entry.  We
1021                  * must bump the ref count on the extended object to
1022                  * account for it.  object may be NULL.
1023                  */
1024                 object = prev_entry->object.vm_object;
1025                 offset = prev_entry->offset +
1026                         (prev_entry->end - prev_entry->start);
1027                 vm_object_reference(object);
1028         }
1029
1030         /*
1031          * NOTE: if conditionals fail, object can be NULL here.  This occurs
1032          * in things like the buffer map where we manage kva but do not manage
1033          * backing objects.
1034          */
1035
1036         /*
1037          * Create a new entry
1038          */
1039         new_entry = vm_map_entry_create(map);
1040         new_entry->start = start;
1041         new_entry->end = end;
1042
1043         new_entry->eflags = protoeflags;
1044         new_entry->object.vm_object = object;
1045         new_entry->offset = offset;
1046         new_entry->avail_ssize = 0;
1047
1048         new_entry->inheritance = VM_INHERIT_DEFAULT;
1049         new_entry->protection = prot;
1050         new_entry->max_protection = max;
1051         new_entry->wired_count = 0;
1052
1053         /*
1054          * Insert the new entry into the list
1055          */
1056         vm_map_entry_link(map, prev_entry, new_entry);
1057         map->size += new_entry->end - new_entry->start;
1058
1059 #if 0
1060         /*
1061          * Temporarily removed to avoid MAP_STACK panic, due to
1062          * MAP_STACK being a huge hack.  Will be added back in
1063          * when MAP_STACK (and the user stack mapping) is fixed.
1064          */
1065         /*
1066          * It may be possible to simplify the entry
1067          */
1068         vm_map_simplify_entry(map, new_entry);
1069 #endif
1070
1071         if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) {
1072                 vm_map_pmap_enter(map, start, prot,
1073                                     object, OFF_TO_IDX(offset), end - start,
1074                                     cow & MAP_PREFAULT_PARTIAL);
1075         }
1076
1077         return (KERN_SUCCESS);
1078 }
1079
1080 /*
1081  *      vm_map_findspace:
1082  *
1083  *      Find the first fit (lowest VM address) for "length" free bytes
1084  *      beginning at address >= start in the given map.
1085  *
1086  *      In a vm_map_entry, "adj_free" is the amount of free space
1087  *      adjacent (higher address) to this entry, and "max_free" is the
1088  *      maximum amount of contiguous free space in its subtree.  This
1089  *      allows finding a free region in one path down the tree, so
1090  *      O(log n) amortized with splay trees.
1091  *
1092  *      The map must be locked, and leaves it so.
1093  *
1094  *      Returns: 0 on success, and starting address in *addr,
1095  *               1 if insufficient space.
1096  */
1097 int
1098 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1099     vm_offset_t *addr)  /* OUT */
1100 {
1101         vm_map_entry_t entry;
1102         vm_offset_t end, st;
1103
1104         /*
1105          * Request must fit within min/max VM address and must avoid
1106          * address wrap.
1107          */
1108         if (start < map->min_offset)
1109                 start = map->min_offset;
1110         if (start + length > map->max_offset || start + length < start)
1111                 return (1);
1112
1113         /* Empty tree means wide open address space. */
1114         if (map->root == NULL) {
1115                 *addr = start;
1116                 goto found;
1117         }
1118
1119         /*
1120          * After splay, if start comes before root node, then there
1121          * must be a gap from start to the root.
1122          */
1123         map->root = vm_map_entry_splay(start, map->root);
1124         if (start + length <= map->root->start) {
1125                 *addr = start;
1126                 goto found;
1127         }
1128
1129         /*
1130          * Root is the last node that might begin its gap before
1131          * start, and this is the last comparison where address
1132          * wrap might be a problem.
1133          */
1134         st = (start > map->root->end) ? start : map->root->end;
1135         if (length <= map->root->end + map->root->adj_free - st) {
1136                 *addr = st;
1137                 goto found;
1138         }
1139
1140         /* With max_free, can immediately tell if no solution. */
1141         entry = map->root->right;
1142         if (entry == NULL || length > entry->max_free)
1143                 return (1);
1144
1145         /*
1146          * Search the right subtree in the order: left subtree, root,
1147          * right subtree (first fit).  The previous splay implies that
1148          * all regions in the right subtree have addresses > start.
1149          */
1150         while (entry != NULL) {
1151                 if (entry->left != NULL && entry->left->max_free >= length)
1152                         entry = entry->left;
1153                 else if (entry->adj_free >= length) {
1154                         *addr = entry->end;
1155                         goto found;
1156                 } else
1157                         entry = entry->right;
1158         }
1159
1160         /* Can't get here, so panic if we do. */
1161         panic("vm_map_findspace: max_free corrupt");
1162
1163 found:
1164         /* Expand the kernel pmap, if necessary. */
1165         if (map == kernel_map) {
1166                 end = round_page(*addr + length);
1167                 if (end > kernel_vm_end)
1168                         pmap_growkernel(end);
1169         }
1170         return (0);
1171 }
1172
1173 int
1174 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1175     vm_offset_t start, vm_size_t length, vm_prot_t prot,
1176     vm_prot_t max, int cow)
1177 {
1178         vm_offset_t end;
1179         int result;
1180
1181         vm_map_lock(map);
1182         end = start + length;
1183         VM_MAP_RANGE_CHECK(map, start, end);
1184         (void) vm_map_delete(map, start, end);
1185         result = vm_map_insert(map, object, offset, start, end, prot,
1186             max, cow);
1187         vm_map_unlock(map);
1188         return (result);
1189 }
1190
1191 /*
1192  *      vm_map_find finds an unallocated region in the target address
1193  *      map with the given length.  The search is defined to be
1194  *      first-fit from the specified address; the region found is
1195  *      returned in the same parameter.
1196  *
1197  *      If object is non-NULL, ref count must be bumped by caller
1198  *      prior to making call to account for the new entry.
1199  */
1200 int
1201 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1202             vm_offset_t *addr,  /* IN/OUT */
1203             vm_size_t length, int find_space, vm_prot_t prot,
1204             vm_prot_t max, int cow)
1205 {
1206         vm_offset_t start;
1207         int result;
1208
1209         start = *addr;
1210         vm_map_lock(map);
1211         do {
1212                 if (find_space != VMFS_NO_SPACE) {
1213                         if (vm_map_findspace(map, start, length, addr)) {
1214                                 vm_map_unlock(map);
1215                                 return (KERN_NO_SPACE);
1216                         }
1217                         if (find_space == VMFS_ALIGNED_SPACE)
1218                                 pmap_align_superpage(object, offset, addr,
1219                                     length);
1220                         start = *addr;
1221                 }
1222                 result = vm_map_insert(map, object, offset, start, start +
1223                     length, prot, max, cow);
1224         } while (result == KERN_NO_SPACE && find_space == VMFS_ALIGNED_SPACE);
1225         vm_map_unlock(map);
1226         return (result);
1227 }
1228
1229 /*
1230  *      vm_map_simplify_entry:
1231  *
1232  *      Simplify the given map entry by merging with either neighbor.  This
1233  *      routine also has the ability to merge with both neighbors.
1234  *
1235  *      The map must be locked.
1236  *
1237  *      This routine guarentees that the passed entry remains valid (though
1238  *      possibly extended).  When merging, this routine may delete one or
1239  *      both neighbors.
1240  */
1241 void
1242 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
1243 {
1244         vm_map_entry_t next, prev;
1245         vm_size_t prevsize, esize;
1246
1247         if (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP))
1248                 return;
1249
1250         prev = entry->prev;
1251         if (prev != &map->header) {
1252                 prevsize = prev->end - prev->start;
1253                 if ( (prev->end == entry->start) &&
1254                      (prev->object.vm_object == entry->object.vm_object) &&
1255                      (!prev->object.vm_object ||
1256                         (prev->offset + prevsize == entry->offset)) &&
1257                      (prev->eflags == entry->eflags) &&
1258                      (prev->protection == entry->protection) &&
1259                      (prev->max_protection == entry->max_protection) &&
1260                      (prev->inheritance == entry->inheritance) &&
1261                      (prev->wired_count == entry->wired_count)) {
1262                         vm_map_entry_unlink(map, prev);
1263                         entry->start = prev->start;
1264                         entry->offset = prev->offset;
1265                         if (entry->prev != &map->header)
1266                                 vm_map_entry_resize_free(map, entry->prev);
1267                         if (prev->object.vm_object)
1268                                 vm_object_deallocate(prev->object.vm_object);
1269                         vm_map_entry_dispose(map, prev);
1270                 }
1271         }
1272
1273         next = entry->next;
1274         if (next != &map->header) {
1275                 esize = entry->end - entry->start;
1276                 if ((entry->end == next->start) &&
1277                     (next->object.vm_object == entry->object.vm_object) &&
1278                      (!entry->object.vm_object ||
1279                         (entry->offset + esize == next->offset)) &&
1280                     (next->eflags == entry->eflags) &&
1281                     (next->protection == entry->protection) &&
1282                     (next->max_protection == entry->max_protection) &&
1283                     (next->inheritance == entry->inheritance) &&
1284                     (next->wired_count == entry->wired_count)) {
1285                         vm_map_entry_unlink(map, next);
1286                         entry->end = next->end;
1287                         vm_map_entry_resize_free(map, entry);
1288                         if (next->object.vm_object)
1289                                 vm_object_deallocate(next->object.vm_object);
1290                         vm_map_entry_dispose(map, next);
1291                 }
1292         }
1293 }
1294 /*
1295  *      vm_map_clip_start:      [ internal use only ]
1296  *
1297  *      Asserts that the given entry begins at or after
1298  *      the specified address; if necessary,
1299  *      it splits the entry into two.
1300  */
1301 #define vm_map_clip_start(map, entry, startaddr) \
1302 { \
1303         if (startaddr > entry->start) \
1304                 _vm_map_clip_start(map, entry, startaddr); \
1305 }
1306
1307 /*
1308  *      This routine is called only when it is known that
1309  *      the entry must be split.
1310  */
1311 static void
1312 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
1313 {
1314         vm_map_entry_t new_entry;
1315
1316         /*
1317          * Split off the front portion -- note that we must insert the new
1318          * entry BEFORE this one, so that this entry has the specified
1319          * starting address.
1320          */
1321         vm_map_simplify_entry(map, entry);
1322
1323         /*
1324          * If there is no object backing this entry, we might as well create
1325          * one now.  If we defer it, an object can get created after the map
1326          * is clipped, and individual objects will be created for the split-up
1327          * map.  This is a bit of a hack, but is also about the best place to
1328          * put this improvement.
1329          */
1330         if (entry->object.vm_object == NULL && !map->system_map) {
1331                 vm_object_t object;
1332                 object = vm_object_allocate(OBJT_DEFAULT,
1333                                 atop(entry->end - entry->start));
1334                 entry->object.vm_object = object;
1335                 entry->offset = 0;
1336         }
1337
1338         new_entry = vm_map_entry_create(map);
1339         *new_entry = *entry;
1340
1341         new_entry->end = start;
1342         entry->offset += (start - entry->start);
1343         entry->start = start;
1344
1345         vm_map_entry_link(map, entry->prev, new_entry);
1346
1347         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1348                 vm_object_reference(new_entry->object.vm_object);
1349         }
1350 }
1351
1352 /*
1353  *      vm_map_clip_end:        [ internal use only ]
1354  *
1355  *      Asserts that the given entry ends at or before
1356  *      the specified address; if necessary,
1357  *      it splits the entry into two.
1358  */
1359 #define vm_map_clip_end(map, entry, endaddr) \
1360 { \
1361         if ((endaddr) < (entry->end)) \
1362                 _vm_map_clip_end((map), (entry), (endaddr)); \
1363 }
1364
1365 /*
1366  *      This routine is called only when it is known that
1367  *      the entry must be split.
1368  */
1369 static void
1370 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
1371 {
1372         vm_map_entry_t new_entry;
1373
1374         /*
1375          * If there is no object backing this entry, we might as well create
1376          * one now.  If we defer it, an object can get created after the map
1377          * is clipped, and individual objects will be created for the split-up
1378          * map.  This is a bit of a hack, but is also about the best place to
1379          * put this improvement.
1380          */
1381         if (entry->object.vm_object == NULL && !map->system_map) {
1382                 vm_object_t object;
1383                 object = vm_object_allocate(OBJT_DEFAULT,
1384                                 atop(entry->end - entry->start));
1385                 entry->object.vm_object = object;
1386                 entry->offset = 0;
1387         }
1388
1389         /*
1390          * Create a new entry and insert it AFTER the specified entry
1391          */
1392         new_entry = vm_map_entry_create(map);
1393         *new_entry = *entry;
1394
1395         new_entry->start = entry->end = end;
1396         new_entry->offset += (end - entry->start);
1397
1398         vm_map_entry_link(map, entry, new_entry);
1399
1400         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1401                 vm_object_reference(new_entry->object.vm_object);
1402         }
1403 }
1404
1405 /*
1406  *      vm_map_submap:          [ kernel use only ]
1407  *
1408  *      Mark the given range as handled by a subordinate map.
1409  *
1410  *      This range must have been created with vm_map_find,
1411  *      and no other operations may have been performed on this
1412  *      range prior to calling vm_map_submap.
1413  *
1414  *      Only a limited number of operations can be performed
1415  *      within this rage after calling vm_map_submap:
1416  *              vm_fault
1417  *      [Don't try vm_map_copy!]
1418  *
1419  *      To remove a submapping, one must first remove the
1420  *      range from the superior map, and then destroy the
1421  *      submap (if desired).  [Better yet, don't try it.]
1422  */
1423 int
1424 vm_map_submap(
1425         vm_map_t map,
1426         vm_offset_t start,
1427         vm_offset_t end,
1428         vm_map_t submap)
1429 {
1430         vm_map_entry_t entry;
1431         int result = KERN_INVALID_ARGUMENT;
1432
1433         vm_map_lock(map);
1434
1435         VM_MAP_RANGE_CHECK(map, start, end);
1436
1437         if (vm_map_lookup_entry(map, start, &entry)) {
1438                 vm_map_clip_start(map, entry, start);
1439         } else
1440                 entry = entry->next;
1441
1442         vm_map_clip_end(map, entry, end);
1443
1444         if ((entry->start == start) && (entry->end == end) &&
1445             ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1446             (entry->object.vm_object == NULL)) {
1447                 entry->object.sub_map = submap;
1448                 entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1449                 result = KERN_SUCCESS;
1450         }
1451         vm_map_unlock(map);
1452
1453         return (result);
1454 }
1455
1456 /*
1457  * The maximum number of pages to map
1458  */
1459 #define MAX_INIT_PT     96
1460
1461 /*
1462  *      vm_map_pmap_enter:
1463  *
1464  *      Preload read-only mappings for the given object's resident pages into
1465  *      the given map.  This eliminates the soft faults on process startup and
1466  *      immediately after an mmap(2).  Unless the given flags include
1467  *      MAP_PREFAULT_MADVISE, cached pages are not reactivated and mapped.
1468  */
1469 void
1470 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
1471     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
1472 {
1473         vm_offset_t start;
1474         vm_page_t p, p_start;
1475         vm_pindex_t psize, tmpidx;
1476         boolean_t are_queues_locked;
1477
1478         if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
1479                 return;
1480         VM_OBJECT_LOCK(object);
1481         if (object->type == OBJT_DEVICE) {
1482                 pmap_object_init_pt(map->pmap, addr, object, pindex, size);
1483                 goto unlock_return;
1484         }
1485
1486         psize = atop(size);
1487
1488         if (object->type != OBJT_VNODE ||
1489             ((flags & MAP_PREFAULT_PARTIAL) && (psize > MAX_INIT_PT) &&
1490              (object->resident_page_count > MAX_INIT_PT))) {
1491                 goto unlock_return;
1492         }
1493
1494         if (psize + pindex > object->size) {
1495                 if (object->size < pindex)
1496                         goto unlock_return;
1497                 psize = object->size - pindex;
1498         }
1499
1500         are_queues_locked = FALSE;
1501         start = 0;
1502         p_start = NULL;
1503
1504         if ((p = TAILQ_FIRST(&object->memq)) != NULL) {
1505                 if (p->pindex < pindex) {
1506                         p = vm_page_splay(pindex, object->root);
1507                         if ((object->root = p)->pindex < pindex)
1508                                 p = TAILQ_NEXT(p, listq);
1509                 }
1510         }
1511         /*
1512          * Assert: the variable p is either (1) the page with the
1513          * least pindex greater than or equal to the parameter pindex
1514          * or (2) NULL.
1515          */
1516         for (;
1517              p != NULL && (tmpidx = p->pindex - pindex) < psize;
1518              p = TAILQ_NEXT(p, listq)) {
1519                 /*
1520                  * don't allow an madvise to blow away our really
1521                  * free pages allocating pv entries.
1522                  */
1523                 if ((flags & MAP_PREFAULT_MADVISE) &&
1524                     cnt.v_free_count < cnt.v_free_reserved) {
1525                         psize = tmpidx;
1526                         break;
1527                 }
1528                 if ((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL &&
1529                     (p->busy == 0)) {
1530                         if (p_start == NULL) {
1531                                 start = addr + ptoa(tmpidx);
1532                                 p_start = p;
1533                         }
1534                 } else if (p_start != NULL) {
1535                         if (!are_queues_locked) {
1536                                 are_queues_locked = TRUE;
1537                                 vm_page_lock_queues();
1538                         }
1539                         pmap_enter_object(map->pmap, start, addr +
1540                             ptoa(tmpidx), p_start, prot);
1541                         p_start = NULL;
1542                 }
1543         }
1544         if (p_start != NULL) {
1545                 if (!are_queues_locked) {
1546                         are_queues_locked = TRUE;
1547                         vm_page_lock_queues();
1548                 }
1549                 pmap_enter_object(map->pmap, start, addr + ptoa(psize),
1550                     p_start, prot);
1551         }
1552         if (are_queues_locked)
1553                 vm_page_unlock_queues();
1554 unlock_return:
1555         VM_OBJECT_UNLOCK(object);
1556 }
1557
1558 /*
1559  *      vm_map_protect:
1560  *
1561  *      Sets the protection of the specified address
1562  *      region in the target map.  If "set_max" is
1563  *      specified, the maximum protection is to be set;
1564  *      otherwise, only the current protection is affected.
1565  */
1566 int
1567 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1568                vm_prot_t new_prot, boolean_t set_max)
1569 {
1570         vm_map_entry_t current;
1571         vm_map_entry_t entry;
1572
1573         vm_map_lock(map);
1574
1575         VM_MAP_RANGE_CHECK(map, start, end);
1576
1577         if (vm_map_lookup_entry(map, start, &entry)) {
1578                 vm_map_clip_start(map, entry, start);
1579         } else {
1580                 entry = entry->next;
1581         }
1582
1583         /*
1584          * Make a first pass to check for protection violations.
1585          */
1586         current = entry;
1587         while ((current != &map->header) && (current->start < end)) {
1588                 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1589                         vm_map_unlock(map);
1590                         return (KERN_INVALID_ARGUMENT);
1591                 }
1592                 if ((new_prot & current->max_protection) != new_prot) {
1593                         vm_map_unlock(map);
1594                         return (KERN_PROTECTION_FAILURE);
1595                 }
1596                 current = current->next;
1597         }
1598
1599         /*
1600          * Go back and fix up protections. [Note that clipping is not
1601          * necessary the second time.]
1602          */
1603         current = entry;
1604         while ((current != &map->header) && (current->start < end)) {
1605                 vm_prot_t old_prot;
1606
1607                 vm_map_clip_end(map, current, end);
1608
1609                 old_prot = current->protection;
1610                 if (set_max)
1611                         current->protection =
1612                             (current->max_protection = new_prot) &
1613                             old_prot;
1614                 else
1615                         current->protection = new_prot;
1616
1617                 /*
1618                  * Update physical map if necessary. Worry about copy-on-write
1619                  * here -- CHECK THIS XXX
1620                  */
1621                 if (current->protection != old_prot) {
1622 #define MASK(entry)     (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1623                                                         VM_PROT_ALL)
1624                         pmap_protect(map->pmap, current->start,
1625                             current->end,
1626                             current->protection & MASK(current));
1627 #undef  MASK
1628                 }
1629                 vm_map_simplify_entry(map, current);
1630                 current = current->next;
1631         }
1632         vm_map_unlock(map);
1633         return (KERN_SUCCESS);
1634 }
1635
1636 /*
1637  *      vm_map_madvise:
1638  *
1639  *      This routine traverses a processes map handling the madvise
1640  *      system call.  Advisories are classified as either those effecting
1641  *      the vm_map_entry structure, or those effecting the underlying
1642  *      objects.
1643  */
1644 int
1645 vm_map_madvise(
1646         vm_map_t map,
1647         vm_offset_t start,
1648         vm_offset_t end,
1649         int behav)
1650 {
1651         vm_map_entry_t current, entry;
1652         int modify_map = 0;
1653
1654         /*
1655          * Some madvise calls directly modify the vm_map_entry, in which case
1656          * we need to use an exclusive lock on the map and we need to perform
1657          * various clipping operations.  Otherwise we only need a read-lock
1658          * on the map.
1659          */
1660         switch(behav) {
1661         case MADV_NORMAL:
1662         case MADV_SEQUENTIAL:
1663         case MADV_RANDOM:
1664         case MADV_NOSYNC:
1665         case MADV_AUTOSYNC:
1666         case MADV_NOCORE:
1667         case MADV_CORE:
1668                 modify_map = 1;
1669                 vm_map_lock(map);
1670                 break;
1671         case MADV_WILLNEED:
1672         case MADV_DONTNEED:
1673         case MADV_FREE:
1674                 vm_map_lock_read(map);
1675                 break;
1676         default:
1677                 return (KERN_INVALID_ARGUMENT);
1678         }
1679
1680         /*
1681          * Locate starting entry and clip if necessary.
1682          */
1683         VM_MAP_RANGE_CHECK(map, start, end);
1684
1685         if (vm_map_lookup_entry(map, start, &entry)) {
1686                 if (modify_map)
1687                         vm_map_clip_start(map, entry, start);
1688         } else {
1689                 entry = entry->next;
1690         }
1691
1692         if (modify_map) {
1693                 /*
1694                  * madvise behaviors that are implemented in the vm_map_entry.
1695                  *
1696                  * We clip the vm_map_entry so that behavioral changes are
1697                  * limited to the specified address range.
1698                  */
1699                 for (current = entry;
1700                      (current != &map->header) && (current->start < end);
1701                      current = current->next
1702                 ) {
1703                         if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
1704                                 continue;
1705
1706                         vm_map_clip_end(map, current, end);
1707
1708                         switch (behav) {
1709                         case MADV_NORMAL:
1710                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
1711                                 break;
1712                         case MADV_SEQUENTIAL:
1713                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
1714                                 break;
1715                         case MADV_RANDOM:
1716                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
1717                                 break;
1718                         case MADV_NOSYNC:
1719                                 current->eflags |= MAP_ENTRY_NOSYNC;
1720                                 break;
1721                         case MADV_AUTOSYNC:
1722                                 current->eflags &= ~MAP_ENTRY_NOSYNC;
1723                                 break;
1724                         case MADV_NOCORE:
1725                                 current->eflags |= MAP_ENTRY_NOCOREDUMP;
1726                                 break;
1727                         case MADV_CORE:
1728                                 current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
1729                                 break;
1730                         default:
1731                                 break;
1732                         }
1733                         vm_map_simplify_entry(map, current);
1734                 }
1735                 vm_map_unlock(map);
1736         } else {
1737                 vm_pindex_t pindex;
1738                 int count;
1739
1740                 /*
1741                  * madvise behaviors that are implemented in the underlying
1742                  * vm_object.
1743                  *
1744                  * Since we don't clip the vm_map_entry, we have to clip
1745                  * the vm_object pindex and count.
1746                  */
1747                 for (current = entry;
1748                      (current != &map->header) && (current->start < end);
1749                      current = current->next
1750                 ) {
1751                         vm_offset_t useStart;
1752
1753                         if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
1754                                 continue;
1755
1756                         pindex = OFF_TO_IDX(current->offset);
1757                         count = atop(current->end - current->start);
1758                         useStart = current->start;
1759
1760                         if (current->start < start) {
1761                                 pindex += atop(start - current->start);
1762                                 count -= atop(start - current->start);
1763                                 useStart = start;
1764                         }
1765                         if (current->end > end)
1766                                 count -= atop(current->end - end);
1767
1768                         if (count <= 0)
1769                                 continue;
1770
1771                         vm_object_madvise(current->object.vm_object,
1772                                           pindex, count, behav);
1773                         if (behav == MADV_WILLNEED) {
1774                                 vm_map_pmap_enter(map,
1775                                     useStart,
1776                                     current->protection,
1777                                     current->object.vm_object,
1778                                     pindex,
1779                                     (count << PAGE_SHIFT),
1780                                     MAP_PREFAULT_MADVISE
1781                                 );
1782                         }
1783                 }
1784                 vm_map_unlock_read(map);
1785         }
1786         return (0);
1787 }
1788
1789
1790 /*
1791  *      vm_map_inherit:
1792  *
1793  *      Sets the inheritance of the specified address
1794  *      range in the target map.  Inheritance
1795  *      affects how the map will be shared with
1796  *      child maps at the time of vm_map_fork.
1797  */
1798 int
1799 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
1800                vm_inherit_t new_inheritance)
1801 {
1802         vm_map_entry_t entry;
1803         vm_map_entry_t temp_entry;
1804
1805         switch (new_inheritance) {
1806         case VM_INHERIT_NONE:
1807         case VM_INHERIT_COPY:
1808         case VM_INHERIT_SHARE:
1809                 break;
1810         default:
1811                 return (KERN_INVALID_ARGUMENT);
1812         }
1813         vm_map_lock(map);
1814         VM_MAP_RANGE_CHECK(map, start, end);
1815         if (vm_map_lookup_entry(map, start, &temp_entry)) {
1816                 entry = temp_entry;
1817                 vm_map_clip_start(map, entry, start);
1818         } else
1819                 entry = temp_entry->next;
1820         while ((entry != &map->header) && (entry->start < end)) {
1821                 vm_map_clip_end(map, entry, end);
1822                 entry->inheritance = new_inheritance;
1823                 vm_map_simplify_entry(map, entry);
1824                 entry = entry->next;
1825         }
1826         vm_map_unlock(map);
1827         return (KERN_SUCCESS);
1828 }
1829
1830 /*
1831  *      vm_map_unwire:
1832  *
1833  *      Implements both kernel and user unwiring.
1834  */
1835 int
1836 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1837     int flags)
1838 {
1839         vm_map_entry_t entry, first_entry, tmp_entry;
1840         vm_offset_t saved_start;
1841         unsigned int last_timestamp;
1842         int rv;
1843         boolean_t need_wakeup, result, user_unwire;
1844
1845         user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
1846         vm_map_lock(map);
1847         VM_MAP_RANGE_CHECK(map, start, end);
1848         if (!vm_map_lookup_entry(map, start, &first_entry)) {
1849                 if (flags & VM_MAP_WIRE_HOLESOK)
1850                         first_entry = first_entry->next;
1851                 else {
1852                         vm_map_unlock(map);
1853                         return (KERN_INVALID_ADDRESS);
1854                 }
1855         }
1856         last_timestamp = map->timestamp;
1857         entry = first_entry;
1858         while (entry != &map->header && entry->start < end) {
1859                 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1860                         /*
1861                          * We have not yet clipped the entry.
1862                          */
1863                         saved_start = (start >= entry->start) ? start :
1864                             entry->start;
1865                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1866                         if (vm_map_unlock_and_wait(map, user_unwire)) {
1867                                 /*
1868                                  * Allow interruption of user unwiring?
1869                                  */
1870                         }
1871                         vm_map_lock(map);
1872                         if (last_timestamp+1 != map->timestamp) {
1873                                 /*
1874                                  * Look again for the entry because the map was
1875                                  * modified while it was unlocked.
1876                                  * Specifically, the entry may have been
1877                                  * clipped, merged, or deleted.
1878                                  */
1879                                 if (!vm_map_lookup_entry(map, saved_start,
1880                                     &tmp_entry)) {
1881                                         if (flags & VM_MAP_WIRE_HOLESOK)
1882                                                 tmp_entry = tmp_entry->next;
1883                                         else {
1884                                                 if (saved_start == start) {
1885                                                         /*
1886                                                          * First_entry has been deleted.
1887                                                          */
1888                                                         vm_map_unlock(map);
1889                                                         return (KERN_INVALID_ADDRESS);
1890                                                 }
1891                                                 end = saved_start;
1892                                                 rv = KERN_INVALID_ADDRESS;
1893                                                 goto done;
1894                                         }
1895                                 }
1896                                 if (entry == first_entry)
1897                                         first_entry = tmp_entry;
1898                                 else
1899                                         first_entry = NULL;
1900                                 entry = tmp_entry;
1901                         }
1902                         last_timestamp = map->timestamp;
1903                         continue;
1904                 }
1905                 vm_map_clip_start(map, entry, start);
1906                 vm_map_clip_end(map, entry, end);
1907                 /*
1908                  * Mark the entry in case the map lock is released.  (See
1909                  * above.)
1910                  */
1911                 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
1912                 /*
1913                  * Check the map for holes in the specified region.
1914                  * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
1915                  */
1916                 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
1917                     (entry->end < end && (entry->next == &map->header ||
1918                     entry->next->start > entry->end))) {
1919                         end = entry->end;
1920                         rv = KERN_INVALID_ADDRESS;
1921                         goto done;
1922                 }
1923                 /*
1924                  * If system unwiring, require that the entry is system wired.
1925                  */
1926                 if (!user_unwire &&
1927                     vm_map_entry_system_wired_count(entry) == 0) {
1928                         end = entry->end;
1929                         rv = KERN_INVALID_ARGUMENT;
1930                         goto done;
1931                 }
1932                 entry = entry->next;
1933         }
1934         rv = KERN_SUCCESS;
1935 done:
1936         need_wakeup = FALSE;
1937         if (first_entry == NULL) {
1938                 result = vm_map_lookup_entry(map, start, &first_entry);
1939                 if (!result && (flags & VM_MAP_WIRE_HOLESOK))
1940                         first_entry = first_entry->next;
1941                 else
1942                         KASSERT(result, ("vm_map_unwire: lookup failed"));
1943         }
1944         entry = first_entry;
1945         while (entry != &map->header && entry->start < end) {
1946                 if (rv == KERN_SUCCESS && (!user_unwire ||
1947                     (entry->eflags & MAP_ENTRY_USER_WIRED))) {
1948                         if (user_unwire)
1949                                 entry->eflags &= ~MAP_ENTRY_USER_WIRED;
1950                         entry->wired_count--;
1951                         if (entry->wired_count == 0) {
1952                                 /*
1953                                  * Retain the map lock.
1954                                  */
1955                                 vm_fault_unwire(map, entry->start, entry->end,
1956                                     entry->object.vm_object != NULL &&
1957                                     entry->object.vm_object->type == OBJT_DEVICE);
1958                         }
1959                 }
1960                 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION,
1961                         ("vm_map_unwire: in-transition flag missing"));
1962                 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
1963                 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
1964                         entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
1965                         need_wakeup = TRUE;
1966                 }
1967                 vm_map_simplify_entry(map, entry);
1968                 entry = entry->next;
1969         }
1970         vm_map_unlock(map);
1971         if (need_wakeup)
1972                 vm_map_wakeup(map);
1973         return (rv);
1974 }
1975
1976 /*
1977  *      vm_map_wire:
1978  *
1979  *      Implements both kernel and user wiring.
1980  */
1981 int
1982 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1983     int flags)
1984 {
1985         vm_map_entry_t entry, first_entry, tmp_entry;
1986         vm_offset_t saved_end, saved_start;
1987         unsigned int last_timestamp;
1988         int rv;
1989         boolean_t fictitious, need_wakeup, result, user_wire;
1990
1991         user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
1992         vm_map_lock(map);
1993         VM_MAP_RANGE_CHECK(map, start, end);
1994         if (!vm_map_lookup_entry(map, start, &first_entry)) {
1995                 if (flags & VM_MAP_WIRE_HOLESOK)
1996                         first_entry = first_entry->next;
1997                 else {
1998                         vm_map_unlock(map);
1999                         return (KERN_INVALID_ADDRESS);
2000                 }
2001         }
2002         last_timestamp = map->timestamp;
2003         entry = first_entry;
2004         while (entry != &map->header && entry->start < end) {
2005                 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2006                         /*
2007                          * We have not yet clipped the entry.
2008                          */
2009                         saved_start = (start >= entry->start) ? start :
2010                             entry->start;
2011                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2012                         if (vm_map_unlock_and_wait(map, user_wire)) {
2013                                 /*
2014                                  * Allow interruption of user wiring?
2015                                  */
2016                         }
2017                         vm_map_lock(map);
2018                         if (last_timestamp + 1 != map->timestamp) {
2019                                 /*
2020                                  * Look again for the entry because the map was
2021                                  * modified while it was unlocked.
2022                                  * Specifically, the entry may have been
2023                                  * clipped, merged, or deleted.
2024                                  */
2025                                 if (!vm_map_lookup_entry(map, saved_start,
2026                                     &tmp_entry)) {
2027                                         if (flags & VM_MAP_WIRE_HOLESOK)
2028                                                 tmp_entry = tmp_entry->next;
2029                                         else {
2030                                                 if (saved_start == start) {
2031                                                         /*
2032                                                          * first_entry has been deleted.
2033                                                          */
2034                                                         vm_map_unlock(map);
2035                                                         return (KERN_INVALID_ADDRESS);
2036                                                 }
2037                                                 end = saved_start;
2038                                                 rv = KERN_INVALID_ADDRESS;
2039                                                 goto done;
2040                                         }
2041                                 }
2042                                 if (entry == first_entry)
2043                                         first_entry = tmp_entry;
2044                                 else
2045                                         first_entry = NULL;
2046                                 entry = tmp_entry;
2047                         }
2048                         last_timestamp = map->timestamp;
2049                         continue;
2050                 }
2051                 vm_map_clip_start(map, entry, start);
2052                 vm_map_clip_end(map, entry, end);
2053                 /*
2054                  * Mark the entry in case the map lock is released.  (See
2055                  * above.)
2056                  */
2057                 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2058                 /*
2059                  *
2060                  */
2061                 if (entry->wired_count == 0) {
2062                         entry->wired_count++;
2063                         saved_start = entry->start;
2064                         saved_end = entry->end;
2065                         fictitious = entry->object.vm_object != NULL &&
2066                             entry->object.vm_object->type == OBJT_DEVICE;
2067                         /*
2068                          * Release the map lock, relying on the in-transition
2069                          * mark.
2070                          */
2071                         vm_map_unlock(map);
2072                         rv = vm_fault_wire(map, saved_start, saved_end,
2073                             user_wire, fictitious);
2074                         vm_map_lock(map);
2075                         if (last_timestamp + 1 != map->timestamp) {
2076                                 /*
2077                                  * Look again for the entry because the map was
2078                                  * modified while it was unlocked.  The entry
2079                                  * may have been clipped, but NOT merged or
2080                                  * deleted.
2081                                  */
2082                                 result = vm_map_lookup_entry(map, saved_start,
2083                                     &tmp_entry);
2084                                 KASSERT(result, ("vm_map_wire: lookup failed"));
2085                                 if (entry == first_entry)
2086                                         first_entry = tmp_entry;
2087                                 else
2088                                         first_entry = NULL;
2089                                 entry = tmp_entry;
2090                                 while (entry->end < saved_end) {
2091                                         if (rv != KERN_SUCCESS) {
2092                                                 KASSERT(entry->wired_count == 1,
2093                                                     ("vm_map_wire: bad count"));
2094                                                 entry->wired_count = -1;
2095                                         }
2096                                         entry = entry->next;
2097                                 }
2098                         }
2099                         last_timestamp = map->timestamp;
2100                         if (rv != KERN_SUCCESS) {
2101                                 KASSERT(entry->wired_count == 1,
2102                                     ("vm_map_wire: bad count"));
2103                                 /*
2104                                  * Assign an out-of-range value to represent
2105                                  * the failure to wire this entry.
2106                                  */
2107                                 entry->wired_count = -1;
2108                                 end = entry->end;
2109                                 goto done;
2110                         }
2111                 } else if (!user_wire ||
2112                            (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2113                         entry->wired_count++;
2114                 }
2115                 /*
2116                  * Check the map for holes in the specified region.
2117                  * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2118                  */
2119                 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2120                     (entry->end < end && (entry->next == &map->header ||
2121                     entry->next->start > entry->end))) {
2122                         end = entry->end;
2123                         rv = KERN_INVALID_ADDRESS;
2124                         goto done;
2125                 }
2126                 entry = entry->next;
2127         }
2128         rv = KERN_SUCCESS;
2129 done:
2130         need_wakeup = FALSE;
2131         if (first_entry == NULL) {
2132                 result = vm_map_lookup_entry(map, start, &first_entry);
2133                 if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2134                         first_entry = first_entry->next;
2135                 else
2136                         KASSERT(result, ("vm_map_wire: lookup failed"));
2137         }
2138         entry = first_entry;
2139         while (entry != &map->header && entry->start < end) {
2140                 if (rv == KERN_SUCCESS) {
2141                         if (user_wire)
2142                                 entry->eflags |= MAP_ENTRY_USER_WIRED;
2143                 } else if (entry->wired_count == -1) {
2144                         /*
2145                          * Wiring failed on this entry.  Thus, unwiring is
2146                          * unnecessary.
2147                          */
2148                         entry->wired_count = 0;
2149                 } else {
2150                         if (!user_wire ||
2151                             (entry->eflags & MAP_ENTRY_USER_WIRED) == 0)
2152                                 entry->wired_count--;
2153                         if (entry->wired_count == 0) {
2154                                 /*
2155                                  * Retain the map lock.
2156                                  */
2157                                 vm_fault_unwire(map, entry->start, entry->end,
2158                                     entry->object.vm_object != NULL &&
2159                                     entry->object.vm_object->type == OBJT_DEVICE);
2160                         }
2161                 }
2162                 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION,
2163                         ("vm_map_wire: in-transition flag missing"));
2164                 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
2165                 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2166                         entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2167                         need_wakeup = TRUE;
2168                 }
2169                 vm_map_simplify_entry(map, entry);
2170                 entry = entry->next;
2171         }
2172         vm_map_unlock(map);
2173         if (need_wakeup)
2174                 vm_map_wakeup(map);
2175         return (rv);
2176 }
2177
2178 /*
2179  * vm_map_sync
2180  *
2181  * Push any dirty cached pages in the address range to their pager.
2182  * If syncio is TRUE, dirty pages are written synchronously.
2183  * If invalidate is TRUE, any cached pages are freed as well.
2184  *
2185  * If the size of the region from start to end is zero, we are
2186  * supposed to flush all modified pages within the region containing
2187  * start.  Unfortunately, a region can be split or coalesced with
2188  * neighboring regions, making it difficult to determine what the
2189  * original region was.  Therefore, we approximate this requirement by
2190  * flushing the current region containing start.
2191  *
2192  * Returns an error if any part of the specified range is not mapped.
2193  */
2194 int
2195 vm_map_sync(
2196         vm_map_t map,
2197         vm_offset_t start,
2198         vm_offset_t end,
2199         boolean_t syncio,
2200         boolean_t invalidate)
2201 {
2202         vm_map_entry_t current;
2203         vm_map_entry_t entry;
2204         vm_size_t size;
2205         vm_object_t object;
2206         vm_ooffset_t offset;
2207
2208         vm_map_lock_read(map);
2209         VM_MAP_RANGE_CHECK(map, start, end);
2210         if (!vm_map_lookup_entry(map, start, &entry)) {
2211                 vm_map_unlock_read(map);
2212                 return (KERN_INVALID_ADDRESS);
2213         } else if (start == end) {
2214                 start = entry->start;
2215                 end = entry->end;
2216         }
2217         /*
2218          * Make a first pass to check for user-wired memory and holes.
2219          */
2220         for (current = entry; current != &map->header && current->start < end;
2221             current = current->next) {
2222                 if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) {
2223                         vm_map_unlock_read(map);
2224                         return (KERN_INVALID_ARGUMENT);
2225                 }
2226                 if (end > current->end &&
2227                     (current->next == &map->header ||
2228                         current->end != current->next->start)) {
2229                         vm_map_unlock_read(map);
2230                         return (KERN_INVALID_ADDRESS);
2231                 }
2232         }
2233
2234         if (invalidate)
2235                 pmap_remove(map->pmap, start, end);
2236
2237         /*
2238          * Make a second pass, cleaning/uncaching pages from the indicated
2239          * objects as we go.
2240          */
2241         for (current = entry; current != &map->header && current->start < end;
2242             current = current->next) {
2243                 offset = current->offset + (start - current->start);
2244                 size = (end <= current->end ? end : current->end) - start;
2245                 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2246                         vm_map_t smap;
2247                         vm_map_entry_t tentry;
2248                         vm_size_t tsize;
2249
2250                         smap = current->object.sub_map;
2251                         vm_map_lock_read(smap);
2252                         (void) vm_map_lookup_entry(smap, offset, &tentry);
2253                         tsize = tentry->end - offset;
2254                         if (tsize < size)
2255                                 size = tsize;
2256                         object = tentry->object.vm_object;
2257                         offset = tentry->offset + (offset - tentry->start);
2258                         vm_map_unlock_read(smap);
2259                 } else {
2260                         object = current->object.vm_object;
2261                 }
2262                 vm_object_sync(object, offset, size, syncio, invalidate);
2263                 start += size;
2264         }
2265
2266         vm_map_unlock_read(map);
2267         return (KERN_SUCCESS);
2268 }
2269
2270 /*
2271  *      vm_map_entry_unwire:    [ internal use only ]
2272  *
2273  *      Make the region specified by this entry pageable.
2274  *
2275  *      The map in question should be locked.
2276  *      [This is the reason for this routine's existence.]
2277  */
2278 static void
2279 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2280 {
2281         vm_fault_unwire(map, entry->start, entry->end,
2282             entry->object.vm_object != NULL &&
2283             entry->object.vm_object->type == OBJT_DEVICE);
2284         entry->wired_count = 0;
2285 }
2286
2287 /*
2288  *      vm_map_entry_delete:    [ internal use only ]
2289  *
2290  *      Deallocate the given entry from the target map.
2291  */
2292 static void
2293 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
2294 {
2295         vm_object_t object;
2296         vm_pindex_t offidxstart, offidxend, count;
2297
2298         vm_map_entry_unlink(map, entry);
2299         map->size -= entry->end - entry->start;
2300
2301         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
2302             (object = entry->object.vm_object) != NULL) {
2303                 count = OFF_TO_IDX(entry->end - entry->start);
2304                 offidxstart = OFF_TO_IDX(entry->offset);
2305                 offidxend = offidxstart + count;
2306                 VM_OBJECT_LOCK(object);
2307                 if (object->ref_count != 1 &&
2308                     ((object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING ||
2309                     object == kernel_object || object == kmem_object)) {
2310                         vm_object_collapse(object);
2311                         vm_object_page_remove(object, offidxstart, offidxend, FALSE);
2312                         if (object->type == OBJT_SWAP)
2313                                 swap_pager_freespace(object, offidxstart, count);
2314                         if (offidxend >= object->size &&
2315                             offidxstart < object->size)
2316                                 object->size = offidxstart;
2317                 }
2318                 VM_OBJECT_UNLOCK(object);
2319                 vm_object_deallocate(object);
2320         }
2321
2322         vm_map_entry_dispose(map, entry);
2323 }
2324
2325 /*
2326  *      vm_map_delete:  [ internal use only ]
2327  *
2328  *      Deallocates the given address range from the target
2329  *      map.
2330  */
2331 int
2332 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
2333 {
2334         vm_map_entry_t entry;
2335         vm_map_entry_t first_entry;
2336
2337         /*
2338          * Find the start of the region, and clip it
2339          */
2340         if (!vm_map_lookup_entry(map, start, &first_entry))
2341                 entry = first_entry->next;
2342         else {
2343                 entry = first_entry;
2344                 vm_map_clip_start(map, entry, start);
2345         }
2346
2347         /*
2348          * Step through all entries in this region
2349          */
2350         while ((entry != &map->header) && (entry->start < end)) {
2351                 vm_map_entry_t next;
2352
2353                 /*
2354                  * Wait for wiring or unwiring of an entry to complete.
2355                  * Also wait for any system wirings to disappear on
2356                  * user maps.
2357                  */
2358                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
2359                     (vm_map_pmap(map) != kernel_pmap &&
2360                     vm_map_entry_system_wired_count(entry) != 0)) {
2361                         unsigned int last_timestamp;
2362                         vm_offset_t saved_start;
2363                         vm_map_entry_t tmp_entry;
2364
2365                         saved_start = entry->start;
2366                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2367                         last_timestamp = map->timestamp;
2368                         (void) vm_map_unlock_and_wait(map, FALSE);
2369                         vm_map_lock(map);
2370                         if (last_timestamp + 1 != map->timestamp) {
2371                                 /*
2372                                  * Look again for the entry because the map was
2373                                  * modified while it was unlocked.
2374                                  * Specifically, the entry may have been
2375                                  * clipped, merged, or deleted.
2376                                  */
2377                                 if (!vm_map_lookup_entry(map, saved_start,
2378                                                          &tmp_entry))
2379                                         entry = tmp_entry->next;
2380                                 else {
2381                                         entry = tmp_entry;
2382                                         vm_map_clip_start(map, entry,
2383                                                           saved_start);
2384                                 }
2385                         }
2386                         continue;
2387                 }
2388                 vm_map_clip_end(map, entry, end);
2389
2390                 next = entry->next;
2391
2392                 /*
2393                  * Unwire before removing addresses from the pmap; otherwise,
2394                  * unwiring will put the entries back in the pmap.
2395                  */
2396                 if (entry->wired_count != 0) {
2397                         vm_map_entry_unwire(map, entry);
2398                 }
2399
2400                 pmap_remove(map->pmap, entry->start, entry->end);
2401
2402                 /*
2403                  * Delete the entry (which may delete the object) only after
2404                  * removing all pmap entries pointing to its pages.
2405                  * (Otherwise, its page frames may be reallocated, and any
2406                  * modify bits will be set in the wrong object!)
2407                  */
2408                 vm_map_entry_delete(map, entry);
2409                 entry = next;
2410         }
2411         return (KERN_SUCCESS);
2412 }
2413
2414 /*
2415  *      vm_map_remove:
2416  *
2417  *      Remove the given address range from the target map.
2418  *      This is the exported form of vm_map_delete.
2419  */
2420 int
2421 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
2422 {
2423         int result;
2424
2425         vm_map_lock(map);
2426         VM_MAP_RANGE_CHECK(map, start, end);
2427         result = vm_map_delete(map, start, end);
2428         vm_map_unlock(map);
2429         return (result);
2430 }
2431
2432 /*
2433  *      vm_map_check_protection:
2434  *
2435  *      Assert that the target map allows the specified privilege on the
2436  *      entire address region given.  The entire region must be allocated.
2437  *
2438  *      WARNING!  This code does not and should not check whether the
2439  *      contents of the region is accessible.  For example a smaller file
2440  *      might be mapped into a larger address space.
2441  *
2442  *      NOTE!  This code is also called by munmap().
2443  *
2444  *      The map must be locked.  A read lock is sufficient.
2445  */
2446 boolean_t
2447 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
2448                         vm_prot_t protection)
2449 {
2450         vm_map_entry_t entry;
2451         vm_map_entry_t tmp_entry;
2452
2453         if (!vm_map_lookup_entry(map, start, &tmp_entry))
2454                 return (FALSE);
2455         entry = tmp_entry;
2456
2457         while (start < end) {
2458                 if (entry == &map->header)
2459                         return (FALSE);
2460                 /*
2461                  * No holes allowed!
2462                  */
2463                 if (start < entry->start)
2464                         return (FALSE);
2465                 /*
2466                  * Check protection associated with entry.
2467                  */
2468                 if ((entry->protection & protection) != protection)
2469                         return (FALSE);
2470                 /* go to next entry */
2471                 start = entry->end;
2472                 entry = entry->next;
2473         }
2474         return (TRUE);
2475 }
2476
2477 /*
2478  *      vm_map_copy_entry:
2479  *
2480  *      Copies the contents of the source entry to the destination
2481  *      entry.  The entries *must* be aligned properly.
2482  */
2483 static void
2484 vm_map_copy_entry(
2485         vm_map_t src_map,
2486         vm_map_t dst_map,
2487         vm_map_entry_t src_entry,
2488         vm_map_entry_t dst_entry)
2489 {
2490         vm_object_t src_object;
2491
2492         if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
2493                 return;
2494
2495         if (src_entry->wired_count == 0) {
2496
2497                 /*
2498                  * If the source entry is marked needs_copy, it is already
2499                  * write-protected.
2500                  */
2501                 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
2502                         pmap_protect(src_map->pmap,
2503                             src_entry->start,
2504                             src_entry->end,
2505                             src_entry->protection & ~VM_PROT_WRITE);
2506                 }
2507
2508                 /*
2509                  * Make a copy of the object.
2510                  */
2511                 if ((src_object = src_entry->object.vm_object) != NULL) {
2512                         VM_OBJECT_LOCK(src_object);
2513                         if ((src_object->handle == NULL) &&
2514                                 (src_object->type == OBJT_DEFAULT ||
2515                                  src_object->type == OBJT_SWAP)) {
2516                                 vm_object_collapse(src_object);
2517                                 if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
2518                                         vm_object_split(src_entry);
2519                                         src_object = src_entry->object.vm_object;
2520                                 }
2521                         }
2522                         vm_object_reference_locked(src_object);
2523                         vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
2524                         VM_OBJECT_UNLOCK(src_object);
2525                         dst_entry->object.vm_object = src_object;
2526                         src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2527                         dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2528                         dst_entry->offset = src_entry->offset;
2529                 } else {
2530                         dst_entry->object.vm_object = NULL;
2531                         dst_entry->offset = 0;
2532                 }
2533
2534                 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
2535                     dst_entry->end - dst_entry->start, src_entry->start);
2536         } else {
2537                 /*
2538                  * Of course, wired down pages can't be set copy-on-write.
2539                  * Cause wired pages to be copied into the new map by
2540                  * simulating faults (the new pages are pageable)
2541                  */
2542                 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry);
2543         }
2544 }
2545
2546 /*
2547  * vmspace_map_entry_forked:
2548  * Update the newly-forked vmspace each time a map entry is inherited
2549  * or copied.  The values for vm_dsize and vm_tsize are approximate
2550  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
2551  */
2552 static void
2553 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
2554     vm_map_entry_t entry)
2555 {
2556         vm_size_t entrysize;
2557         vm_offset_t newend;
2558
2559         entrysize = entry->end - entry->start;
2560         vm2->vm_map.size += entrysize;
2561         if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
2562                 vm2->vm_ssize += btoc(entrysize);
2563         } else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
2564             entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
2565                 newend = MIN(entry->end,
2566                     (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
2567                 vm2->vm_dsize += btoc(newend - entry->start);
2568         } else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
2569             entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
2570                 newend = MIN(entry->end,
2571                     (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
2572                 vm2->vm_tsize += btoc(newend - entry->start);
2573         }
2574 }
2575
2576 /*
2577  * vmspace_fork:
2578  * Create a new process vmspace structure and vm_map
2579  * based on those of an existing process.  The new map
2580  * is based on the old map, according to the inheritance
2581  * values on the regions in that map.
2582  *
2583  * XXX It might be worth coalescing the entries added to the new vmspace.
2584  *
2585  * The source map must not be locked.
2586  */
2587 struct vmspace *
2588 vmspace_fork(struct vmspace *vm1)
2589 {
2590         struct vmspace *vm2;
2591         vm_map_t old_map = &vm1->vm_map;
2592         vm_map_t new_map;
2593         vm_map_entry_t old_entry;
2594         vm_map_entry_t new_entry;
2595         vm_object_t object;
2596
2597         vm_map_lock(old_map);
2598
2599         vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset);
2600         if (vm2 == NULL)
2601                 goto unlock_and_return;
2602         vm2->vm_taddr = vm1->vm_taddr;
2603         vm2->vm_daddr = vm1->vm_daddr;
2604         vm2->vm_maxsaddr = vm1->vm_maxsaddr;
2605         new_map = &vm2->vm_map; /* XXX */
2606         new_map->timestamp = 1;
2607
2608         old_entry = old_map->header.next;
2609
2610         while (old_entry != &old_map->header) {
2611                 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2612                         panic("vm_map_fork: encountered a submap");
2613
2614                 switch (old_entry->inheritance) {
2615                 case VM_INHERIT_NONE:
2616                         break;
2617
2618                 case VM_INHERIT_SHARE:
2619                         /*
2620                          * Clone the entry, creating the shared object if necessary.
2621                          */
2622                         object = old_entry->object.vm_object;
2623                         if (object == NULL) {
2624                                 object = vm_object_allocate(OBJT_DEFAULT,
2625                                         atop(old_entry->end - old_entry->start));
2626                                 old_entry->object.vm_object = object;
2627                                 old_entry->offset = 0;
2628                         }
2629
2630                         /*
2631                          * Add the reference before calling vm_object_shadow
2632                          * to insure that a shadow object is created.
2633                          */
2634                         vm_object_reference(object);
2635                         if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
2636                                 vm_object_shadow(&old_entry->object.vm_object,
2637                                         &old_entry->offset,
2638                                         atop(old_entry->end - old_entry->start));
2639                                 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
2640                                 /* Transfer the second reference too. */
2641                                 vm_object_reference(
2642                                     old_entry->object.vm_object);
2643                                 vm_object_deallocate(object);
2644                                 object = old_entry->object.vm_object;
2645                         }
2646                         VM_OBJECT_LOCK(object);
2647                         vm_object_clear_flag(object, OBJ_ONEMAPPING);
2648                         VM_OBJECT_UNLOCK(object);
2649
2650                         /*
2651                          * Clone the entry, referencing the shared object.
2652                          */
2653                         new_entry = vm_map_entry_create(new_map);
2654                         *new_entry = *old_entry;
2655                         new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
2656                             MAP_ENTRY_IN_TRANSITION);
2657                         new_entry->wired_count = 0;
2658
2659                         /*
2660                          * Insert the entry into the new map -- we know we're
2661                          * inserting at the end of the new map.
2662                          */
2663                         vm_map_entry_link(new_map, new_map->header.prev,
2664                             new_entry);
2665                         vmspace_map_entry_forked(vm1, vm2, new_entry);
2666
2667                         /*
2668                          * Update the physical map
2669                          */
2670                         pmap_copy(new_map->pmap, old_map->pmap,
2671                             new_entry->start,
2672                             (old_entry->end - old_entry->start),
2673                             old_entry->start);
2674                         break;
2675
2676                 case VM_INHERIT_COPY:
2677                         /*
2678                          * Clone the entry and link into the map.
2679                          */
2680                         new_entry = vm_map_entry_create(new_map);
2681                         *new_entry = *old_entry;
2682                         new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
2683                             MAP_ENTRY_IN_TRANSITION);
2684                         new_entry->wired_count = 0;
2685                         new_entry->object.vm_object = NULL;
2686                         vm_map_entry_link(new_map, new_map->header.prev,
2687                             new_entry);
2688                         vmspace_map_entry_forked(vm1, vm2, new_entry);
2689                         vm_map_copy_entry(old_map, new_map, old_entry,
2690                             new_entry);
2691                         break;
2692                 }
2693                 old_entry = old_entry->next;
2694         }
2695 unlock_and_return:
2696         vm_map_unlock(old_map);
2697
2698         return (vm2);
2699 }
2700
2701 int
2702 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
2703     vm_prot_t prot, vm_prot_t max, int cow)
2704 {
2705         vm_map_entry_t new_entry, prev_entry;
2706         vm_offset_t bot, top;
2707         vm_size_t init_ssize;
2708         int orient, rv;
2709         rlim_t vmemlim;
2710
2711         /*
2712          * The stack orientation is piggybacked with the cow argument.
2713          * Extract it into orient and mask the cow argument so that we
2714          * don't pass it around further.
2715          * NOTE: We explicitly allow bi-directional stacks.
2716          */
2717         orient = cow & (MAP_STACK_GROWS_DOWN|MAP_STACK_GROWS_UP);
2718         cow &= ~orient;
2719         KASSERT(orient != 0, ("No stack grow direction"));
2720
2721         if (addrbos < vm_map_min(map) ||
2722             addrbos > vm_map_max(map) ||
2723             addrbos + max_ssize < addrbos)
2724                 return (KERN_NO_SPACE);
2725
2726         init_ssize = (max_ssize < sgrowsiz) ? max_ssize : sgrowsiz;
2727
2728         PROC_LOCK(curthread->td_proc);
2729         vmemlim = lim_cur(curthread->td_proc, RLIMIT_VMEM);
2730         PROC_UNLOCK(curthread->td_proc);
2731
2732         vm_map_lock(map);
2733
2734         /* If addr is already mapped, no go */
2735         if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
2736                 vm_map_unlock(map);
2737                 return (KERN_NO_SPACE);
2738         }
2739
2740         /* If we would blow our VMEM resource limit, no go */
2741         if (map->size + init_ssize > vmemlim) {
2742                 vm_map_unlock(map);
2743                 return (KERN_NO_SPACE);
2744         }
2745
2746         /*
2747          * If we can't accomodate max_ssize in the current mapping, no go.
2748          * However, we need to be aware that subsequent user mappings might
2749          * map into the space we have reserved for stack, and currently this
2750          * space is not protected.
2751          *
2752          * Hopefully we will at least detect this condition when we try to
2753          * grow the stack.
2754          */
2755         if ((prev_entry->next != &map->header) &&
2756             (prev_entry->next->start < addrbos + max_ssize)) {
2757                 vm_map_unlock(map);
2758                 return (KERN_NO_SPACE);
2759         }
2760
2761         /*
2762          * We initially map a stack of only init_ssize.  We will grow as
2763          * needed later.  Depending on the orientation of the stack (i.e.
2764          * the grow direction) we either map at the top of the range, the
2765          * bottom of the range or in the middle.
2766          *
2767          * Note: we would normally expect prot and max to be VM_PROT_ALL,
2768          * and cow to be 0.  Possibly we should eliminate these as input
2769          * parameters, and just pass these values here in the insert call.
2770          */
2771         if (orient == MAP_STACK_GROWS_DOWN)
2772                 bot = addrbos + max_ssize - init_ssize;
2773         else if (orient == MAP_STACK_GROWS_UP)
2774                 bot = addrbos;
2775         else
2776                 bot = round_page(addrbos + max_ssize/2 - init_ssize/2);
2777         top = bot + init_ssize;
2778         rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
2779
2780         /* Now set the avail_ssize amount. */
2781         if (rv == KERN_SUCCESS) {
2782                 if (prev_entry != &map->header)
2783                         vm_map_clip_end(map, prev_entry, bot);
2784                 new_entry = prev_entry->next;
2785                 if (new_entry->end != top || new_entry->start != bot)
2786                         panic("Bad entry start/end for new stack entry");
2787
2788                 new_entry->avail_ssize = max_ssize - init_ssize;
2789                 if (orient & MAP_STACK_GROWS_DOWN)
2790                         new_entry->eflags |= MAP_ENTRY_GROWS_DOWN;
2791                 if (orient & MAP_STACK_GROWS_UP)
2792                         new_entry->eflags |= MAP_ENTRY_GROWS_UP;
2793         }
2794
2795         vm_map_unlock(map);
2796         return (rv);
2797 }
2798
2799 /* Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
2800  * desired address is already mapped, or if we successfully grow
2801  * the stack.  Also returns KERN_SUCCESS if addr is outside the
2802  * stack range (this is strange, but preserves compatibility with
2803  * the grow function in vm_machdep.c).
2804  */
2805 int
2806 vm_map_growstack(struct proc *p, vm_offset_t addr)
2807 {
2808         vm_map_entry_t next_entry, prev_entry;
2809         vm_map_entry_t new_entry, stack_entry;
2810         struct vmspace *vm = p->p_vmspace;
2811         vm_map_t map = &vm->vm_map;
2812         vm_offset_t end;
2813         size_t grow_amount, max_grow;
2814         rlim_t stacklim, vmemlim;
2815         int is_procstack, rv;
2816
2817 Retry:
2818         PROC_LOCK(p);
2819         stacklim = lim_cur(p, RLIMIT_STACK);
2820         vmemlim = lim_cur(p, RLIMIT_VMEM);
2821         PROC_UNLOCK(p);
2822
2823         vm_map_lock_read(map);
2824
2825         /* If addr is already in the entry range, no need to grow.*/
2826         if (vm_map_lookup_entry(map, addr, &prev_entry)) {
2827                 vm_map_unlock_read(map);
2828                 return (KERN_SUCCESS);
2829         }
2830
2831         next_entry = prev_entry->next;
2832         if (!(prev_entry->eflags & MAP_ENTRY_GROWS_UP)) {
2833                 /*
2834                  * This entry does not grow upwards. Since the address lies
2835                  * beyond this entry, the next entry (if one exists) has to
2836                  * be a downward growable entry. The entry list header is
2837                  * never a growable entry, so it suffices to check the flags.
2838                  */
2839                 if (!(next_entry->eflags & MAP_ENTRY_GROWS_DOWN)) {
2840                         vm_map_unlock_read(map);
2841                         return (KERN_SUCCESS);
2842                 }
2843                 stack_entry = next_entry;
2844         } else {
2845                 /*
2846                  * This entry grows upward. If the next entry does not at
2847                  * least grow downwards, this is the entry we need to grow.
2848                  * otherwise we have two possible choices and we have to
2849                  * select one.
2850                  */
2851                 if (next_entry->eflags & MAP_ENTRY_GROWS_DOWN) {
2852                         /*
2853                          * We have two choices; grow the entry closest to
2854                          * the address to minimize the amount of growth.
2855                          */
2856                         if (addr - prev_entry->end <= next_entry->start - addr)
2857                                 stack_entry = prev_entry;
2858                         else
2859                                 stack_entry = next_entry;
2860                 } else
2861                         stack_entry = prev_entry;
2862         }
2863
2864         if (stack_entry == next_entry) {
2865                 KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_DOWN, ("foo"));
2866                 KASSERT(addr < stack_entry->start, ("foo"));
2867                 end = (prev_entry != &map->header) ? prev_entry->end :
2868                     stack_entry->start - stack_entry->avail_ssize;
2869                 grow_amount = roundup(stack_entry->start - addr, PAGE_SIZE);
2870                 max_grow = stack_entry->start - end;
2871         } else {
2872                 KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_UP, ("foo"));
2873                 KASSERT(addr >= stack_entry->end, ("foo"));
2874                 end = (next_entry != &map->header) ? next_entry->start :
2875                     stack_entry->end + stack_entry->avail_ssize;
2876                 grow_amount = roundup(addr + 1 - stack_entry->end, PAGE_SIZE);
2877                 max_grow = end - stack_entry->end;
2878         }
2879
2880         if (grow_amount > stack_entry->avail_ssize) {
2881                 vm_map_unlock_read(map);
2882                 return (KERN_NO_SPACE);
2883         }
2884
2885         /*
2886          * If there is no longer enough space between the entries nogo, and
2887          * adjust the available space.  Note: this  should only happen if the
2888          * user has mapped into the stack area after the stack was created,
2889          * and is probably an error.
2890          *
2891          * This also effectively destroys any guard page the user might have
2892          * intended by limiting the stack size.
2893          */
2894         if (grow_amount > max_grow) {
2895                 if (vm_map_lock_upgrade(map))
2896                         goto Retry;
2897
2898                 stack_entry->avail_ssize = max_grow;
2899
2900                 vm_map_unlock(map);
2901                 return (KERN_NO_SPACE);
2902         }
2903
2904         is_procstack = (addr >= (vm_offset_t)vm->vm_maxsaddr) ? 1 : 0;
2905
2906         /*
2907          * If this is the main process stack, see if we're over the stack
2908          * limit.
2909          */
2910         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
2911                 vm_map_unlock_read(map);
2912                 return (KERN_NO_SPACE);
2913         }
2914
2915         /* Round up the grow amount modulo SGROWSIZ */
2916         grow_amount = roundup (grow_amount, sgrowsiz);
2917         if (grow_amount > stack_entry->avail_ssize)
2918                 grow_amount = stack_entry->avail_ssize;
2919         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
2920                 grow_amount = stacklim - ctob(vm->vm_ssize);
2921         }
2922
2923         /* If we would blow our VMEM resource limit, no go */
2924         if (map->size + grow_amount > vmemlim) {
2925                 vm_map_unlock_read(map);
2926                 return (KERN_NO_SPACE);
2927         }
2928
2929         if (vm_map_lock_upgrade(map))
2930                 goto Retry;
2931
2932         if (stack_entry == next_entry) {
2933                 /*
2934                  * Growing downward.
2935                  */
2936                 /* Get the preliminary new entry start value */
2937                 addr = stack_entry->start - grow_amount;
2938
2939                 /*
2940                  * If this puts us into the previous entry, cut back our
2941                  * growth to the available space. Also, see the note above.
2942                  */
2943                 if (addr < end) {
2944                         stack_entry->avail_ssize = max_grow;
2945                         addr = end;
2946                 }
2947
2948                 rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start,
2949                     p->p_sysent->sv_stackprot, VM_PROT_ALL, 0);
2950
2951                 /* Adjust the available stack space by the amount we grew. */
2952                 if (rv == KERN_SUCCESS) {
2953                         if (prev_entry != &map->header)
2954                                 vm_map_clip_end(map, prev_entry, addr);
2955                         new_entry = prev_entry->next;
2956                         KASSERT(new_entry == stack_entry->prev, ("foo"));
2957                         KASSERT(new_entry->end == stack_entry->start, ("foo"));
2958                         KASSERT(new_entry->start == addr, ("foo"));
2959                         grow_amount = new_entry->end - new_entry->start;
2960                         new_entry->avail_ssize = stack_entry->avail_ssize -
2961                             grow_amount;
2962                         stack_entry->eflags &= ~MAP_ENTRY_GROWS_DOWN;
2963                         new_entry->eflags |= MAP_ENTRY_GROWS_DOWN;
2964                 }
2965         } else {
2966                 /*
2967                  * Growing upward.
2968                  */
2969                 addr = stack_entry->end + grow_amount;
2970
2971                 /*
2972                  * If this puts us into the next entry, cut back our growth
2973                  * to the available space. Also, see the note above.
2974                  */
2975                 if (addr > end) {
2976                         stack_entry->avail_ssize = end - stack_entry->end;
2977                         addr = end;
2978                 }
2979
2980                 grow_amount = addr - stack_entry->end;
2981
2982                 /* Grow the underlying object if applicable. */
2983                 if (stack_entry->object.vm_object == NULL ||
2984                     vm_object_coalesce(stack_entry->object.vm_object,
2985                     stack_entry->offset,
2986                     (vm_size_t)(stack_entry->end - stack_entry->start),
2987                     (vm_size_t)grow_amount)) {
2988                         map->size += (addr - stack_entry->end);
2989                         /* Update the current entry. */
2990                         stack_entry->end = addr;
2991                         stack_entry->avail_ssize -= grow_amount;
2992                         vm_map_entry_resize_free(map, stack_entry);
2993                         rv = KERN_SUCCESS;
2994
2995                         if (next_entry != &map->header)
2996                                 vm_map_clip_start(map, next_entry, addr);
2997                 } else
2998                         rv = KERN_FAILURE;
2999         }
3000
3001         if (rv == KERN_SUCCESS && is_procstack)
3002                 vm->vm_ssize += btoc(grow_amount);
3003
3004         vm_map_unlock(map);
3005
3006         /*
3007          * Heed the MAP_WIREFUTURE flag if it was set for this process.
3008          */
3009         if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE)) {
3010                 vm_map_wire(map,
3011                     (stack_entry == next_entry) ? addr : addr - grow_amount,
3012                     (stack_entry == next_entry) ? stack_entry->start : addr,
3013                     (p->p_flag & P_SYSTEM)
3014                     ? VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES
3015                     : VM_MAP_WIRE_USER|VM_MAP_WIRE_NOHOLES);
3016         }
3017
3018         return (rv);
3019 }
3020
3021 /*
3022  * Unshare the specified VM space for exec.  If other processes are
3023  * mapped to it, then create a new one.  The new vmspace is null.
3024  */
3025 int
3026 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
3027 {
3028         struct vmspace *oldvmspace = p->p_vmspace;
3029         struct vmspace *newvmspace;
3030
3031         newvmspace = vmspace_alloc(minuser, maxuser);
3032         if (newvmspace == NULL)
3033                 return (ENOMEM);
3034         newvmspace->vm_swrss = oldvmspace->vm_swrss;
3035         /*
3036          * This code is written like this for prototype purposes.  The
3037          * goal is to avoid running down the vmspace here, but let the
3038          * other process's that are still using the vmspace to finally
3039          * run it down.  Even though there is little or no chance of blocking
3040          * here, it is a good idea to keep this form for future mods.
3041          */
3042         PROC_VMSPACE_LOCK(p);
3043         p->p_vmspace = newvmspace;
3044         PROC_VMSPACE_UNLOCK(p);
3045         if (p == curthread->td_proc)            /* XXXKSE ? */
3046                 pmap_activate(curthread);
3047         vmspace_free(oldvmspace);
3048         return (0);
3049 }
3050
3051 /*
3052  * Unshare the specified VM space for forcing COW.  This
3053  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3054  */
3055 int
3056 vmspace_unshare(struct proc *p)
3057 {
3058         struct vmspace *oldvmspace = p->p_vmspace;
3059         struct vmspace *newvmspace;
3060
3061         if (oldvmspace->vm_refcnt == 1)
3062                 return (0);
3063         newvmspace = vmspace_fork(oldvmspace);
3064         if (newvmspace == NULL)
3065                 return (ENOMEM);
3066         PROC_VMSPACE_LOCK(p);
3067         p->p_vmspace = newvmspace;
3068         PROC_VMSPACE_UNLOCK(p);
3069         if (p == curthread->td_proc)            /* XXXKSE ? */
3070                 pmap_activate(curthread);
3071         vmspace_free(oldvmspace);
3072         return (0);
3073 }
3074
3075 /*
3076  *      vm_map_lookup:
3077  *
3078  *      Finds the VM object, offset, and
3079  *      protection for a given virtual address in the
3080  *      specified map, assuming a page fault of the
3081  *      type specified.
3082  *
3083  *      Leaves the map in question locked for read; return
3084  *      values are guaranteed until a vm_map_lookup_done
3085  *      call is performed.  Note that the map argument
3086  *      is in/out; the returned map must be used in
3087  *      the call to vm_map_lookup_done.
3088  *
3089  *      A handle (out_entry) is returned for use in
3090  *      vm_map_lookup_done, to make that fast.
3091  *
3092  *      If a lookup is requested with "write protection"
3093  *      specified, the map may be changed to perform virtual
3094  *      copying operations, although the data referenced will
3095  *      remain the same.
3096  */
3097 int
3098 vm_map_lookup(vm_map_t *var_map,                /* IN/OUT */
3099               vm_offset_t vaddr,
3100               vm_prot_t fault_typea,
3101               vm_map_entry_t *out_entry,        /* OUT */
3102               vm_object_t *object,              /* OUT */
3103               vm_pindex_t *pindex,              /* OUT */
3104               vm_prot_t *out_prot,              /* OUT */
3105               boolean_t *wired)                 /* OUT */
3106 {
3107         vm_map_entry_t entry;
3108         vm_map_t map = *var_map;
3109         vm_prot_t prot;
3110         vm_prot_t fault_type = fault_typea;
3111
3112 RetryLookup:;
3113         /*
3114          * Lookup the faulting address.
3115          */
3116
3117         vm_map_lock_read(map);
3118 #define RETURN(why) \
3119                 { \
3120                 vm_map_unlock_read(map); \
3121                 return (why); \
3122                 }
3123
3124         /*
3125          * If the map has an interesting hint, try it before calling full
3126          * blown lookup routine.
3127          */
3128         entry = map->root;
3129         *out_entry = entry;
3130         if (entry == NULL ||
3131             (vaddr < entry->start) || (vaddr >= entry->end)) {
3132                 /*
3133                  * Entry was either not a valid hint, or the vaddr was not
3134                  * contained in the entry, so do a full lookup.
3135                  */
3136                 if (!vm_map_lookup_entry(map, vaddr, out_entry))
3137                         RETURN(KERN_INVALID_ADDRESS);
3138
3139                 entry = *out_entry;
3140         }
3141
3142         /*
3143          * Handle submaps.
3144          */
3145         if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3146                 vm_map_t old_map = map;
3147
3148                 *var_map = map = entry->object.sub_map;
3149                 vm_map_unlock_read(old_map);
3150                 goto RetryLookup;
3151         }
3152
3153         /*
3154          * Check whether this task is allowed to have this page.
3155          * Note the special case for MAP_ENTRY_COW
3156          * pages with an override.  This is to implement a forced
3157          * COW for debuggers.
3158          */
3159         if (fault_type & VM_PROT_OVERRIDE_WRITE)
3160                 prot = entry->max_protection;
3161         else
3162                 prot = entry->protection;
3163         fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
3164         if ((fault_type & prot) != fault_type) {
3165                         RETURN(KERN_PROTECTION_FAILURE);
3166         }
3167         if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3168             (entry->eflags & MAP_ENTRY_COW) &&
3169             (fault_type & VM_PROT_WRITE) &&
3170             (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) {
3171                 RETURN(KERN_PROTECTION_FAILURE);
3172         }
3173
3174         /*
3175          * If this page is not pageable, we have to get it for all possible
3176          * accesses.
3177          */
3178         *wired = (entry->wired_count != 0);
3179         if (*wired)
3180                 prot = fault_type = entry->protection;
3181
3182         /*
3183          * If the entry was copy-on-write, we either ...
3184          */
3185         if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3186                 /*
3187                  * If we want to write the page, we may as well handle that
3188                  * now since we've got the map locked.
3189                  *
3190                  * If we don't need to write the page, we just demote the
3191                  * permissions allowed.
3192                  */
3193                 if (fault_type & VM_PROT_WRITE) {
3194                         /*
3195                          * Make a new object, and place it in the object
3196                          * chain.  Note that no new references have appeared
3197                          * -- one just moved from the map to the new
3198                          * object.
3199                          */
3200                         if (vm_map_lock_upgrade(map))
3201                                 goto RetryLookup;
3202
3203                         vm_object_shadow(
3204                             &entry->object.vm_object,
3205                             &entry->offset,
3206                             atop(entry->end - entry->start));
3207                         entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3208
3209                         vm_map_lock_downgrade(map);
3210                 } else {
3211                         /*
3212                          * We're attempting to read a copy-on-write page --
3213                          * don't allow writes.
3214                          */
3215                         prot &= ~VM_PROT_WRITE;
3216                 }
3217         }
3218
3219         /*
3220          * Create an object if necessary.
3221          */
3222         if (entry->object.vm_object == NULL &&
3223             !map->system_map) {
3224                 if (vm_map_lock_upgrade(map))
3225                         goto RetryLookup;
3226                 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
3227                     atop(entry->end - entry->start));
3228                 entry->offset = 0;
3229                 vm_map_lock_downgrade(map);
3230         }
3231
3232         /*
3233          * Return the object/offset from this entry.  If the entry was
3234          * copy-on-write or empty, it has been fixed up.
3235          */
3236         *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
3237         *object = entry->object.vm_object;
3238
3239         *out_prot = prot;
3240         return (KERN_SUCCESS);
3241
3242 #undef  RETURN
3243 }
3244
3245 /*
3246  *      vm_map_lookup_locked:
3247  *
3248  *      Lookup the faulting address.  A version of vm_map_lookup that returns 
3249  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
3250  */
3251 int
3252 vm_map_lookup_locked(vm_map_t *var_map,         /* IN/OUT */
3253                      vm_offset_t vaddr,
3254                      vm_prot_t fault_typea,
3255                      vm_map_entry_t *out_entry, /* OUT */
3256                      vm_object_t *object,       /* OUT */
3257                      vm_pindex_t *pindex,       /* OUT */
3258                      vm_prot_t *out_prot,       /* OUT */
3259                      boolean_t *wired)          /* OUT */
3260 {
3261         vm_map_entry_t entry;
3262         vm_map_t map = *var_map;
3263         vm_prot_t prot;
3264         vm_prot_t fault_type = fault_typea;
3265
3266         /*
3267          * If the map has an interesting hint, try it before calling full
3268          * blown lookup routine.
3269          */
3270         entry = map->root;
3271         *out_entry = entry;
3272         if (entry == NULL ||
3273             (vaddr < entry->start) || (vaddr >= entry->end)) {
3274                 /*
3275                  * Entry was either not a valid hint, or the vaddr was not
3276                  * contained in the entry, so do a full lookup.
3277                  */
3278                 if (!vm_map_lookup_entry(map, vaddr, out_entry))
3279                         return (KERN_INVALID_ADDRESS);
3280
3281                 entry = *out_entry;
3282         }
3283
3284         /*
3285          * Fail if the entry refers to a submap.
3286          */
3287         if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3288                 return (KERN_FAILURE);
3289
3290         /*
3291          * Check whether this task is allowed to have this page.
3292          * Note the special case for MAP_ENTRY_COW
3293          * pages with an override.  This is to implement a forced
3294          * COW for debuggers.
3295          */
3296         if (fault_type & VM_PROT_OVERRIDE_WRITE)
3297                 prot = entry->max_protection;
3298         else
3299                 prot = entry->protection;
3300         fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
3301         if ((fault_type & prot) != fault_type)
3302                 return (KERN_PROTECTION_FAILURE);
3303         if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3304             (entry->eflags & MAP_ENTRY_COW) &&
3305             (fault_type & VM_PROT_WRITE) &&
3306             (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0)
3307                 return (KERN_PROTECTION_FAILURE);
3308
3309         /*
3310          * If this page is not pageable, we have to get it for all possible
3311          * accesses.
3312          */
3313         *wired = (entry->wired_count != 0);
3314         if (*wired)
3315                 prot = fault_type = entry->protection;
3316
3317         if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3318                 /*
3319                  * Fail if the entry was copy-on-write for a write fault.
3320                  */
3321                 if (fault_type & VM_PROT_WRITE)
3322                         return (KERN_FAILURE);
3323                 /*
3324                  * We're attempting to read a copy-on-write page --
3325                  * don't allow writes.
3326                  */
3327                 prot &= ~VM_PROT_WRITE;
3328         }
3329
3330         /*
3331          * Fail if an object should be created.
3332          */
3333         if (entry->object.vm_object == NULL && !map->system_map)
3334                 return (KERN_FAILURE);
3335
3336         /*
3337          * Return the object/offset from this entry.  If the entry was
3338          * copy-on-write or empty, it has been fixed up.
3339          */
3340         *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
3341         *object = entry->object.vm_object;
3342
3343         *out_prot = prot;
3344         return (KERN_SUCCESS);
3345 }
3346
3347 /*
3348  *      vm_map_lookup_done:
3349  *
3350  *      Releases locks acquired by a vm_map_lookup
3351  *      (according to the handle returned by that lookup).
3352  */
3353 void
3354 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
3355 {
3356         /*
3357          * Unlock the main-level map
3358          */
3359         vm_map_unlock_read(map);
3360 }
3361
3362 #include "opt_ddb.h"
3363 #ifdef DDB
3364 #include <sys/kernel.h>
3365
3366 #include <ddb/ddb.h>
3367
3368 /*
3369  *      vm_map_print:   [ debug ]
3370  */
3371 DB_SHOW_COMMAND(map, vm_map_print)
3372 {
3373         static int nlines;
3374         /* XXX convert args. */
3375         vm_map_t map = (vm_map_t)addr;
3376         boolean_t full = have_addr;
3377
3378         vm_map_entry_t entry;
3379
3380         db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
3381             (void *)map,
3382             (void *)map->pmap, map->nentries, map->timestamp);
3383         nlines++;
3384
3385         if (!full && db_indent)
3386                 return;
3387
3388         db_indent += 2;
3389         for (entry = map->header.next; entry != &map->header;
3390             entry = entry->next) {
3391                 db_iprintf("map entry %p: start=%p, end=%p\n",
3392                     (void *)entry, (void *)entry->start, (void *)entry->end);
3393                 nlines++;
3394                 {
3395                         static char *inheritance_name[4] =
3396                         {"share", "copy", "none", "donate_copy"};
3397
3398                         db_iprintf(" prot=%x/%x/%s",
3399                             entry->protection,
3400                             entry->max_protection,
3401                             inheritance_name[(int)(unsigned char)entry->inheritance]);
3402                         if (entry->wired_count != 0)
3403                                 db_printf(", wired");
3404                 }
3405                 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3406                         db_printf(", share=%p, offset=0x%jx\n",
3407                             (void *)entry->object.sub_map,
3408                             (uintmax_t)entry->offset);
3409                         nlines++;
3410                         if ((entry->prev == &map->header) ||
3411                             (entry->prev->object.sub_map !=
3412                                 entry->object.sub_map)) {
3413                                 db_indent += 2;
3414                                 vm_map_print((db_expr_t)(intptr_t)
3415                                              entry->object.sub_map,
3416                                              full, 0, (char *)0);
3417                                 db_indent -= 2;
3418                         }
3419                 } else {
3420                         db_printf(", object=%p, offset=0x%jx",
3421                             (void *)entry->object.vm_object,
3422                             (uintmax_t)entry->offset);
3423                         if (entry->eflags & MAP_ENTRY_COW)
3424                                 db_printf(", copy (%s)",
3425                                     (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
3426                         db_printf("\n");
3427                         nlines++;
3428
3429                         if ((entry->prev == &map->header) ||
3430                             (entry->prev->object.vm_object !=
3431                                 entry->object.vm_object)) {
3432                                 db_indent += 2;
3433                                 vm_object_print((db_expr_t)(intptr_t)
3434                                                 entry->object.vm_object,
3435                                                 full, 0, (char *)0);
3436                                 nlines += 4;
3437                                 db_indent -= 2;
3438                         }
3439                 }
3440         }
3441         db_indent -= 2;
3442         if (db_indent == 0)
3443                 nlines = 0;
3444 }
3445
3446
3447 DB_SHOW_COMMAND(procvm, procvm)
3448 {
3449         struct proc *p;
3450
3451         if (have_addr) {
3452                 p = (struct proc *) addr;
3453         } else {
3454                 p = curproc;
3455         }
3456
3457         db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
3458             (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
3459             (void *)vmspace_pmap(p->p_vmspace));
3460
3461         vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL);
3462 }
3463
3464 #endif /* DDB */