]> CyberLeo.Net >> Repos - FreeBSD/releng/7.2.git/blob - sys/vm/vm_object.c
Create releng/7.2 from stable/7 in preparation for 7.2-RELEASE.
[FreeBSD/releng/7.2.git] / sys / vm / vm_object.c
1 /*-
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60
61 /*
62  *      Virtual memory object module.
63  */
64
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67
68 #include "opt_vm.h"
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/lock.h>
73 #include <sys/mman.h>
74 #include <sys/mount.h>
75 #include <sys/kernel.h>
76 #include <sys/sysctl.h>
77 #include <sys/mutex.h>
78 #include <sys/proc.h>           /* for curproc, pageproc */
79 #include <sys/socket.h>
80 #include <sys/vnode.h>
81 #include <sys/vmmeter.h>
82 #include <sys/sx.h>
83
84 #include <vm/vm.h>
85 #include <vm/vm_param.h>
86 #include <vm/pmap.h>
87 #include <vm/vm_map.h>
88 #include <vm/vm_object.h>
89 #include <vm/vm_page.h>
90 #include <vm/vm_pageout.h>
91 #include <vm/vm_pager.h>
92 #include <vm/swap_pager.h>
93 #include <vm/vm_kern.h>
94 #include <vm/vm_extern.h>
95 #include <vm/vm_reserv.h>
96 #include <vm/uma.h>
97
98 #define EASY_SCAN_FACTOR       8
99
100 #define MSYNC_FLUSH_HARDSEQ     0x01
101 #define MSYNC_FLUSH_SOFTSEQ     0x02
102
103 /*
104  * msync / VM object flushing optimizations
105  */
106 static int msync_flush_flags = MSYNC_FLUSH_HARDSEQ | MSYNC_FLUSH_SOFTSEQ;
107 SYSCTL_INT(_vm, OID_AUTO, msync_flush_flags,
108         CTLFLAG_RW, &msync_flush_flags, 0, "");
109
110 static int old_msync;
111 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
112     "Use old (insecure) msync behavior");
113
114 static void     vm_object_qcollapse(vm_object_t object);
115 static int      vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags);
116 static void     vm_object_vndeallocate(vm_object_t object);
117
118 /*
119  *      Virtual memory objects maintain the actual data
120  *      associated with allocated virtual memory.  A given
121  *      page of memory exists within exactly one object.
122  *
123  *      An object is only deallocated when all "references"
124  *      are given up.  Only one "reference" to a given
125  *      region of an object should be writeable.
126  *
127  *      Associated with each object is a list of all resident
128  *      memory pages belonging to that object; this list is
129  *      maintained by the "vm_page" module, and locked by the object's
130  *      lock.
131  *
132  *      Each object also records a "pager" routine which is
133  *      used to retrieve (and store) pages to the proper backing
134  *      storage.  In addition, objects may be backed by other
135  *      objects from which they were virtual-copied.
136  *
137  *      The only items within the object structure which are
138  *      modified after time of creation are:
139  *              reference count         locked by object's lock
140  *              pager routine           locked by object's lock
141  *
142  */
143
144 struct object_q vm_object_list;
145 struct mtx vm_object_list_mtx;  /* lock for object list and count */
146
147 struct vm_object kernel_object_store;
148 struct vm_object kmem_object_store;
149
150 SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0, "VM object stats");
151
152 static long object_collapses;
153 SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
154     &object_collapses, 0, "VM object collapses");
155
156 static long object_bypasses;
157 SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
158     &object_bypasses, 0, "VM object bypasses");
159
160 static uma_zone_t obj_zone;
161
162 static int vm_object_zinit(void *mem, int size, int flags);
163
164 #ifdef INVARIANTS
165 static void vm_object_zdtor(void *mem, int size, void *arg);
166
167 static void
168 vm_object_zdtor(void *mem, int size, void *arg)
169 {
170         vm_object_t object;
171
172         object = (vm_object_t)mem;
173         KASSERT(TAILQ_EMPTY(&object->memq),
174             ("object %p has resident pages",
175             object));
176 #if VM_NRESERVLEVEL > 0
177         KASSERT(LIST_EMPTY(&object->rvq),
178             ("object %p has reservations",
179             object));
180 #endif
181         KASSERT(object->cache == NULL,
182             ("object %p has cached pages",
183             object));
184         KASSERT(object->paging_in_progress == 0,
185             ("object %p paging_in_progress = %d",
186             object, object->paging_in_progress));
187         KASSERT(object->resident_page_count == 0,
188             ("object %p resident_page_count = %d",
189             object, object->resident_page_count));
190         KASSERT(object->shadow_count == 0,
191             ("object %p shadow_count = %d",
192             object, object->shadow_count));
193 }
194 #endif
195
196 static int
197 vm_object_zinit(void *mem, int size, int flags)
198 {
199         vm_object_t object;
200
201         object = (vm_object_t)mem;
202         bzero(&object->mtx, sizeof(object->mtx));
203         VM_OBJECT_LOCK_INIT(object, "standard object");
204
205         /* These are true for any object that has been freed */
206         object->paging_in_progress = 0;
207         object->resident_page_count = 0;
208         object->shadow_count = 0;
209         return (0);
210 }
211
212 void
213 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
214 {
215
216         TAILQ_INIT(&object->memq);
217         LIST_INIT(&object->shadow_head);
218
219         object->root = NULL;
220         object->type = type;
221         object->size = size;
222         object->generation = 1;
223         object->ref_count = 1;
224         object->flags = 0;
225         if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
226                 object->flags = OBJ_ONEMAPPING;
227         object->pg_color = 0;
228         object->handle = NULL;
229         object->backing_object = NULL;
230         object->backing_object_offset = (vm_ooffset_t) 0;
231 #if VM_NRESERVLEVEL > 0
232         LIST_INIT(&object->rvq);
233 #endif
234         object->cache = NULL;
235
236         mtx_lock(&vm_object_list_mtx);
237         TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
238         mtx_unlock(&vm_object_list_mtx);
239 }
240
241 /*
242  *      vm_object_init:
243  *
244  *      Initialize the VM objects module.
245  */
246 void
247 vm_object_init(void)
248 {
249         TAILQ_INIT(&vm_object_list);
250         mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
251         
252         VM_OBJECT_LOCK_INIT(&kernel_object_store, "kernel object");
253         _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
254             kernel_object);
255 #if VM_NRESERVLEVEL > 0
256         kernel_object->flags |= OBJ_COLORED;
257         kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
258 #endif
259
260         VM_OBJECT_LOCK_INIT(&kmem_object_store, "kmem object");
261         _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
262             kmem_object);
263 #if VM_NRESERVLEVEL > 0
264         kmem_object->flags |= OBJ_COLORED;
265         kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
266 #endif
267
268         /*
269          * The lock portion of struct vm_object must be type stable due
270          * to vm_pageout_fallback_object_lock locking a vm object
271          * without holding any references to it.
272          */
273         obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
274 #ifdef INVARIANTS
275             vm_object_zdtor,
276 #else
277             NULL,
278 #endif
279             vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM|UMA_ZONE_NOFREE);
280 }
281
282 void
283 vm_object_clear_flag(vm_object_t object, u_short bits)
284 {
285
286         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
287         object->flags &= ~bits;
288 }
289
290 void
291 vm_object_pip_add(vm_object_t object, short i)
292 {
293
294         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
295         object->paging_in_progress += i;
296 }
297
298 void
299 vm_object_pip_subtract(vm_object_t object, short i)
300 {
301
302         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
303         object->paging_in_progress -= i;
304 }
305
306 void
307 vm_object_pip_wakeup(vm_object_t object)
308 {
309
310         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
311         object->paging_in_progress--;
312         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
313                 vm_object_clear_flag(object, OBJ_PIPWNT);
314                 wakeup(object);
315         }
316 }
317
318 void
319 vm_object_pip_wakeupn(vm_object_t object, short i)
320 {
321
322         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
323         if (i)
324                 object->paging_in_progress -= i;
325         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
326                 vm_object_clear_flag(object, OBJ_PIPWNT);
327                 wakeup(object);
328         }
329 }
330
331 void
332 vm_object_pip_wait(vm_object_t object, char *waitid)
333 {
334
335         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
336         while (object->paging_in_progress) {
337                 object->flags |= OBJ_PIPWNT;
338                 msleep(object, VM_OBJECT_MTX(object), PVM, waitid, 0);
339         }
340 }
341
342 /*
343  *      vm_object_allocate:
344  *
345  *      Returns a new object with the given size.
346  */
347 vm_object_t
348 vm_object_allocate(objtype_t type, vm_pindex_t size)
349 {
350         vm_object_t object;
351
352         object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
353         _vm_object_allocate(type, size, object);
354         return (object);
355 }
356
357
358 /*
359  *      vm_object_reference:
360  *
361  *      Gets another reference to the given object.  Note: OBJ_DEAD
362  *      objects can be referenced during final cleaning.
363  */
364 void
365 vm_object_reference(vm_object_t object)
366 {
367         struct vnode *vp;
368
369         if (object == NULL)
370                 return;
371         VM_OBJECT_LOCK(object);
372         object->ref_count++;
373         if (object->type == OBJT_VNODE) {
374                 int vfslocked;
375
376                 vp = object->handle;
377                 VM_OBJECT_UNLOCK(object);
378                 vfslocked = VFS_LOCK_GIANT(vp->v_mount);
379                 vget(vp, LK_RETRY, curthread);
380                 VFS_UNLOCK_GIANT(vfslocked);
381         } else
382                 VM_OBJECT_UNLOCK(object);
383 }
384
385 /*
386  *      vm_object_reference_locked:
387  *
388  *      Gets another reference to the given object.
389  *
390  *      The object must be locked.
391  */
392 void
393 vm_object_reference_locked(vm_object_t object)
394 {
395         struct vnode *vp;
396
397         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
398         KASSERT((object->flags & OBJ_DEAD) == 0,
399             ("vm_object_reference_locked: dead object referenced"));
400         object->ref_count++;
401         if (object->type == OBJT_VNODE) {
402                 vp = object->handle;
403                 vref(vp);
404         }
405 }
406
407 /*
408  * Handle deallocating an object of type OBJT_VNODE.
409  */
410 static void
411 vm_object_vndeallocate(vm_object_t object)
412 {
413         struct vnode *vp = (struct vnode *) object->handle;
414
415         VFS_ASSERT_GIANT(vp->v_mount);
416         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
417         KASSERT(object->type == OBJT_VNODE,
418             ("vm_object_vndeallocate: not a vnode object"));
419         KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
420 #ifdef INVARIANTS
421         if (object->ref_count == 0) {
422                 vprint("vm_object_vndeallocate", vp);
423                 panic("vm_object_vndeallocate: bad object reference count");
424         }
425 #endif
426
427         object->ref_count--;
428         if (object->ref_count == 0) {
429                 mp_fixme("Unlocked vflag access.");
430                 vp->v_vflag &= ~VV_TEXT;
431         }
432         VM_OBJECT_UNLOCK(object);
433         /*
434          * vrele may need a vop lock
435          */
436         vrele(vp);
437 }
438
439 /*
440  *      vm_object_deallocate:
441  *
442  *      Release a reference to the specified object,
443  *      gained either through a vm_object_allocate
444  *      or a vm_object_reference call.  When all references
445  *      are gone, storage associated with this object
446  *      may be relinquished.
447  *
448  *      No object may be locked.
449  */
450 void
451 vm_object_deallocate(vm_object_t object)
452 {
453         vm_object_t temp;
454
455         while (object != NULL) {
456                 int vfslocked;
457
458                 vfslocked = 0;
459         restart:
460                 VM_OBJECT_LOCK(object);
461                 if (object->type == OBJT_VNODE) {
462                         struct vnode *vp = (struct vnode *) object->handle;
463
464                         /*
465                          * Conditionally acquire Giant for a vnode-backed
466                          * object.  We have to be careful since the type of
467                          * a vnode object can change while the object is
468                          * unlocked.
469                          */
470                         if (VFS_NEEDSGIANT(vp->v_mount) && !vfslocked) {
471                                 vfslocked = 1;
472                                 if (!mtx_trylock(&Giant)) {
473                                         VM_OBJECT_UNLOCK(object);
474                                         mtx_lock(&Giant);
475                                         goto restart;
476                                 }
477                         }
478                         vm_object_vndeallocate(object);
479                         VFS_UNLOCK_GIANT(vfslocked);
480                         return;
481                 } else
482                         /*
483                          * This is to handle the case that the object
484                          * changed type while we dropped its lock to
485                          * obtain Giant.
486                          */
487                         VFS_UNLOCK_GIANT(vfslocked);
488
489                 KASSERT(object->ref_count != 0,
490                         ("vm_object_deallocate: object deallocated too many times: %d", object->type));
491
492                 /*
493                  * If the reference count goes to 0 we start calling
494                  * vm_object_terminate() on the object chain.
495                  * A ref count of 1 may be a special case depending on the
496                  * shadow count being 0 or 1.
497                  */
498                 object->ref_count--;
499                 if (object->ref_count > 1) {
500                         VM_OBJECT_UNLOCK(object);
501                         return;
502                 } else if (object->ref_count == 1) {
503                         if (object->shadow_count == 0 &&
504                             object->handle == NULL &&
505                             (object->type == OBJT_DEFAULT ||
506                              object->type == OBJT_SWAP)) {
507                                 vm_object_set_flag(object, OBJ_ONEMAPPING);
508                         } else if ((object->shadow_count == 1) &&
509                             (object->handle == NULL) &&
510                             (object->type == OBJT_DEFAULT ||
511                              object->type == OBJT_SWAP)) {
512                                 vm_object_t robject;
513
514                                 robject = LIST_FIRST(&object->shadow_head);
515                                 KASSERT(robject != NULL,
516                                     ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
517                                          object->ref_count,
518                                          object->shadow_count));
519                                 if (!VM_OBJECT_TRYLOCK(robject)) {
520                                         /*
521                                          * Avoid a potential deadlock.
522                                          */
523                                         object->ref_count++;
524                                         VM_OBJECT_UNLOCK(object);
525                                         /*
526                                          * More likely than not the thread
527                                          * holding robject's lock has lower
528                                          * priority than the current thread.
529                                          * Let the lower priority thread run.
530                                          */
531                                         pause("vmo_de", 1);
532                                         continue;
533                                 }
534                                 /*
535                                  * Collapse object into its shadow unless its
536                                  * shadow is dead.  In that case, object will
537                                  * be deallocated by the thread that is
538                                  * deallocating its shadow.
539                                  */
540                                 if ((robject->flags & OBJ_DEAD) == 0 &&
541                                     (robject->handle == NULL) &&
542                                     (robject->type == OBJT_DEFAULT ||
543                                      robject->type == OBJT_SWAP)) {
544
545                                         robject->ref_count++;
546 retry:
547                                         if (robject->paging_in_progress) {
548                                                 VM_OBJECT_UNLOCK(object);
549                                                 vm_object_pip_wait(robject,
550                                                     "objde1");
551                                                 temp = robject->backing_object;
552                                                 if (object == temp) {
553                                                         VM_OBJECT_LOCK(object);
554                                                         goto retry;
555                                                 }
556                                         } else if (object->paging_in_progress) {
557                                                 VM_OBJECT_UNLOCK(robject);
558                                                 object->flags |= OBJ_PIPWNT;
559                                                 msleep(object,
560                                                     VM_OBJECT_MTX(object),
561                                                     PDROP | PVM, "objde2", 0);
562                                                 VM_OBJECT_LOCK(robject);
563                                                 temp = robject->backing_object;
564                                                 if (object == temp) {
565                                                         VM_OBJECT_LOCK(object);
566                                                         goto retry;
567                                                 }
568                                         } else
569                                                 VM_OBJECT_UNLOCK(object);
570
571                                         if (robject->ref_count == 1) {
572                                                 robject->ref_count--;
573                                                 object = robject;
574                                                 goto doterm;
575                                         }
576                                         object = robject;
577                                         vm_object_collapse(object);
578                                         VM_OBJECT_UNLOCK(object);
579                                         continue;
580                                 }
581                                 VM_OBJECT_UNLOCK(robject);
582                         }
583                         VM_OBJECT_UNLOCK(object);
584                         return;
585                 }
586 doterm:
587                 temp = object->backing_object;
588                 if (temp != NULL) {
589                         VM_OBJECT_LOCK(temp);
590                         LIST_REMOVE(object, shadow_list);
591                         temp->shadow_count--;
592                         temp->generation++;
593                         VM_OBJECT_UNLOCK(temp);
594                         object->backing_object = NULL;
595                 }
596                 /*
597                  * Don't double-terminate, we could be in a termination
598                  * recursion due to the terminate having to sync data
599                  * to disk.
600                  */
601                 if ((object->flags & OBJ_DEAD) == 0)
602                         vm_object_terminate(object);
603                 else
604                         VM_OBJECT_UNLOCK(object);
605                 object = temp;
606         }
607 }
608
609 /*
610  *      vm_object_destroy removes the object from the global object list
611  *      and frees the space for the object.
612  */
613 void
614 vm_object_destroy(vm_object_t object)
615 {
616
617         /*
618          * Remove the object from the global object list.
619          */
620         mtx_lock(&vm_object_list_mtx);
621         TAILQ_REMOVE(&vm_object_list, object, object_list);
622         mtx_unlock(&vm_object_list_mtx);
623
624         /*
625          * Free the space for the object.
626          */
627         uma_zfree(obj_zone, object);
628 }
629
630 /*
631  *      vm_object_terminate actually destroys the specified object, freeing
632  *      up all previously used resources.
633  *
634  *      The object must be locked.
635  *      This routine may block.
636  */
637 void
638 vm_object_terminate(vm_object_t object)
639 {
640         vm_page_t p;
641
642         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
643
644         /*
645          * Make sure no one uses us.
646          */
647         vm_object_set_flag(object, OBJ_DEAD);
648
649         /*
650          * wait for the pageout daemon to be done with the object
651          */
652         vm_object_pip_wait(object, "objtrm");
653
654         KASSERT(!object->paging_in_progress,
655                 ("vm_object_terminate: pageout in progress"));
656
657         /*
658          * Clean and free the pages, as appropriate. All references to the
659          * object are gone, so we don't need to lock it.
660          */
661         if (object->type == OBJT_VNODE) {
662                 struct vnode *vp = (struct vnode *)object->handle;
663
664                 /*
665                  * Clean pages and flush buffers.
666                  */
667                 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
668                 VM_OBJECT_UNLOCK(object);
669
670                 vinvalbuf(vp, V_SAVE, NULL, 0, 0);
671
672                 VM_OBJECT_LOCK(object);
673         }
674
675         KASSERT(object->ref_count == 0, 
676                 ("vm_object_terminate: object with references, ref_count=%d",
677                 object->ref_count));
678
679         /*
680          * Now free any remaining pages. For internal objects, this also
681          * removes them from paging queues. Don't free wired pages, just
682          * remove them from the object. 
683          */
684         vm_page_lock_queues();
685         while ((p = TAILQ_FIRST(&object->memq)) != NULL) {
686                 KASSERT(!p->busy && (p->oflags & VPO_BUSY) == 0,
687                         ("vm_object_terminate: freeing busy page %p "
688                         "p->busy = %d, p->flags %x\n", p, p->busy, p->flags));
689                 if (p->wire_count == 0) {
690                         vm_page_free(p);
691                         cnt.v_pfree++;
692                 } else {
693                         vm_page_remove(p);
694                 }
695         }
696         vm_page_unlock_queues();
697
698 #if VM_NRESERVLEVEL > 0
699         if (__predict_false(!LIST_EMPTY(&object->rvq)))
700                 vm_reserv_break_all(object);
701 #endif
702         if (__predict_false(object->cache != NULL))
703                 vm_page_cache_free(object, 0, 0);
704
705         /*
706          * Let the pager know object is dead.
707          */
708         vm_pager_deallocate(object);
709         VM_OBJECT_UNLOCK(object);
710
711         vm_object_destroy(object);
712 }
713
714 /*
715  *      vm_object_page_clean
716  *
717  *      Clean all dirty pages in the specified range of object.  Leaves page 
718  *      on whatever queue it is currently on.   If NOSYNC is set then do not
719  *      write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
720  *      leaving the object dirty.
721  *
722  *      When stuffing pages asynchronously, allow clustering.  XXX we need a
723  *      synchronous clustering mode implementation.
724  *
725  *      Odd semantics: if start == end, we clean everything.
726  *
727  *      The object must be locked.
728  */
729 void
730 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end, int flags)
731 {
732         vm_page_t p, np;
733         vm_pindex_t tstart, tend;
734         vm_pindex_t pi;
735         int clearobjflags;
736         int pagerflags;
737         int curgeneration;
738
739         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
740         if (object->type != OBJT_VNODE ||
741                 (object->flags & OBJ_MIGHTBEDIRTY) == 0)
742                 return;
743
744         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ? VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
745         pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
746
747         vm_object_set_flag(object, OBJ_CLEANING);
748
749         tstart = start;
750         if (end == 0) {
751                 tend = object->size;
752         } else {
753                 tend = end;
754         }
755
756         vm_page_lock_queues();
757         /*
758          * If the caller is smart and only msync()s a range he knows is
759          * dirty, we may be able to avoid an object scan.  This results in
760          * a phenominal improvement in performance.  We cannot do this
761          * as a matter of course because the object may be huge - e.g.
762          * the size might be in the gigabytes or terrabytes.
763          */
764         if (msync_flush_flags & MSYNC_FLUSH_HARDSEQ) {
765                 vm_pindex_t tscan;
766                 int scanlimit;
767                 int scanreset;
768
769                 scanreset = object->resident_page_count / EASY_SCAN_FACTOR;
770                 if (scanreset < 16)
771                         scanreset = 16;
772                 pagerflags |= VM_PAGER_IGNORE_CLEANCHK;
773
774                 scanlimit = scanreset;
775                 tscan = tstart;
776                 while (tscan < tend) {
777                         curgeneration = object->generation;
778                         p = vm_page_lookup(object, tscan);
779                         if (p == NULL || p->valid == 0) {
780                                 if (--scanlimit == 0)
781                                         break;
782                                 ++tscan;
783                                 continue;
784                         }
785                         vm_page_test_dirty(p);
786                         if ((p->dirty & p->valid) == 0) {
787                                 if (--scanlimit == 0)
788                                         break;
789                                 ++tscan;
790                                 continue;
791                         }
792                         /*
793                          * If we have been asked to skip nosync pages and 
794                          * this is a nosync page, we can't continue.
795                          */
796                         if ((flags & OBJPC_NOSYNC) && (p->oflags & VPO_NOSYNC)) {
797                                 if (--scanlimit == 0)
798                                         break;
799                                 ++tscan;
800                                 continue;
801                         }
802                         scanlimit = scanreset;
803
804                         /*
805                          * This returns 0 if it was unable to busy the first
806                          * page (i.e. had to sleep).
807                          */
808                         tscan += vm_object_page_collect_flush(object, p, curgeneration, pagerflags);
809                 }
810
811                 /*
812                  * If everything was dirty and we flushed it successfully,
813                  * and the requested range is not the entire object, we
814                  * don't have to mess with CLEANCHK or MIGHTBEDIRTY and can
815                  * return immediately.
816                  */
817                 if (tscan >= tend && (tstart || tend < object->size)) {
818                         vm_page_unlock_queues();
819                         vm_object_clear_flag(object, OBJ_CLEANING);
820                         return;
821                 }
822                 pagerflags &= ~VM_PAGER_IGNORE_CLEANCHK;
823         }
824
825         /*
826          * Generally set CLEANCHK interlock and make the page read-only so
827          * we can then clear the object flags.
828          *
829          * However, if this is a nosync mmap then the object is likely to 
830          * stay dirty so do not mess with the page and do not clear the
831          * object flags.
832          */
833         clearobjflags = 1;
834         TAILQ_FOREACH(p, &object->memq, listq) {
835                 p->oflags |= VPO_CLEANCHK;
836                 if ((flags & OBJPC_NOSYNC) && (p->oflags & VPO_NOSYNC))
837                         clearobjflags = 0;
838                 else
839                         pmap_remove_write(p);
840         }
841
842         if (clearobjflags && (tstart == 0) && (tend == object->size)) {
843                 struct vnode *vp;
844
845                 vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
846                 if (object->type == OBJT_VNODE &&
847                     (vp = (struct vnode *)object->handle) != NULL) {
848                         VI_LOCK(vp);
849                         if (vp->v_iflag & VI_OBJDIRTY)
850                                 vp->v_iflag &= ~VI_OBJDIRTY;
851                         VI_UNLOCK(vp);
852                 }
853         }
854
855 rescan:
856         curgeneration = object->generation;
857
858         for (p = TAILQ_FIRST(&object->memq); p; p = np) {
859                 int n;
860
861                 np = TAILQ_NEXT(p, listq);
862
863 again:
864                 pi = p->pindex;
865                 if ((p->oflags & VPO_CLEANCHK) == 0 ||
866                         (pi < tstart) || (pi >= tend) ||
867                     p->valid == 0) {
868                         p->oflags &= ~VPO_CLEANCHK;
869                         continue;
870                 }
871
872                 vm_page_test_dirty(p);
873                 if ((p->dirty & p->valid) == 0) {
874                         p->oflags &= ~VPO_CLEANCHK;
875                         continue;
876                 }
877
878                 /*
879                  * If we have been asked to skip nosync pages and this is a
880                  * nosync page, skip it.  Note that the object flags were
881                  * not cleared in this case so we do not have to set them.
882                  */
883                 if ((flags & OBJPC_NOSYNC) && (p->oflags & VPO_NOSYNC)) {
884                         p->oflags &= ~VPO_CLEANCHK;
885                         continue;
886                 }
887
888                 n = vm_object_page_collect_flush(object, p,
889                         curgeneration, pagerflags);
890                 if (n == 0)
891                         goto rescan;
892
893                 if (object->generation != curgeneration)
894                         goto rescan;
895
896                 /*
897                  * Try to optimize the next page.  If we can't we pick up
898                  * our (random) scan where we left off.
899                  */
900                 if (msync_flush_flags & MSYNC_FLUSH_SOFTSEQ) {
901                         if ((p = vm_page_lookup(object, pi + n)) != NULL)
902                                 goto again;
903                 }
904         }
905         vm_page_unlock_queues();
906 #if 0
907         VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC)?MNT_WAIT:0, curproc);
908 #endif
909
910         vm_object_clear_flag(object, OBJ_CLEANING);
911         return;
912 }
913
914 static int
915 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags)
916 {
917         int runlen;
918         int maxf;
919         int chkb;
920         int maxb;
921         int i;
922         vm_pindex_t pi;
923         vm_page_t maf[vm_pageout_page_count];
924         vm_page_t mab[vm_pageout_page_count];
925         vm_page_t ma[vm_pageout_page_count];
926
927         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
928         pi = p->pindex;
929         while (vm_page_sleep_if_busy(p, TRUE, "vpcwai")) {
930                 vm_page_lock_queues();
931                 if (object->generation != curgeneration) {
932                         return(0);
933                 }
934         }
935         maxf = 0;
936         for(i = 1; i < vm_pageout_page_count; i++) {
937                 vm_page_t tp;
938
939                 if ((tp = vm_page_lookup(object, pi + i)) != NULL) {
940                         if ((tp->oflags & VPO_BUSY) ||
941                                 ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
942                                  (tp->oflags & VPO_CLEANCHK) == 0) ||
943                                 (tp->busy != 0))
944                                 break;
945                         vm_page_test_dirty(tp);
946                         if ((tp->dirty & tp->valid) == 0) {
947                                 tp->oflags &= ~VPO_CLEANCHK;
948                                 break;
949                         }
950                         maf[ i - 1 ] = tp;
951                         maxf++;
952                         continue;
953                 }
954                 break;
955         }
956
957         maxb = 0;
958         chkb = vm_pageout_page_count -  maxf;
959         if (chkb) {
960                 for(i = 1; i < chkb;i++) {
961                         vm_page_t tp;
962
963                         if ((tp = vm_page_lookup(object, pi - i)) != NULL) {
964                                 if ((tp->oflags & VPO_BUSY) ||
965                                         ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
966                                          (tp->oflags & VPO_CLEANCHK) == 0) ||
967                                         (tp->busy != 0))
968                                         break;
969                                 vm_page_test_dirty(tp);
970                                 if ((tp->dirty & tp->valid) == 0) {
971                                         tp->oflags &= ~VPO_CLEANCHK;
972                                         break;
973                                 }
974                                 mab[ i - 1 ] = tp;
975                                 maxb++;
976                                 continue;
977                         }
978                         break;
979                 }
980         }
981
982         for(i = 0; i < maxb; i++) {
983                 int index = (maxb - i) - 1;
984                 ma[index] = mab[i];
985                 ma[index]->oflags &= ~VPO_CLEANCHK;
986         }
987         p->oflags &= ~VPO_CLEANCHK;
988         ma[maxb] = p;
989         for(i = 0; i < maxf; i++) {
990                 int index = (maxb + i) + 1;
991                 ma[index] = maf[i];
992                 ma[index]->oflags &= ~VPO_CLEANCHK;
993         }
994         runlen = maxb + maxf + 1;
995
996         vm_pageout_flush(ma, runlen, pagerflags);
997         for (i = 0; i < runlen; i++) {
998                 if (ma[i]->valid & ma[i]->dirty) {
999                         pmap_remove_write(ma[i]);
1000                         ma[i]->oflags |= VPO_CLEANCHK;
1001
1002                         /*
1003                          * maxf will end up being the actual number of pages
1004                          * we wrote out contiguously, non-inclusive of the
1005                          * first page.  We do not count look-behind pages.
1006                          */
1007                         if (i >= maxb + 1 && (maxf > i - maxb - 1))
1008                                 maxf = i - maxb - 1;
1009                 }
1010         }
1011         return(maxf + 1);
1012 }
1013
1014 /*
1015  * Note that there is absolutely no sense in writing out
1016  * anonymous objects, so we track down the vnode object
1017  * to write out.
1018  * We invalidate (remove) all pages from the address space
1019  * for semantic correctness.
1020  *
1021  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
1022  * may start out with a NULL object.
1023  */
1024 void
1025 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
1026     boolean_t syncio, boolean_t invalidate)
1027 {
1028         vm_object_t backing_object;
1029         struct vnode *vp;
1030         struct mount *mp;
1031         int flags;
1032
1033         if (object == NULL)
1034                 return;
1035         VM_OBJECT_LOCK(object);
1036         while ((backing_object = object->backing_object) != NULL) {
1037                 VM_OBJECT_LOCK(backing_object);
1038                 offset += object->backing_object_offset;
1039                 VM_OBJECT_UNLOCK(object);
1040                 object = backing_object;
1041                 if (object->size < OFF_TO_IDX(offset + size))
1042                         size = IDX_TO_OFF(object->size) - offset;
1043         }
1044         /*
1045          * Flush pages if writing is allowed, invalidate them
1046          * if invalidation requested.  Pages undergoing I/O
1047          * will be ignored by vm_object_page_remove().
1048          *
1049          * We cannot lock the vnode and then wait for paging
1050          * to complete without deadlocking against vm_fault.
1051          * Instead we simply call vm_object_page_remove() and
1052          * allow it to block internally on a page-by-page
1053          * basis when it encounters pages undergoing async
1054          * I/O.
1055          */
1056         if (object->type == OBJT_VNODE &&
1057             (object->flags & OBJ_MIGHTBEDIRTY) != 0) {
1058                 int vfslocked;
1059                 vp = object->handle;
1060                 VM_OBJECT_UNLOCK(object);
1061                 (void) vn_start_write(vp, &mp, V_WAIT);
1062                 vfslocked = VFS_LOCK_GIANT(vp->v_mount);
1063                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, curthread);
1064                 flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1065                 flags |= invalidate ? OBJPC_INVAL : 0;
1066                 VM_OBJECT_LOCK(object);
1067                 vm_object_page_clean(object,
1068                     OFF_TO_IDX(offset),
1069                     OFF_TO_IDX(offset + size + PAGE_MASK),
1070                     flags);
1071                 VM_OBJECT_UNLOCK(object);
1072                 VOP_UNLOCK(vp, 0, curthread);
1073                 VFS_UNLOCK_GIANT(vfslocked);
1074                 vn_finished_write(mp);
1075                 VM_OBJECT_LOCK(object);
1076         }
1077         if ((object->type == OBJT_VNODE ||
1078              object->type == OBJT_DEVICE) && invalidate) {
1079                 boolean_t purge;
1080                 purge = old_msync || (object->type == OBJT_DEVICE);
1081                 vm_object_page_remove(object,
1082                     OFF_TO_IDX(offset),
1083                     OFF_TO_IDX(offset + size + PAGE_MASK),
1084                     purge ? FALSE : TRUE);
1085         }
1086         VM_OBJECT_UNLOCK(object);
1087 }
1088
1089 /*
1090  *      vm_object_madvise:
1091  *
1092  *      Implements the madvise function at the object/page level.
1093  *
1094  *      MADV_WILLNEED   (any object)
1095  *
1096  *          Activate the specified pages if they are resident.
1097  *
1098  *      MADV_DONTNEED   (any object)
1099  *
1100  *          Deactivate the specified pages if they are resident.
1101  *
1102  *      MADV_FREE       (OBJT_DEFAULT/OBJT_SWAP objects,
1103  *                       OBJ_ONEMAPPING only)
1104  *
1105  *          Deactivate and clean the specified pages if they are
1106  *          resident.  This permits the process to reuse the pages
1107  *          without faulting or the kernel to reclaim the pages
1108  *          without I/O.
1109  */
1110 void
1111 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
1112 {
1113         vm_pindex_t end, tpindex;
1114         vm_object_t backing_object, tobject;
1115         vm_page_t m;
1116
1117         if (object == NULL)
1118                 return;
1119         VM_OBJECT_LOCK(object);
1120         end = pindex + count;
1121         /*
1122          * Locate and adjust resident pages
1123          */
1124         for (; pindex < end; pindex += 1) {
1125 relookup:
1126                 tobject = object;
1127                 tpindex = pindex;
1128 shadowlookup:
1129                 /*
1130                  * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1131                  * and those pages must be OBJ_ONEMAPPING.
1132                  */
1133                 if (advise == MADV_FREE) {
1134                         if ((tobject->type != OBJT_DEFAULT &&
1135                              tobject->type != OBJT_SWAP) ||
1136                             (tobject->flags & OBJ_ONEMAPPING) == 0) {
1137                                 goto unlock_tobject;
1138                         }
1139                 }
1140                 m = vm_page_lookup(tobject, tpindex);
1141                 if (m == NULL && advise == MADV_WILLNEED) {
1142                         /*
1143                          * If the page is cached, reactivate it.
1144                          */
1145                         m = vm_page_alloc(tobject, tpindex, VM_ALLOC_IFCACHED |
1146                             VM_ALLOC_NOBUSY);
1147                 }
1148                 if (m == NULL) {
1149                         /*
1150                          * There may be swap even if there is no backing page
1151                          */
1152                         if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1153                                 swap_pager_freespace(tobject, tpindex, 1);
1154                         /*
1155                          * next object
1156                          */
1157                         backing_object = tobject->backing_object;
1158                         if (backing_object == NULL)
1159                                 goto unlock_tobject;
1160                         VM_OBJECT_LOCK(backing_object);
1161                         tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1162                         if (tobject != object)
1163                                 VM_OBJECT_UNLOCK(tobject);
1164                         tobject = backing_object;
1165                         goto shadowlookup;
1166                 }
1167                 /*
1168                  * If the page is busy or not in a normal active state,
1169                  * we skip it.  If the page is not managed there are no
1170                  * page queues to mess with.  Things can break if we mess
1171                  * with pages in any of the below states.
1172                  */
1173                 vm_page_lock_queues();
1174                 if (m->hold_count ||
1175                     m->wire_count ||
1176                     (m->flags & PG_UNMANAGED) ||
1177                     m->valid != VM_PAGE_BITS_ALL) {
1178                         vm_page_unlock_queues();
1179                         goto unlock_tobject;
1180                 }
1181                 if ((m->oflags & VPO_BUSY) || m->busy) {
1182                         vm_page_flag_set(m, PG_REFERENCED);
1183                         vm_page_unlock_queues();
1184                         if (object != tobject)
1185                                 VM_OBJECT_UNLOCK(object);
1186                         m->oflags |= VPO_WANTED;
1187                         msleep(m, VM_OBJECT_MTX(tobject), PDROP | PVM, "madvpo", 0);
1188                         VM_OBJECT_LOCK(object);
1189                         goto relookup;
1190                 }
1191                 if (advise == MADV_WILLNEED) {
1192                         vm_page_activate(m);
1193                 } else if (advise == MADV_DONTNEED) {
1194                         vm_page_dontneed(m);
1195                 } else if (advise == MADV_FREE) {
1196                         /*
1197                          * Mark the page clean.  This will allow the page
1198                          * to be freed up by the system.  However, such pages
1199                          * are often reused quickly by malloc()/free()
1200                          * so we do not do anything that would cause
1201                          * a page fault if we can help it.
1202                          *
1203                          * Specifically, we do not try to actually free
1204                          * the page now nor do we try to put it in the
1205                          * cache (which would cause a page fault on reuse).
1206                          *
1207                          * But we do make the page is freeable as we
1208                          * can without actually taking the step of unmapping
1209                          * it.
1210                          */
1211                         pmap_clear_modify(m);
1212                         m->dirty = 0;
1213                         m->act_count = 0;
1214                         vm_page_dontneed(m);
1215                 }
1216                 vm_page_unlock_queues();
1217                 if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1218                         swap_pager_freespace(tobject, tpindex, 1);
1219 unlock_tobject:
1220                 if (tobject != object)
1221                         VM_OBJECT_UNLOCK(tobject);
1222         }       
1223         VM_OBJECT_UNLOCK(object);
1224 }
1225
1226 /*
1227  *      vm_object_shadow:
1228  *
1229  *      Create a new object which is backed by the
1230  *      specified existing object range.  The source
1231  *      object reference is deallocated.
1232  *
1233  *      The new object and offset into that object
1234  *      are returned in the source parameters.
1235  */
1236 void
1237 vm_object_shadow(
1238         vm_object_t *object,    /* IN/OUT */
1239         vm_ooffset_t *offset,   /* IN/OUT */
1240         vm_size_t length)
1241 {
1242         vm_object_t source;
1243         vm_object_t result;
1244
1245         source = *object;
1246
1247         /*
1248          * Don't create the new object if the old object isn't shared.
1249          */
1250         if (source != NULL) {
1251                 VM_OBJECT_LOCK(source);
1252                 if (source->ref_count == 1 &&
1253                     source->handle == NULL &&
1254                     (source->type == OBJT_DEFAULT ||
1255                      source->type == OBJT_SWAP)) {
1256                         VM_OBJECT_UNLOCK(source);
1257                         return;
1258                 }
1259                 VM_OBJECT_UNLOCK(source);
1260         }
1261
1262         /*
1263          * Allocate a new object with the given length.
1264          */
1265         result = vm_object_allocate(OBJT_DEFAULT, length);
1266
1267         /*
1268          * The new object shadows the source object, adding a reference to it.
1269          * Our caller changes his reference to point to the new object,
1270          * removing a reference to the source object.  Net result: no change
1271          * of reference count.
1272          *
1273          * Try to optimize the result object's page color when shadowing
1274          * in order to maintain page coloring consistency in the combined 
1275          * shadowed object.
1276          */
1277         result->backing_object = source;
1278         /*
1279          * Store the offset into the source object, and fix up the offset into
1280          * the new object.
1281          */
1282         result->backing_object_offset = *offset;
1283         if (source != NULL) {
1284                 VM_OBJECT_LOCK(source);
1285                 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1286                 source->shadow_count++;
1287                 source->generation++;
1288 #if VM_NRESERVLEVEL > 0
1289                 result->flags |= source->flags & (OBJ_NEEDGIANT | OBJ_COLORED);
1290                 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1291                     ((1 << (VM_NFREEORDER - 1)) - 1);
1292 #else
1293                 result->flags |= source->flags & OBJ_NEEDGIANT;
1294 #endif
1295                 VM_OBJECT_UNLOCK(source);
1296         }
1297
1298
1299         /*
1300          * Return the new things
1301          */
1302         *offset = 0;
1303         *object = result;
1304 }
1305
1306 /*
1307  *      vm_object_split:
1308  *
1309  * Split the pages in a map entry into a new object.  This affords
1310  * easier removal of unused pages, and keeps object inheritance from
1311  * being a negative impact on memory usage.
1312  */
1313 void
1314 vm_object_split(vm_map_entry_t entry)
1315 {
1316         vm_page_t m, m_next;
1317         vm_object_t orig_object, new_object, source;
1318         vm_pindex_t idx, offidxstart;
1319         vm_size_t size;
1320
1321         orig_object = entry->object.vm_object;
1322         if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1323                 return;
1324         if (orig_object->ref_count <= 1)
1325                 return;
1326         VM_OBJECT_UNLOCK(orig_object);
1327
1328         offidxstart = OFF_TO_IDX(entry->offset);
1329         size = atop(entry->end - entry->start);
1330
1331         /*
1332          * If swap_pager_copy() is later called, it will convert new_object
1333          * into a swap object.
1334          */
1335         new_object = vm_object_allocate(OBJT_DEFAULT, size);
1336
1337         /*
1338          * At this point, the new object is still private, so the order in
1339          * which the original and new objects are locked does not matter.
1340          */
1341         VM_OBJECT_LOCK(new_object);
1342         VM_OBJECT_LOCK(orig_object);
1343         source = orig_object->backing_object;
1344         if (source != NULL) {
1345                 VM_OBJECT_LOCK(source);
1346                 if ((source->flags & OBJ_DEAD) != 0) {
1347                         VM_OBJECT_UNLOCK(source);
1348                         VM_OBJECT_UNLOCK(orig_object);
1349                         VM_OBJECT_UNLOCK(new_object);
1350                         vm_object_deallocate(new_object);
1351                         VM_OBJECT_LOCK(orig_object);
1352                         return;
1353                 }
1354                 LIST_INSERT_HEAD(&source->shadow_head,
1355                                   new_object, shadow_list);
1356                 source->shadow_count++;
1357                 source->generation++;
1358                 vm_object_reference_locked(source);     /* for new_object */
1359                 vm_object_clear_flag(source, OBJ_ONEMAPPING);
1360                 VM_OBJECT_UNLOCK(source);
1361                 new_object->backing_object_offset = 
1362                         orig_object->backing_object_offset + entry->offset;
1363                 new_object->backing_object = source;
1364         }
1365         new_object->flags |= orig_object->flags & OBJ_NEEDGIANT;
1366 retry:
1367         if ((m = TAILQ_FIRST(&orig_object->memq)) != NULL) {
1368                 if (m->pindex < offidxstart) {
1369                         m = vm_page_splay(offidxstart, orig_object->root);
1370                         if ((orig_object->root = m)->pindex < offidxstart)
1371                                 m = TAILQ_NEXT(m, listq);
1372                 }
1373         }
1374         vm_page_lock_queues();
1375         for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1376             m = m_next) {
1377                 m_next = TAILQ_NEXT(m, listq);
1378
1379                 /*
1380                  * We must wait for pending I/O to complete before we can
1381                  * rename the page.
1382                  *
1383                  * We do not have to VM_PROT_NONE the page as mappings should
1384                  * not be changed by this operation.
1385                  */
1386                 if ((m->oflags & VPO_BUSY) || m->busy) {
1387                         vm_page_flag_set(m, PG_REFERENCED);
1388                         vm_page_unlock_queues();
1389                         VM_OBJECT_UNLOCK(new_object);
1390                         m->oflags |= VPO_WANTED;
1391                         msleep(m, VM_OBJECT_MTX(orig_object), PVM, "spltwt", 0);
1392                         VM_OBJECT_LOCK(new_object);
1393                         goto retry;
1394                 }
1395                 vm_page_rename(m, new_object, idx);
1396                 /* page automatically made dirty by rename and cache handled */
1397                 vm_page_busy(m);
1398         }
1399         vm_page_unlock_queues();
1400         if (orig_object->type == OBJT_SWAP) {
1401                 /*
1402                  * swap_pager_copy() can sleep, in which case the orig_object's
1403                  * and new_object's locks are released and reacquired. 
1404                  */
1405                 swap_pager_copy(orig_object, new_object, offidxstart, 0);
1406
1407                 /*
1408                  * Transfer any cached pages from orig_object to new_object.
1409                  */
1410                 if (__predict_false(orig_object->cache != NULL))
1411                         vm_page_cache_transfer(orig_object, offidxstart,
1412                             new_object);
1413         }
1414         VM_OBJECT_UNLOCK(orig_object);
1415         TAILQ_FOREACH(m, &new_object->memq, listq)
1416                 vm_page_wakeup(m);
1417         VM_OBJECT_UNLOCK(new_object);
1418         entry->object.vm_object = new_object;
1419         entry->offset = 0LL;
1420         vm_object_deallocate(orig_object);
1421         VM_OBJECT_LOCK(new_object);
1422 }
1423
1424 #define OBSC_TEST_ALL_SHADOWED  0x0001
1425 #define OBSC_COLLAPSE_NOWAIT    0x0002
1426 #define OBSC_COLLAPSE_WAIT      0x0004
1427
1428 static int
1429 vm_object_backing_scan(vm_object_t object, int op)
1430 {
1431         int r = 1;
1432         vm_page_t p;
1433         vm_object_t backing_object;
1434         vm_pindex_t backing_offset_index;
1435
1436         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1437         VM_OBJECT_LOCK_ASSERT(object->backing_object, MA_OWNED);
1438
1439         backing_object = object->backing_object;
1440         backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1441
1442         /*
1443          * Initial conditions
1444          */
1445         if (op & OBSC_TEST_ALL_SHADOWED) {
1446                 /*
1447                  * We do not want to have to test for the existence of cache
1448                  * or swap pages in the backing object.  XXX but with the
1449                  * new swapper this would be pretty easy to do.
1450                  *
1451                  * XXX what about anonymous MAP_SHARED memory that hasn't
1452                  * been ZFOD faulted yet?  If we do not test for this, the
1453                  * shadow test may succeed! XXX
1454                  */
1455                 if (backing_object->type != OBJT_DEFAULT) {
1456                         return (0);
1457                 }
1458         }
1459         if (op & OBSC_COLLAPSE_WAIT) {
1460                 vm_object_set_flag(backing_object, OBJ_DEAD);
1461         }
1462
1463         /*
1464          * Our scan
1465          */
1466         p = TAILQ_FIRST(&backing_object->memq);
1467         while (p) {
1468                 vm_page_t next = TAILQ_NEXT(p, listq);
1469                 vm_pindex_t new_pindex = p->pindex - backing_offset_index;
1470
1471                 if (op & OBSC_TEST_ALL_SHADOWED) {
1472                         vm_page_t pp;
1473
1474                         /*
1475                          * Ignore pages outside the parent object's range
1476                          * and outside the parent object's mapping of the 
1477                          * backing object.
1478                          *
1479                          * note that we do not busy the backing object's
1480                          * page.
1481                          */
1482                         if (
1483                             p->pindex < backing_offset_index ||
1484                             new_pindex >= object->size
1485                         ) {
1486                                 p = next;
1487                                 continue;
1488                         }
1489
1490                         /*
1491                          * See if the parent has the page or if the parent's
1492                          * object pager has the page.  If the parent has the
1493                          * page but the page is not valid, the parent's
1494                          * object pager must have the page.
1495                          *
1496                          * If this fails, the parent does not completely shadow
1497                          * the object and we might as well give up now.
1498                          */
1499
1500                         pp = vm_page_lookup(object, new_pindex);
1501                         if (
1502                             (pp == NULL || pp->valid == 0) &&
1503                             !vm_pager_has_page(object, new_pindex, NULL, NULL)
1504                         ) {
1505                                 r = 0;
1506                                 break;
1507                         }
1508                 }
1509
1510                 /*
1511                  * Check for busy page
1512                  */
1513                 if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1514                         vm_page_t pp;
1515
1516                         if (op & OBSC_COLLAPSE_NOWAIT) {
1517                                 if ((p->oflags & VPO_BUSY) ||
1518                                     !p->valid || 
1519                                     p->busy) {
1520                                         p = next;
1521                                         continue;
1522                                 }
1523                         } else if (op & OBSC_COLLAPSE_WAIT) {
1524                                 if ((p->oflags & VPO_BUSY) || p->busy) {
1525                                         vm_page_lock_queues();
1526                                         vm_page_flag_set(p, PG_REFERENCED);
1527                                         vm_page_unlock_queues();
1528                                         VM_OBJECT_UNLOCK(object);
1529                                         p->oflags |= VPO_WANTED;
1530                                         msleep(p, VM_OBJECT_MTX(backing_object),
1531                                             PDROP | PVM, "vmocol", 0);
1532                                         VM_OBJECT_LOCK(object);
1533                                         VM_OBJECT_LOCK(backing_object);
1534                                         /*
1535                                          * If we slept, anything could have
1536                                          * happened.  Since the object is
1537                                          * marked dead, the backing offset
1538                                          * should not have changed so we
1539                                          * just restart our scan.
1540                                          */
1541                                         p = TAILQ_FIRST(&backing_object->memq);
1542                                         continue;
1543                                 }
1544                         }
1545
1546                         KASSERT(
1547                             p->object == backing_object,
1548                             ("vm_object_backing_scan: object mismatch")
1549                         );
1550
1551                         /*
1552                          * Destroy any associated swap
1553                          */
1554                         if (backing_object->type == OBJT_SWAP) {
1555                                 swap_pager_freespace(
1556                                     backing_object, 
1557                                     p->pindex,
1558                                     1
1559                                 );
1560                         }
1561
1562                         if (
1563                             p->pindex < backing_offset_index ||
1564                             new_pindex >= object->size
1565                         ) {
1566                                 /*
1567                                  * Page is out of the parent object's range, we 
1568                                  * can simply destroy it. 
1569                                  */
1570                                 vm_page_lock_queues();
1571                                 KASSERT(!pmap_page_is_mapped(p),
1572                                     ("freeing mapped page %p", p));
1573                                 if (p->wire_count == 0)
1574                                         vm_page_free(p);
1575                                 else
1576                                         vm_page_remove(p);
1577                                 vm_page_unlock_queues();
1578                                 p = next;
1579                                 continue;
1580                         }
1581
1582                         pp = vm_page_lookup(object, new_pindex);
1583                         if (
1584                             pp != NULL ||
1585                             vm_pager_has_page(object, new_pindex, NULL, NULL)
1586                         ) {
1587                                 /*
1588                                  * page already exists in parent OR swap exists
1589                                  * for this location in the parent.  Destroy 
1590                                  * the original page from the backing object.
1591                                  *
1592                                  * Leave the parent's page alone
1593                                  */
1594                                 vm_page_lock_queues();
1595                                 KASSERT(!pmap_page_is_mapped(p),
1596                                     ("freeing mapped page %p", p));
1597                                 if (p->wire_count == 0)
1598                                         vm_page_free(p);
1599                                 else
1600                                         vm_page_remove(p);
1601                                 vm_page_unlock_queues();
1602                                 p = next;
1603                                 continue;
1604                         }
1605
1606 #if VM_NRESERVLEVEL > 0
1607                         /*
1608                          * Rename the reservation.
1609                          */
1610                         vm_reserv_rename(p, object, backing_object,
1611                             backing_offset_index);
1612 #endif
1613
1614                         /*
1615                          * Page does not exist in parent, rename the
1616                          * page from the backing object to the main object. 
1617                          *
1618                          * If the page was mapped to a process, it can remain 
1619                          * mapped through the rename.
1620                          */
1621                         vm_page_lock_queues();
1622                         vm_page_rename(p, object, new_pindex);
1623                         vm_page_unlock_queues();
1624                         /* page automatically made dirty by rename */
1625                 }
1626                 p = next;
1627         }
1628         return (r);
1629 }
1630
1631
1632 /*
1633  * this version of collapse allows the operation to occur earlier and
1634  * when paging_in_progress is true for an object...  This is not a complete
1635  * operation, but should plug 99.9% of the rest of the leaks.
1636  */
1637 static void
1638 vm_object_qcollapse(vm_object_t object)
1639 {
1640         vm_object_t backing_object = object->backing_object;
1641
1642         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1643         VM_OBJECT_LOCK_ASSERT(backing_object, MA_OWNED);
1644
1645         if (backing_object->ref_count != 1)
1646                 return;
1647
1648         vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1649 }
1650
1651 /*
1652  *      vm_object_collapse:
1653  *
1654  *      Collapse an object with the object backing it.
1655  *      Pages in the backing object are moved into the
1656  *      parent, and the backing object is deallocated.
1657  */
1658 void
1659 vm_object_collapse(vm_object_t object)
1660 {
1661         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1662         
1663         while (TRUE) {
1664                 vm_object_t backing_object;
1665
1666                 /*
1667                  * Verify that the conditions are right for collapse:
1668                  *
1669                  * The object exists and the backing object exists.
1670                  */
1671                 if ((backing_object = object->backing_object) == NULL)
1672                         break;
1673
1674                 /*
1675                  * we check the backing object first, because it is most likely
1676                  * not collapsable.
1677                  */
1678                 VM_OBJECT_LOCK(backing_object);
1679                 if (backing_object->handle != NULL ||
1680                     (backing_object->type != OBJT_DEFAULT &&
1681                      backing_object->type != OBJT_SWAP) ||
1682                     (backing_object->flags & OBJ_DEAD) ||
1683                     object->handle != NULL ||
1684                     (object->type != OBJT_DEFAULT &&
1685                      object->type != OBJT_SWAP) ||
1686                     (object->flags & OBJ_DEAD)) {
1687                         VM_OBJECT_UNLOCK(backing_object);
1688                         break;
1689                 }
1690
1691                 if (
1692                     object->paging_in_progress != 0 ||
1693                     backing_object->paging_in_progress != 0
1694                 ) {
1695                         vm_object_qcollapse(object);
1696                         VM_OBJECT_UNLOCK(backing_object);
1697                         break;
1698                 }
1699                 /*
1700                  * We know that we can either collapse the backing object (if
1701                  * the parent is the only reference to it) or (perhaps) have
1702                  * the parent bypass the object if the parent happens to shadow
1703                  * all the resident pages in the entire backing object.
1704                  *
1705                  * This is ignoring pager-backed pages such as swap pages.
1706                  * vm_object_backing_scan fails the shadowing test in this
1707                  * case.
1708                  */
1709                 if (backing_object->ref_count == 1) {
1710                         /*
1711                          * If there is exactly one reference to the backing
1712                          * object, we can collapse it into the parent.  
1713                          */
1714                         vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1715
1716 #if VM_NRESERVLEVEL > 0
1717                         /*
1718                          * Break any reservations from backing_object.
1719                          */
1720                         if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1721                                 vm_reserv_break_all(backing_object);
1722 #endif
1723
1724                         /*
1725                          * Move the pager from backing_object to object.
1726                          */
1727                         if (backing_object->type == OBJT_SWAP) {
1728                                 /*
1729                                  * swap_pager_copy() can sleep, in which case
1730                                  * the backing_object's and object's locks are
1731                                  * released and reacquired.
1732                                  */
1733                                 swap_pager_copy(
1734                                     backing_object,
1735                                     object,
1736                                     OFF_TO_IDX(object->backing_object_offset), TRUE);
1737
1738                                 /*
1739                                  * Free any cached pages from backing_object.
1740                                  */
1741                                 if (__predict_false(backing_object->cache != NULL))
1742                                         vm_page_cache_free(backing_object, 0, 0);
1743                         }
1744                         /*
1745                          * Object now shadows whatever backing_object did.
1746                          * Note that the reference to 
1747                          * backing_object->backing_object moves from within 
1748                          * backing_object to within object.
1749                          */
1750                         LIST_REMOVE(object, shadow_list);
1751                         backing_object->shadow_count--;
1752                         backing_object->generation++;
1753                         if (backing_object->backing_object) {
1754                                 VM_OBJECT_LOCK(backing_object->backing_object);
1755                                 LIST_REMOVE(backing_object, shadow_list);
1756                                 LIST_INSERT_HEAD(
1757                                     &backing_object->backing_object->shadow_head,
1758                                     object, shadow_list);
1759                                 /*
1760                                  * The shadow_count has not changed.
1761                                  */
1762                                 backing_object->backing_object->generation++;
1763                                 VM_OBJECT_UNLOCK(backing_object->backing_object);
1764                         }
1765                         object->backing_object = backing_object->backing_object;
1766                         object->backing_object_offset +=
1767                             backing_object->backing_object_offset;
1768
1769                         /*
1770                          * Discard backing_object.
1771                          *
1772                          * Since the backing object has no pages, no pager left,
1773                          * and no object references within it, all that is
1774                          * necessary is to dispose of it.
1775                          */
1776                         KASSERT(backing_object->ref_count == 1, ("backing_object %p was somehow re-referenced during collapse!", backing_object));
1777                         VM_OBJECT_UNLOCK(backing_object);
1778
1779                         mtx_lock(&vm_object_list_mtx);
1780                         TAILQ_REMOVE(
1781                             &vm_object_list, 
1782                             backing_object,
1783                             object_list
1784                         );
1785                         mtx_unlock(&vm_object_list_mtx);
1786
1787                         uma_zfree(obj_zone, backing_object);
1788
1789                         object_collapses++;
1790                 } else {
1791                         vm_object_t new_backing_object;
1792
1793                         /*
1794                          * If we do not entirely shadow the backing object,
1795                          * there is nothing we can do so we give up.
1796                          */
1797                         if (object->resident_page_count != object->size &&
1798                             vm_object_backing_scan(object,
1799                             OBSC_TEST_ALL_SHADOWED) == 0) {
1800                                 VM_OBJECT_UNLOCK(backing_object);
1801                                 break;
1802                         }
1803
1804                         /*
1805                          * Make the parent shadow the next object in the
1806                          * chain.  Deallocating backing_object will not remove
1807                          * it, since its reference count is at least 2.
1808                          */
1809                         LIST_REMOVE(object, shadow_list);
1810                         backing_object->shadow_count--;
1811                         backing_object->generation++;
1812
1813                         new_backing_object = backing_object->backing_object;
1814                         if ((object->backing_object = new_backing_object) != NULL) {
1815                                 VM_OBJECT_LOCK(new_backing_object);
1816                                 LIST_INSERT_HEAD(
1817                                     &new_backing_object->shadow_head,
1818                                     object,
1819                                     shadow_list
1820                                 );
1821                                 new_backing_object->shadow_count++;
1822                                 new_backing_object->generation++;
1823                                 vm_object_reference_locked(new_backing_object);
1824                                 VM_OBJECT_UNLOCK(new_backing_object);
1825                                 object->backing_object_offset +=
1826                                         backing_object->backing_object_offset;
1827                         }
1828
1829                         /*
1830                          * Drop the reference count on backing_object. Since
1831                          * its ref_count was at least 2, it will not vanish.
1832                          */
1833                         backing_object->ref_count--;
1834                         VM_OBJECT_UNLOCK(backing_object);
1835                         object_bypasses++;
1836                 }
1837
1838                 /*
1839                  * Try again with this object's new backing object.
1840                  */
1841         }
1842 }
1843
1844 /*
1845  *      vm_object_page_remove:
1846  *
1847  *      For the given object, either frees or invalidates each of the
1848  *      specified pages.  In general, a page is freed.  However, if a
1849  *      page is wired for any reason other than the existence of a
1850  *      managed, wired mapping, then it may be invalidated but not
1851  *      removed from the object.  Pages are specified by the given
1852  *      range ["start", "end") and Boolean "clean_only".  As a
1853  *      special case, if "end" is zero, then the range extends from
1854  *      "start" to the end of the object.  If "clean_only" is TRUE,
1855  *      then only the non-dirty pages within the specified range are
1856  *      affected.
1857  *
1858  *      In general, this operation should only be performed on objects
1859  *      that contain managed pages.  There are two exceptions.  First,
1860  *      it may be performed on the kernel and kmem objects.  Second,
1861  *      it may be used by msync(..., MS_INVALIDATE) to invalidate
1862  *      device-backed pages.
1863  *
1864  *      The object must be locked.
1865  */
1866 void
1867 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1868     boolean_t clean_only)
1869 {
1870         vm_page_t p, next;
1871
1872         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1873         if (object->resident_page_count == 0)
1874                 goto skipmemq;
1875
1876         /*
1877          * Since physically-backed objects do not use managed pages, we can't
1878          * remove pages from the object (we must instead remove the page
1879          * references, and then destroy the object).
1880          */
1881         KASSERT(object->type != OBJT_PHYS || object == kernel_object ||
1882             object == kmem_object,
1883             ("attempt to remove pages from a physical object"));
1884
1885         vm_object_pip_add(object, 1);
1886 again:
1887         vm_page_lock_queues();
1888         if ((p = TAILQ_FIRST(&object->memq)) != NULL) {
1889                 if (p->pindex < start) {
1890                         p = vm_page_splay(start, object->root);
1891                         if ((object->root = p)->pindex < start)
1892                                 p = TAILQ_NEXT(p, listq);
1893                 }
1894         }
1895         /*
1896          * Assert: the variable p is either (1) the page with the
1897          * least pindex greater than or equal to the parameter pindex
1898          * or (2) NULL.
1899          */
1900         for (;
1901              p != NULL && (p->pindex < end || end == 0);
1902              p = next) {
1903                 next = TAILQ_NEXT(p, listq);
1904
1905                 if (p->wire_count != 0) {
1906                         /* Fictitious pages do not have managed mappings. */
1907                         if ((p->flags & PG_FICTITIOUS) == 0)
1908                                 pmap_remove_all(p);
1909                         if (!clean_only)
1910                                 p->valid = 0;
1911                         continue;
1912                 }
1913                 if (vm_page_sleep_if_busy(p, TRUE, "vmopar"))
1914                         goto again;
1915                 KASSERT((p->flags & PG_FICTITIOUS) == 0,
1916                     ("vm_object_page_remove: page %p is fictitious", p));
1917                 if (clean_only && p->valid) {
1918                         pmap_remove_write(p);
1919                         if (p->valid & p->dirty)
1920                                 continue;
1921                 }
1922                 pmap_remove_all(p);
1923                 vm_page_free(p);
1924         }
1925         vm_page_unlock_queues();
1926         vm_object_pip_wakeup(object);
1927 skipmemq:
1928         if (__predict_false(object->cache != NULL))
1929                 vm_page_cache_free(object, start, end);
1930 }
1931
1932 /*
1933  *      Routine:        vm_object_coalesce
1934  *      Function:       Coalesces two objects backing up adjoining
1935  *                      regions of memory into a single object.
1936  *
1937  *      returns TRUE if objects were combined.
1938  *
1939  *      NOTE:   Only works at the moment if the second object is NULL -
1940  *              if it's not, which object do we lock first?
1941  *
1942  *      Parameters:
1943  *              prev_object     First object to coalesce
1944  *              prev_offset     Offset into prev_object
1945  *              prev_size       Size of reference to prev_object
1946  *              next_size       Size of reference to the second object
1947  *
1948  *      Conditions:
1949  *      The object must *not* be locked.
1950  */
1951 boolean_t
1952 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
1953         vm_size_t prev_size, vm_size_t next_size)
1954 {
1955         vm_pindex_t next_pindex;
1956
1957         if (prev_object == NULL)
1958                 return (TRUE);
1959         VM_OBJECT_LOCK(prev_object);
1960         if (prev_object->type != OBJT_DEFAULT &&
1961             prev_object->type != OBJT_SWAP) {
1962                 VM_OBJECT_UNLOCK(prev_object);
1963                 return (FALSE);
1964         }
1965
1966         /*
1967          * Try to collapse the object first
1968          */
1969         vm_object_collapse(prev_object);
1970
1971         /*
1972          * Can't coalesce if: . more than one reference . paged out . shadows
1973          * another object . has a copy elsewhere (any of which mean that the
1974          * pages not mapped to prev_entry may be in use anyway)
1975          */
1976         if (prev_object->backing_object != NULL) {
1977                 VM_OBJECT_UNLOCK(prev_object);
1978                 return (FALSE);
1979         }
1980
1981         prev_size >>= PAGE_SHIFT;
1982         next_size >>= PAGE_SHIFT;
1983         next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
1984
1985         if ((prev_object->ref_count > 1) &&
1986             (prev_object->size != next_pindex)) {
1987                 VM_OBJECT_UNLOCK(prev_object);
1988                 return (FALSE);
1989         }
1990
1991         /*
1992          * Remove any pages that may still be in the object from a previous
1993          * deallocation.
1994          */
1995         if (next_pindex < prev_object->size) {
1996                 vm_object_page_remove(prev_object,
1997                                       next_pindex,
1998                                       next_pindex + next_size, FALSE);
1999                 if (prev_object->type == OBJT_SWAP)
2000                         swap_pager_freespace(prev_object,
2001                                              next_pindex, next_size);
2002         }
2003
2004         /*
2005          * Extend the object if necessary.
2006          */
2007         if (next_pindex + next_size > prev_object->size)
2008                 prev_object->size = next_pindex + next_size;
2009
2010         VM_OBJECT_UNLOCK(prev_object);
2011         return (TRUE);
2012 }
2013
2014 void
2015 vm_object_set_writeable_dirty(vm_object_t object)
2016 {
2017         struct vnode *vp;
2018
2019         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2020         if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
2021                 return;
2022         vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
2023         if (object->type == OBJT_VNODE &&
2024             (vp = (struct vnode *)object->handle) != NULL) {
2025                 VI_LOCK(vp);
2026                 vp->v_iflag |= VI_OBJDIRTY;
2027                 VI_UNLOCK(vp);
2028         }
2029 }
2030
2031 #include "opt_ddb.h"
2032 #ifdef DDB
2033 #include <sys/kernel.h>
2034
2035 #include <sys/cons.h>
2036
2037 #include <ddb/ddb.h>
2038
2039 static int
2040 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2041 {
2042         vm_map_t tmpm;
2043         vm_map_entry_t tmpe;
2044         vm_object_t obj;
2045         int entcount;
2046
2047         if (map == 0)
2048                 return 0;
2049
2050         if (entry == 0) {
2051                 tmpe = map->header.next;
2052                 entcount = map->nentries;
2053                 while (entcount-- && (tmpe != &map->header)) {
2054                         if (_vm_object_in_map(map, object, tmpe)) {
2055                                 return 1;
2056                         }
2057                         tmpe = tmpe->next;
2058                 }
2059         } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2060                 tmpm = entry->object.sub_map;
2061                 tmpe = tmpm->header.next;
2062                 entcount = tmpm->nentries;
2063                 while (entcount-- && tmpe != &tmpm->header) {
2064                         if (_vm_object_in_map(tmpm, object, tmpe)) {
2065                                 return 1;
2066                         }
2067                         tmpe = tmpe->next;
2068                 }
2069         } else if ((obj = entry->object.vm_object) != NULL) {
2070                 for (; obj; obj = obj->backing_object)
2071                         if (obj == object) {
2072                                 return 1;
2073                         }
2074         }
2075         return 0;
2076 }
2077
2078 static int
2079 vm_object_in_map(vm_object_t object)
2080 {
2081         struct proc *p;
2082
2083         /* sx_slock(&allproc_lock); */
2084         FOREACH_PROC_IN_SYSTEM(p) {
2085                 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2086                         continue;
2087                 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2088                         /* sx_sunlock(&allproc_lock); */
2089                         return 1;
2090                 }
2091         }
2092         /* sx_sunlock(&allproc_lock); */
2093         if (_vm_object_in_map(kernel_map, object, 0))
2094                 return 1;
2095         if (_vm_object_in_map(kmem_map, object, 0))
2096                 return 1;
2097         if (_vm_object_in_map(pager_map, object, 0))
2098                 return 1;
2099         if (_vm_object_in_map(buffer_map, object, 0))
2100                 return 1;
2101         return 0;
2102 }
2103
2104 DB_SHOW_COMMAND(vmochk, vm_object_check)
2105 {
2106         vm_object_t object;
2107
2108         /*
2109          * make sure that internal objs are in a map somewhere
2110          * and none have zero ref counts.
2111          */
2112         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2113                 if (object->handle == NULL &&
2114                     (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2115                         if (object->ref_count == 0) {
2116                                 db_printf("vmochk: internal obj has zero ref count: %ld\n",
2117                                         (long)object->size);
2118                         }
2119                         if (!vm_object_in_map(object)) {
2120                                 db_printf(
2121                         "vmochk: internal obj is not in a map: "
2122                         "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2123                                     object->ref_count, (u_long)object->size, 
2124                                     (u_long)object->size,
2125                                     (void *)object->backing_object);
2126                         }
2127                 }
2128         }
2129 }
2130
2131 /*
2132  *      vm_object_print:        [ debug ]
2133  */
2134 DB_SHOW_COMMAND(object, vm_object_print_static)
2135 {
2136         /* XXX convert args. */
2137         vm_object_t object = (vm_object_t)addr;
2138         boolean_t full = have_addr;
2139
2140         vm_page_t p;
2141
2142         /* XXX count is an (unused) arg.  Avoid shadowing it. */
2143 #define count   was_count
2144
2145         int count;
2146
2147         if (object == NULL)
2148                 return;
2149
2150         db_iprintf(
2151             "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x\n",
2152             object, (int)object->type, (uintmax_t)object->size,
2153             object->resident_page_count, object->ref_count, object->flags);
2154         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2155             object->shadow_count, 
2156             object->backing_object ? object->backing_object->ref_count : 0,
2157             object->backing_object, (uintmax_t)object->backing_object_offset);
2158
2159         if (!full)
2160                 return;
2161
2162         db_indent += 2;
2163         count = 0;
2164         TAILQ_FOREACH(p, &object->memq, listq) {
2165                 if (count == 0)
2166                         db_iprintf("memory:=");
2167                 else if (count == 6) {
2168                         db_printf("\n");
2169                         db_iprintf(" ...");
2170                         count = 0;
2171                 } else
2172                         db_printf(",");
2173                 count++;
2174
2175                 db_printf("(off=0x%jx,page=0x%jx)",
2176                     (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2177         }
2178         if (count != 0)
2179                 db_printf("\n");
2180         db_indent -= 2;
2181 }
2182
2183 /* XXX. */
2184 #undef count
2185
2186 /* XXX need this non-static entry for calling from vm_map_print. */
2187 void
2188 vm_object_print(
2189         /* db_expr_t */ long addr,
2190         boolean_t have_addr,
2191         /* db_expr_t */ long count,
2192         char *modif)
2193 {
2194         vm_object_print_static(addr, have_addr, count, modif);
2195 }
2196
2197 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2198 {
2199         vm_object_t object;
2200         int nl = 0;
2201         int c;
2202
2203         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2204                 vm_pindex_t idx, fidx;
2205                 vm_pindex_t osize;
2206                 vm_paddr_t pa = -1;
2207                 int rcount;
2208                 vm_page_t m;
2209
2210                 db_printf("new object: %p\n", (void *)object);
2211                 if (nl > 18) {
2212                         c = cngetc();
2213                         if (c != ' ')
2214                                 return;
2215                         nl = 0;
2216                 }
2217                 nl++;
2218                 rcount = 0;
2219                 fidx = 0;
2220                 osize = object->size;
2221                 if (osize > 128)
2222                         osize = 128;
2223                 for (idx = 0; idx < osize; idx++) {
2224                         m = vm_page_lookup(object, idx);
2225                         if (m == NULL) {
2226                                 if (rcount) {
2227                                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2228                                                 (long)fidx, rcount, (long)pa);
2229                                         if (nl > 18) {
2230                                                 c = cngetc();
2231                                                 if (c != ' ')
2232                                                         return;
2233                                                 nl = 0;
2234                                         }
2235                                         nl++;
2236                                         rcount = 0;
2237                                 }
2238                                 continue;
2239                         }
2240
2241                                 
2242                         if (rcount &&
2243                                 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2244                                 ++rcount;
2245                                 continue;
2246                         }
2247                         if (rcount) {
2248                                 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2249                                         (long)fidx, rcount, (long)pa);
2250                                 if (nl > 18) {
2251                                         c = cngetc();
2252                                         if (c != ' ')
2253                                                 return;
2254                                         nl = 0;
2255                                 }
2256                                 nl++;
2257                         }
2258                         fidx = idx;
2259                         pa = VM_PAGE_TO_PHYS(m);
2260                         rcount = 1;
2261                 }
2262                 if (rcount) {
2263                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2264                                 (long)fidx, rcount, (long)pa);
2265                         if (nl > 18) {
2266                                 c = cngetc();
2267                                 if (c != ' ')
2268                                         return;
2269                                 nl = 0;
2270                         }
2271                         nl++;
2272                 }
2273         }
2274 }
2275 #endif /* DDB */