]> CyberLeo.Net >> Repos - FreeBSD/releng/7.2.git/blob - usr.sbin/nscd/cachelib.c
Create releng/7.2 from stable/7 in preparation for 7.2-RELEASE.
[FreeBSD/releng/7.2.git] / usr.sbin / nscd / cachelib.c
1 /*-
2  * Copyright (c) 2005 Michael Bushkov <bushman@rsu.ru>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  */
27
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30
31 #include <sys/time.h>
32 #include <assert.h>
33 #include <stdlib.h>
34 #include <string.h>
35 #include "cachelib.h"
36 #include "debug.h"
37
38 #define INITIAL_ENTRIES_CAPACITY 32
39 #define ENTRIES_CAPACITY_STEP 32
40
41 #define STRING_SIMPLE_HASH_BODY(in_var, var, a, M)              \
42         for ((var) = 0; *(in_var) != '\0'; ++(in_var))          \
43                 (var) = ((a)*(var) + *(in_var)) % (M)
44
45 #define STRING_SIMPLE_MP2_HASH_BODY(in_var, var, a, M)          \
46         for ((var) = 0; *(in_var) != 0; ++(in_var))             \
47                 (var) = ((a)*(var) + *(in_var)) & (M - 1)
48
49 static int cache_elemsize_common_continue_func(struct cache_common_entry_ *,
50         struct cache_policy_item_ *);
51 static int cache_lifetime_common_continue_func(struct cache_common_entry_ *,
52         struct cache_policy_item_ *);
53 static void clear_cache_entry(struct cache_entry_ *);
54 static void destroy_cache_entry(struct cache_entry_ *);
55 static void destroy_cache_mp_read_session(struct cache_mp_read_session_ *);
56 static void destroy_cache_mp_write_session(struct cache_mp_write_session_ *);
57 static int entries_bsearch_cmp_func(const void *, const void *);
58 static int entries_qsort_cmp_func(const void *, const void *);
59 static struct cache_entry_ ** find_cache_entry_p(struct cache_ *,
60         const char *);
61 static void flush_cache_entry(struct cache_entry_ *);
62 static void flush_cache_policy(struct cache_common_entry_ *,
63         struct cache_policy_ *, struct cache_policy_ *,
64                 int (*)(struct cache_common_entry_ *,
65                 struct cache_policy_item_ *));
66 static int ht_items_cmp_func(const void *, const void *);
67 static int ht_items_fixed_size_left_cmp_func(const void *, const void *);
68 static hashtable_index_t ht_item_hash_func(const void *, size_t);
69
70 /*
71  * Hashing and comparing routines, that are used with the hash tables
72  */
73 static int
74 ht_items_cmp_func(const void *p1, const void *p2)
75 {
76         struct cache_ht_item_data_ *hp1, *hp2;
77         size_t min_size;
78         int result;
79
80         hp1 = (struct cache_ht_item_data_ *)p1;
81         hp2 = (struct cache_ht_item_data_ *)p2;
82
83         assert(hp1->key != NULL);
84         assert(hp2->key != NULL);
85
86         if (hp1->key_size != hp2->key_size) {
87                 min_size = (hp1->key_size < hp2->key_size) ? hp1->key_size :
88                         hp2->key_size;
89                 result = memcmp(hp1->key, hp2->key, min_size);
90
91                 if (result == 0)
92                         return ((hp1->key_size < hp2->key_size) ? -1 : 1);
93                 else
94                         return (result);
95         } else
96                 return (memcmp(hp1->key, hp2->key, hp1->key_size));
97 }
98
99 static int
100 ht_items_fixed_size_left_cmp_func(const void *p1, const void *p2)
101 {
102         struct cache_ht_item_data_ *hp1, *hp2;
103         size_t min_size;
104         int result;
105
106         hp1 = (struct cache_ht_item_data_ *)p1;
107         hp2 = (struct cache_ht_item_data_ *)p2;
108
109         assert(hp1->key != NULL);
110         assert(hp2->key != NULL);
111
112         if (hp1->key_size != hp2->key_size) {
113                 min_size = (hp1->key_size < hp2->key_size) ? hp1->key_size :
114                         hp2->key_size;
115                 result = memcmp(hp1->key, hp2->key, min_size);
116
117                 if (result == 0)
118                         if (min_size == hp1->key_size)
119                             return (0);
120                         else
121                             return ((hp1->key_size < hp2->key_size) ? -1 : 1);
122                 else
123                         return (result);
124         } else
125                 return (memcmp(hp1->key, hp2->key, hp1->key_size));
126 }
127
128 static hashtable_index_t
129 ht_item_hash_func(const void *p, size_t cache_entries_size)
130 {
131         struct cache_ht_item_data_ *hp;
132         size_t i;
133
134         hashtable_index_t retval;
135
136         hp = (struct cache_ht_item_data_ *)p;
137         assert(hp->key != NULL);
138
139         retval = 0;
140         for (i = 0; i < hp->key_size; ++i)
141             retval = (127 * retval + (unsigned char)hp->key[i]) %
142                 cache_entries_size;
143
144         return retval;
145 }
146
147 HASHTABLE_GENERATE(cache_ht_, cache_ht_item_, struct cache_ht_item_data_, data,
148         ht_item_hash_func, ht_items_cmp_func);
149
150 /*
151  * Routines to sort and search the entries by name
152  */
153 static int
154 entries_bsearch_cmp_func(const void *key, const void *ent)
155 {
156
157         assert(key != NULL);
158         assert(ent != NULL);
159
160         return (strcmp((char const *)key,
161                 (*(struct cache_entry_ const **)ent)->name));
162 }
163
164 static int
165 entries_qsort_cmp_func(const void *e1, const void *e2)
166 {
167
168         assert(e1 != NULL);
169         assert(e2 != NULL);
170
171         return (strcmp((*(struct cache_entry_ const **)e1)->name,
172                 (*(struct cache_entry_ const **)e2)->name));
173 }
174
175 static struct cache_entry_ **
176 find_cache_entry_p(struct cache_ *the_cache, const char *entry_name)
177 {
178
179         return ((struct cache_entry_ **)(bsearch(entry_name, the_cache->entries,
180                 the_cache->entries_size, sizeof(struct cache_entry_ *),
181                 entries_bsearch_cmp_func)));
182 }
183
184 static void
185 destroy_cache_mp_write_session(struct cache_mp_write_session_ *ws)
186 {
187
188         struct cache_mp_data_item_      *data_item;
189
190         TRACE_IN(destroy_cache_mp_write_session);
191         assert(ws != NULL);
192         while (!TAILQ_EMPTY(&ws->items)) {
193                 data_item = TAILQ_FIRST(&ws->items);
194                 TAILQ_REMOVE(&ws->items, data_item, entries);
195                 free(data_item->value);
196                 free(data_item);
197         }
198
199         free(ws);
200         TRACE_OUT(destroy_cache_mp_write_session);
201 }
202
203 static void
204 destroy_cache_mp_read_session(struct cache_mp_read_session_ *rs)
205 {
206
207         TRACE_IN(destroy_cache_mp_read_session);
208         assert(rs != NULL);
209         free(rs);
210         TRACE_OUT(destroy_cache_mp_read_session);
211 }
212
213 static void
214 destroy_cache_entry(struct cache_entry_ *entry)
215 {
216         struct cache_common_entry_      *common_entry;
217         struct cache_mp_entry_          *mp_entry;
218         struct cache_mp_read_session_   *rs;
219         struct cache_mp_write_session_  *ws;
220         struct cache_ht_item_ *ht_item;
221         struct cache_ht_item_data_ *ht_item_data;
222
223         TRACE_IN(destroy_cache_entry);
224         assert(entry != NULL);
225
226         if (entry->params->entry_type == CET_COMMON) {
227                 common_entry = (struct cache_common_entry_ *)entry;
228
229                 HASHTABLE_FOREACH(&(common_entry->items), ht_item) {
230                         HASHTABLE_ENTRY_FOREACH(ht_item, data, ht_item_data)
231                         {
232                                 free(ht_item_data->key);
233                                 free(ht_item_data->value);
234                         }
235                         HASHTABLE_ENTRY_CLEAR(ht_item, data);
236                 }
237
238                 HASHTABLE_DESTROY(&(common_entry->items), data);
239
240                 /* FIFO policy is always first */
241                 destroy_cache_fifo_policy(common_entry->policies[0]);
242                 switch (common_entry->common_params.policy) {
243                 case CPT_LRU:
244                         destroy_cache_lru_policy(common_entry->policies[1]);
245                         break;
246                 case CPT_LFU:
247                         destroy_cache_lfu_policy(common_entry->policies[1]);
248                         break;
249                 default:
250                 break;
251                 }
252                 free(common_entry->policies);
253         } else {
254                 mp_entry = (struct cache_mp_entry_ *)entry;
255
256                 while (!TAILQ_EMPTY(&mp_entry->ws_head)) {
257                         ws = TAILQ_FIRST(&mp_entry->ws_head);
258                         TAILQ_REMOVE(&mp_entry->ws_head, ws, entries);
259                         destroy_cache_mp_write_session(ws);
260                 }
261
262                 while (!TAILQ_EMPTY(&mp_entry->rs_head)) {
263                         rs = TAILQ_FIRST(&mp_entry->rs_head);
264                         TAILQ_REMOVE(&mp_entry->rs_head, rs, entries);
265                         destroy_cache_mp_read_session(rs);
266                 }
267
268                 if (mp_entry->completed_write_session != NULL)
269                         destroy_cache_mp_write_session(
270                                 mp_entry->completed_write_session);
271
272                 if (mp_entry->pending_write_session != NULL)
273                         destroy_cache_mp_write_session(
274                                 mp_entry->pending_write_session);
275         }
276
277         free(entry->name);
278         free(entry);
279         TRACE_OUT(destroy_cache_entry);
280 }
281
282 static void
283 clear_cache_entry(struct cache_entry_ *entry)
284 {
285         struct cache_mp_entry_          *mp_entry;
286         struct cache_common_entry_      *common_entry;
287         struct cache_ht_item_ *ht_item;
288         struct cache_ht_item_data_ *ht_item_data;
289         struct cache_policy_ *policy;
290         struct cache_policy_item_ *item, *next_item;
291         size_t entry_size;
292         int i;
293
294         if (entry->params->entry_type == CET_COMMON) {
295                 common_entry = (struct cache_common_entry_ *)entry;
296
297                 entry_size = 0;
298                 HASHTABLE_FOREACH(&(common_entry->items), ht_item) {
299                         HASHTABLE_ENTRY_FOREACH(ht_item, data, ht_item_data)
300                         {
301                                 free(ht_item_data->key);
302                                 free(ht_item_data->value);
303                         }
304                         entry_size += HASHTABLE_ENTRY_SIZE(ht_item, data);
305                         HASHTABLE_ENTRY_CLEAR(ht_item, data);
306                 }
307
308                 common_entry->items_size -= entry_size;
309                 for (i = 0; i < common_entry->policies_size; ++i) {
310                         policy = common_entry->policies[i];
311
312                         next_item = NULL;
313                         item = policy->get_first_item_func(policy);
314                         while (item != NULL) {
315                                 next_item = policy->get_next_item_func(policy,
316                                         item);
317                                 policy->remove_item_func(policy, item);
318                                 policy->destroy_item_func(item);
319                                 item = next_item;
320                         }
321                 }
322         } else {
323                 mp_entry = (struct cache_mp_entry_ *)entry;
324
325                 if (mp_entry->rs_size == 0) {
326                         if (mp_entry->completed_write_session != NULL) {
327                                 destroy_cache_mp_write_session(
328                                         mp_entry->completed_write_session);
329                                 mp_entry->completed_write_session = NULL;
330                         }
331
332                         memset(&mp_entry->creation_time, 0,
333                                 sizeof(struct timeval));
334                         memset(&mp_entry->last_request_time, 0,
335                                 sizeof(struct timeval));
336                 }
337         }
338 }
339
340 /*
341  * When passed to the flush_cache_policy, ensures that all old elements are
342  * deleted.
343  */
344 static int
345 cache_lifetime_common_continue_func(struct cache_common_entry_ *entry,
346         struct cache_policy_item_ *item)
347 {
348
349         return ((item->last_request_time.tv_sec - item->creation_time.tv_sec >
350                 entry->common_params.max_lifetime.tv_sec) ? 1: 0);
351 }
352
353 /*
354  * When passed to the flush_cache_policy, ensures that all elements, that
355  * exceed the size limit, are deleted.
356  */
357 static int
358 cache_elemsize_common_continue_func(struct cache_common_entry_ *entry,
359         struct cache_policy_item_ *item)
360 {
361
362         return ((entry->items_size > entry->common_params.satisf_elemsize) ? 1
363                 : 0);
364 }
365
366 /*
367  * Removes the elements from the cache entry, while the continue_func returns 1.
368  */
369 static void
370 flush_cache_policy(struct cache_common_entry_ *entry,
371         struct cache_policy_ *policy,
372         struct cache_policy_ *connected_policy,
373         int (*continue_func)(struct cache_common_entry_ *,
374                 struct cache_policy_item_ *))
375 {
376         struct cache_policy_item_ *item, *next_item, *connected_item;
377         struct cache_ht_item_ *ht_item;
378         struct cache_ht_item_data_ *ht_item_data, ht_key;
379         hashtable_index_t hash;
380
381         assert(policy != NULL);
382
383         next_item = NULL;
384         item = policy->get_first_item_func(policy);
385         while ((item != NULL) && (continue_func(entry, item) == 1)) {
386                 next_item = policy->get_next_item_func(policy, item);
387
388                 connected_item = item->connected_item;
389                 policy->remove_item_func(policy, item);
390
391                 memset(&ht_key, 0, sizeof(struct cache_ht_item_data_));
392                 ht_key.key = item->key;
393                 ht_key.key_size = item->key_size;
394
395                 hash = HASHTABLE_CALCULATE_HASH(cache_ht_, &entry->items,
396                         &ht_key);
397                 assert(hash >= 0);
398                 assert(hash < HASHTABLE_ENTRIES_COUNT(&entry->items));
399
400                 ht_item = HASHTABLE_GET_ENTRY(&(entry->items), hash);
401                 ht_item_data = HASHTABLE_ENTRY_FIND(cache_ht_, ht_item,
402                         &ht_key);
403                 assert(ht_item_data != NULL);
404                 free(ht_item_data->key);
405                 free(ht_item_data->value);
406                 HASHTABLE_ENTRY_REMOVE(cache_ht_, ht_item, ht_item_data);
407                 --entry->items_size;
408
409                 policy->destroy_item_func(item);
410
411                 if (connected_item != NULL) {
412                         connected_policy->remove_item_func(connected_policy,
413                                 connected_item);
414                         connected_policy->destroy_item_func(connected_item);
415                 }
416
417                 item = next_item;
418         }
419 }
420
421 static void
422 flush_cache_entry(struct cache_entry_ *entry)
423 {
424         struct cache_mp_entry_          *mp_entry;
425         struct cache_common_entry_      *common_entry;
426         struct cache_policy_ *policy, *connected_policy;
427
428         connected_policy = NULL;
429         if (entry->params->entry_type == CET_COMMON) {
430                 common_entry = (struct cache_common_entry_ *)entry;
431                 if ((common_entry->common_params.max_lifetime.tv_sec != 0) ||
432                     (common_entry->common_params.max_lifetime.tv_usec != 0)) {
433
434                         policy = common_entry->policies[0];
435                         if (common_entry->policies_size > 1)
436                                 connected_policy = common_entry->policies[1];
437
438                         flush_cache_policy(common_entry, policy,
439                                 connected_policy,
440                                 cache_lifetime_common_continue_func);
441                 }
442
443
444                 if ((common_entry->common_params.max_elemsize != 0) &&
445                         common_entry->items_size >
446                         common_entry->common_params.max_elemsize) {
447
448                         if (common_entry->policies_size > 1) {
449                                 policy = common_entry->policies[1];
450                                 connected_policy = common_entry->policies[0];
451                         } else {
452                                 policy = common_entry->policies[0];
453                                 connected_policy = NULL;
454                         }
455
456                         flush_cache_policy(common_entry, policy,
457                                 connected_policy,
458                                 cache_elemsize_common_continue_func);
459                 }
460         } else {
461                 mp_entry = (struct cache_mp_entry_ *)entry;
462
463                 if ((mp_entry->mp_params.max_lifetime.tv_sec != 0)
464                         || (mp_entry->mp_params.max_lifetime.tv_usec != 0)) {
465
466                         if (mp_entry->last_request_time.tv_sec -
467                                 mp_entry->last_request_time.tv_sec >
468                                 mp_entry->mp_params.max_lifetime.tv_sec)
469                                 clear_cache_entry(entry);
470                 }
471         }
472 }
473
474 struct cache_ *
475 init_cache(struct cache_params const *params)
476 {
477         struct cache_ *retval;
478
479         TRACE_IN(init_cache);
480         assert(params != NULL);
481
482         retval = (struct cache_ *)calloc(1, sizeof(struct cache_));
483         assert(retval != NULL);
484
485         assert(params != NULL);
486         memcpy(&retval->params, params, sizeof(struct cache_params));
487
488         retval->entries = (struct cache_entry_ **)calloc(1,
489                 sizeof(struct cache_entry_ *) * INITIAL_ENTRIES_CAPACITY);
490         assert(retval->entries != NULL);
491
492         retval->entries_capacity = INITIAL_ENTRIES_CAPACITY;
493         retval->entries_size = 0;
494
495         TRACE_OUT(init_cache);
496         return (retval);
497 }
498
499 void
500 destroy_cache(struct cache_ *the_cache)
501 {
502
503         TRACE_IN(destroy_cache);
504         assert(the_cache != NULL);
505
506         if (the_cache->entries != NULL) {
507                 size_t i;
508                 for (i = 0; i < the_cache->entries_size; ++i)
509                         destroy_cache_entry(the_cache->entries[i]);
510
511                 free(the_cache->entries);
512         }
513
514         free(the_cache);
515         TRACE_OUT(destroy_cache);
516 }
517
518 int
519 register_cache_entry(struct cache_ *the_cache,
520         struct cache_entry_params const *params)
521 {
522         int policies_size;
523         size_t entry_name_size;
524         struct cache_common_entry_      *new_common_entry;
525         struct cache_mp_entry_          *new_mp_entry;
526
527         TRACE_IN(register_cache_entry);
528         assert(the_cache != NULL);
529
530         if (find_cache_entry(the_cache, params->entry_name) != NULL) {
531                 TRACE_OUT(register_cache_entry);
532                 return (-1);
533         }
534
535         if (the_cache->entries_size == the_cache->entries_capacity) {
536                 struct cache_entry_ **new_entries;
537                 size_t  new_capacity;
538
539                 new_capacity = the_cache->entries_capacity +
540                         ENTRIES_CAPACITY_STEP;
541                 new_entries = (struct cache_entry_ **)calloc(1,
542                         sizeof(struct cache_entry_ *) * new_capacity);
543                 assert(new_entries != NULL);
544
545                 memcpy(new_entries, the_cache->entries,
546                         sizeof(struct cache_entry_ *)
547                         * the_cache->entries_size);
548
549                 free(the_cache->entries);
550                 the_cache->entries = new_entries;
551         }
552
553         entry_name_size = strlen(params->entry_name) + 1;
554         switch (params->entry_type)
555         {
556         case CET_COMMON:
557                 new_common_entry = (struct cache_common_entry_ *)calloc(1,
558                         sizeof(struct cache_common_entry_));
559                 assert(new_common_entry != NULL);
560
561                 memcpy(&new_common_entry->common_params, params,
562                         sizeof(struct common_cache_entry_params));
563                 new_common_entry->params =
564                   (struct cache_entry_params *)&new_common_entry->common_params;
565
566                 new_common_entry->common_params.entry_name = (char *)calloc(1,
567                         entry_name_size);
568                 assert(new_common_entry->common_params.entry_name != NULL);
569                 strlcpy(new_common_entry->common_params.entry_name,
570                         params->entry_name, entry_name_size);
571                 new_common_entry->name =
572                         new_common_entry->common_params.entry_name;
573
574                 HASHTABLE_INIT(&(new_common_entry->items),
575                         struct cache_ht_item_data_, data,
576                         new_common_entry->common_params.cache_entries_size);
577
578                 if (new_common_entry->common_params.policy == CPT_FIFO)
579                         policies_size = 1;
580                 else
581                         policies_size = 2;
582
583                 new_common_entry->policies = (struct cache_policy_ **)calloc(1,
584                         sizeof(struct cache_policy_ *) * policies_size);
585                 assert(new_common_entry->policies != NULL);
586
587                 new_common_entry->policies_size = policies_size;
588                 new_common_entry->policies[0] = init_cache_fifo_policy();
589
590                 if (policies_size > 1) {
591                         switch (new_common_entry->common_params.policy) {
592                         case CPT_LRU:
593                                 new_common_entry->policies[1] =
594                                         init_cache_lru_policy();
595                         break;
596                         case CPT_LFU:
597                                 new_common_entry->policies[1] =
598                                         init_cache_lfu_policy();
599                         break;
600                         default:
601                         break;
602                         }
603                 }
604
605                 new_common_entry->get_time_func =
606                         the_cache->params.get_time_func;
607                 the_cache->entries[the_cache->entries_size++] =
608                         (struct cache_entry_ *)new_common_entry;
609                 break;
610         case CET_MULTIPART:
611                 new_mp_entry = (struct cache_mp_entry_ *)calloc(1,
612                         sizeof(struct cache_mp_entry_));
613                 assert(new_mp_entry != NULL);
614
615                 memcpy(&new_mp_entry->mp_params, params,
616                         sizeof(struct mp_cache_entry_params));
617                 new_mp_entry->params =
618                         (struct cache_entry_params *)&new_mp_entry->mp_params;
619
620                 new_mp_entry->mp_params.entry_name = (char *)calloc(1,
621                         entry_name_size);
622                 assert(new_mp_entry->mp_params.entry_name != NULL);
623                 strlcpy(new_mp_entry->mp_params.entry_name, params->entry_name,
624                         entry_name_size);
625                 new_mp_entry->name = new_mp_entry->mp_params.entry_name;
626
627                 TAILQ_INIT(&new_mp_entry->ws_head);
628                 TAILQ_INIT(&new_mp_entry->rs_head);
629
630                 new_mp_entry->get_time_func = the_cache->params.get_time_func;
631                 the_cache->entries[the_cache->entries_size++] =
632                         (struct cache_entry_ *)new_mp_entry;
633                 break;
634         }
635
636
637         qsort(the_cache->entries, the_cache->entries_size,
638                 sizeof(struct cache_entry_ *), entries_qsort_cmp_func);
639
640         TRACE_OUT(register_cache_entry);
641         return (0);
642 }
643
644 int
645 unregister_cache_entry(struct cache_ *the_cache, const char *entry_name)
646 {
647         struct cache_entry_ **del_ent;
648
649         TRACE_IN(unregister_cache_entry);
650         assert(the_cache != NULL);
651
652         del_ent = find_cache_entry_p(the_cache, entry_name);
653         if (del_ent != NULL) {
654                 destroy_cache_entry(*del_ent);
655                 --the_cache->entries_size;
656
657                 memmove(del_ent, del_ent + 1,
658                         (&(the_cache->entries[--the_cache->entries_size]) -
659                         del_ent) * sizeof(struct cache_entry_ *));
660
661                 TRACE_OUT(unregister_cache_entry);
662                 return (0);
663         } else {
664                 TRACE_OUT(unregister_cache_entry);
665                 return (-1);
666         }
667 }
668
669 struct cache_entry_ *
670 find_cache_entry(struct cache_ *the_cache, const char *entry_name)
671 {
672         struct cache_entry_ **result;
673
674         TRACE_IN(find_cache_entry);
675         result = find_cache_entry_p(the_cache, entry_name);
676
677         if (result == NULL) {
678                 TRACE_OUT(find_cache_entry);
679                 return (NULL);
680         } else {
681                 TRACE_OUT(find_cache_entry);
682                 return (*result);
683         }
684 }
685
686 /*
687  * Tries to read the element with the specified key from the cache. If the
688  * value_size is too small, it will be filled with the proper number, and
689  * the user will need to call cache_read again with the value buffer, that
690  * is large enough.
691  * Function returns 0 on success, -1 on error, and -2 if the value_size is too
692  * small.
693  */
694 int
695 cache_read(struct cache_entry_ *entry, const char *key, size_t key_size,
696         char *value, size_t *value_size)
697 {
698         struct cache_common_entry_      *common_entry;
699         struct cache_ht_item_data_      item_data, *find_res;
700         struct cache_ht_item_           *item;
701         hashtable_index_t       hash;
702         struct cache_policy_item_ *connected_item;
703
704         TRACE_IN(cache_read);
705         assert(entry != NULL);
706         assert(key != NULL);
707         assert(value_size != NULL);
708         assert(entry->params->entry_type == CET_COMMON);
709
710         common_entry = (struct cache_common_entry_ *)entry;
711
712         memset(&item_data, 0, sizeof(struct cache_ht_item_data_));
713         /* can't avoid the cast here */
714         item_data.key = (char *)key;
715         item_data.key_size = key_size;
716
717         hash = HASHTABLE_CALCULATE_HASH(cache_ht_, &common_entry->items,
718                 &item_data);
719         assert(hash >= 0);
720         assert(hash < HASHTABLE_ENTRIES_COUNT(&common_entry->items));
721
722         item = HASHTABLE_GET_ENTRY(&(common_entry->items), hash);
723         find_res = HASHTABLE_ENTRY_FIND(cache_ht_, item, &item_data);
724         if (find_res == NULL) {
725                 TRACE_OUT(cache_read);
726                 return (-1);
727         }
728
729         if ((common_entry->common_params.max_lifetime.tv_sec != 0) ||
730                 (common_entry->common_params.max_lifetime.tv_usec != 0)) {
731
732                 if (find_res->fifo_policy_item->last_request_time.tv_sec -
733                         find_res->fifo_policy_item->creation_time.tv_sec >
734                         common_entry->common_params.max_lifetime.tv_sec) {
735
736                         free(find_res->key);
737                         free(find_res->value);
738
739                         connected_item =
740                             find_res->fifo_policy_item->connected_item;
741                         if (connected_item != NULL) {
742                                 common_entry->policies[1]->remove_item_func(
743                                         common_entry->policies[1],
744                                         connected_item);
745                                 common_entry->policies[1]->destroy_item_func(
746                                         connected_item);
747                         }
748
749                         common_entry->policies[0]->remove_item_func(
750                                 common_entry->policies[0],
751                                         find_res->fifo_policy_item);
752                         common_entry->policies[0]->destroy_item_func(
753                                 find_res->fifo_policy_item);
754
755                         HASHTABLE_ENTRY_REMOVE(cache_ht_, item, find_res);
756                         --common_entry->items_size;
757                 }
758         }
759
760         if ((*value_size < find_res->value_size) || (value == NULL)) {
761                 *value_size = find_res->value_size;
762                 TRACE_OUT(cache_read);
763                 return (-2);
764         }
765
766         *value_size = find_res->value_size;
767         memcpy(value, find_res->value, find_res->value_size);
768
769         ++find_res->fifo_policy_item->request_count;
770         common_entry->get_time_func(
771                 &find_res->fifo_policy_item->last_request_time);
772         common_entry->policies[0]->update_item_func(common_entry->policies[0],
773                 find_res->fifo_policy_item);
774
775         if (find_res->fifo_policy_item->connected_item != NULL) {
776                 connected_item = find_res->fifo_policy_item->connected_item;
777                 memcpy(&connected_item->last_request_time,
778                         &find_res->fifo_policy_item->last_request_time,
779                         sizeof(struct timeval));
780                 connected_item->request_count =
781                         find_res->fifo_policy_item->request_count;
782
783                 common_entry->policies[1]->update_item_func(
784                         common_entry->policies[1], connected_item);
785         }
786
787         TRACE_OUT(cache_read);
788         return (0);
789 }
790
791 /*
792  * Writes the value with the specified key into the cache entry.
793  * Functions returns 0 on success, and -1 on error.
794  */
795 int
796 cache_write(struct cache_entry_ *entry, const char *key, size_t key_size,
797         char const *value, size_t value_size)
798 {
799         struct cache_common_entry_      *common_entry;
800         struct cache_ht_item_data_      item_data, *find_res;
801         struct cache_ht_item_           *item;
802         hashtable_index_t       hash;
803
804         struct cache_policy_            *policy, *connected_policy;
805         struct cache_policy_item_       *policy_item;
806         struct cache_policy_item_       *connected_policy_item;
807
808         TRACE_IN(cache_write);
809         assert(entry != NULL);
810         assert(key != NULL);
811         assert(value != NULL);
812         assert(entry->params->entry_type == CET_COMMON);
813
814         common_entry = (struct cache_common_entry_ *)entry;
815
816         memset(&item_data, 0, sizeof(struct cache_ht_item_data_));
817         /* can't avoid the cast here */
818         item_data.key = (char *)key;
819         item_data.key_size = key_size;
820
821         hash = HASHTABLE_CALCULATE_HASH(cache_ht_, &common_entry->items,
822                 &item_data);
823         assert(hash >= 0);
824         assert(hash < HASHTABLE_ENTRIES_COUNT(&common_entry->items));
825
826         item = HASHTABLE_GET_ENTRY(&(common_entry->items), hash);
827         find_res = HASHTABLE_ENTRY_FIND(cache_ht_, item, &item_data);
828         if (find_res != NULL) {
829                 TRACE_OUT(cache_write);
830                 return (-1);
831         }
832
833         item_data.key = (char *)malloc(key_size);
834         memcpy(item_data.key, key, key_size);
835
836         item_data.value = (char *)malloc(value_size);
837         assert(item_data.value != NULL);
838
839         memcpy(item_data.value, value, value_size);
840         item_data.value_size = value_size;
841
842         policy_item = common_entry->policies[0]->create_item_func();
843         policy_item->key = item_data.key;
844         policy_item->key_size = item_data.key_size;
845         common_entry->get_time_func(&policy_item->creation_time);
846
847         if (common_entry->policies_size > 1) {
848                 connected_policy_item =
849                         common_entry->policies[1]->create_item_func();
850                 memcpy(&connected_policy_item->creation_time,
851                         &policy_item->creation_time,
852                         sizeof(struct timeval));
853                 connected_policy_item->key = policy_item->key;
854                 connected_policy_item->key_size = policy_item->key_size;
855
856                 connected_policy_item->connected_item = policy_item;
857                 policy_item->connected_item = connected_policy_item;
858         }
859
860         item_data.fifo_policy_item = policy_item;
861
862         common_entry->policies[0]->add_item_func(common_entry->policies[0],
863                 policy_item);
864         if (common_entry->policies_size > 1)
865                 common_entry->policies[1]->add_item_func(
866                         common_entry->policies[1], connected_policy_item);
867
868         HASHTABLE_ENTRY_STORE(cache_ht_, item, &item_data);
869         ++common_entry->items_size;
870
871         if ((common_entry->common_params.max_elemsize != 0) &&
872                 (common_entry->items_size >
873                 common_entry->common_params.max_elemsize)) {
874                 if (common_entry->policies_size > 1) {
875                         policy = common_entry->policies[1];
876                         connected_policy = common_entry->policies[0];
877                 } else {
878                         policy = common_entry->policies[0];
879                         connected_policy = NULL;
880                 }
881
882                 flush_cache_policy(common_entry, policy, connected_policy,
883                         cache_elemsize_common_continue_func);
884         }
885
886         TRACE_OUT(cache_write);
887         return (0);
888 }
889
890 /*
891  * Initializes the write session for the specified multipart entry. This
892  * session then should be filled with data either committed or abandoned by
893  * using close_cache_mp_write_session or abandon_cache_mp_write_session
894  * respectively.
895  * Returns NULL on errors (when there are too many opened write sessions for
896  * the entry).
897  */
898 struct cache_mp_write_session_ *
899 open_cache_mp_write_session(struct cache_entry_ *entry)
900 {
901         struct cache_mp_entry_  *mp_entry;
902         struct cache_mp_write_session_  *retval;
903
904         TRACE_IN(open_cache_mp_write_session);
905         assert(entry != NULL);
906         assert(entry->params->entry_type == CET_MULTIPART);
907         mp_entry = (struct cache_mp_entry_ *)entry;
908
909         if ((mp_entry->mp_params.max_sessions > 0) &&
910                 (mp_entry->ws_size == mp_entry->mp_params.max_sessions)) {
911                 TRACE_OUT(open_cache_mp_write_session);
912                 return (NULL);
913         }
914
915         retval = (struct cache_mp_write_session_ *)calloc(1,
916                 sizeof(struct cache_mp_write_session_));
917         assert(retval != NULL);
918
919         TAILQ_INIT(&retval->items);
920         retval->parent_entry = mp_entry;
921
922         TAILQ_INSERT_HEAD(&mp_entry->ws_head, retval, entries);
923         ++mp_entry->ws_size;
924
925         TRACE_OUT(open_cache_mp_write_session);
926         return (retval);
927 }
928
929 /*
930  * Writes data to the specified session. Return 0 on success and -1 on errors
931  * (when write session size limit is exceeded).
932  */
933 int
934 cache_mp_write(struct cache_mp_write_session_ *ws, char *data,
935         size_t data_size)
936 {
937         struct cache_mp_data_item_      *new_item;
938
939         TRACE_IN(cache_mp_write);
940         assert(ws != NULL);
941         assert(ws->parent_entry != NULL);
942         assert(ws->parent_entry->params->entry_type == CET_MULTIPART);
943
944         if ((ws->parent_entry->mp_params.max_elemsize > 0) &&
945                 (ws->parent_entry->mp_params.max_elemsize == ws->items_size)) {
946                 TRACE_OUT(cache_mp_write);
947                 return (-1);
948         }
949
950         new_item = (struct cache_mp_data_item_ *)calloc(1,
951                 sizeof(struct cache_mp_data_item_));
952         assert(new_item != NULL);
953
954         new_item->value = (char *)malloc(data_size);
955         assert(new_item->value != NULL);
956         memcpy(new_item->value, data, data_size);
957         new_item->value_size = data_size;
958
959         TAILQ_INSERT_TAIL(&ws->items, new_item, entries);
960         ++ws->items_size;
961
962         TRACE_OUT(cache_mp_write);
963         return (0);
964 }
965
966 /*
967  * Abandons the write session and frees all the connected resources.
968  */
969 void
970 abandon_cache_mp_write_session(struct cache_mp_write_session_ *ws)
971 {
972
973         TRACE_IN(abandon_cache_mp_write_session);
974         assert(ws != NULL);
975         assert(ws->parent_entry != NULL);
976         assert(ws->parent_entry->params->entry_type == CET_MULTIPART);
977
978         TAILQ_REMOVE(&ws->parent_entry->ws_head, ws, entries);
979         --ws->parent_entry->ws_size;
980
981         destroy_cache_mp_write_session(ws);
982         TRACE_OUT(abandon_cache_mp_write_session);
983 }
984
985 /*
986  * Commits the session to the entry, for which it was created.
987  */
988 void
989 close_cache_mp_write_session(struct cache_mp_write_session_ *ws)
990 {
991
992         TRACE_IN(close_cache_mp_write_session);
993         assert(ws != NULL);
994         assert(ws->parent_entry != NULL);
995         assert(ws->parent_entry->params->entry_type == CET_MULTIPART);
996
997         TAILQ_REMOVE(&ws->parent_entry->ws_head, ws, entries);
998         --ws->parent_entry->ws_size;
999
1000         if (ws->parent_entry->completed_write_session == NULL) {
1001                 /*
1002                  * If there is no completed session yet, this will be the one
1003                  */
1004                 ws->parent_entry->get_time_func(
1005                         &ws->parent_entry->creation_time);
1006                 ws->parent_entry->completed_write_session = ws;
1007         } else {
1008                 /*
1009                  * If there is a completed session, then we'll save our session
1010                  * as a pending session. If there is already a pending session,
1011                  * it would be destroyed.
1012                  */
1013                 if (ws->parent_entry->pending_write_session != NULL)
1014                         destroy_cache_mp_write_session(
1015                                 ws->parent_entry->pending_write_session);
1016
1017                 ws->parent_entry->pending_write_session = ws;
1018         }
1019         TRACE_OUT(close_cache_mp_write_session);
1020 }
1021
1022 /*
1023  * Opens read session for the specified entry. Returns NULL on errors (when
1024  * there are no data in the entry, or the data are obsolete).
1025  */
1026 struct cache_mp_read_session_ *
1027 open_cache_mp_read_session(struct cache_entry_ *entry)
1028 {
1029         struct cache_mp_entry_                  *mp_entry;
1030         struct cache_mp_read_session_   *retval;
1031
1032         TRACE_IN(open_cache_mp_read_session);
1033         assert(entry != NULL);
1034         assert(entry->params->entry_type == CET_MULTIPART);
1035         mp_entry = (struct cache_mp_entry_ *)entry;
1036
1037         if (mp_entry->completed_write_session == NULL) {
1038                 TRACE_OUT(open_cache_mp_read_session);
1039                 return (NULL);
1040         }
1041
1042         if ((mp_entry->mp_params.max_lifetime.tv_sec != 0)
1043                 || (mp_entry->mp_params.max_lifetime.tv_usec != 0)) {
1044                 if (mp_entry->last_request_time.tv_sec -
1045                         mp_entry->last_request_time.tv_sec >
1046                         mp_entry->mp_params.max_lifetime.tv_sec) {
1047                         flush_cache_entry(entry);
1048                         TRACE_OUT(open_cache_mp_read_session);
1049                         return (NULL);
1050                 }
1051         }
1052
1053         retval = (struct cache_mp_read_session_ *)calloc(1,
1054                 sizeof(struct cache_mp_read_session_));
1055         assert(retval != NULL);
1056
1057         retval->parent_entry = mp_entry;
1058         retval->current_item = TAILQ_FIRST(
1059                 &mp_entry->completed_write_session->items);
1060
1061         TAILQ_INSERT_HEAD(&mp_entry->rs_head, retval, entries);
1062         ++mp_entry->rs_size;
1063
1064         mp_entry->get_time_func(&mp_entry->last_request_time);
1065         TRACE_OUT(open_cache_mp_read_session);
1066         return (retval);
1067 }
1068
1069 /*
1070  * Reads the data from the read session - step by step.
1071  * Returns 0 on success, -1 on error (when there are no more data), and -2 if
1072  * the data_size is too small.  In the last case, data_size would be filled
1073  * the proper value.
1074  */
1075 int
1076 cache_mp_read(struct cache_mp_read_session_ *rs, char *data, size_t *data_size)
1077 {
1078
1079         TRACE_IN(cache_mp_read);
1080         assert(rs != NULL);
1081
1082         if (rs->current_item == NULL) {
1083                 TRACE_OUT(cache_mp_read);
1084                 return (-1);
1085         }
1086
1087         if (rs->current_item->value_size > *data_size) {
1088                 *data_size = rs->current_item->value_size;
1089                 if (data == NULL) {
1090                         TRACE_OUT(cache_mp_read);
1091                         return (0);
1092                 }
1093
1094                 TRACE_OUT(cache_mp_read);
1095                 return (-2);
1096         }
1097
1098         *data_size = rs->current_item->value_size;
1099         memcpy(data, rs->current_item->value, rs->current_item->value_size);
1100         rs->current_item = TAILQ_NEXT(rs->current_item, entries);
1101
1102         TRACE_OUT(cache_mp_read);
1103         return (0);
1104 }
1105
1106 /*
1107  * Closes the read session. If there are no more read sessions and there is
1108  * a pending write session, it will be committed and old
1109  * completed_write_session will be destroyed.
1110  */
1111 void
1112 close_cache_mp_read_session(struct cache_mp_read_session_ *rs)
1113 {
1114
1115         TRACE_IN(close_cache_mp_read_session);
1116         assert(rs != NULL);
1117         assert(rs->parent_entry != NULL);
1118
1119         TAILQ_REMOVE(&rs->parent_entry->rs_head, rs, entries);
1120         --rs->parent_entry->rs_size;
1121
1122         if ((rs->parent_entry->rs_size == 0) &&
1123                 (rs->parent_entry->pending_write_session != NULL)) {
1124                 destroy_cache_mp_write_session(
1125                         rs->parent_entry->completed_write_session);
1126                 rs->parent_entry->completed_write_session =
1127                         rs->parent_entry->pending_write_session;
1128                 rs->parent_entry->pending_write_session = NULL;
1129         }
1130
1131         destroy_cache_mp_read_session(rs);
1132         TRACE_OUT(close_cache_mp_read_session);
1133 }
1134
1135 int
1136 transform_cache_entry(struct cache_entry_ *entry,
1137         enum cache_transformation_t transformation)
1138 {
1139
1140         TRACE_IN(transform_cache_entry);
1141         switch (transformation) {
1142         case CTT_CLEAR:
1143                 clear_cache_entry(entry);
1144                 TRACE_OUT(transform_cache_entry);
1145                 return (0);
1146         case CTT_FLUSH:
1147                 flush_cache_entry(entry);
1148                 TRACE_OUT(transform_cache_entry);
1149                 return (0);
1150         default:
1151                 TRACE_OUT(transform_cache_entry);
1152                 return (-1);
1153         }
1154 }
1155
1156 int
1157 transform_cache_entry_part(struct cache_entry_ *entry,
1158         enum cache_transformation_t transformation, const char *key_part,
1159         size_t key_part_size, enum part_position_t part_position)
1160 {
1161         struct cache_common_entry_ *common_entry;
1162         struct cache_ht_item_ *ht_item;
1163         struct cache_ht_item_data_ *ht_item_data, ht_key;
1164
1165         struct cache_policy_item_ *item, *connected_item;
1166
1167         TRACE_IN(transform_cache_entry_part);
1168         if (entry->params->entry_type != CET_COMMON) {
1169                 TRACE_OUT(transform_cache_entry_part);
1170                 return (-1);
1171         }
1172
1173         if (transformation != CTT_CLEAR) {
1174                 TRACE_OUT(transform_cache_entry_part);
1175                 return (-1);
1176         }
1177
1178         memset(&ht_key, 0, sizeof(struct cache_ht_item_data_));
1179         ht_key.key = (char *)key_part;  /* can't avoid casting here */
1180         ht_key.key_size = key_part_size;
1181
1182         common_entry = (struct cache_common_entry_ *)entry;
1183         HASHTABLE_FOREACH(&(common_entry->items), ht_item) {
1184                 do {
1185                         ht_item_data = HASHTABLE_ENTRY_FIND_SPECIAL(cache_ht_,
1186                                 ht_item, &ht_key,
1187                                 ht_items_fixed_size_left_cmp_func);
1188
1189                         if (ht_item_data != NULL) {
1190                             item = ht_item_data->fifo_policy_item;
1191                             connected_item = item->connected_item;
1192
1193                             common_entry->policies[0]->remove_item_func(
1194                                 common_entry->policies[0],
1195                                 item);
1196
1197                             free(ht_item_data->key);
1198                             free(ht_item_data->value);
1199                             HASHTABLE_ENTRY_REMOVE(cache_ht_, ht_item,
1200                                 ht_item_data);
1201                             --common_entry->items_size;
1202
1203                             common_entry->policies[0]->destroy_item_func(
1204                                 item);
1205                             if (common_entry->policies_size == 2) {
1206                                 common_entry->policies[1]->remove_item_func(
1207                                     common_entry->policies[1],
1208                                     connected_item);
1209                                 common_entry->policies[1]->destroy_item_func(
1210                                     connected_item);
1211                             }
1212                         }
1213                 } while (ht_item_data != NULL);
1214         }
1215
1216         TRACE_OUT(transform_cache_entry_part);
1217         return (0);
1218 }