]> CyberLeo.Net >> Repos - FreeBSD/releng/7.2.git/blob - usr.sbin/nscd/nscd.c
Create releng/7.2 from stable/7 in preparation for 7.2-RELEASE.
[FreeBSD/releng/7.2.git] / usr.sbin / nscd / nscd.c
1 /*-
2  * Copyright (c) 2005 Michael Bushkov <bushman@rsu.ru>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in thereg
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  */
27
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30
31 #include <sys/types.h>
32 #include <sys/event.h>
33 #include <sys/socket.h>
34 #include <sys/time.h>
35 #include <sys/param.h>
36 #include <sys/un.h>
37 #include <assert.h>
38 #include <err.h>
39 #include <errno.h>
40 #include <fcntl.h>
41 #include <libutil.h>
42 #include <pthread.h>
43 #include <signal.h>
44 #include <stdio.h>
45 #include <stdlib.h>
46 #include <string.h>
47 #include <unistd.h>
48
49 #include "agents/passwd.h"
50 #include "agents/group.h"
51 #include "agents/services.h"
52 #include "cachelib.h"
53 #include "config.h"
54 #include "debug.h"
55 #include "log.h"
56 #include "nscdcli.h"
57 #include "parser.h"
58 #include "query.h"
59 #include "singletons.h"
60
61 #ifndef CONFIG_PATH
62 #define CONFIG_PATH "/etc/nscd.conf"
63 #endif
64 #define DEFAULT_CONFIG_PATH     "nscd.conf"
65
66 #define MAX_SOCKET_IO_SIZE      4096
67
68 struct processing_thread_args {
69         cache   the_cache;
70         struct configuration    *the_configuration;
71         struct runtime_env              *the_runtime_env;
72 };
73
74 static void accept_connection(struct kevent *, struct runtime_env *,
75         struct configuration *);
76 static void destroy_cache_(cache);
77 static void destroy_runtime_env(struct runtime_env *);
78 static cache init_cache_(struct configuration *);
79 static struct runtime_env *init_runtime_env(struct configuration *);
80 static void processing_loop(cache, struct runtime_env *,
81         struct configuration *);
82 static void process_socket_event(struct kevent *, struct runtime_env *,
83         struct configuration *);
84 static void process_timer_event(struct kevent *, struct runtime_env *,
85         struct configuration *);
86 static void *processing_thread(void *);
87 static void usage(void);
88
89 void get_time_func(struct timeval *);
90
91 static void
92 usage(void)
93 {
94         fprintf(stderr,
95             "usage: nscd [-dnst] [-i cachename] [-I cachename]\n");
96         exit(1);
97 }
98
99 static cache
100 init_cache_(struct configuration *config)
101 {
102         struct cache_params params;
103         cache retval;
104
105         struct configuration_entry *config_entry;
106         size_t  size, i;
107         int res;
108
109         TRACE_IN(init_cache_);
110
111         memset(&params, 0, sizeof(struct cache_params));
112         params.get_time_func = get_time_func;
113         retval = init_cache(&params);
114
115         size = configuration_get_entries_size(config);
116         for (i = 0; i < size; ++i) {
117                 config_entry = configuration_get_entry(config, i);
118                 /*
119                  * We should register common entries now - multipart entries
120                  * would be registered automatically during the queries.
121                  */
122                 res = register_cache_entry(retval, (struct cache_entry_params *)
123                         &config_entry->positive_cache_params);
124                 config_entry->positive_cache_entry = find_cache_entry(retval,
125                         config_entry->positive_cache_params.entry_name);
126                 assert(config_entry->positive_cache_entry !=
127                         INVALID_CACHE_ENTRY);
128
129                 res = register_cache_entry(retval, (struct cache_entry_params *)
130                         &config_entry->negative_cache_params);
131                 config_entry->negative_cache_entry = find_cache_entry(retval,
132                         config_entry->negative_cache_params.entry_name);
133                 assert(config_entry->negative_cache_entry !=
134                         INVALID_CACHE_ENTRY);
135         }
136
137         LOG_MSG_2("cache", "cache was successfully initialized");
138         TRACE_OUT(init_cache_);
139         return (retval);
140 }
141
142 static void
143 destroy_cache_(cache the_cache)
144 {
145         TRACE_IN(destroy_cache_);
146         destroy_cache(the_cache);
147         TRACE_OUT(destroy_cache_);
148 }
149
150 /*
151  * Socket and kqueues are prepared here. We have one global queue for both
152  * socket and timers events.
153  */
154 static struct runtime_env *
155 init_runtime_env(struct configuration *config)
156 {
157         int serv_addr_len;
158         struct sockaddr_un serv_addr;
159
160         struct kevent eventlist;
161         struct timespec timeout;
162
163         struct runtime_env *retval;
164
165         TRACE_IN(init_runtime_env);
166         retval = (struct runtime_env *)calloc(1, sizeof(struct runtime_env));
167         assert(retval != NULL);
168
169         retval->sockfd = socket(PF_LOCAL, SOCK_STREAM, 0);
170
171         if (config->force_unlink == 1)
172                 unlink(config->socket_path);
173
174         memset(&serv_addr, 0, sizeof(struct sockaddr_un));
175         serv_addr.sun_family = PF_LOCAL;
176         strlcpy(serv_addr.sun_path, config->socket_path,
177                 sizeof(serv_addr.sun_path));
178         serv_addr_len = sizeof(serv_addr.sun_family) +
179                 strlen(serv_addr.sun_path) + 1;
180
181         if (bind(retval->sockfd, (struct sockaddr *)&serv_addr,
182                 serv_addr_len) == -1) {
183                 close(retval->sockfd);
184                 free(retval);
185
186                 LOG_ERR_2("runtime environment", "can't bind socket to path: "
187                         "%s", config->socket_path);
188                 TRACE_OUT(init_runtime_env);
189                 return (NULL);
190         }
191         LOG_MSG_2("runtime environment", "using socket %s",
192                 config->socket_path);
193
194         /*
195          * Here we're marking socket as non-blocking and setting its backlog
196          * to the maximum value
197          */
198         chmod(config->socket_path, config->socket_mode);
199         listen(retval->sockfd, -1);
200         fcntl(retval->sockfd, F_SETFL, O_NONBLOCK);
201
202         retval->queue = kqueue();
203         assert(retval->queue != -1);
204
205         EV_SET(&eventlist, retval->sockfd, EVFILT_READ, EV_ADD | EV_ONESHOT,
206                 0, 0, 0);
207         memset(&timeout, 0, sizeof(struct timespec));
208         kevent(retval->queue, &eventlist, 1, NULL, 0, &timeout);
209
210         LOG_MSG_2("runtime environment", "successfully initialized");
211         TRACE_OUT(init_runtime_env);
212         return (retval);
213 }
214
215 static void
216 destroy_runtime_env(struct runtime_env *env)
217 {
218         TRACE_IN(destroy_runtime_env);
219         close(env->queue);
220         close(env->sockfd);
221         free(env);
222         TRACE_OUT(destroy_runtime_env);
223 }
224
225 static void
226 accept_connection(struct kevent *event_data, struct runtime_env *env,
227         struct configuration *config)
228 {
229         struct kevent   eventlist[2];
230         struct timespec timeout;
231         struct query_state      *qstate;
232
233         int     fd;
234         int     res;
235
236         uid_t   euid;
237         gid_t   egid;
238
239         TRACE_IN(accept_connection);
240         fd = accept(event_data->ident, NULL, NULL);
241         if (fd == -1) {
242                 LOG_ERR_2("accept_connection", "error %d during accept()",
243                     errno);
244                 TRACE_OUT(accept_connection);
245                 return;
246         }
247
248         if (getpeereid(fd, &euid, &egid) != 0) {
249                 LOG_ERR_2("accept_connection", "error %d during getpeereid()",
250                         errno);
251                 TRACE_OUT(accept_connection);
252                 return;
253         }
254
255         qstate = init_query_state(fd, sizeof(int), euid, egid);
256         if (qstate == NULL) {
257                 LOG_ERR_2("accept_connection", "can't init query_state");
258                 TRACE_OUT(accept_connection);
259                 return;
260         }
261
262         memset(&timeout, 0, sizeof(struct timespec));
263         EV_SET(&eventlist[0], fd, EVFILT_TIMER, EV_ADD | EV_ONESHOT,
264                 0, qstate->timeout.tv_sec * 1000, qstate);
265         EV_SET(&eventlist[1], fd, EVFILT_READ, EV_ADD | EV_ONESHOT,
266                 NOTE_LOWAT, qstate->kevent_watermark, qstate);
267         res = kevent(env->queue, eventlist, 2, NULL, 0, &timeout);
268         if (res < 0)
269                 LOG_ERR_2("accept_connection", "kevent error");
270
271         TRACE_OUT(accept_connection);
272 }
273
274 static void
275 process_socket_event(struct kevent *event_data, struct runtime_env *env,
276         struct configuration *config)
277 {
278         struct kevent   eventlist[2];
279         struct timeval  query_timeout;
280         struct timespec kevent_timeout;
281         int     nevents;
282         int     eof_res, res;
283         ssize_t io_res;
284         struct query_state *qstate;
285
286         TRACE_IN(process_socket_event);
287         eof_res = event_data->flags & EV_EOF ? 1 : 0;
288         res = 0;
289
290         memset(&kevent_timeout, 0, sizeof(struct timespec));
291         EV_SET(&eventlist[0], event_data->ident, EVFILT_TIMER, EV_DELETE,
292                 0, 0, NULL);
293         nevents = kevent(env->queue, eventlist, 1, NULL, 0, &kevent_timeout);
294         if (nevents == -1) {
295                 if (errno == ENOENT) {
296                         /* the timer is already handling this event */
297                         TRACE_OUT(process_socket_event);
298                         return;
299                 } else {
300                         /* some other error happened */
301                         LOG_ERR_2("process_socket_event", "kevent error, errno"
302                                 " is %d", errno);
303                         TRACE_OUT(process_socket_event);
304                         return;
305                 }
306         }
307         qstate = (struct query_state *)event_data->udata;
308
309         /*
310          * If the buffer that is to be send/received is too large,
311          * we send it implicitly, by using query_io_buffer_read and
312          * query_io_buffer_write functions in the query_state. These functions
313          * use the temporary buffer, which is later send/received in parts.
314          * The code below implements buffer splitting/mergind for send/receive
315          * operations. It also does the actual socket IO operations.
316          */
317         if (((qstate->use_alternate_io == 0) &&
318                 (qstate->kevent_watermark <= event_data->data)) ||
319                 ((qstate->use_alternate_io != 0) &&
320                 (qstate->io_buffer_watermark <= event_data->data))) {
321                 if (qstate->use_alternate_io != 0) {
322                         switch (qstate->io_buffer_filter) {
323                         case EVFILT_READ:
324                                 io_res = query_socket_read(qstate,
325                                         qstate->io_buffer_p,
326                                         qstate->io_buffer_watermark);
327                                 if (io_res < 0) {
328                                         qstate->use_alternate_io = 0;
329                                         qstate->process_func = NULL;
330                                 } else {
331                                         qstate->io_buffer_p += io_res;
332                                         if (qstate->io_buffer_p ==
333                                                 qstate->io_buffer +
334                                                 qstate->io_buffer_size) {
335                                                 qstate->io_buffer_p =
336                                                     qstate->io_buffer;
337                                                 qstate->use_alternate_io = 0;
338                                         }
339                                 }
340                         break;
341                         default:
342                         break;
343                         }
344                 }
345
346                 if (qstate->use_alternate_io == 0) {
347                         do {
348                                 res = qstate->process_func(qstate);
349                         } while ((qstate->kevent_watermark == 0) &&
350                                         (qstate->process_func != NULL) &&
351                                         (res == 0));
352
353                         if (res != 0)
354                                 qstate->process_func = NULL;
355                 }
356
357                 if ((qstate->use_alternate_io != 0) &&
358                         (qstate->io_buffer_filter == EVFILT_WRITE)) {
359                         io_res = query_socket_write(qstate, qstate->io_buffer_p,
360                                 qstate->io_buffer_watermark);
361                         if (io_res < 0) {
362                                 qstate->use_alternate_io = 0;
363                                 qstate->process_func = NULL;
364                         } else
365                                 qstate->io_buffer_p += io_res;
366                 }
367         } else {
368                 /* assuming that socket was closed */
369                 qstate->process_func = NULL;
370                 qstate->use_alternate_io = 0;
371         }
372
373         if (((qstate->process_func == NULL) &&
374                 (qstate->use_alternate_io == 0)) ||
375                 (eof_res != 0) || (res != 0)) {
376                 destroy_query_state(qstate);
377                 close(event_data->ident);
378                 TRACE_OUT(process_socket_event);
379                 return;
380         }
381
382         /* updating the query_state lifetime variable */
383         get_time_func(&query_timeout);
384         query_timeout.tv_usec = 0;
385         query_timeout.tv_sec -= qstate->creation_time.tv_sec;
386         if (query_timeout.tv_sec > qstate->timeout.tv_sec)
387                 query_timeout.tv_sec = 0;
388         else
389                 query_timeout.tv_sec = qstate->timeout.tv_sec -
390                         query_timeout.tv_sec;
391
392         if ((qstate->use_alternate_io != 0) && (qstate->io_buffer_p ==
393                 qstate->io_buffer + qstate->io_buffer_size))
394                 qstate->use_alternate_io = 0;
395
396         if (qstate->use_alternate_io == 0) {
397                 /*
398                  * If we must send/receive the large block of data,
399                  * we should prepare the query_state's io_XXX fields.
400                  * We should also substitute its write_func and read_func
401                  * with the query_io_buffer_write and query_io_buffer_read,
402                  * which will allow us to implicitly send/receive this large
403                  * buffer later (in the subsequent calls to the
404                  * process_socket_event).
405                  */
406                 if (qstate->kevent_watermark > MAX_SOCKET_IO_SIZE) {
407                         if (qstate->io_buffer != NULL)
408                                 free(qstate->io_buffer);
409
410                         qstate->io_buffer = (char *)calloc(1,
411                                 qstate->kevent_watermark);
412                         assert(qstate->io_buffer != NULL);
413
414                         qstate->io_buffer_p = qstate->io_buffer;
415                         qstate->io_buffer_size = qstate->kevent_watermark;
416                         qstate->io_buffer_filter = qstate->kevent_filter;
417
418                         qstate->write_func = query_io_buffer_write;
419                         qstate->read_func = query_io_buffer_read;
420
421                         if (qstate->kevent_filter == EVFILT_READ)
422                                 qstate->use_alternate_io = 1;
423
424                         qstate->io_buffer_watermark = MAX_SOCKET_IO_SIZE;
425                         EV_SET(&eventlist[1], event_data->ident,
426                                 qstate->kevent_filter, EV_ADD | EV_ONESHOT,
427                                 NOTE_LOWAT, MAX_SOCKET_IO_SIZE, qstate);
428                 } else {
429                         EV_SET(&eventlist[1], event_data->ident,
430                                 qstate->kevent_filter, EV_ADD | EV_ONESHOT,
431                                 NOTE_LOWAT, qstate->kevent_watermark, qstate);
432                 }
433         } else {
434                 if (qstate->io_buffer + qstate->io_buffer_size -
435                         qstate->io_buffer_p <
436                         MAX_SOCKET_IO_SIZE) {
437                         qstate->io_buffer_watermark = qstate->io_buffer +
438                                 qstate->io_buffer_size - qstate->io_buffer_p;
439                         EV_SET(&eventlist[1], event_data->ident,
440                                 qstate->io_buffer_filter,
441                                 EV_ADD | EV_ONESHOT, NOTE_LOWAT,
442                                 qstate->io_buffer_watermark,
443                                 qstate);
444                 } else {
445                         qstate->io_buffer_watermark = MAX_SOCKET_IO_SIZE;
446                         EV_SET(&eventlist[1], event_data->ident,
447                                 qstate->io_buffer_filter, EV_ADD | EV_ONESHOT,
448                                 NOTE_LOWAT, MAX_SOCKET_IO_SIZE, qstate);
449                 }
450         }
451         EV_SET(&eventlist[0], event_data->ident, EVFILT_TIMER,
452                 EV_ADD | EV_ONESHOT, 0, query_timeout.tv_sec * 1000, qstate);
453         kevent(env->queue, eventlist, 2, NULL, 0, &kevent_timeout);
454
455         TRACE_OUT(process_socket_event);
456 }
457
458 /*
459  * This routine is called if timer event has been signaled in the kqueue. It
460  * just closes the socket and destroys the query_state.
461  */
462 static void
463 process_timer_event(struct kevent *event_data, struct runtime_env *env,
464         struct configuration *config)
465 {
466         struct query_state      *qstate;
467
468         TRACE_IN(process_timer_event);
469         qstate = (struct query_state *)event_data->udata;
470         destroy_query_state(qstate);
471         close(event_data->ident);
472         TRACE_OUT(process_timer_event);
473 }
474
475 /*
476  * Processing loop is the basic processing routine, that forms a body of each
477  * procssing thread
478  */
479 static void
480 processing_loop(cache the_cache, struct runtime_env *env,
481         struct configuration *config)
482 {
483         struct timespec timeout;
484         const int eventlist_size = 1;
485         struct kevent eventlist[eventlist_size];
486         int nevents, i;
487
488         TRACE_MSG("=> processing_loop");
489         memset(&timeout, 0, sizeof(struct timespec));
490         memset(&eventlist, 0, sizeof(struct kevent) * eventlist_size);
491
492         for (;;) {
493                 nevents = kevent(env->queue, NULL, 0, eventlist,
494                         eventlist_size, NULL);
495                 /*
496                  * we can only receive 1 event on success
497                  */
498                 if (nevents == 1) {
499                         struct kevent *event_data;
500                         event_data = &eventlist[0];
501
502                         if (event_data->ident == env->sockfd) {
503                                 for (i = 0; i < event_data->data; ++i)
504                                     accept_connection(event_data, env, config);
505
506                                 EV_SET(eventlist, s_runtime_env->sockfd,
507                                     EVFILT_READ, EV_ADD | EV_ONESHOT,
508                                     0, 0, 0);
509                                 memset(&timeout, 0,
510                                     sizeof(struct timespec));
511                                 kevent(s_runtime_env->queue, eventlist,
512                                     1, NULL, 0, &timeout);
513
514                         } else {
515                                 switch (event_data->filter) {
516                                 case EVFILT_READ:
517                                 case EVFILT_WRITE:
518                                         process_socket_event(event_data,
519                                                 env, config);
520                                         break;
521                                 case EVFILT_TIMER:
522                                         process_timer_event(event_data,
523                                                 env, config);
524                                         break;
525                                 default:
526                                         break;
527                                 }
528                         }
529                 } else {
530                         /* this branch shouldn't be currently executed */
531                 }
532         }
533
534         TRACE_MSG("<= processing_loop");
535 }
536
537 /*
538  * Wrapper above the processing loop function. It sets the thread signal mask
539  * to avoid SIGPIPE signals (which can happen if the client works incorrectly).
540  */
541 static void *
542 processing_thread(void *data)
543 {
544         struct processing_thread_args   *args;
545         sigset_t new;
546
547         TRACE_MSG("=> processing_thread");
548         args = (struct processing_thread_args *)data;
549
550         sigemptyset(&new);
551         sigaddset(&new, SIGPIPE);
552         if (pthread_sigmask(SIG_BLOCK, &new, NULL) != 0)
553                 LOG_ERR_1("processing thread",
554                         "thread can't block the SIGPIPE signal");
555
556         processing_loop(args->the_cache, args->the_runtime_env,
557                 args->the_configuration);
558         free(args);
559         TRACE_MSG("<= processing_thread");
560
561         return (NULL);
562 }
563
564 void
565 get_time_func(struct timeval *time)
566 {
567         struct timespec res;
568         memset(&res, 0, sizeof(struct timespec));
569         clock_gettime(CLOCK_MONOTONIC, &res);
570
571         time->tv_sec = res.tv_sec;
572         time->tv_usec = 0;
573 }
574
575 /*
576  * The idea of _nss_cache_cycle_prevention_function is that nsdispatch will
577  * search for this symbol in the executable. This symbol is the attribute of
578  * the caching daemon. So, if it exists, nsdispatch won't try to connect to
579  * the caching daemon and will just ignore the 'cache' source in the
580  * nsswitch.conf. This method helps to avoid cycles and organize
581  * self-performing requests.
582  */
583 void
584 _nss_cache_cycle_prevention_function(void)
585 {
586 }
587
588 int
589 main(int argc, char *argv[])
590 {
591         struct processing_thread_args *thread_args;
592         pthread_t *threads;
593
594         struct pidfh *pidfile;
595         pid_t pid;
596
597         char const *config_file;
598         char const *error_str;
599         int error_line;
600         int i, res;
601
602         int trace_mode_enabled;
603         int force_single_threaded;
604         int do_not_daemonize;
605         int clear_user_cache_entries, clear_all_cache_entries;
606         char *user_config_entry_name, *global_config_entry_name;
607         int show_statistics;
608         int daemon_mode, interactive_mode;
609
610
611         /* by default all debug messages are omitted */
612         TRACE_OFF();
613
614         /* parsing command line arguments */
615         trace_mode_enabled = 0;
616         force_single_threaded = 0;
617         do_not_daemonize = 0;
618         clear_user_cache_entries = 0;
619         clear_all_cache_entries = 0;
620         show_statistics = 0;
621         user_config_entry_name = NULL;
622         global_config_entry_name = NULL;
623         while ((res = getopt(argc, argv, "nstdi:I:")) != -1) {
624                 switch (res) {
625                 case 'n':
626                         do_not_daemonize = 1;
627                         break;
628                 case 's':
629                         force_single_threaded = 1;
630                         break;
631                 case 't':
632                         trace_mode_enabled = 1;
633                         break;
634                 case 'i':
635                         clear_user_cache_entries = 1;
636                         if (optarg != NULL)
637                                 if (strcmp(optarg, "all") != 0)
638                                         user_config_entry_name = strdup(optarg);
639                         break;
640                 case 'I':
641                         clear_all_cache_entries = 1;
642                         if (optarg != NULL)
643                                 if (strcmp(optarg, "all") != 0)
644                                         global_config_entry_name =
645                                                 strdup(optarg);
646                         break;
647                 case 'd':
648                         show_statistics = 1;
649                         break;
650                 case '?':
651                 default:
652                         usage();
653                         /* NOT REACHED */
654                 }
655         }
656
657         daemon_mode = do_not_daemonize | force_single_threaded |
658                 trace_mode_enabled;
659         interactive_mode = clear_user_cache_entries | clear_all_cache_entries |
660                 show_statistics;
661
662         if ((daemon_mode != 0) && (interactive_mode != 0)) {
663                 LOG_ERR_1("main", "daemon mode and interactive_mode arguments "
664                         "can't be used together");
665                 usage();
666         }
667
668         if (interactive_mode != 0) {
669                 FILE *pidfin = fopen(DEFAULT_PIDFILE_PATH, "r");
670                 char pidbuf[256];
671
672                 struct nscd_connection_params connection_params;
673                 nscd_connection connection;
674
675                 int result;
676
677                 if (pidfin == NULL)
678                         errx(EXIT_FAILURE, "There is no daemon running.");
679
680                 memset(pidbuf, 0, sizeof(pidbuf));
681                 fread(pidbuf, sizeof(pidbuf) - 1, 1, pidfin);
682                 fclose(pidfin);
683
684                 if (ferror(pidfin) != 0)
685                         errx(EXIT_FAILURE, "Can't read from pidfile.");
686
687                 if (sscanf(pidbuf, "%d", &pid) != 1)
688                         errx(EXIT_FAILURE, "Invalid pidfile.");
689                 LOG_MSG_1("main", "daemon PID is %d", pid);
690
691
692                 memset(&connection_params, 0,
693                         sizeof(struct nscd_connection_params));
694                 connection_params.socket_path = DEFAULT_SOCKET_PATH;
695                 connection = open_nscd_connection__(&connection_params);
696                 if (connection == INVALID_NSCD_CONNECTION)
697                         errx(EXIT_FAILURE, "Can't connect to the daemon.");
698
699                 if (clear_user_cache_entries != 0) {
700                         result = nscd_transform__(connection,
701                                 user_config_entry_name, TT_USER);
702                         if (result != 0)
703                                 LOG_MSG_1("main",
704                                         "user cache transformation failed");
705                         else
706                                 LOG_MSG_1("main",
707                                         "user cache_transformation "
708                                         "succeeded");
709                 }
710
711                 if (clear_all_cache_entries != 0) {
712                         if (geteuid() != 0)
713                                 errx(EXIT_FAILURE, "Only root can initiate "
714                                         "global cache transformation.");
715
716                         result = nscd_transform__(connection,
717                                 global_config_entry_name, TT_ALL);
718                         if (result != 0)
719                                 LOG_MSG_1("main",
720                                         "global cache transformation "
721                                         "failed");
722                         else
723                                 LOG_MSG_1("main",
724                                         "global cache transformation "
725                                         "succeeded");
726                 }
727
728                 close_nscd_connection__(connection);
729
730                 free(user_config_entry_name);
731                 free(global_config_entry_name);
732                 return (EXIT_SUCCESS);
733         }
734
735         pidfile = pidfile_open(DEFAULT_PIDFILE_PATH, 0644, &pid);
736         if (pidfile == NULL) {
737                 if (errno == EEXIST)
738                         errx(EXIT_FAILURE, "Daemon already running, pid: %d.",
739                                 pid);
740                 warn("Cannot open or create pidfile");
741         }
742
743         if (trace_mode_enabled == 1)
744                 TRACE_ON();
745
746         /* blocking the main thread from receiving SIGPIPE signal */
747         sigblock(sigmask(SIGPIPE));
748
749         /* daemonization */
750         if (do_not_daemonize == 0) {
751                 res = daemon(0, trace_mode_enabled == 0 ? 0 : 1);
752                 if (res != 0) {
753                         LOG_ERR_1("main", "can't daemonize myself: %s",
754                                 strerror(errno));
755                         pidfile_remove(pidfile);
756                         goto fin;
757                 } else
758                         LOG_MSG_1("main", "successfully daemonized");
759         }
760
761         pidfile_write(pidfile);
762
763         s_agent_table = init_agent_table();
764         register_agent(s_agent_table, init_passwd_agent());
765         register_agent(s_agent_table, init_passwd_mp_agent());
766         register_agent(s_agent_table, init_group_agent());
767         register_agent(s_agent_table, init_group_mp_agent());
768         register_agent(s_agent_table, init_services_agent());
769         register_agent(s_agent_table, init_services_mp_agent());
770         LOG_MSG_1("main", "request agents registered successfully");
771
772         /*
773          * Hosts agent can't work properly until we have access to the
774          * appropriate dtab structures, which are used in nsdispatch
775          * calls
776          *
777          register_agent(s_agent_table, init_hosts_agent());
778         */
779
780         /* configuration initialization */
781         s_configuration = init_configuration();
782         fill_configuration_defaults(s_configuration);
783
784         error_str = NULL;
785         error_line = 0;
786         config_file = CONFIG_PATH;
787
788         res = parse_config_file(s_configuration, config_file, &error_str,
789                 &error_line);
790         if ((res != 0) && (error_str == NULL)) {
791                 config_file = DEFAULT_CONFIG_PATH;
792                 res = parse_config_file(s_configuration, config_file,
793                         &error_str, &error_line);
794         }
795
796         if (res != 0) {
797                 if (error_str != NULL) {
798                 LOG_ERR_1("main", "error in configuration file(%s, %d): %s\n",
799                         config_file, error_line, error_str);
800                 } else {
801                 LOG_ERR_1("main", "no configuration file found "
802                         "- was looking for %s and %s",
803                         CONFIG_PATH, DEFAULT_CONFIG_PATH);
804                 }
805                 destroy_configuration(s_configuration);
806                 return (-1);
807         }
808
809         if (force_single_threaded == 1)
810                 s_configuration->threads_num = 1;
811
812         /* cache initialization */
813         s_cache = init_cache_(s_configuration);
814         if (s_cache == NULL) {
815                 LOG_ERR_1("main", "can't initialize the cache");
816                 destroy_configuration(s_configuration);
817                 return (-1);
818         }
819
820         /* runtime environment initialization */
821         s_runtime_env = init_runtime_env(s_configuration);
822         if (s_runtime_env == NULL) {
823                 LOG_ERR_1("main", "can't initialize the runtime environment");
824                 destroy_configuration(s_configuration);
825                 destroy_cache_(s_cache);
826                 return (-1);
827         }
828
829         if (s_configuration->threads_num > 1) {
830                 threads = (pthread_t *)calloc(1, sizeof(pthread_t) *
831                         s_configuration->threads_num);
832                 for (i = 0; i < s_configuration->threads_num; ++i) {
833                         thread_args = (struct processing_thread_args *)malloc(
834                                 sizeof(struct processing_thread_args));
835                         thread_args->the_cache = s_cache;
836                         thread_args->the_runtime_env = s_runtime_env;
837                         thread_args->the_configuration = s_configuration;
838
839                         LOG_MSG_1("main", "thread #%d was successfully created",
840                                 i);
841                         pthread_create(&threads[i], NULL, processing_thread,
842                                 thread_args);
843
844                         thread_args = NULL;
845                 }
846
847                 for (i = 0; i < s_configuration->threads_num; ++i)
848                         pthread_join(threads[i], NULL);
849         } else {
850                 LOG_MSG_1("main", "working in single-threaded mode");
851                 processing_loop(s_cache, s_runtime_env, s_configuration);
852         }
853
854 fin:
855         /* runtime environment destruction */
856         destroy_runtime_env(s_runtime_env);
857
858         /* cache destruction */
859         destroy_cache_(s_cache);
860
861         /* configuration destruction */
862         destroy_configuration(s_configuration);
863
864         /* agents table destruction */
865         destroy_agent_table(s_agent_table);
866
867         pidfile_remove(pidfile);
868         return (EXIT_SUCCESS);
869 }