]> CyberLeo.Net >> Repos - FreeBSD/releng/8.2.git/blob - sys/dev/wpi/if_wpi.c
MFC r216557:
[FreeBSD/releng/8.2.git] / sys / dev / wpi / if_wpi.c
1 /*-
2  * Copyright (c) 2006,2007
3  *      Damien Bergamini <damien.bergamini@free.fr>
4  *      Benjamin Close <Benjamin.Close@clearchain.com>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18
19 #define VERSION "20071127"
20
21 #include <sys/cdefs.h>
22 __FBSDID("$FreeBSD$");
23
24 /*
25  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
26  *
27  * The 3945ABG network adapter doesn't use traditional hardware as
28  * many other adaptors do. Instead at run time the eeprom is set into a known
29  * state and told to load boot firmware. The boot firmware loads an init and a
30  * main  binary firmware image into SRAM on the card via DMA.
31  * Once the firmware is loaded, the driver/hw then
32  * communicate by way of circular dma rings via the the SRAM to the firmware.
33  *
34  * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
35  * The 4 tx data rings allow for prioritization QoS.
36  *
37  * The rx data ring consists of 32 dma buffers. Two registers are used to
38  * indicate where in the ring the driver and the firmware are up to. The
39  * driver sets the initial read index (reg1) and the initial write index (reg2),
40  * the firmware updates the read index (reg1) on rx of a packet and fires an
41  * interrupt. The driver then processes the buffers starting at reg1 indicating
42  * to the firmware which buffers have been accessed by updating reg2. At the
43  * same time allocating new memory for the processed buffer.
44  *
45  * A similar thing happens with the tx rings. The difference is the firmware
46  * stop processing buffers once the queue is full and until confirmation
47  * of a successful transmition (tx_intr) has occurred.
48  *
49  * The command ring operates in the same manner as the tx queues.
50  *
51  * All communication direct to the card (ie eeprom) is classed as Stage1
52  * communication
53  *
54  * All communication via the firmware to the card is classed as State2.
55  * The firmware consists of 2 parts. A bootstrap firmware and a runtime
56  * firmware. The bootstrap firmware and runtime firmware are loaded
57  * from host memory via dma to the card then told to execute. From this point
58  * on the majority of communications between the driver and the card goes
59  * via the firmware.
60  */
61
62 #include <sys/param.h>
63 #include <sys/sysctl.h>
64 #include <sys/sockio.h>
65 #include <sys/mbuf.h>
66 #include <sys/kernel.h>
67 #include <sys/socket.h>
68 #include <sys/systm.h>
69 #include <sys/malloc.h>
70 #include <sys/queue.h>
71 #include <sys/taskqueue.h>
72 #include <sys/module.h>
73 #include <sys/bus.h>
74 #include <sys/endian.h>
75 #include <sys/linker.h>
76 #include <sys/firmware.h>
77
78 #include <machine/bus.h>
79 #include <machine/resource.h>
80 #include <sys/rman.h>
81
82 #include <dev/pci/pcireg.h>
83 #include <dev/pci/pcivar.h>
84
85 #include <net/bpf.h>
86 #include <net/if.h>
87 #include <net/if_arp.h>
88 #include <net/ethernet.h>
89 #include <net/if_dl.h>
90 #include <net/if_media.h>
91 #include <net/if_types.h>
92
93 #include <net80211/ieee80211_var.h>
94 #include <net80211/ieee80211_radiotap.h>
95 #include <net80211/ieee80211_regdomain.h>
96 #include <net80211/ieee80211_ratectl.h>
97
98 #include <netinet/in.h>
99 #include <netinet/in_systm.h>
100 #include <netinet/in_var.h>
101 #include <netinet/ip.h>
102 #include <netinet/if_ether.h>
103
104 #include <dev/wpi/if_wpireg.h>
105 #include <dev/wpi/if_wpivar.h>
106
107 #define WPI_DEBUG
108
109 #ifdef WPI_DEBUG
110 #define DPRINTF(x)      do { if (wpi_debug != 0) printf x; } while (0)
111 #define DPRINTFN(n, x)  do { if (wpi_debug & n) printf x; } while (0)
112 #define WPI_DEBUG_SET   (wpi_debug != 0)
113
114 enum {
115         WPI_DEBUG_UNUSED        = 0x00000001,   /* Unused */
116         WPI_DEBUG_HW            = 0x00000002,   /* Stage 1 (eeprom) debugging */
117         WPI_DEBUG_TX            = 0x00000004,   /* Stage 2 TX intrp debugging*/
118         WPI_DEBUG_RX            = 0x00000008,   /* Stage 2 RX intrp debugging */
119         WPI_DEBUG_CMD           = 0x00000010,   /* Stage 2 CMD intrp debugging*/
120         WPI_DEBUG_FIRMWARE      = 0x00000020,   /* firmware(9) loading debug  */
121         WPI_DEBUG_DMA           = 0x00000040,   /* DMA (de)allocations/syncs  */
122         WPI_DEBUG_SCANNING      = 0x00000080,   /* Stage 2 Scanning debugging */
123         WPI_DEBUG_NOTIFY        = 0x00000100,   /* State 2 Noftif intr debug */
124         WPI_DEBUG_TEMP          = 0x00000200,   /* TXPower/Temp Calibration */
125         WPI_DEBUG_OPS           = 0x00000400,   /* wpi_ops taskq debug */
126         WPI_DEBUG_WATCHDOG      = 0x00000800,   /* Watch dog debug */
127         WPI_DEBUG_ANY           = 0xffffffff
128 };
129
130 static int wpi_debug = 0;
131 SYSCTL_INT(_debug, OID_AUTO, wpi, CTLFLAG_RW, &wpi_debug, 0, "wpi debug level");
132 TUNABLE_INT("debug.wpi", &wpi_debug);
133
134 #else
135 #define DPRINTF(x)
136 #define DPRINTFN(n, x)
137 #define WPI_DEBUG_SET   0
138 #endif
139
140 struct wpi_ident {
141         uint16_t        vendor;
142         uint16_t        device;
143         uint16_t        subdevice;
144         const char      *name;
145 };
146
147 static const struct wpi_ident wpi_ident_table[] = {
148         /* The below entries support ABG regardless of the subid */
149         { 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
150         { 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
151         /* The below entries only support BG */
152         { 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG"  },
153         { 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG"  },
154         { 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG"  },
155         { 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG"  },
156         { 0, 0, 0, NULL }
157 };
158
159 static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
160                     const char name[IFNAMSIZ], int unit, int opmode,
161                     int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
162                     const uint8_t mac[IEEE80211_ADDR_LEN]);
163 static void     wpi_vap_delete(struct ieee80211vap *);
164 static int      wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
165                     void **, bus_size_t, bus_size_t, int);
166 static void     wpi_dma_contig_free(struct wpi_dma_info *);
167 static void     wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
168 static int      wpi_alloc_shared(struct wpi_softc *);
169 static void     wpi_free_shared(struct wpi_softc *);
170 static int      wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
171 static void     wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
172 static void     wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
173 static int      wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
174                     int, int);
175 static void     wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
176 static void     wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
177 static void     wpi_newassoc(struct ieee80211_node *, int);
178 static int      wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
179 static void     wpi_mem_lock(struct wpi_softc *);
180 static void     wpi_mem_unlock(struct wpi_softc *);
181 static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t);
182 static void     wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
183 static void     wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
184                     const uint32_t *, int);
185 static uint16_t wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
186 static int      wpi_alloc_fwmem(struct wpi_softc *);
187 static void     wpi_free_fwmem(struct wpi_softc *);
188 static int      wpi_load_firmware(struct wpi_softc *);
189 static void     wpi_unload_firmware(struct wpi_softc *);
190 static int      wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
191 static void     wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
192                     struct wpi_rx_data *);
193 static void     wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
194 static void     wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
195 static void     wpi_notif_intr(struct wpi_softc *);
196 static void     wpi_intr(void *);
197 static uint8_t  wpi_plcp_signal(int);
198 static void     wpi_watchdog(void *);
199 static int      wpi_tx_data(struct wpi_softc *, struct mbuf *,
200                     struct ieee80211_node *, int);
201 static void     wpi_start(struct ifnet *);
202 static void     wpi_start_locked(struct ifnet *);
203 static int      wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
204                     const struct ieee80211_bpf_params *);
205 static void     wpi_scan_start(struct ieee80211com *);
206 static void     wpi_scan_end(struct ieee80211com *);
207 static void     wpi_set_channel(struct ieee80211com *);
208 static void     wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
209 static void     wpi_scan_mindwell(struct ieee80211_scan_state *);
210 static int      wpi_ioctl(struct ifnet *, u_long, caddr_t);
211 static void     wpi_read_eeprom(struct wpi_softc *,
212                     uint8_t macaddr[IEEE80211_ADDR_LEN]);
213 static void     wpi_read_eeprom_channels(struct wpi_softc *, int);
214 static void     wpi_read_eeprom_group(struct wpi_softc *, int);
215 static int      wpi_cmd(struct wpi_softc *, int, const void *, int, int);
216 static int      wpi_wme_update(struct ieee80211com *);
217 static int      wpi_mrr_setup(struct wpi_softc *);
218 static void     wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
219 static void     wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
220 #if 0
221 static int      wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
222 #endif
223 static int      wpi_auth(struct wpi_softc *, struct ieee80211vap *);
224 static int      wpi_run(struct wpi_softc *, struct ieee80211vap *);
225 static int      wpi_scan(struct wpi_softc *);
226 static int      wpi_config(struct wpi_softc *);
227 static void     wpi_stop_master(struct wpi_softc *);
228 static int      wpi_power_up(struct wpi_softc *);
229 static int      wpi_reset(struct wpi_softc *);
230 static void     wpi_hwreset(void *, int);
231 static void     wpi_rfreset(void *, int);
232 static void     wpi_hw_config(struct wpi_softc *);
233 static void     wpi_init(void *);
234 static void     wpi_init_locked(struct wpi_softc *, int);
235 static void     wpi_stop(struct wpi_softc *);
236 static void     wpi_stop_locked(struct wpi_softc *);
237
238 static int      wpi_set_txpower(struct wpi_softc *, struct ieee80211_channel *,
239                     int);
240 static void     wpi_calib_timeout(void *);
241 static void     wpi_power_calibration(struct wpi_softc *, int);
242 static int      wpi_get_power_index(struct wpi_softc *,
243                     struct wpi_power_group *, struct ieee80211_channel *, int);
244 #ifdef WPI_DEBUG
245 static const char *wpi_cmd_str(int);
246 #endif
247 static int wpi_probe(device_t);
248 static int wpi_attach(device_t);
249 static int wpi_detach(device_t);
250 static int wpi_shutdown(device_t);
251 static int wpi_suspend(device_t);
252 static int wpi_resume(device_t);
253
254
255 static device_method_t wpi_methods[] = {
256         /* Device interface */
257         DEVMETHOD(device_probe,         wpi_probe),
258         DEVMETHOD(device_attach,        wpi_attach),
259         DEVMETHOD(device_detach,        wpi_detach),
260         DEVMETHOD(device_shutdown,      wpi_shutdown),
261         DEVMETHOD(device_suspend,       wpi_suspend),
262         DEVMETHOD(device_resume,        wpi_resume),
263
264         { 0, 0 }
265 };
266
267 static driver_t wpi_driver = {
268         "wpi",
269         wpi_methods,
270         sizeof (struct wpi_softc)
271 };
272
273 static devclass_t wpi_devclass;
274
275 DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, 0, 0);
276
277 static const uint8_t wpi_ridx_to_plcp[] = {
278         /* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */
279         /* R1-R4 (ral/ural is R4-R1) */
280         0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3,
281         /* CCK: device-dependent */
282         10, 20, 55, 110
283 };
284 static const uint8_t wpi_ridx_to_rate[] = {
285         12, 18, 24, 36, 48, 72, 96, 108, /* OFDM */
286         2, 4, 11, 22 /*CCK */
287 };
288
289
290 static int
291 wpi_probe(device_t dev)
292 {
293         const struct wpi_ident *ident;
294
295         for (ident = wpi_ident_table; ident->name != NULL; ident++) {
296                 if (pci_get_vendor(dev) == ident->vendor &&
297                     pci_get_device(dev) == ident->device) {
298                         device_set_desc(dev, ident->name);
299                         return 0;
300                 }
301         }
302         return ENXIO;
303 }
304
305 /**
306  * Load the firmare image from disk to the allocated dma buffer.
307  * we also maintain the reference to the firmware pointer as there
308  * is times where we may need to reload the firmware but we are not
309  * in a context that can access the filesystem (ie taskq cause by restart)
310  *
311  * @return 0 on success, an errno on failure
312  */
313 static int
314 wpi_load_firmware(struct wpi_softc *sc)
315 {
316         const struct firmware *fp;
317         struct wpi_dma_info *dma = &sc->fw_dma;
318         const struct wpi_firmware_hdr *hdr;
319         const uint8_t *itext, *idata, *rtext, *rdata, *btext;
320         uint32_t itextsz, idatasz, rtextsz, rdatasz, btextsz;
321         int error;
322
323         DPRINTFN(WPI_DEBUG_FIRMWARE,
324             ("Attempting Loading Firmware from wpi_fw module\n"));
325
326         WPI_UNLOCK(sc);
327
328         if (sc->fw_fp == NULL && (sc->fw_fp = firmware_get("wpifw")) == NULL) {
329                 device_printf(sc->sc_dev,
330                     "could not load firmware image 'wpifw'\n");
331                 error = ENOENT;
332                 WPI_LOCK(sc);
333                 goto fail;
334         }
335
336         fp = sc->fw_fp;
337
338         WPI_LOCK(sc);
339
340         /* Validate the firmware is minimum a particular version */
341         if (fp->version < WPI_FW_MINVERSION) {
342             device_printf(sc->sc_dev,
343                            "firmware version is too old. Need %d, got %d\n",
344                            WPI_FW_MINVERSION,
345                            fp->version);
346             error = ENXIO;
347             goto fail;
348         }
349
350         if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
351                 device_printf(sc->sc_dev,
352                     "firmware file too short: %zu bytes\n", fp->datasize);
353                 error = ENXIO;
354                 goto fail;
355         }
356
357         hdr = (const struct wpi_firmware_hdr *)fp->data;
358
359         /*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
360            |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
361
362         rtextsz = le32toh(hdr->rtextsz);
363         rdatasz = le32toh(hdr->rdatasz);
364         itextsz = le32toh(hdr->itextsz);
365         idatasz = le32toh(hdr->idatasz);
366         btextsz = le32toh(hdr->btextsz);
367
368         /* check that all firmware segments are present */
369         if (fp->datasize < sizeof (struct wpi_firmware_hdr) +
370                 rtextsz + rdatasz + itextsz + idatasz + btextsz) {
371                 device_printf(sc->sc_dev,
372                     "firmware file too short: %zu bytes\n", fp->datasize);
373                 error = ENXIO; /* XXX appropriate error code? */
374                 goto fail;
375         }
376
377         /* get pointers to firmware segments */
378         rtext = (const uint8_t *)(hdr + 1);
379         rdata = rtext + rtextsz;
380         itext = rdata + rdatasz;
381         idata = itext + itextsz;
382         btext = idata + idatasz;
383
384         DPRINTFN(WPI_DEBUG_FIRMWARE,
385             ("Firmware Version: Major %d, Minor %d, Driver %d, \n"
386              "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n",
387              (le32toh(hdr->version) & 0xff000000) >> 24,
388              (le32toh(hdr->version) & 0x00ff0000) >> 16,
389              (le32toh(hdr->version) & 0x0000ffff),
390              rtextsz, rdatasz,
391              itextsz, idatasz, btextsz));
392
393         DPRINTFN(WPI_DEBUG_FIRMWARE,("rtext 0x%x\n", *(const uint32_t *)rtext));
394         DPRINTFN(WPI_DEBUG_FIRMWARE,("rdata 0x%x\n", *(const uint32_t *)rdata));
395         DPRINTFN(WPI_DEBUG_FIRMWARE,("itext 0x%x\n", *(const uint32_t *)itext));
396         DPRINTFN(WPI_DEBUG_FIRMWARE,("idata 0x%x\n", *(const uint32_t *)idata));
397         DPRINTFN(WPI_DEBUG_FIRMWARE,("btext 0x%x\n", *(const uint32_t *)btext));
398
399         /* sanity checks */
400         if (rtextsz > WPI_FW_MAIN_TEXT_MAXSZ ||
401             rdatasz > WPI_FW_MAIN_DATA_MAXSZ ||
402             itextsz > WPI_FW_INIT_TEXT_MAXSZ ||
403             idatasz > WPI_FW_INIT_DATA_MAXSZ ||
404             btextsz > WPI_FW_BOOT_TEXT_MAXSZ ||
405             (btextsz & 3) != 0) {
406                 device_printf(sc->sc_dev, "firmware invalid\n");
407                 error = EINVAL;
408                 goto fail;
409         }
410
411         /* copy initialization images into pre-allocated DMA-safe memory */
412         memcpy(dma->vaddr, idata, idatasz);
413         memcpy(dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, itext, itextsz);
414
415         bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
416
417         /* tell adapter where to find initialization images */
418         wpi_mem_lock(sc);
419         wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
420         wpi_mem_write(sc, WPI_MEM_DATA_SIZE, idatasz);
421         wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
422             dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
423         wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, itextsz);
424         wpi_mem_unlock(sc);
425
426         /* load firmware boot code */
427         if ((error = wpi_load_microcode(sc, btext, btextsz)) != 0) {
428             device_printf(sc->sc_dev, "Failed to load microcode\n");
429             goto fail;
430         }
431
432         /* now press "execute" */
433         WPI_WRITE(sc, WPI_RESET, 0);
434
435         /* wait at most one second for the first alive notification */
436         if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
437                 device_printf(sc->sc_dev,
438                     "timeout waiting for adapter to initialize\n");
439                 goto fail;
440         }
441
442         /* copy runtime images into pre-allocated DMA-sage memory */
443         memcpy(dma->vaddr, rdata, rdatasz);
444         memcpy(dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, rtext, rtextsz);
445         bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
446
447         /* tell adapter where to find runtime images */
448         wpi_mem_lock(sc);
449         wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
450         wpi_mem_write(sc, WPI_MEM_DATA_SIZE, rdatasz);
451         wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
452             dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
453         wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | rtextsz);
454         wpi_mem_unlock(sc);
455
456         /* wait at most one second for the first alive notification */
457         if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
458                 device_printf(sc->sc_dev,
459                     "timeout waiting for adapter to initialize2\n");
460                 goto fail;
461         }
462
463         DPRINTFN(WPI_DEBUG_FIRMWARE,
464             ("Firmware loaded to driver successfully\n"));
465         return error;
466 fail:
467         wpi_unload_firmware(sc);
468         return error;
469 }
470
471 /**
472  * Free the referenced firmware image
473  */
474 static void
475 wpi_unload_firmware(struct wpi_softc *sc)
476 {
477
478         if (sc->fw_fp) {
479                 WPI_UNLOCK(sc);
480                 firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
481                 WPI_LOCK(sc);
482                 sc->fw_fp = NULL;
483         }
484 }
485
486 static int
487 wpi_attach(device_t dev)
488 {
489         struct wpi_softc *sc = device_get_softc(dev);
490         struct ifnet *ifp;
491         struct ieee80211com *ic;
492         int ac, error, supportsa = 1;
493         uint32_t tmp;
494         const struct wpi_ident *ident;
495         uint8_t macaddr[IEEE80211_ADDR_LEN];
496
497         sc->sc_dev = dev;
498
499         if (bootverbose || WPI_DEBUG_SET)
500             device_printf(sc->sc_dev,"Driver Revision %s\n", VERSION);
501
502         /*
503          * Some card's only support 802.11b/g not a, check to see if
504          * this is one such card. A 0x0 in the subdevice table indicates
505          * the entire subdevice range is to be ignored.
506          */
507         for (ident = wpi_ident_table; ident->name != NULL; ident++) {
508                 if (ident->subdevice &&
509                     pci_get_subdevice(dev) == ident->subdevice) {
510                     supportsa = 0;
511                     break;
512                 }
513         }
514
515         /* Create the tasks that can be queued */
516         TASK_INIT(&sc->sc_restarttask, 0, wpi_hwreset, sc);
517         TASK_INIT(&sc->sc_radiotask, 0, wpi_rfreset, sc);
518
519         WPI_LOCK_INIT(sc);
520
521         callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
522         callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
523
524         if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
525                 device_printf(dev, "chip is in D%d power mode "
526                     "-- setting to D0\n", pci_get_powerstate(dev));
527                 pci_set_powerstate(dev, PCI_POWERSTATE_D0);
528         }
529
530         /* disable the retry timeout register */
531         pci_write_config(dev, 0x41, 0, 1);
532
533         /* enable bus-mastering */
534         pci_enable_busmaster(dev);
535
536         sc->mem_rid = PCIR_BAR(0);
537         sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
538             RF_ACTIVE);
539         if (sc->mem == NULL) {
540                 device_printf(dev, "could not allocate memory resource\n");
541                 error = ENOMEM;
542                 goto fail;
543         }
544
545         sc->sc_st = rman_get_bustag(sc->mem);
546         sc->sc_sh = rman_get_bushandle(sc->mem);
547
548         sc->irq_rid = 0;
549         sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
550             RF_ACTIVE | RF_SHAREABLE);
551         if (sc->irq == NULL) {
552                 device_printf(dev, "could not allocate interrupt resource\n");
553                 error = ENOMEM;
554                 goto fail;
555         }
556
557         /*
558          * Allocate DMA memory for firmware transfers.
559          */
560         if ((error = wpi_alloc_fwmem(sc)) != 0) {
561                 printf(": could not allocate firmware memory\n");
562                 error = ENOMEM;
563                 goto fail;
564         }
565
566         /*
567          * Put adapter into a known state.
568          */
569         if ((error = wpi_reset(sc)) != 0) {
570                 device_printf(dev, "could not reset adapter\n");
571                 goto fail;
572         }
573
574         wpi_mem_lock(sc);
575         tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
576         if (bootverbose || WPI_DEBUG_SET)
577             device_printf(sc->sc_dev, "Hardware Revision (0x%X)\n", tmp);
578
579         wpi_mem_unlock(sc);
580
581         /* Allocate shared page */
582         if ((error = wpi_alloc_shared(sc)) != 0) {
583                 device_printf(dev, "could not allocate shared page\n");
584                 goto fail;
585         }
586
587         /* tx data queues  - 4 for QoS purposes */
588         for (ac = 0; ac < WME_NUM_AC; ac++) {
589                 error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
590                 if (error != 0) {
591                     device_printf(dev, "could not allocate Tx ring %d\n",ac);
592                     goto fail;
593                 }
594         }
595
596         /* command queue to talk to the card's firmware */
597         error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
598         if (error != 0) {
599                 device_printf(dev, "could not allocate command ring\n");
600                 goto fail;
601         }
602
603         /* receive data queue */
604         error = wpi_alloc_rx_ring(sc, &sc->rxq);
605         if (error != 0) {
606                 device_printf(dev, "could not allocate Rx ring\n");
607                 goto fail;
608         }
609
610         ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
611         if (ifp == NULL) {
612                 device_printf(dev, "can not if_alloc()\n");
613                 error = ENOMEM;
614                 goto fail;
615         }
616         ic = ifp->if_l2com;
617
618         ic->ic_ifp = ifp;
619         ic->ic_phytype = IEEE80211_T_OFDM;      /* not only, but not used */
620         ic->ic_opmode = IEEE80211_M_STA;        /* default to BSS mode */
621
622         /* set device capabilities */
623         ic->ic_caps =
624                   IEEE80211_C_STA               /* station mode supported */
625                 | IEEE80211_C_MONITOR           /* monitor mode supported */
626                 | IEEE80211_C_TXPMGT            /* tx power management */
627                 | IEEE80211_C_SHSLOT            /* short slot time supported */
628                 | IEEE80211_C_SHPREAMBLE        /* short preamble supported */
629                 | IEEE80211_C_WPA               /* 802.11i */
630 /* XXX looks like WME is partly supported? */
631 #if 0
632                 | IEEE80211_C_IBSS              /* IBSS mode support */
633                 | IEEE80211_C_BGSCAN            /* capable of bg scanning */
634                 | IEEE80211_C_WME               /* 802.11e */
635                 | IEEE80211_C_HOSTAP            /* Host access point mode */
636 #endif
637                 ;
638
639         /*
640          * Read in the eeprom and also setup the channels for
641          * net80211. We don't set the rates as net80211 does this for us
642          */
643         wpi_read_eeprom(sc, macaddr);
644
645         if (bootverbose || WPI_DEBUG_SET) {
646             device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain);
647             device_printf(sc->sc_dev, "Hardware Type: %c\n",
648                           sc->type > 1 ? 'B': '?');
649             device_printf(sc->sc_dev, "Hardware Revision: %c\n",
650                           ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?');
651             device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
652                           supportsa ? "does" : "does not");
653
654             /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check
655                what sc->rev really represents - benjsc 20070615 */
656         }
657
658         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
659         ifp->if_softc = sc;
660         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
661         ifp->if_init = wpi_init;
662         ifp->if_ioctl = wpi_ioctl;
663         ifp->if_start = wpi_start;
664         IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
665         ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
666         IFQ_SET_READY(&ifp->if_snd);
667
668         ieee80211_ifattach(ic, macaddr);
669         /* override default methods */
670         ic->ic_raw_xmit = wpi_raw_xmit;
671         ic->ic_newassoc = wpi_newassoc;
672         ic->ic_wme.wme_update = wpi_wme_update;
673         ic->ic_scan_start = wpi_scan_start;
674         ic->ic_scan_end = wpi_scan_end;
675         ic->ic_set_channel = wpi_set_channel;
676         ic->ic_scan_curchan = wpi_scan_curchan;
677         ic->ic_scan_mindwell = wpi_scan_mindwell;
678
679         ic->ic_vap_create = wpi_vap_create;
680         ic->ic_vap_delete = wpi_vap_delete;
681
682         ieee80211_radiotap_attach(ic,
683             &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
684                 WPI_TX_RADIOTAP_PRESENT,
685             &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
686                 WPI_RX_RADIOTAP_PRESENT);
687
688         /*
689          * Hook our interrupt after all initialization is complete.
690          */
691         error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET |INTR_MPSAFE,
692             NULL, wpi_intr, sc, &sc->sc_ih);
693         if (error != 0) {
694                 device_printf(dev, "could not set up interrupt\n");
695                 goto fail;
696         }
697
698         if (bootverbose)
699                 ieee80211_announce(ic);
700 #ifdef XXX_DEBUG
701         ieee80211_announce_channels(ic);
702 #endif
703         return 0;
704
705 fail:   wpi_detach(dev);
706         return ENXIO;
707 }
708
709 static int
710 wpi_detach(device_t dev)
711 {
712         struct wpi_softc *sc = device_get_softc(dev);
713         struct ifnet *ifp = sc->sc_ifp;
714         struct ieee80211com *ic;
715         int ac;
716
717         if (ifp != NULL) {
718                 ic = ifp->if_l2com;
719
720                 ieee80211_draintask(ic, &sc->sc_restarttask);
721                 ieee80211_draintask(ic, &sc->sc_radiotask);
722                 wpi_stop(sc);
723                 callout_drain(&sc->watchdog_to);
724                 callout_drain(&sc->calib_to);
725                 ieee80211_ifdetach(ic);
726         }
727
728         WPI_LOCK(sc);
729         if (sc->txq[0].data_dmat) {
730                 for (ac = 0; ac < WME_NUM_AC; ac++)
731                         wpi_free_tx_ring(sc, &sc->txq[ac]);
732
733                 wpi_free_tx_ring(sc, &sc->cmdq);
734                 wpi_free_rx_ring(sc, &sc->rxq);
735                 wpi_free_shared(sc);
736         }
737
738         if (sc->fw_fp != NULL) {
739                 wpi_unload_firmware(sc);
740         }
741
742         if (sc->fw_dma.tag)
743                 wpi_free_fwmem(sc);
744         WPI_UNLOCK(sc);
745
746         if (sc->irq != NULL) {
747                 bus_teardown_intr(dev, sc->irq, sc->sc_ih);
748                 bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
749         }
750
751         if (sc->mem != NULL)
752                 bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
753
754         if (ifp != NULL)
755                 if_free(ifp);
756
757         WPI_LOCK_DESTROY(sc);
758
759         return 0;
760 }
761
762 static struct ieee80211vap *
763 wpi_vap_create(struct ieee80211com *ic,
764         const char name[IFNAMSIZ], int unit, int opmode, int flags,
765         const uint8_t bssid[IEEE80211_ADDR_LEN],
766         const uint8_t mac[IEEE80211_ADDR_LEN])
767 {
768         struct wpi_vap *wvp;
769         struct ieee80211vap *vap;
770
771         if (!TAILQ_EMPTY(&ic->ic_vaps))         /* only one at a time */
772                 return NULL;
773         wvp = (struct wpi_vap *) malloc(sizeof(struct wpi_vap),
774             M_80211_VAP, M_NOWAIT | M_ZERO);
775         if (wvp == NULL)
776                 return NULL;
777         vap = &wvp->vap;
778         ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
779         /* override with driver methods */
780         wvp->newstate = vap->iv_newstate;
781         vap->iv_newstate = wpi_newstate;
782
783         ieee80211_ratectl_init(vap);
784         /* complete setup */
785         ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
786         ic->ic_opmode = opmode;
787         return vap;
788 }
789
790 static void
791 wpi_vap_delete(struct ieee80211vap *vap)
792 {
793         struct wpi_vap *wvp = WPI_VAP(vap);
794
795         ieee80211_ratectl_deinit(vap);
796         ieee80211_vap_detach(vap);
797         free(wvp, M_80211_VAP);
798 }
799
800 static void
801 wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
802 {
803         if (error != 0)
804                 return;
805
806         KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
807
808         *(bus_addr_t *)arg = segs[0].ds_addr;
809 }
810
811 /*
812  * Allocates a contiguous block of dma memory of the requested size and
813  * alignment. Due to limitations of the FreeBSD dma subsystem as of 20071217,
814  * allocations greater than 4096 may fail. Hence if the requested alignment is
815  * greater we allocate 'alignment' size extra memory and shift the vaddr and
816  * paddr after the dma load. This bypasses the problem at the cost of a little
817  * more memory.
818  */
819 static int
820 wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
821     void **kvap, bus_size_t size, bus_size_t alignment, int flags)
822 {
823         int error;
824         bus_size_t align;
825         bus_size_t reqsize;
826
827         DPRINTFN(WPI_DEBUG_DMA,
828             ("Size: %zd - alignment %zd\n", size, alignment));
829
830         dma->size = size;
831         dma->tag = NULL;
832
833         if (alignment > 4096) {
834                 align = PAGE_SIZE;
835                 reqsize = size + alignment;
836         } else {
837                 align = alignment;
838                 reqsize = size;
839         }
840         error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), align,
841             0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
842             NULL, NULL, reqsize,
843             1, reqsize, flags,
844             NULL, NULL, &dma->tag);
845         if (error != 0) {
846                 device_printf(sc->sc_dev,
847                     "could not create shared page DMA tag\n");
848                 goto fail;
849         }
850         error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr_start,
851             flags | BUS_DMA_ZERO, &dma->map);
852         if (error != 0) {
853                 device_printf(sc->sc_dev,
854                     "could not allocate shared page DMA memory\n");
855                 goto fail;
856         }
857
858         error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr_start,
859             reqsize,  wpi_dma_map_addr, &dma->paddr_start, flags);
860
861         /* Save the original pointers so we can free all the memory */
862         dma->paddr = dma->paddr_start;
863         dma->vaddr = dma->vaddr_start;
864
865         /*
866          * Check the alignment and increment by 4096 until we get the
867          * requested alignment. Fail if can't obtain the alignment
868          * we requested.
869          */
870         if ((dma->paddr & (alignment -1 )) != 0) {
871                 int i;
872
873                 for (i = 0; i < alignment / 4096; i++) {
874                         if ((dma->paddr & (alignment - 1 )) == 0)
875                                 break;
876                         dma->paddr += 4096;
877                         dma->vaddr += 4096;
878                 }
879                 if (i == alignment / 4096) {
880                         device_printf(sc->sc_dev,
881                             "alignment requirement was not satisfied\n");
882                         goto fail;
883                 }
884         }
885
886         if (error != 0) {
887                 device_printf(sc->sc_dev,
888                     "could not load shared page DMA map\n");
889                 goto fail;
890         }
891
892         if (kvap != NULL)
893                 *kvap = dma->vaddr;
894
895         return 0;
896
897 fail:
898         wpi_dma_contig_free(dma);
899         return error;
900 }
901
902 static void
903 wpi_dma_contig_free(struct wpi_dma_info *dma)
904 {
905         if (dma->tag) {
906                 if (dma->map != NULL) {
907                         if (dma->paddr_start != 0) {
908                                 bus_dmamap_sync(dma->tag, dma->map,
909                                     BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
910                                 bus_dmamap_unload(dma->tag, dma->map);
911                         }
912                         bus_dmamem_free(dma->tag, &dma->vaddr_start, dma->map);
913                 }
914                 bus_dma_tag_destroy(dma->tag);
915         }
916 }
917
918 /*
919  * Allocate a shared page between host and NIC.
920  */
921 static int
922 wpi_alloc_shared(struct wpi_softc *sc)
923 {
924         int error;
925
926         error = wpi_dma_contig_alloc(sc, &sc->shared_dma,
927             (void **)&sc->shared, sizeof (struct wpi_shared),
928             PAGE_SIZE,
929             BUS_DMA_NOWAIT);
930
931         if (error != 0) {
932                 device_printf(sc->sc_dev,
933                     "could not allocate shared area DMA memory\n");
934         }
935
936         return error;
937 }
938
939 static void
940 wpi_free_shared(struct wpi_softc *sc)
941 {
942         wpi_dma_contig_free(&sc->shared_dma);
943 }
944
945 static int
946 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
947 {
948
949         int i, error;
950
951         ring->cur = 0;
952
953         error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
954             (void **)&ring->desc, WPI_RX_RING_COUNT * sizeof (uint32_t),
955             WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
956
957         if (error != 0) {
958                 device_printf(sc->sc_dev,
959                     "%s: could not allocate rx ring DMA memory, error %d\n",
960                     __func__, error);
961                 goto fail;
962         }
963
964         error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 
965             BUS_SPACE_MAXADDR_32BIT,
966             BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1,
967             MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL, &ring->data_dmat);
968         if (error != 0) {
969                 device_printf(sc->sc_dev,
970                     "%s: bus_dma_tag_create_failed, error %d\n",
971                     __func__, error);
972                 goto fail;
973         }
974
975         /*
976          * Setup Rx buffers.
977          */
978         for (i = 0; i < WPI_RX_RING_COUNT; i++) {
979                 struct wpi_rx_data *data = &ring->data[i];
980                 struct mbuf *m;
981                 bus_addr_t paddr;
982
983                 error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
984                 if (error != 0) {
985                         device_printf(sc->sc_dev,
986                             "%s: bus_dmamap_create failed, error %d\n",
987                             __func__, error);
988                         goto fail;
989                 }
990                 m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
991                 if (m == NULL) {
992                         device_printf(sc->sc_dev,
993                            "%s: could not allocate rx mbuf\n", __func__);
994                         error = ENOMEM;
995                         goto fail;
996                 }
997                 /* map page */
998                 error = bus_dmamap_load(ring->data_dmat, data->map,
999                     mtod(m, caddr_t), MJUMPAGESIZE,
1000                     wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1001                 if (error != 0 && error != EFBIG) {
1002                         device_printf(sc->sc_dev,
1003                             "%s: bus_dmamap_load failed, error %d\n",
1004                             __func__, error);
1005                         m_freem(m);
1006                         error = ENOMEM; /* XXX unique code */
1007                         goto fail;
1008                 }
1009                 bus_dmamap_sync(ring->data_dmat, data->map, 
1010                     BUS_DMASYNC_PREWRITE);
1011
1012                 data->m = m;
1013                 ring->desc[i] = htole32(paddr);
1014         }
1015         bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1016             BUS_DMASYNC_PREWRITE);
1017         return 0;
1018 fail:
1019         wpi_free_rx_ring(sc, ring);
1020         return error;
1021 }
1022
1023 static void
1024 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1025 {
1026         int ntries;
1027
1028         wpi_mem_lock(sc);
1029
1030         WPI_WRITE(sc, WPI_RX_CONFIG, 0);
1031
1032         for (ntries = 0; ntries < 100; ntries++) {
1033                 if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
1034                         break;
1035                 DELAY(10);
1036         }
1037
1038         wpi_mem_unlock(sc);
1039
1040 #ifdef WPI_DEBUG
1041         if (ntries == 100 && wpi_debug > 0)
1042                 device_printf(sc->sc_dev, "timeout resetting Rx ring\n");
1043 #endif
1044
1045         ring->cur = 0;
1046 }
1047
1048 static void
1049 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1050 {
1051         int i;
1052
1053         wpi_dma_contig_free(&ring->desc_dma);
1054
1055         for (i = 0; i < WPI_RX_RING_COUNT; i++)
1056                 if (ring->data[i].m != NULL)
1057                         m_freem(ring->data[i].m);
1058 }
1059
1060 static int
1061 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
1062         int qid)
1063 {
1064         struct wpi_tx_data *data;
1065         int i, error;
1066
1067         ring->qid = qid;
1068         ring->count = count;
1069         ring->queued = 0;
1070         ring->cur = 0;
1071         ring->data = NULL;
1072
1073         error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
1074                 (void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
1075                 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
1076
1077         if (error != 0) {
1078             device_printf(sc->sc_dev, "could not allocate tx dma memory\n");
1079             goto fail;
1080         }
1081
1082         /* update shared page with ring's base address */
1083         sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1084
1085         error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1086                 count * sizeof (struct wpi_tx_cmd), WPI_RING_DMA_ALIGN,
1087                 BUS_DMA_NOWAIT);
1088
1089         if (error != 0) {
1090                 device_printf(sc->sc_dev,
1091                     "could not allocate tx command DMA memory\n");
1092                 goto fail;
1093         }
1094
1095         ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
1096             M_NOWAIT | M_ZERO);
1097         if (ring->data == NULL) {
1098                 device_printf(sc->sc_dev,
1099                     "could not allocate tx data slots\n");
1100                 goto fail;
1101         }
1102
1103         error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1104             BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1105             WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
1106             &ring->data_dmat);
1107         if (error != 0) {
1108                 device_printf(sc->sc_dev, "could not create data DMA tag\n");
1109                 goto fail;
1110         }
1111
1112         for (i = 0; i < count; i++) {
1113                 data = &ring->data[i];
1114
1115                 error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1116                 if (error != 0) {
1117                         device_printf(sc->sc_dev,
1118                             "could not create tx buf DMA map\n");
1119                         goto fail;
1120                 }
1121                 bus_dmamap_sync(ring->data_dmat, data->map,
1122                     BUS_DMASYNC_PREWRITE);
1123         }
1124
1125         return 0;
1126
1127 fail:
1128         wpi_free_tx_ring(sc, ring);
1129         return error;
1130 }
1131
1132 static void
1133 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1134 {
1135         struct wpi_tx_data *data;
1136         int i, ntries;
1137
1138         wpi_mem_lock(sc);
1139
1140         WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
1141         for (ntries = 0; ntries < 100; ntries++) {
1142                 if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
1143                         break;
1144                 DELAY(10);
1145         }
1146 #ifdef WPI_DEBUG
1147         if (ntries == 100 && wpi_debug > 0)
1148                 device_printf(sc->sc_dev, "timeout resetting Tx ring %d\n",
1149                     ring->qid);
1150 #endif
1151         wpi_mem_unlock(sc);
1152
1153         for (i = 0; i < ring->count; i++) {
1154                 data = &ring->data[i];
1155
1156                 if (data->m != NULL) {
1157                         bus_dmamap_unload(ring->data_dmat, data->map);
1158                         m_freem(data->m);
1159                         data->m = NULL;
1160                 }
1161         }
1162
1163         ring->queued = 0;
1164         ring->cur = 0;
1165 }
1166
1167 static void
1168 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1169 {
1170         struct wpi_tx_data *data;
1171         int i;
1172
1173         wpi_dma_contig_free(&ring->desc_dma);
1174         wpi_dma_contig_free(&ring->cmd_dma);
1175
1176         if (ring->data != NULL) {
1177                 for (i = 0; i < ring->count; i++) {
1178                         data = &ring->data[i];
1179
1180                         if (data->m != NULL) {
1181                                 bus_dmamap_sync(ring->data_dmat, data->map,
1182                                     BUS_DMASYNC_POSTWRITE);
1183                                 bus_dmamap_unload(ring->data_dmat, data->map);
1184                                 m_freem(data->m);
1185                                 data->m = NULL;
1186                         }
1187                 }
1188                 free(ring->data, M_DEVBUF);
1189         }
1190
1191         if (ring->data_dmat != NULL)
1192                 bus_dma_tag_destroy(ring->data_dmat);
1193 }
1194
1195 static int
1196 wpi_shutdown(device_t dev)
1197 {
1198         struct wpi_softc *sc = device_get_softc(dev);
1199
1200         WPI_LOCK(sc);
1201         wpi_stop_locked(sc);
1202         wpi_unload_firmware(sc);
1203         WPI_UNLOCK(sc);
1204
1205         return 0;
1206 }
1207
1208 static int
1209 wpi_suspend(device_t dev)
1210 {
1211         struct wpi_softc *sc = device_get_softc(dev);
1212
1213         wpi_stop(sc);
1214         return 0;
1215 }
1216
1217 static int
1218 wpi_resume(device_t dev)
1219 {
1220         struct wpi_softc *sc = device_get_softc(dev);
1221         struct ifnet *ifp = sc->sc_ifp;
1222
1223         pci_write_config(dev, 0x41, 0, 1);
1224
1225         if (ifp->if_flags & IFF_UP) {
1226                 wpi_init(ifp->if_softc);
1227                 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1228                         wpi_start(ifp);
1229         }
1230         return 0;
1231 }
1232
1233 /**
1234  * Called by net80211 when ever there is a change to 80211 state machine
1235  */
1236 static int
1237 wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1238 {
1239         struct wpi_vap *wvp = WPI_VAP(vap);
1240         struct ieee80211com *ic = vap->iv_ic;
1241         struct ifnet *ifp = ic->ic_ifp;
1242         struct wpi_softc *sc = ifp->if_softc;
1243         int error;
1244
1245         DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__,
1246                 ieee80211_state_name[vap->iv_state],
1247                 ieee80211_state_name[nstate], sc->flags));
1248
1249         IEEE80211_UNLOCK(ic);
1250         WPI_LOCK(sc);
1251         if (nstate == IEEE80211_S_SCAN && vap->iv_state != IEEE80211_S_INIT) {
1252                 /*
1253                  * On !INIT -> SCAN transitions, we need to clear any possible
1254                  * knowledge about associations.
1255                  */
1256                 error = wpi_config(sc);
1257                 if (error != 0) {
1258                         device_printf(sc->sc_dev,
1259                             "%s: device config failed, error %d\n",
1260                             __func__, error);
1261                 }
1262         }
1263         if (nstate == IEEE80211_S_AUTH ||
1264             (nstate == IEEE80211_S_ASSOC && vap->iv_state == IEEE80211_S_RUN)) {
1265                 /*
1266                  * The node must be registered in the firmware before auth.
1267                  * Also the associd must be cleared on RUN -> ASSOC
1268                  * transitions.
1269                  */
1270                 error = wpi_auth(sc, vap);
1271                 if (error != 0) {
1272                         device_printf(sc->sc_dev,
1273                             "%s: could not move to auth state, error %d\n",
1274                             __func__, error);
1275                 }
1276         }
1277         if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) {
1278                 error = wpi_run(sc, vap);
1279                 if (error != 0) {
1280                         device_printf(sc->sc_dev,
1281                             "%s: could not move to run state, error %d\n",
1282                             __func__, error);
1283                 }
1284         }
1285         if (nstate == IEEE80211_S_RUN) {
1286                 /* RUN -> RUN transition; just restart the timers */
1287                 wpi_calib_timeout(sc);
1288                 /* XXX split out rate control timer */
1289         }
1290         WPI_UNLOCK(sc);
1291         IEEE80211_LOCK(ic);
1292         return wvp->newstate(vap, nstate, arg);
1293 }
1294
1295 /*
1296  * Grab exclusive access to NIC memory.
1297  */
1298 static void
1299 wpi_mem_lock(struct wpi_softc *sc)
1300 {
1301         int ntries;
1302         uint32_t tmp;
1303
1304         tmp = WPI_READ(sc, WPI_GPIO_CTL);
1305         WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1306
1307         /* spin until we actually get the lock */
1308         for (ntries = 0; ntries < 100; ntries++) {
1309                 if ((WPI_READ(sc, WPI_GPIO_CTL) &
1310                         (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1311                         break;
1312                 DELAY(10);
1313         }
1314         if (ntries == 100)
1315                 device_printf(sc->sc_dev, "could not lock memory\n");
1316 }
1317
1318 /*
1319  * Release lock on NIC memory.
1320  */
1321 static void
1322 wpi_mem_unlock(struct wpi_softc *sc)
1323 {
1324         uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1325         WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1326 }
1327
1328 static uint32_t
1329 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1330 {
1331         WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1332         return WPI_READ(sc, WPI_READ_MEM_DATA);
1333 }
1334
1335 static void
1336 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1337 {
1338         WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1339         WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1340 }
1341
1342 static void
1343 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1344     const uint32_t *data, int wlen)
1345 {
1346         for (; wlen > 0; wlen--, data++, addr+=4)
1347                 wpi_mem_write(sc, addr, *data);
1348 }
1349
1350 /*
1351  * Read data from the EEPROM.  We access EEPROM through the MAC instead of
1352  * using the traditional bit-bang method. Data is read up until len bytes have
1353  * been obtained.
1354  */
1355 static uint16_t
1356 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1357 {
1358         int ntries;
1359         uint32_t val;
1360         uint8_t *out = data;
1361
1362         wpi_mem_lock(sc);
1363
1364         for (; len > 0; len -= 2, addr++) {
1365                 WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1366
1367                 for (ntries = 0; ntries < 10; ntries++) {
1368                         if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY)
1369                                 break;
1370                         DELAY(5);
1371                 }
1372
1373                 if (ntries == 10) {
1374                         device_printf(sc->sc_dev, "could not read EEPROM\n");
1375                         return ETIMEDOUT;
1376                 }
1377
1378                 *out++= val >> 16;
1379                 if (len > 1)
1380                         *out ++= val >> 24;
1381         }
1382
1383         wpi_mem_unlock(sc);
1384
1385         return 0;
1386 }
1387
1388 /*
1389  * The firmware text and data segments are transferred to the NIC using DMA.
1390  * The driver just copies the firmware into DMA-safe memory and tells the NIC
1391  * where to find it.  Once the NIC has copied the firmware into its internal
1392  * memory, we can free our local copy in the driver.
1393  */
1394 static int
1395 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *fw, int size)
1396 {
1397         int error, ntries;
1398
1399         DPRINTFN(WPI_DEBUG_HW,("Loading microcode  size 0x%x\n", size));
1400
1401         size /= sizeof(uint32_t);
1402
1403         wpi_mem_lock(sc);
1404
1405         wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1406             (const uint32_t *)fw, size);
1407
1408         wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1409         wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1410         wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1411
1412         /* run microcode */
1413         wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1414
1415         /* wait while the adapter is busy copying the firmware */
1416         for (error = 0, ntries = 0; ntries < 1000; ntries++) {
1417                 uint32_t status = WPI_READ(sc, WPI_TX_STATUS);
1418                 DPRINTFN(WPI_DEBUG_HW,
1419                     ("firmware status=0x%x, val=0x%x, result=0x%x\n", status,
1420                      WPI_TX_IDLE(6), status & WPI_TX_IDLE(6)));
1421                 if (status & WPI_TX_IDLE(6)) {
1422                         DPRINTFN(WPI_DEBUG_HW,
1423                             ("Status Match! - ntries = %d\n", ntries));
1424                         break;
1425                 }
1426                 DELAY(10);
1427         }
1428         if (ntries == 1000) {
1429                 device_printf(sc->sc_dev, "timeout transferring firmware\n");
1430                 error = ETIMEDOUT;
1431         }
1432
1433         /* start the microcode executing */
1434         wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1435
1436         wpi_mem_unlock(sc);
1437
1438         return (error);
1439 }
1440
1441 static void
1442 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1443         struct wpi_rx_data *data)
1444 {
1445         struct ifnet *ifp = sc->sc_ifp;
1446         struct ieee80211com *ic = ifp->if_l2com;
1447         struct wpi_rx_ring *ring = &sc->rxq;
1448         struct wpi_rx_stat *stat;
1449         struct wpi_rx_head *head;
1450         struct wpi_rx_tail *tail;
1451         struct ieee80211_node *ni;
1452         struct mbuf *m, *mnew;
1453         bus_addr_t paddr;
1454         int error;
1455
1456         stat = (struct wpi_rx_stat *)(desc + 1);
1457
1458         if (stat->len > WPI_STAT_MAXLEN) {
1459                 device_printf(sc->sc_dev, "invalid rx statistic header\n");
1460                 ifp->if_ierrors++;
1461                 return;
1462         }
1463
1464         head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1465         tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len));
1466
1467         DPRINTFN(WPI_DEBUG_RX, ("rx intr: idx=%d len=%d stat len=%d rssi=%d "
1468             "rate=%x chan=%d tstamp=%ju\n", ring->cur, le32toh(desc->len),
1469             le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1470             (uintmax_t)le64toh(tail->tstamp)));
1471
1472         /* discard Rx frames with bad CRC early */
1473         if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1474                 DPRINTFN(WPI_DEBUG_RX, ("%s: rx flags error %x\n", __func__,
1475                     le32toh(tail->flags)));
1476                 ifp->if_ierrors++;
1477                 return;
1478         }
1479         if (le16toh(head->len) < sizeof (struct ieee80211_frame)) {
1480                 DPRINTFN(WPI_DEBUG_RX, ("%s: frame too short: %d\n", __func__,
1481                     le16toh(head->len)));
1482                 ifp->if_ierrors++;
1483                 return;
1484         }
1485
1486         /* XXX don't need mbuf, just dma buffer */
1487         mnew = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1488         if (mnew == NULL) {
1489                 DPRINTFN(WPI_DEBUG_RX, ("%s: no mbuf to restock ring\n",
1490                     __func__));
1491                 ifp->if_ierrors++;
1492                 return;
1493         }
1494         error = bus_dmamap_load(ring->data_dmat, data->map,
1495             mtod(mnew, caddr_t), MJUMPAGESIZE,
1496             wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1497         if (error != 0 && error != EFBIG) {
1498                 device_printf(sc->sc_dev,
1499                     "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1500                 m_freem(mnew);
1501                 ifp->if_ierrors++;
1502                 return;
1503         }
1504         bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1505
1506         /* finalize mbuf and swap in new one */
1507         m = data->m;
1508         m->m_pkthdr.rcvif = ifp;
1509         m->m_data = (caddr_t)(head + 1);
1510         m->m_pkthdr.len = m->m_len = le16toh(head->len);
1511
1512         data->m = mnew;
1513         /* update Rx descriptor */
1514         ring->desc[ring->cur] = htole32(paddr);
1515
1516         if (ieee80211_radiotap_active(ic)) {
1517                 struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1518
1519                 tap->wr_flags = 0;
1520                 tap->wr_chan_freq =
1521                         htole16(ic->ic_channels[head->chan].ic_freq);
1522                 tap->wr_chan_flags =
1523                         htole16(ic->ic_channels[head->chan].ic_flags);
1524                 tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1525                 tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1526                 tap->wr_tsft = tail->tstamp;
1527                 tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1528                 switch (head->rate) {
1529                 /* CCK rates */
1530                 case  10: tap->wr_rate =   2; break;
1531                 case  20: tap->wr_rate =   4; break;
1532                 case  55: tap->wr_rate =  11; break;
1533                 case 110: tap->wr_rate =  22; break;
1534                 /* OFDM rates */
1535                 case 0xd: tap->wr_rate =  12; break;
1536                 case 0xf: tap->wr_rate =  18; break;
1537                 case 0x5: tap->wr_rate =  24; break;
1538                 case 0x7: tap->wr_rate =  36; break;
1539                 case 0x9: tap->wr_rate =  48; break;
1540                 case 0xb: tap->wr_rate =  72; break;
1541                 case 0x1: tap->wr_rate =  96; break;
1542                 case 0x3: tap->wr_rate = 108; break;
1543                 /* unknown rate: should not happen */
1544                 default:  tap->wr_rate =   0;
1545                 }
1546                 if (le16toh(head->flags) & 0x4)
1547                         tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1548         }
1549
1550         WPI_UNLOCK(sc);
1551
1552         ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
1553         if (ni != NULL) {
1554                 (void) ieee80211_input(ni, m, stat->rssi, 0);
1555                 ieee80211_free_node(ni);
1556         } else
1557                 (void) ieee80211_input_all(ic, m, stat->rssi, 0);
1558
1559         WPI_LOCK(sc);
1560 }
1561
1562 static void
1563 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1564 {
1565         struct ifnet *ifp = sc->sc_ifp;
1566         struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1567         struct wpi_tx_data *txdata = &ring->data[desc->idx];
1568         struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1569         struct ieee80211_node *ni = txdata->ni;
1570         struct ieee80211vap *vap = ni->ni_vap;
1571         int retrycnt = 0;
1572
1573         DPRINTFN(WPI_DEBUG_TX, ("tx done: qid=%d idx=%d retries=%d nkill=%d "
1574             "rate=%x duration=%d status=%x\n", desc->qid, desc->idx,
1575             stat->ntries, stat->nkill, stat->rate, le32toh(stat->duration),
1576             le32toh(stat->status)));
1577
1578         /*
1579          * Update rate control statistics for the node.
1580          * XXX we should not count mgmt frames since they're always sent at
1581          * the lowest available bit-rate.
1582          * XXX frames w/o ACK shouldn't be used either
1583          */
1584         if (stat->ntries > 0) {
1585                 DPRINTFN(WPI_DEBUG_TX, ("%d retries\n", stat->ntries));
1586                 retrycnt = 1;
1587         }
1588         ieee80211_ratectl_tx_complete(vap, ni, IEEE80211_RATECTL_TX_SUCCESS,
1589             &retrycnt, NULL);
1590
1591         /* XXX oerrors should only count errors !maxtries */
1592         if ((le32toh(stat->status) & 0xff) != 1)
1593                 ifp->if_oerrors++;
1594         else
1595                 ifp->if_opackets++;
1596
1597         bus_dmamap_sync(ring->data_dmat, txdata->map, BUS_DMASYNC_POSTWRITE);
1598         bus_dmamap_unload(ring->data_dmat, txdata->map);
1599         /* XXX handle M_TXCB? */
1600         m_freem(txdata->m);
1601         txdata->m = NULL;
1602         ieee80211_free_node(txdata->ni);
1603         txdata->ni = NULL;
1604
1605         ring->queued--;
1606
1607         sc->sc_tx_timer = 0;
1608         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1609         wpi_start_locked(ifp);
1610 }
1611
1612 static void
1613 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1614 {
1615         struct wpi_tx_ring *ring = &sc->cmdq;
1616         struct wpi_tx_data *data;
1617
1618         DPRINTFN(WPI_DEBUG_CMD, ("cmd notification qid=%x idx=%d flags=%x "
1619                                  "type=%s len=%d\n", desc->qid, desc->idx,
1620                                  desc->flags, wpi_cmd_str(desc->type),
1621                                  le32toh(desc->len)));
1622
1623         if ((desc->qid & 7) != 4)
1624                 return; /* not a command ack */
1625
1626         data = &ring->data[desc->idx];
1627
1628         /* if the command was mapped in a mbuf, free it */
1629         if (data->m != NULL) {
1630                 bus_dmamap_unload(ring->data_dmat, data->map);
1631                 m_freem(data->m);
1632                 data->m = NULL;
1633         }
1634
1635         sc->flags &= ~WPI_FLAG_BUSY;
1636         wakeup(&ring->cmd[desc->idx]);
1637 }
1638
1639 static void
1640 wpi_notif_intr(struct wpi_softc *sc)
1641 {
1642         struct ifnet *ifp = sc->sc_ifp;
1643         struct ieee80211com *ic = ifp->if_l2com;
1644         struct wpi_rx_desc *desc;
1645         struct wpi_rx_data *data;
1646         uint32_t hw;
1647
1648         bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
1649             BUS_DMASYNC_POSTREAD);
1650
1651         hw = le32toh(sc->shared->next);
1652         while (sc->rxq.cur != hw) {
1653                 data = &sc->rxq.data[sc->rxq.cur];
1654
1655                 bus_dmamap_sync(sc->rxq.data_dmat, data->map,
1656                     BUS_DMASYNC_POSTREAD);
1657                 desc = (void *)data->m->m_ext.ext_buf;
1658
1659                 DPRINTFN(WPI_DEBUG_NOTIFY,
1660                          ("notify qid=%x idx=%d flags=%x type=%d len=%d\n",
1661                           desc->qid,
1662                           desc->idx,
1663                           desc->flags,
1664                           desc->type,
1665                           le32toh(desc->len)));
1666
1667                 if (!(desc->qid & 0x80))        /* reply to a command */
1668                         wpi_cmd_intr(sc, desc);
1669
1670                 switch (desc->type) {
1671                 case WPI_RX_DONE:
1672                         /* a 802.11 frame was received */
1673                         wpi_rx_intr(sc, desc, data);
1674                         break;
1675
1676                 case WPI_TX_DONE:
1677                         /* a 802.11 frame has been transmitted */
1678                         wpi_tx_intr(sc, desc);
1679                         break;
1680
1681                 case WPI_UC_READY:
1682                 {
1683                         struct wpi_ucode_info *uc =
1684                                 (struct wpi_ucode_info *)(desc + 1);
1685
1686                         /* the microcontroller is ready */
1687                         DPRINTF(("microcode alive notification version %x "
1688                                 "alive %x\n", le32toh(uc->version),
1689                                 le32toh(uc->valid)));
1690
1691                         if (le32toh(uc->valid) != 1) {
1692                                 device_printf(sc->sc_dev,
1693                                     "microcontroller initialization failed\n");
1694                                 wpi_stop_locked(sc);
1695                         }
1696                         break;
1697                 }
1698                 case WPI_STATE_CHANGED:
1699                 {
1700                         uint32_t *status = (uint32_t *)(desc + 1);
1701
1702                         /* enabled/disabled notification */
1703                         DPRINTF(("state changed to %x\n", le32toh(*status)));
1704
1705                         if (le32toh(*status) & 1) {
1706                                 device_printf(sc->sc_dev,
1707                                     "Radio transmitter is switched off\n");
1708                                 sc->flags |= WPI_FLAG_HW_RADIO_OFF;
1709                                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1710                                 /* Disable firmware commands */
1711                                 WPI_WRITE(sc, WPI_UCODE_SET, WPI_DISABLE_CMD);
1712                         }
1713                         break;
1714                 }
1715                 case WPI_START_SCAN:
1716                 {
1717 #ifdef WPI_DEBUG
1718                         struct wpi_start_scan *scan =
1719                                 (struct wpi_start_scan *)(desc + 1);
1720 #endif
1721
1722                         DPRINTFN(WPI_DEBUG_SCANNING,
1723                                  ("scanning channel %d status %x\n",
1724                             scan->chan, le32toh(scan->status)));
1725                         break;
1726                 }
1727                 case WPI_STOP_SCAN:
1728                 {
1729 #ifdef WPI_DEBUG
1730                         struct wpi_stop_scan *scan =
1731                                 (struct wpi_stop_scan *)(desc + 1);
1732 #endif
1733                         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1734
1735                         DPRINTFN(WPI_DEBUG_SCANNING,
1736                             ("scan finished nchan=%d status=%d chan=%d\n",
1737                              scan->nchan, scan->status, scan->chan));
1738
1739                         sc->sc_scan_timer = 0;
1740                         ieee80211_scan_next(vap);
1741                         break;
1742                 }
1743                 case WPI_MISSED_BEACON:
1744                 {
1745                         struct wpi_missed_beacon *beacon =
1746                                 (struct wpi_missed_beacon *)(desc + 1);
1747                         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1748
1749                         if (le32toh(beacon->consecutive) >=
1750                             vap->iv_bmissthreshold) {
1751                                 DPRINTF(("Beacon miss: %u >= %u\n",
1752                                          le32toh(beacon->consecutive),
1753                                          vap->iv_bmissthreshold));
1754                                 ieee80211_beacon_miss(ic);
1755                         }
1756                         break;
1757                 }
1758                 }
1759
1760                 sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1761         }
1762
1763         /* tell the firmware what we have processed */
1764         hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1765         WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1766 }
1767
1768 static void
1769 wpi_intr(void *arg)
1770 {
1771         struct wpi_softc *sc = arg;
1772         uint32_t r;
1773
1774         WPI_LOCK(sc);
1775
1776         r = WPI_READ(sc, WPI_INTR);
1777         if (r == 0 || r == 0xffffffff) {
1778                 WPI_UNLOCK(sc);
1779                 return;
1780         }
1781
1782         /* disable interrupts */
1783         WPI_WRITE(sc, WPI_MASK, 0);
1784         /* ack interrupts */
1785         WPI_WRITE(sc, WPI_INTR, r);
1786
1787         if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1788                 struct ifnet *ifp = sc->sc_ifp;
1789                 struct ieee80211com *ic = ifp->if_l2com;
1790                 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1791
1792                 device_printf(sc->sc_dev, "fatal firmware error\n");
1793                 DPRINTFN(6,("(%s)\n", (r & WPI_SW_ERROR) ? "(Software Error)" :
1794                                 "(Hardware Error)"));
1795                 if (vap != NULL)
1796                         ieee80211_cancel_scan(vap);
1797                 ieee80211_runtask(ic, &sc->sc_restarttask);
1798                 sc->flags &= ~WPI_FLAG_BUSY;
1799                 WPI_UNLOCK(sc);
1800                 return;
1801         }
1802
1803         if (r & WPI_RX_INTR)
1804                 wpi_notif_intr(sc);
1805
1806         if (r & WPI_ALIVE_INTR) /* firmware initialized */
1807                 wakeup(sc);
1808
1809         /* re-enable interrupts */
1810         if (sc->sc_ifp->if_flags & IFF_UP)
1811                 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1812
1813         WPI_UNLOCK(sc);
1814 }
1815
1816 static uint8_t
1817 wpi_plcp_signal(int rate)
1818 {
1819         switch (rate) {
1820         /* CCK rates (returned values are device-dependent) */
1821         case 2:         return 10;
1822         case 4:         return 20;
1823         case 11:        return 55;
1824         case 22:        return 110;
1825
1826         /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1827         /* R1-R4 (ral/ural is R4-R1) */
1828         case 12:        return 0xd;
1829         case 18:        return 0xf;
1830         case 24:        return 0x5;
1831         case 36:        return 0x7;
1832         case 48:        return 0x9;
1833         case 72:        return 0xb;
1834         case 96:        return 0x1;
1835         case 108:       return 0x3;
1836
1837         /* unsupported rates (should not get there) */
1838         default:        return 0;
1839         }
1840 }
1841
1842 /* quickly determine if a given rate is CCK or OFDM */
1843 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1844
1845 /*
1846  * Construct the data packet for a transmit buffer and acutally put
1847  * the buffer onto the transmit ring, kicking the card to process the
1848  * the buffer.
1849  */
1850 static int
1851 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1852         int ac)
1853 {
1854         struct ieee80211vap *vap = ni->ni_vap;
1855         struct ifnet *ifp = sc->sc_ifp;
1856         struct ieee80211com *ic = ifp->if_l2com;
1857         const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
1858         struct wpi_tx_ring *ring = &sc->txq[ac];
1859         struct wpi_tx_desc *desc;
1860         struct wpi_tx_data *data;
1861         struct wpi_tx_cmd *cmd;
1862         struct wpi_cmd_data *tx;
1863         struct ieee80211_frame *wh;
1864         const struct ieee80211_txparam *tp;
1865         struct ieee80211_key *k;
1866         struct mbuf *mnew;
1867         int i, error, nsegs, rate, hdrlen, ismcast;
1868         bus_dma_segment_t segs[WPI_MAX_SCATTER];
1869
1870         desc = &ring->desc[ring->cur];
1871         data = &ring->data[ring->cur];
1872
1873         wh = mtod(m0, struct ieee80211_frame *);
1874
1875         hdrlen = ieee80211_hdrsize(wh);
1876         ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1877
1878         if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1879                 k = ieee80211_crypto_encap(ni, m0);
1880                 if (k == NULL) {
1881                         m_freem(m0);
1882                         return ENOBUFS;
1883                 }
1884                 /* packet header may have moved, reset our local pointer */
1885                 wh = mtod(m0, struct ieee80211_frame *);
1886         }
1887
1888         cmd = &ring->cmd[ring->cur];
1889         cmd->code = WPI_CMD_TX_DATA;
1890         cmd->flags = 0;
1891         cmd->qid = ring->qid;
1892         cmd->idx = ring->cur;
1893
1894         tx = (struct wpi_cmd_data *)cmd->data;
1895         tx->flags = htole32(WPI_TX_AUTO_SEQ);
1896         tx->timeout = htole16(0);
1897         tx->ofdm_mask = 0xff;
1898         tx->cck_mask = 0x0f;
1899         tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1900         tx->id = ismcast ? WPI_ID_BROADCAST : WPI_ID_BSS;
1901         tx->len = htole16(m0->m_pkthdr.len);
1902
1903         if (!ismcast) {
1904                 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0 ||
1905                     !cap->cap_wmeParams[ac].wmep_noackPolicy)
1906                         tx->flags |= htole32(WPI_TX_NEED_ACK);
1907                 if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
1908                         tx->flags |= htole32(WPI_TX_NEED_RTS|WPI_TX_FULL_TXOP);
1909                         tx->rts_ntries = 7;
1910                 }
1911         }
1912         /* pick a rate */
1913         tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
1914         if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT) {
1915                 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1916                 /* tell h/w to set timestamp in probe responses */
1917                 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1918                         tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1919                 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
1920                     subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
1921                         tx->timeout = htole16(3);
1922                 else
1923                         tx->timeout = htole16(2);
1924                 rate = tp->mgmtrate;
1925         } else if (ismcast) {
1926                 rate = tp->mcastrate;
1927         } else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
1928                 rate = tp->ucastrate;
1929         } else {
1930                 (void) ieee80211_ratectl_rate(ni, NULL, 0);
1931                 rate = ni->ni_txrate;
1932         }
1933         tx->rate = wpi_plcp_signal(rate);
1934
1935         /* be very persistant at sending frames out */
1936 #if 0
1937         tx->data_ntries = tp->maxretry;
1938 #else
1939         tx->data_ntries = 15;           /* XXX way too high */
1940 #endif
1941
1942         if (ieee80211_radiotap_active_vap(vap)) {
1943                 struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1944                 tap->wt_flags = 0;
1945                 tap->wt_rate = rate;
1946                 tap->wt_hwqueue = ac;
1947                 if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1948                         tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1949
1950                 ieee80211_radiotap_tx(vap, m0);
1951         }
1952
1953         /* save and trim IEEE802.11 header */
1954         m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh);
1955         m_adj(m0, hdrlen);
1956
1957         error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m0, segs,
1958             &nsegs, BUS_DMA_NOWAIT);
1959         if (error != 0 && error != EFBIG) {
1960                 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1961                     error);
1962                 m_freem(m0);
1963                 return error;
1964         }
1965         if (error != 0) {
1966                 /* XXX use m_collapse */
1967                 mnew = m_defrag(m0, M_DONTWAIT);
1968                 if (mnew == NULL) {
1969                         device_printf(sc->sc_dev,
1970                             "could not defragment mbuf\n");
1971                         m_freem(m0);
1972                         return ENOBUFS;
1973                 }
1974                 m0 = mnew;
1975
1976                 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
1977                     m0, segs, &nsegs, BUS_DMA_NOWAIT);
1978                 if (error != 0) {
1979                         device_printf(sc->sc_dev,
1980                             "could not map mbuf (error %d)\n", error);
1981                         m_freem(m0);
1982                         return error;
1983                 }
1984         }
1985
1986         data->m = m0;
1987         data->ni = ni;
1988
1989         DPRINTFN(WPI_DEBUG_TX, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
1990             ring->qid, ring->cur, m0->m_pkthdr.len, nsegs));
1991
1992         /* first scatter/gather segment is used by the tx data command */
1993         desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
1994             (1 + nsegs) << 24);
1995         desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
1996             ring->cur * sizeof (struct wpi_tx_cmd));
1997         desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data));
1998         for (i = 1; i <= nsegs; i++) {
1999                 desc->segs[i].addr = htole32(segs[i - 1].ds_addr);
2000                 desc->segs[i].len  = htole32(segs[i - 1].ds_len);
2001         }
2002
2003         bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2004         bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2005             BUS_DMASYNC_PREWRITE);
2006
2007         ring->queued++;
2008
2009         /* kick ring */
2010         ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2011         WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2012
2013         return 0;
2014 }
2015
2016 /**
2017  * Process data waiting to be sent on the IFNET output queue
2018  */
2019 static void
2020 wpi_start(struct ifnet *ifp)
2021 {
2022         struct wpi_softc *sc = ifp->if_softc;
2023
2024         WPI_LOCK(sc);
2025         wpi_start_locked(ifp);
2026         WPI_UNLOCK(sc);
2027 }
2028
2029 static void
2030 wpi_start_locked(struct ifnet *ifp)
2031 {
2032         struct wpi_softc *sc = ifp->if_softc;
2033         struct ieee80211_node *ni;
2034         struct mbuf *m;
2035         int ac;
2036
2037         WPI_LOCK_ASSERT(sc);
2038
2039         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
2040                 return;
2041
2042         for (;;) {
2043                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
2044                 if (m == NULL)
2045                         break;
2046                 ac = M_WME_GETAC(m);
2047                 if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2048                         /* there is no place left in this ring */
2049                         IFQ_DRV_PREPEND(&ifp->if_snd, m);
2050                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2051                         break;
2052                 }
2053                 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
2054                 if (wpi_tx_data(sc, m, ni, ac) != 0) {
2055                         ieee80211_free_node(ni);
2056                         ifp->if_oerrors++;
2057                         break;
2058                 }
2059                 sc->sc_tx_timer = 5;
2060         }
2061 }
2062
2063 static int
2064 wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2065         const struct ieee80211_bpf_params *params)
2066 {
2067         struct ieee80211com *ic = ni->ni_ic;
2068         struct ifnet *ifp = ic->ic_ifp;
2069         struct wpi_softc *sc = ifp->if_softc;
2070
2071         /* prevent management frames from being sent if we're not ready */
2072         if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2073                 m_freem(m);
2074                 ieee80211_free_node(ni);
2075                 return ENETDOWN;
2076         }
2077         WPI_LOCK(sc);
2078
2079         /* management frames go into ring 0 */
2080         if (sc->txq[0].queued > sc->txq[0].count - 8) {
2081                 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2082                 m_freem(m);
2083                 WPI_UNLOCK(sc);
2084                 ieee80211_free_node(ni);
2085                 return ENOBUFS;         /* XXX */
2086         }
2087
2088         ifp->if_opackets++;
2089         if (wpi_tx_data(sc, m, ni, 0) != 0)
2090                 goto bad;
2091         sc->sc_tx_timer = 5;
2092         callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
2093
2094         WPI_UNLOCK(sc);
2095         return 0;
2096 bad:
2097         ifp->if_oerrors++;
2098         WPI_UNLOCK(sc);
2099         ieee80211_free_node(ni);
2100         return EIO;             /* XXX */
2101 }
2102
2103 static int
2104 wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2105 {
2106         struct wpi_softc *sc = ifp->if_softc;
2107         struct ieee80211com *ic = ifp->if_l2com;
2108         struct ifreq *ifr = (struct ifreq *) data;
2109         int error = 0, startall = 0;
2110
2111         switch (cmd) {
2112         case SIOCSIFFLAGS:
2113                 WPI_LOCK(sc);
2114                 if ((ifp->if_flags & IFF_UP)) {
2115                         if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2116                                 wpi_init_locked(sc, 0);
2117                                 startall = 1;
2118                         }
2119                 } else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) ||
2120                            (sc->flags & WPI_FLAG_HW_RADIO_OFF))
2121                         wpi_stop_locked(sc);
2122                 WPI_UNLOCK(sc);
2123                 if (startall)
2124                         ieee80211_start_all(ic);
2125                 break;
2126         case SIOCGIFMEDIA:
2127                 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
2128                 break;
2129         case SIOCGIFADDR:
2130                 error = ether_ioctl(ifp, cmd, data);
2131                 break;
2132         default:
2133                 error = EINVAL;
2134                 break;
2135         }
2136         return error;
2137 }
2138
2139 /*
2140  * Extract various information from EEPROM.
2141  */
2142 static void
2143 wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
2144 {
2145         int i;
2146
2147         /* read the hardware capabilities, revision and SKU type */
2148         wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap,1);
2149         wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,2);
2150         wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2151
2152         /* read the regulatory domain */
2153         wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 4);
2154
2155         /* read in the hw MAC address */
2156         wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr, 6);
2157
2158         /* read the list of authorized channels */
2159         for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2160                 wpi_read_eeprom_channels(sc,i);
2161
2162         /* read the power level calibration info for each group */
2163         for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2164                 wpi_read_eeprom_group(sc,i);
2165 }
2166
2167 /*
2168  * Send a command to the firmware.
2169  */
2170 static int
2171 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2172 {
2173         struct wpi_tx_ring *ring = &sc->cmdq;
2174         struct wpi_tx_desc *desc;
2175         struct wpi_tx_cmd *cmd;
2176
2177 #ifdef WPI_DEBUG
2178         if (!async) {
2179                 WPI_LOCK_ASSERT(sc);
2180         }
2181 #endif
2182
2183         DPRINTFN(WPI_DEBUG_CMD,("wpi_cmd %d size %d async %d\n", code, size,
2184                     async));
2185
2186         if (sc->flags & WPI_FLAG_BUSY) {
2187                 device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
2188                     __func__, code);
2189                 return EAGAIN;
2190         }
2191         sc->flags|= WPI_FLAG_BUSY;
2192
2193         KASSERT(size <= sizeof cmd->data, ("command %d too large: %d bytes",
2194             code, size));
2195
2196         desc = &ring->desc[ring->cur];
2197         cmd = &ring->cmd[ring->cur];
2198
2199         cmd->code = code;
2200         cmd->flags = 0;
2201         cmd->qid = ring->qid;
2202         cmd->idx = ring->cur;
2203         memcpy(cmd->data, buf, size);
2204
2205         desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2206         desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2207                 ring->cur * sizeof (struct wpi_tx_cmd));
2208         desc->segs[0].len  = htole32(4 + size);
2209
2210         /* kick cmd ring */
2211         ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2212         WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2213
2214         if (async) {
2215                 sc->flags &= ~ WPI_FLAG_BUSY;
2216                 return 0;
2217         }
2218
2219         return msleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz);
2220 }
2221
2222 static int
2223 wpi_wme_update(struct ieee80211com *ic)
2224 {
2225 #define WPI_EXP2(v)     htole16((1 << (v)) - 1)
2226 #define WPI_USEC(v)     htole16(IEEE80211_TXOP_TO_US(v))
2227         struct wpi_softc *sc = ic->ic_ifp->if_softc;
2228         const struct wmeParams *wmep;
2229         struct wpi_wme_setup wme;
2230         int ac;
2231
2232         /* don't override default WME values if WME is not actually enabled */
2233         if (!(ic->ic_flags & IEEE80211_F_WME))
2234                 return 0;
2235
2236         wme.flags = 0;
2237         for (ac = 0; ac < WME_NUM_AC; ac++) {
2238                 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2239                 wme.ac[ac].aifsn = wmep->wmep_aifsn;
2240                 wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2241                 wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2242                 wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
2243
2244                 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2245                     "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2246                     wme.ac[ac].cwmax, wme.ac[ac].txop));
2247         }
2248         return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2249 #undef WPI_USEC
2250 #undef WPI_EXP2
2251 }
2252
2253 /*
2254  * Configure h/w multi-rate retries.
2255  */
2256 static int
2257 wpi_mrr_setup(struct wpi_softc *sc)
2258 {
2259         struct ifnet *ifp = sc->sc_ifp;
2260         struct ieee80211com *ic = ifp->if_l2com;
2261         struct wpi_mrr_setup mrr;
2262         int i, error;
2263
2264         memset(&mrr, 0, sizeof (struct wpi_mrr_setup));
2265
2266         /* CCK rates (not used with 802.11a) */
2267         for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2268                 mrr.rates[i].flags = 0;
2269                 mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2270                 /* fallback to the immediate lower CCK rate (if any) */
2271                 mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2272                 /* try one time at this rate before falling back to "next" */
2273                 mrr.rates[i].ntries = 1;
2274         }
2275
2276         /* OFDM rates (not used with 802.11b) */
2277         for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2278                 mrr.rates[i].flags = 0;
2279                 mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2280                 /* fallback to the immediate lower OFDM rate (if any) */
2281                 /* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2282                 mrr.rates[i].next = (i == WPI_OFDM6) ?
2283                     ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2284                         WPI_OFDM6 : WPI_CCK2) :
2285                     i - 1;
2286                 /* try one time at this rate before falling back to "next" */
2287                 mrr.rates[i].ntries = 1;
2288         }
2289
2290         /* setup MRR for control frames */
2291         mrr.which = htole32(WPI_MRR_CTL);
2292         error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2293         if (error != 0) {
2294                 device_printf(sc->sc_dev,
2295                     "could not setup MRR for control frames\n");
2296                 return error;
2297         }
2298
2299         /* setup MRR for data frames */
2300         mrr.which = htole32(WPI_MRR_DATA);
2301         error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2302         if (error != 0) {
2303                 device_printf(sc->sc_dev,
2304                     "could not setup MRR for data frames\n");
2305                 return error;
2306         }
2307
2308         return 0;
2309 }
2310
2311 static void
2312 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2313 {
2314         struct wpi_cmd_led led;
2315
2316         led.which = which;
2317         led.unit = htole32(100000);     /* on/off in unit of 100ms */
2318         led.off = off;
2319         led.on = on;
2320
2321         (void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2322 }
2323
2324 static void
2325 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2326 {
2327         struct wpi_cmd_tsf tsf;
2328         uint64_t val, mod;
2329
2330         memset(&tsf, 0, sizeof tsf);
2331         memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2332         tsf.bintval = htole16(ni->ni_intval);
2333         tsf.lintval = htole16(10);
2334
2335         /* compute remaining time until next beacon */
2336         val = (uint64_t)ni->ni_intval  * 1024;  /* msec -> usec */
2337         mod = le64toh(tsf.tstamp) % val;
2338         tsf.binitval = htole32((uint32_t)(val - mod));
2339
2340         if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2341                 device_printf(sc->sc_dev, "could not enable TSF\n");
2342 }
2343
2344 #if 0
2345 /*
2346  * Build a beacon frame that the firmware will broadcast periodically in
2347  * IBSS or HostAP modes.
2348  */
2349 static int
2350 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2351 {
2352         struct ifnet *ifp = sc->sc_ifp;
2353         struct ieee80211com *ic = ifp->if_l2com;
2354         struct wpi_tx_ring *ring = &sc->cmdq;
2355         struct wpi_tx_desc *desc;
2356         struct wpi_tx_data *data;
2357         struct wpi_tx_cmd *cmd;
2358         struct wpi_cmd_beacon *bcn;
2359         struct ieee80211_beacon_offsets bo;
2360         struct mbuf *m0;
2361         bus_addr_t physaddr;
2362         int error;
2363
2364         desc = &ring->desc[ring->cur];
2365         data = &ring->data[ring->cur];
2366
2367         m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2368         if (m0 == NULL) {
2369                 device_printf(sc->sc_dev, "could not allocate beacon frame\n");
2370                 return ENOMEM;
2371         }
2372
2373         cmd = &ring->cmd[ring->cur];
2374         cmd->code = WPI_CMD_SET_BEACON;
2375         cmd->flags = 0;
2376         cmd->qid = ring->qid;
2377         cmd->idx = ring->cur;
2378
2379         bcn = (struct wpi_cmd_beacon *)cmd->data;
2380         memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2381         bcn->id = WPI_ID_BROADCAST;
2382         bcn->ofdm_mask = 0xff;
2383         bcn->cck_mask = 0x0f;
2384         bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2385         bcn->len = htole16(m0->m_pkthdr.len);
2386         bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2387                 wpi_plcp_signal(12) : wpi_plcp_signal(2);
2388         bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2389
2390         /* save and trim IEEE802.11 header */
2391         m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh);
2392         m_adj(m0, sizeof (struct ieee80211_frame));
2393
2394         /* assume beacon frame is contiguous */
2395         error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m0, void *),
2396             m0->m_pkthdr.len, wpi_dma_map_addr, &physaddr, 0);
2397         if (error != 0) {
2398                 device_printf(sc->sc_dev, "could not map beacon\n");
2399                 m_freem(m0);
2400                 return error;
2401         }
2402
2403         data->m = m0;
2404
2405         /* first scatter/gather segment is used by the beacon command */
2406         desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2407         desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2408                 ring->cur * sizeof (struct wpi_tx_cmd));
2409         desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
2410         desc->segs[1].addr = htole32(physaddr);
2411         desc->segs[1].len  = htole32(m0->m_pkthdr.len);
2412
2413         /* kick cmd ring */
2414         ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2415         WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2416
2417         return 0;
2418 }
2419 #endif
2420
2421 static int
2422 wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
2423 {
2424         struct ieee80211com *ic = vap->iv_ic;
2425         struct ieee80211_node *ni = vap->iv_bss;
2426         struct wpi_node_info node;
2427         int error;
2428
2429
2430         /* update adapter's configuration */
2431         sc->config.associd = 0;
2432         sc->config.filter &= ~htole32(WPI_FILTER_BSS);
2433         IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2434         sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2435         if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2436                 sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2437                     WPI_CONFIG_24GHZ);
2438         } else {
2439                 sc->config.flags &= ~htole32(WPI_CONFIG_AUTO |
2440                     WPI_CONFIG_24GHZ);
2441         }
2442         if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
2443                 sc->config.cck_mask  = 0;
2444                 sc->config.ofdm_mask = 0x15;
2445         } else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
2446                 sc->config.cck_mask  = 0x03;
2447                 sc->config.ofdm_mask = 0;
2448         } else {
2449                 /* XXX assume 802.11b/g */
2450                 sc->config.cck_mask  = 0x0f;
2451                 sc->config.ofdm_mask = 0x15;
2452         }
2453
2454         DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2455                 sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2456         error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2457                 sizeof (struct wpi_config), 1);
2458         if (error != 0) {
2459                 device_printf(sc->sc_dev, "could not configure\n");
2460                 return error;
2461         }
2462
2463         /* configuration has changed, set Tx power accordingly */
2464         if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2465                 device_printf(sc->sc_dev, "could not set Tx power\n");
2466                 return error;
2467         }
2468
2469         /* add default node */
2470         memset(&node, 0, sizeof node);
2471         IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2472         node.id = WPI_ID_BSS;
2473         node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2474             wpi_plcp_signal(12) : wpi_plcp_signal(2);
2475         node.action = htole32(WPI_ACTION_SET_RATE);
2476         node.antenna = WPI_ANTENNA_BOTH;
2477         error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2478         if (error != 0)
2479                 device_printf(sc->sc_dev, "could not add BSS node\n");
2480
2481         return (error);
2482 }
2483
2484 static int
2485 wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
2486 {
2487         struct ieee80211com *ic = vap->iv_ic;
2488         struct ieee80211_node *ni = vap->iv_bss;
2489         int error;
2490
2491         if (vap->iv_opmode == IEEE80211_M_MONITOR) {
2492                 /* link LED blinks while monitoring */
2493                 wpi_set_led(sc, WPI_LED_LINK, 5, 5);
2494                 return 0;
2495         }
2496
2497         wpi_enable_tsf(sc, ni);
2498
2499         /* update adapter's configuration */
2500         sc->config.associd = htole16(ni->ni_associd & ~0xc000);
2501         /* short preamble/slot time are negotiated when associating */
2502         sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
2503             WPI_CONFIG_SHSLOT);
2504         if (ic->ic_flags & IEEE80211_F_SHSLOT)
2505                 sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
2506         if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2507                 sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
2508         sc->config.filter |= htole32(WPI_FILTER_BSS);
2509
2510         /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
2511
2512         DPRINTF(("config chan %d flags %x\n", sc->config.chan,
2513                     sc->config.flags));
2514         error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, sizeof (struct
2515                     wpi_config), 1);
2516         if (error != 0) {
2517                 device_printf(sc->sc_dev, "could not update configuration\n");
2518                 return error;
2519         }
2520
2521         error = wpi_set_txpower(sc, ni->ni_chan, 1);
2522         if (error != 0) {
2523                 device_printf(sc->sc_dev, "could set txpower\n");
2524                 return error;
2525         }
2526
2527         /* link LED always on while associated */
2528         wpi_set_led(sc, WPI_LED_LINK, 0, 1);
2529
2530         /* start automatic rate control timer */
2531         callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
2532
2533         return (error);
2534 }
2535
2536 /*
2537  * Send a scan request to the firmware.  Since this command is huge, we map it
2538  * into a mbufcluster instead of using the pre-allocated set of commands. Note,
2539  * much of this code is similar to that in wpi_cmd but because we must manually
2540  * construct the probe & channels, we duplicate what's needed here. XXX In the
2541  * future, this function should be modified to use wpi_cmd to help cleanup the
2542  * code base.
2543  */
2544 static int
2545 wpi_scan(struct wpi_softc *sc)
2546 {
2547         struct ifnet *ifp = sc->sc_ifp;
2548         struct ieee80211com *ic = ifp->if_l2com;
2549         struct ieee80211_scan_state *ss = ic->ic_scan;
2550         struct wpi_tx_ring *ring = &sc->cmdq;
2551         struct wpi_tx_desc *desc;
2552         struct wpi_tx_data *data;
2553         struct wpi_tx_cmd *cmd;
2554         struct wpi_scan_hdr *hdr;
2555         struct wpi_scan_chan *chan;
2556         struct ieee80211_frame *wh;
2557         struct ieee80211_rateset *rs;
2558         struct ieee80211_channel *c;
2559         enum ieee80211_phymode mode;
2560         uint8_t *frm;
2561         int nrates, pktlen, error, i, nssid;
2562         bus_addr_t physaddr;
2563
2564         desc = &ring->desc[ring->cur];
2565         data = &ring->data[ring->cur];
2566
2567         data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2568         if (data->m == NULL) {
2569                 device_printf(sc->sc_dev,
2570                     "could not allocate mbuf for scan command\n");
2571                 return ENOMEM;
2572         }
2573
2574         cmd = mtod(data->m, struct wpi_tx_cmd *);
2575         cmd->code = WPI_CMD_SCAN;
2576         cmd->flags = 0;
2577         cmd->qid = ring->qid;
2578         cmd->idx = ring->cur;
2579
2580         hdr = (struct wpi_scan_hdr *)cmd->data;
2581         memset(hdr, 0, sizeof(struct wpi_scan_hdr));
2582
2583         /*
2584          * Move to the next channel if no packets are received within 5 msecs
2585          * after sending the probe request (this helps to reduce the duration
2586          * of active scans).
2587          */
2588         hdr->quiet = htole16(5);
2589         hdr->threshold = htole16(1);
2590
2591         if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) {
2592                 /* send probe requests at 6Mbps */
2593                 hdr->tx.rate = wpi_ridx_to_plcp[WPI_OFDM6];
2594
2595                 /* Enable crc checking */
2596                 hdr->promotion = htole16(1);
2597         } else {
2598                 hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2599                 /* send probe requests at 1Mbps */
2600                 hdr->tx.rate = wpi_ridx_to_plcp[WPI_CCK1];
2601         }
2602         hdr->tx.id = WPI_ID_BROADCAST;
2603         hdr->tx.lifetime = htole32(WPI_LIFETIME_INFINITE);
2604         hdr->tx.flags = htole32(WPI_TX_AUTO_SEQ);
2605
2606         memset(hdr->scan_essids, 0, sizeof(hdr->scan_essids));
2607         nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
2608         for (i = 0; i < nssid; i++) {
2609                 hdr->scan_essids[i].id = IEEE80211_ELEMID_SSID;
2610                 hdr->scan_essids[i].esslen = MIN(ss->ss_ssid[i].len, 32);
2611                 memcpy(hdr->scan_essids[i].essid, ss->ss_ssid[i].ssid,
2612                     hdr->scan_essids[i].esslen);
2613 #ifdef WPI_DEBUG
2614                 if (wpi_debug & WPI_DEBUG_SCANNING) {
2615                         printf("Scanning Essid: ");
2616                         ieee80211_print_essid(hdr->scan_essids[i].essid,
2617                             hdr->scan_essids[i].esslen);
2618                         printf("\n");
2619                 }
2620 #endif
2621         }
2622
2623         /*
2624          * Build a probe request frame.  Most of the following code is a
2625          * copy & paste of what is done in net80211.
2626          */
2627         wh = (struct ieee80211_frame *)&hdr->scan_essids[4];
2628         wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2629                 IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2630         wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2631         IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
2632         IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp));
2633         IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
2634         *(u_int16_t *)&wh->i_dur[0] = 0;        /* filled by h/w */
2635         *(u_int16_t *)&wh->i_seq[0] = 0;        /* filled by h/w */
2636
2637         frm = (uint8_t *)(wh + 1);
2638
2639         /* add essid IE, the hardware will fill this in for us */
2640         *frm++ = IEEE80211_ELEMID_SSID;
2641         *frm++ = 0;
2642
2643         mode = ieee80211_chan2mode(ic->ic_curchan);
2644         rs = &ic->ic_sup_rates[mode];
2645
2646         /* add supported rates IE */
2647         *frm++ = IEEE80211_ELEMID_RATES;
2648         nrates = rs->rs_nrates;
2649         if (nrates > IEEE80211_RATE_SIZE)
2650                 nrates = IEEE80211_RATE_SIZE;
2651         *frm++ = nrates;
2652         memcpy(frm, rs->rs_rates, nrates);
2653         frm += nrates;
2654
2655         /* add supported xrates IE */
2656         if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2657                 nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2658                 *frm++ = IEEE80211_ELEMID_XRATES;
2659                 *frm++ = nrates;
2660                 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2661                 frm += nrates;
2662         }
2663
2664         /* setup length of probe request */
2665         hdr->tx.len = htole16(frm - (uint8_t *)wh);
2666
2667         /*
2668          * Construct information about the channel that we
2669          * want to scan. The firmware expects this to be directly
2670          * after the scan probe request
2671          */
2672         c = ic->ic_curchan;
2673         chan = (struct wpi_scan_chan *)frm;
2674         chan->chan = ieee80211_chan2ieee(ic, c);
2675         chan->flags = 0;
2676         if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2677                 chan->flags |= WPI_CHAN_ACTIVE;
2678                 if (nssid != 0)
2679                         chan->flags |= WPI_CHAN_DIRECT;
2680         }
2681         chan->gain_dsp = 0x6e; /* Default level */
2682         if (IEEE80211_IS_CHAN_5GHZ(c)) {
2683                 chan->active = htole16(10);
2684                 chan->passive = htole16(ss->ss_maxdwell);
2685                 chan->gain_radio = 0x3b;
2686         } else {
2687                 chan->active = htole16(20);
2688                 chan->passive = htole16(ss->ss_maxdwell);
2689                 chan->gain_radio = 0x28;
2690         }
2691
2692         DPRINTFN(WPI_DEBUG_SCANNING,
2693             ("Scanning %u Passive: %d\n",
2694              chan->chan,
2695              c->ic_flags & IEEE80211_CHAN_PASSIVE));
2696
2697         hdr->nchan++;
2698         chan++;
2699
2700         frm += sizeof (struct wpi_scan_chan);
2701 #if 0
2702         // XXX All Channels....
2703         for (c  = &ic->ic_channels[1];
2704              c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2705                 if ((c->ic_flags & ic->ic_curchan->ic_flags) != ic->ic_curchan->ic_flags)
2706                         continue;
2707
2708                 chan->chan = ieee80211_chan2ieee(ic, c);
2709                 chan->flags = 0;
2710                 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2711                     chan->flags |= WPI_CHAN_ACTIVE;
2712                     if (ic->ic_des_ssid[0].len != 0)
2713                         chan->flags |= WPI_CHAN_DIRECT;
2714                 }
2715                 chan->gain_dsp = 0x6e; /* Default level */
2716                 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2717                         chan->active = htole16(10);
2718                         chan->passive = htole16(110);
2719                         chan->gain_radio = 0x3b;
2720                 } else {
2721                         chan->active = htole16(20);
2722                         chan->passive = htole16(120);
2723                         chan->gain_radio = 0x28;
2724                 }
2725
2726                 DPRINTFN(WPI_DEBUG_SCANNING,
2727                          ("Scanning %u Passive: %d\n",
2728                           chan->chan,
2729                           c->ic_flags & IEEE80211_CHAN_PASSIVE));
2730
2731                 hdr->nchan++;
2732                 chan++;
2733
2734                 frm += sizeof (struct wpi_scan_chan);
2735         }
2736 #endif
2737
2738         hdr->len = htole16(frm - (uint8_t *)hdr);
2739         pktlen = frm - (uint8_t *)cmd;
2740
2741         error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen,
2742             wpi_dma_map_addr, &physaddr, BUS_DMA_NOWAIT);
2743         if (error != 0) {
2744                 device_printf(sc->sc_dev, "could not map scan command\n");
2745                 m_freem(data->m);
2746                 data->m = NULL;
2747                 return error;
2748         }
2749
2750         desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2751         desc->segs[0].addr = htole32(physaddr);
2752         desc->segs[0].len  = htole32(pktlen);
2753
2754         bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2755             BUS_DMASYNC_PREWRITE);
2756         bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2757
2758         /* kick cmd ring */
2759         ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2760         WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2761
2762         sc->sc_scan_timer = 5;
2763         return 0;       /* will be notified async. of failure/success */
2764 }
2765
2766 /**
2767  * Configure the card to listen to a particular channel, this transisions the
2768  * card in to being able to receive frames from remote devices.
2769  */
2770 static int
2771 wpi_config(struct wpi_softc *sc)
2772 {
2773         struct ifnet *ifp = sc->sc_ifp;
2774         struct ieee80211com *ic = ifp->if_l2com;
2775         struct wpi_power power;
2776         struct wpi_bluetooth bluetooth;
2777         struct wpi_node_info node;
2778         int error;
2779
2780         /* set power mode */
2781         memset(&power, 0, sizeof power);
2782         power.flags = htole32(WPI_POWER_CAM|0x8);
2783         error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2784         if (error != 0) {
2785                 device_printf(sc->sc_dev, "could not set power mode\n");
2786                 return error;
2787         }
2788
2789         /* configure bluetooth coexistence */
2790         memset(&bluetooth, 0, sizeof bluetooth);
2791         bluetooth.flags = 3;
2792         bluetooth.lead = 0xaa;
2793         bluetooth.kill = 1;
2794         error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2795             0);
2796         if (error != 0) {
2797                 device_printf(sc->sc_dev,
2798                     "could not configure bluetooth coexistence\n");
2799                 return error;
2800         }
2801
2802         /* configure adapter */
2803         memset(&sc->config, 0, sizeof (struct wpi_config));
2804         IEEE80211_ADDR_COPY(sc->config.myaddr, IF_LLADDR(ifp));
2805         /*set default channel*/
2806         sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan));
2807         sc->config.flags = htole32(WPI_CONFIG_TSF);
2808         if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
2809                 sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2810                     WPI_CONFIG_24GHZ);
2811         }
2812         sc->config.filter = 0;
2813         switch (ic->ic_opmode) {
2814         case IEEE80211_M_STA:
2815         case IEEE80211_M_WDS:   /* No know setup, use STA for now */
2816                 sc->config.mode = WPI_MODE_STA;
2817                 sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2818                 break;
2819         case IEEE80211_M_IBSS:
2820         case IEEE80211_M_AHDEMO:
2821                 sc->config.mode = WPI_MODE_IBSS;
2822                 sc->config.filter |= htole32(WPI_FILTER_BEACON |
2823                                              WPI_FILTER_MULTICAST);
2824                 break;
2825         case IEEE80211_M_HOSTAP:
2826                 sc->config.mode = WPI_MODE_HOSTAP;
2827                 break;
2828         case IEEE80211_M_MONITOR:
2829                 sc->config.mode = WPI_MODE_MONITOR;
2830                 sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2831                         WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2832                 break;
2833         default:
2834                 device_printf(sc->sc_dev, "unknown opmode %d\n", ic->ic_opmode);
2835                 return EINVAL;
2836         }
2837         sc->config.cck_mask  = 0x0f;    /* not yet negotiated */
2838         sc->config.ofdm_mask = 0xff;    /* not yet negotiated */
2839         error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2840                 sizeof (struct wpi_config), 0);
2841         if (error != 0) {
2842                 device_printf(sc->sc_dev, "configure command failed\n");
2843                 return error;
2844         }
2845
2846         /* configuration has changed, set Tx power accordingly */
2847         if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) {
2848             device_printf(sc->sc_dev, "could not set Tx power\n");
2849             return error;
2850         }
2851
2852         /* add broadcast node */
2853         memset(&node, 0, sizeof node);
2854         IEEE80211_ADDR_COPY(node.bssid, ifp->if_broadcastaddr);
2855         node.id = WPI_ID_BROADCAST;
2856         node.rate = wpi_plcp_signal(2);
2857         error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2858         if (error != 0) {
2859                 device_printf(sc->sc_dev, "could not add broadcast node\n");
2860                 return error;
2861         }
2862
2863         /* Setup rate scalling */
2864         error = wpi_mrr_setup(sc);
2865         if (error != 0) {
2866                 device_printf(sc->sc_dev, "could not setup MRR\n");
2867                 return error;
2868         }
2869
2870         return 0;
2871 }
2872
2873 static void
2874 wpi_stop_master(struct wpi_softc *sc)
2875 {
2876         uint32_t tmp;
2877         int ntries;
2878
2879         DPRINTFN(WPI_DEBUG_HW,("Disabling Firmware execution\n"));
2880
2881         tmp = WPI_READ(sc, WPI_RESET);
2882         WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER | WPI_NEVO_RESET);
2883
2884         tmp = WPI_READ(sc, WPI_GPIO_CTL);
2885         if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2886                 return; /* already asleep */
2887
2888         for (ntries = 0; ntries < 100; ntries++) {
2889                 if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2890                         break;
2891                 DELAY(10);
2892         }
2893         if (ntries == 100) {
2894                 device_printf(sc->sc_dev, "timeout waiting for master\n");
2895         }
2896 }
2897
2898 static int
2899 wpi_power_up(struct wpi_softc *sc)
2900 {
2901         uint32_t tmp;
2902         int ntries;
2903
2904         wpi_mem_lock(sc);
2905         tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2906         wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2907         wpi_mem_unlock(sc);
2908
2909         for (ntries = 0; ntries < 5000; ntries++) {
2910                 if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
2911                         break;
2912                 DELAY(10);
2913         }
2914         if (ntries == 5000) {
2915                 device_printf(sc->sc_dev,
2916                     "timeout waiting for NIC to power up\n");
2917                 return ETIMEDOUT;
2918         }
2919         return 0;
2920 }
2921
2922 static int
2923 wpi_reset(struct wpi_softc *sc)
2924 {
2925         uint32_t tmp;
2926         int ntries;
2927
2928         DPRINTFN(WPI_DEBUG_HW,
2929             ("Resetting the card - clearing any uploaded firmware\n"));
2930
2931         /* clear any pending interrupts */
2932         WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2933
2934         tmp = WPI_READ(sc, WPI_PLL_CTL);
2935         WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
2936
2937         tmp = WPI_READ(sc, WPI_CHICKEN);
2938         WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
2939
2940         tmp = WPI_READ(sc, WPI_GPIO_CTL);
2941         WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
2942
2943         /* wait for clock stabilization */
2944         for (ntries = 0; ntries < 25000; ntries++) {
2945                 if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
2946                         break;
2947                 DELAY(10);
2948         }
2949         if (ntries == 25000) {
2950                 device_printf(sc->sc_dev,
2951                     "timeout waiting for clock stabilization\n");
2952                 return ETIMEDOUT;
2953         }
2954
2955         /* initialize EEPROM */
2956         tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
2957
2958         if ((tmp & WPI_EEPROM_VERSION) == 0) {
2959                 device_printf(sc->sc_dev, "EEPROM not found\n");
2960                 return EIO;
2961         }
2962         WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
2963
2964         return 0;
2965 }
2966
2967 static void
2968 wpi_hw_config(struct wpi_softc *sc)
2969 {
2970         uint32_t rev, hw;
2971
2972         /* voodoo from the Linux "driver".. */
2973         hw = WPI_READ(sc, WPI_HWCONFIG);
2974
2975         rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
2976         if ((rev & 0xc0) == 0x40)
2977                 hw |= WPI_HW_ALM_MB;
2978         else if (!(rev & 0x80))
2979                 hw |= WPI_HW_ALM_MM;
2980
2981         if (sc->cap == 0x80)
2982                 hw |= WPI_HW_SKU_MRC;
2983
2984         hw &= ~WPI_HW_REV_D;
2985         if ((le16toh(sc->rev) & 0xf0) == 0xd0)
2986                 hw |= WPI_HW_REV_D;
2987
2988         if (sc->type > 1)
2989                 hw |= WPI_HW_TYPE_B;
2990
2991         WPI_WRITE(sc, WPI_HWCONFIG, hw);
2992 }
2993
2994 static void
2995 wpi_rfkill_resume(struct wpi_softc *sc)
2996 {
2997         struct ifnet *ifp = sc->sc_ifp;
2998         struct ieee80211com *ic = ifp->if_l2com;
2999         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3000         int ntries;
3001
3002         /* enable firmware again */
3003         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3004         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3005
3006         /* wait for thermal sensors to calibrate */
3007         for (ntries = 0; ntries < 1000; ntries++) {
3008                 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3009                         break;
3010                 DELAY(10);
3011         }
3012
3013         if (ntries == 1000) {
3014                 device_printf(sc->sc_dev,
3015                     "timeout waiting for thermal calibration\n");
3016                 return;
3017         }
3018         DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3019
3020         if (wpi_config(sc) != 0) {
3021                 device_printf(sc->sc_dev, "device config failed\n");
3022                 return;
3023         }
3024
3025         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3026         ifp->if_drv_flags |= IFF_DRV_RUNNING;
3027         sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3028
3029         if (vap != NULL) {
3030                 if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3031                         if (vap->iv_opmode != IEEE80211_M_MONITOR) {
3032                                 ieee80211_beacon_miss(ic);
3033                                 wpi_set_led(sc, WPI_LED_LINK, 0, 1);
3034                         } else
3035                                 wpi_set_led(sc, WPI_LED_LINK, 5, 5);
3036                 } else {
3037                         ieee80211_scan_next(vap);
3038                         wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3039                 }
3040         }
3041
3042         callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3043 }
3044
3045 static void
3046 wpi_init_locked(struct wpi_softc *sc, int force)
3047 {
3048         struct ifnet *ifp = sc->sc_ifp;
3049         uint32_t tmp;
3050         int ntries, qid;
3051
3052         wpi_stop_locked(sc);
3053         (void)wpi_reset(sc);
3054
3055         wpi_mem_lock(sc);
3056         wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3057         DELAY(20);
3058         tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3059         wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3060         wpi_mem_unlock(sc);
3061
3062         (void)wpi_power_up(sc);
3063         wpi_hw_config(sc);
3064
3065         /* init Rx ring */
3066         wpi_mem_lock(sc);
3067         WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3068         WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3069             offsetof(struct wpi_shared, next));
3070         WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3071         WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3072         wpi_mem_unlock(sc);
3073
3074         /* init Tx rings */
3075         wpi_mem_lock(sc);
3076         wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3077         wpi_mem_write(sc, WPI_MEM_RA, 1);   /* enable RA0 */
3078         wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3079         wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3080         wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3081         wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3082         wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3083
3084         WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3085         WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3086
3087         for (qid = 0; qid < 6; qid++) {
3088                 WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3089                 WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3090                 WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3091         }
3092         wpi_mem_unlock(sc);
3093
3094         /* clear "radio off" and "disable command" bits (reversed logic) */
3095         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3096         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3097         sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3098
3099         /* clear any pending interrupts */
3100         WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3101
3102         /* enable interrupts */
3103         WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3104
3105         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3106         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3107
3108         if ((wpi_load_firmware(sc)) != 0) {
3109             device_printf(sc->sc_dev,
3110                 "A problem occurred loading the firmware to the driver\n");
3111             return;
3112         }
3113
3114         /* At this point the firmware is up and running. If the hardware
3115          * RF switch is turned off thermal calibration will fail, though
3116          * the card is still happy to continue to accept commands, catch
3117          * this case and schedule a task to watch for it to be turned on.
3118          */
3119         wpi_mem_lock(sc);
3120         tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3121         wpi_mem_unlock(sc);
3122
3123         if (!(tmp & 0x1)) {
3124                 sc->flags |= WPI_FLAG_HW_RADIO_OFF;
3125                 device_printf(sc->sc_dev,"Radio Transmitter is switched off\n");
3126                 goto out;
3127         }
3128
3129         /* wait for thermal sensors to calibrate */
3130         for (ntries = 0; ntries < 1000; ntries++) {
3131                 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3132                         break;
3133                 DELAY(10);
3134         }
3135
3136         if (ntries == 1000) {
3137                 device_printf(sc->sc_dev,
3138                     "timeout waiting for thermal sensors calibration\n");
3139                 return;
3140         }
3141         DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3142
3143         if (wpi_config(sc) != 0) {
3144                 device_printf(sc->sc_dev, "device config failed\n");
3145                 return;
3146         }
3147
3148         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3149         ifp->if_drv_flags |= IFF_DRV_RUNNING;
3150 out:
3151         callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3152 }
3153
3154 static void
3155 wpi_init(void *arg)
3156 {
3157         struct wpi_softc *sc = arg;
3158         struct ifnet *ifp = sc->sc_ifp;
3159         struct ieee80211com *ic = ifp->if_l2com;
3160
3161         WPI_LOCK(sc);
3162         wpi_init_locked(sc, 0);
3163         WPI_UNLOCK(sc);
3164
3165         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3166                 ieee80211_start_all(ic);                /* start all vaps */
3167 }
3168
3169 static void
3170 wpi_stop_locked(struct wpi_softc *sc)
3171 {
3172         struct ifnet *ifp = sc->sc_ifp;
3173         uint32_t tmp;
3174         int ac;
3175
3176         sc->sc_tx_timer = 0;
3177         sc->sc_scan_timer = 0;
3178         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3179         sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3180         callout_stop(&sc->watchdog_to);
3181         callout_stop(&sc->calib_to);
3182
3183
3184         /* disable interrupts */
3185         WPI_WRITE(sc, WPI_MASK, 0);
3186         WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3187         WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3188         WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3189
3190         wpi_mem_lock(sc);
3191         wpi_mem_write(sc, WPI_MEM_MODE, 0);
3192         wpi_mem_unlock(sc);
3193
3194         /* reset all Tx rings */
3195         for (ac = 0; ac < 4; ac++)
3196                 wpi_reset_tx_ring(sc, &sc->txq[ac]);
3197         wpi_reset_tx_ring(sc, &sc->cmdq);
3198
3199         /* reset Rx ring */
3200         wpi_reset_rx_ring(sc, &sc->rxq);
3201
3202         wpi_mem_lock(sc);
3203         wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3204         wpi_mem_unlock(sc);
3205
3206         DELAY(5);
3207
3208         wpi_stop_master(sc);
3209
3210         tmp = WPI_READ(sc, WPI_RESET);
3211         WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3212         sc->flags &= ~WPI_FLAG_BUSY;
3213 }
3214
3215 static void
3216 wpi_stop(struct wpi_softc *sc)
3217 {
3218         WPI_LOCK(sc);
3219         wpi_stop_locked(sc);
3220         WPI_UNLOCK(sc);
3221 }
3222
3223 static void
3224 wpi_newassoc(struct ieee80211_node *ni, int isnew)
3225 {
3226
3227         /* XXX move */
3228         ieee80211_ratectl_node_init(ni);
3229 }
3230
3231 static void
3232 wpi_calib_timeout(void *arg)
3233 {
3234         struct wpi_softc *sc = arg;
3235         struct ifnet *ifp = sc->sc_ifp;
3236         struct ieee80211com *ic = ifp->if_l2com;
3237         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3238         int temp;
3239
3240         if (vap->iv_state != IEEE80211_S_RUN)
3241                 return;
3242
3243         /* update sensor data */
3244         temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
3245         DPRINTFN(WPI_DEBUG_TEMP,("Temp in calibration is: %d\n", temp));
3246
3247         wpi_power_calibration(sc, temp);
3248
3249         callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
3250 }
3251
3252 /*
3253  * This function is called periodically (every 60 seconds) to adjust output
3254  * power to temperature changes.
3255  */
3256 static void
3257 wpi_power_calibration(struct wpi_softc *sc, int temp)
3258 {
3259         struct ifnet *ifp = sc->sc_ifp;
3260         struct ieee80211com *ic = ifp->if_l2com;
3261         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3262
3263         /* sanity-check read value */
3264         if (temp < -260 || temp > 25) {
3265                 /* this can't be correct, ignore */
3266                 DPRINTFN(WPI_DEBUG_TEMP,
3267                     ("out-of-range temperature reported: %d\n", temp));
3268                 return;
3269         }
3270
3271         DPRINTFN(WPI_DEBUG_TEMP,("temperature %d->%d\n", sc->temp, temp));
3272
3273         /* adjust Tx power if need be */
3274         if (abs(temp - sc->temp) <= 6)
3275                 return;
3276
3277         sc->temp = temp;
3278
3279         if (wpi_set_txpower(sc, vap->iv_bss->ni_chan, 1) != 0) {
3280                 /* just warn, too bad for the automatic calibration... */
3281                 device_printf(sc->sc_dev,"could not adjust Tx power\n");
3282         }
3283 }
3284
3285 /**
3286  * Read the eeprom to find out what channels are valid for the given
3287  * band and update net80211 with what we find.
3288  */
3289 static void
3290 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
3291 {
3292         struct ifnet *ifp = sc->sc_ifp;
3293         struct ieee80211com *ic = ifp->if_l2com;
3294         const struct wpi_chan_band *band = &wpi_bands[n];
3295         struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
3296         struct ieee80211_channel *c;
3297         int chan, i, passive;
3298
3299         wpi_read_prom_data(sc, band->addr, channels,
3300             band->nchan * sizeof (struct wpi_eeprom_chan));
3301
3302         for (i = 0; i < band->nchan; i++) {
3303                 if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
3304                         DPRINTFN(WPI_DEBUG_HW,
3305                             ("Channel Not Valid: %d, band %d\n",
3306                              band->chan[i],n));
3307                         continue;
3308                 }
3309
3310                 passive = 0;
3311                 chan = band->chan[i];
3312                 c = &ic->ic_channels[ic->ic_nchans++];
3313
3314                 /* is active scan allowed on this channel? */
3315                 if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
3316                         passive = IEEE80211_CHAN_PASSIVE;
3317                 }
3318
3319                 if (n == 0) {   /* 2GHz band */
3320                         c->ic_ieee = chan;
3321                         c->ic_freq = ieee80211_ieee2mhz(chan,
3322                             IEEE80211_CHAN_2GHZ);
3323                         c->ic_flags = IEEE80211_CHAN_B | passive;
3324
3325                         c = &ic->ic_channels[ic->ic_nchans++];
3326                         c->ic_ieee = chan;
3327                         c->ic_freq = ieee80211_ieee2mhz(chan,
3328                             IEEE80211_CHAN_2GHZ);
3329                         c->ic_flags = IEEE80211_CHAN_G | passive;
3330
3331                 } else {        /* 5GHz band */
3332                         /*
3333                          * Some 3945ABG adapters support channels 7, 8, 11
3334                          * and 12 in the 2GHz *and* 5GHz bands.
3335                          * Because of limitations in our net80211(9) stack,
3336                          * we can't support these channels in 5GHz band.
3337                          * XXX not true; just need to map to proper frequency
3338                          */
3339                         if (chan <= 14)
3340                                 continue;
3341
3342                         c->ic_ieee = chan;
3343                         c->ic_freq = ieee80211_ieee2mhz(chan,
3344                             IEEE80211_CHAN_5GHZ);
3345                         c->ic_flags = IEEE80211_CHAN_A | passive;
3346                 }
3347
3348                 /* save maximum allowed power for this channel */
3349                 sc->maxpwr[chan] = channels[i].maxpwr;
3350
3351 #if 0
3352                 // XXX We can probably use this an get rid of maxpwr - ben 20070617
3353                 ic->ic_channels[chan].ic_maxpower = channels[i].maxpwr;
3354                 //ic->ic_channels[chan].ic_minpower...
3355                 //ic->ic_channels[chan].ic_maxregtxpower...
3356 #endif
3357
3358                 DPRINTF(("adding chan %d (%dMHz) flags=0x%x maxpwr=%d"
3359                     " passive=%d, offset %d\n", chan, c->ic_freq,
3360                     channels[i].flags, sc->maxpwr[chan],
3361                     (c->ic_flags & IEEE80211_CHAN_PASSIVE) != 0,
3362                     ic->ic_nchans));
3363         }
3364 }
3365
3366 static void
3367 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
3368 {
3369         struct wpi_power_group *group = &sc->groups[n];
3370         struct wpi_eeprom_group rgroup;
3371         int i;
3372
3373         wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
3374             sizeof rgroup);
3375
3376         /* save power group information */
3377         group->chan   = rgroup.chan;
3378         group->maxpwr = rgroup.maxpwr;
3379         /* temperature at which the samples were taken */
3380         group->temp   = (int16_t)le16toh(rgroup.temp);
3381
3382         DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
3383                     group->chan, group->maxpwr, group->temp));
3384
3385         for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
3386                 group->samples[i].index = rgroup.samples[i].index;
3387                 group->samples[i].power = rgroup.samples[i].power;
3388
3389                 DPRINTF(("\tsample %d: index=%d power=%d\n", i,
3390                             group->samples[i].index, group->samples[i].power));
3391         }
3392 }
3393
3394 /*
3395  * Update Tx power to match what is defined for channel `c'.
3396  */
3397 static int
3398 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
3399 {
3400         struct ifnet *ifp = sc->sc_ifp;
3401         struct ieee80211com *ic = ifp->if_l2com;
3402         struct wpi_power_group *group;
3403         struct wpi_cmd_txpower txpower;
3404         u_int chan;
3405         int i;
3406
3407         /* get channel number */
3408         chan = ieee80211_chan2ieee(ic, c);
3409
3410         /* find the power group to which this channel belongs */
3411         if (IEEE80211_IS_CHAN_5GHZ(c)) {
3412                 for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3413                         if (chan <= group->chan)
3414                                 break;
3415         } else
3416                 group = &sc->groups[0];
3417
3418         memset(&txpower, 0, sizeof txpower);
3419         txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
3420         txpower.channel = htole16(chan);
3421
3422         /* set Tx power for all OFDM and CCK rates */
3423         for (i = 0; i <= 11 ; i++) {
3424                 /* retrieve Tx power for this channel/rate combination */
3425                 int idx = wpi_get_power_index(sc, group, c,
3426                     wpi_ridx_to_rate[i]);
3427
3428                 txpower.rates[i].rate = wpi_ridx_to_plcp[i];
3429
3430                 if (IEEE80211_IS_CHAN_5GHZ(c)) {
3431                         txpower.rates[i].gain_radio = wpi_rf_gain_5ghz[idx];
3432                         txpower.rates[i].gain_dsp = wpi_dsp_gain_5ghz[idx];
3433                 } else {
3434                         txpower.rates[i].gain_radio = wpi_rf_gain_2ghz[idx];
3435                         txpower.rates[i].gain_dsp = wpi_dsp_gain_2ghz[idx];
3436                 }
3437                 DPRINTFN(WPI_DEBUG_TEMP,("chan %d/rate %d: power index %d\n",
3438                             chan, wpi_ridx_to_rate[i], idx));
3439         }
3440
3441         return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
3442 }
3443
3444 /*
3445  * Determine Tx power index for a given channel/rate combination.
3446  * This takes into account the regulatory information from EEPROM and the
3447  * current temperature.
3448  */
3449 static int
3450 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3451     struct ieee80211_channel *c, int rate)
3452 {
3453 /* fixed-point arithmetic division using a n-bit fractional part */
3454 #define fdivround(a, b, n)      \
3455         ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3456
3457 /* linear interpolation */
3458 #define interpolate(x, x1, y1, x2, y2, n)       \
3459         ((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3460
3461         struct ifnet *ifp = sc->sc_ifp;
3462         struct ieee80211com *ic = ifp->if_l2com;
3463         struct wpi_power_sample *sample;
3464         int pwr, idx;
3465         u_int chan;
3466
3467         /* get channel number */
3468         chan = ieee80211_chan2ieee(ic, c);
3469
3470         /* default power is group's maximum power - 3dB */
3471         pwr = group->maxpwr / 2;
3472
3473         /* decrease power for highest OFDM rates to reduce distortion */
3474         switch (rate) {
3475                 case 72:        /* 36Mb/s */
3476                         pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
3477                         break;
3478                 case 96:        /* 48Mb/s */
3479                         pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
3480                         break;
3481                 case 108:       /* 54Mb/s */
3482                         pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
3483                         break;
3484         }
3485
3486         /* never exceed channel's maximum allowed Tx power */
3487         pwr = min(pwr, sc->maxpwr[chan]);
3488
3489         /* retrieve power index into gain tables from samples */
3490         for (sample = group->samples; sample < &group->samples[3]; sample++)
3491                 if (pwr > sample[1].power)
3492                         break;
3493         /* fixed-point linear interpolation using a 19-bit fractional part */
3494         idx = interpolate(pwr, sample[0].power, sample[0].index,
3495             sample[1].power, sample[1].index, 19);
3496
3497         /*
3498          *  Adjust power index based on current temperature
3499          *      - if colder than factory-calibrated: decreate output power
3500          *      - if warmer than factory-calibrated: increase output power
3501          */
3502         idx -= (sc->temp - group->temp) * 11 / 100;
3503
3504         /* decrease power for CCK rates (-5dB) */
3505         if (!WPI_RATE_IS_OFDM(rate))
3506                 idx += 10;
3507
3508         /* keep power index in a valid range */
3509         if (idx < 0)
3510                 return 0;
3511         if (idx > WPI_MAX_PWR_INDEX)
3512                 return WPI_MAX_PWR_INDEX;
3513         return idx;
3514
3515 #undef interpolate
3516 #undef fdivround
3517 }
3518
3519 /**
3520  * Called by net80211 framework to indicate that a scan
3521  * is starting. This function doesn't actually do the scan,
3522  * wpi_scan_curchan starts things off. This function is more
3523  * of an early warning from the framework we should get ready
3524  * for the scan.
3525  */
3526 static void
3527 wpi_scan_start(struct ieee80211com *ic)
3528 {
3529         struct ifnet *ifp = ic->ic_ifp;
3530         struct wpi_softc *sc = ifp->if_softc;
3531
3532         WPI_LOCK(sc);
3533         wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3534         WPI_UNLOCK(sc);
3535 }
3536
3537 /**
3538  * Called by the net80211 framework, indicates that the
3539  * scan has ended. If there is a scan in progress on the card
3540  * then it should be aborted.
3541  */
3542 static void
3543 wpi_scan_end(struct ieee80211com *ic)
3544 {
3545         /* XXX ignore */
3546 }
3547
3548 /**
3549  * Called by the net80211 framework to indicate to the driver
3550  * that the channel should be changed
3551  */
3552 static void
3553 wpi_set_channel(struct ieee80211com *ic)
3554 {
3555         struct ifnet *ifp = ic->ic_ifp;
3556         struct wpi_softc *sc = ifp->if_softc;
3557         int error;
3558
3559         /*
3560          * Only need to set the channel in Monitor mode. AP scanning and auth
3561          * are already taken care of by their respective firmware commands.
3562          */
3563         if (ic->ic_opmode == IEEE80211_M_MONITOR) {
3564                 WPI_LOCK(sc);
3565                 error = wpi_config(sc);
3566                 WPI_UNLOCK(sc);
3567                 if (error != 0)
3568                         device_printf(sc->sc_dev,
3569                             "error %d settting channel\n", error);
3570         }
3571 }
3572
3573 /**
3574  * Called by net80211 to indicate that we need to scan the current
3575  * channel. The channel is previously be set via the wpi_set_channel
3576  * callback.
3577  */
3578 static void
3579 wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
3580 {
3581         struct ieee80211vap *vap = ss->ss_vap;
3582         struct ifnet *ifp = vap->iv_ic->ic_ifp;
3583         struct wpi_softc *sc = ifp->if_softc;
3584
3585         WPI_LOCK(sc);
3586         if (wpi_scan(sc))
3587                 ieee80211_cancel_scan(vap);
3588         WPI_UNLOCK(sc);
3589 }
3590
3591 /**
3592  * Called by the net80211 framework to indicate
3593  * the minimum dwell time has been met, terminate the scan.
3594  * We don't actually terminate the scan as the firmware will notify
3595  * us when it's finished and we have no way to interrupt it.
3596  */
3597 static void
3598 wpi_scan_mindwell(struct ieee80211_scan_state *ss)
3599 {
3600         /* NB: don't try to abort scan; wait for firmware to finish */
3601 }
3602
3603 static void
3604 wpi_hwreset(void *arg, int pending)
3605 {
3606         struct wpi_softc *sc = arg;
3607
3608         WPI_LOCK(sc);
3609         wpi_init_locked(sc, 0);
3610         WPI_UNLOCK(sc);
3611 }
3612
3613 static void
3614 wpi_rfreset(void *arg, int pending)
3615 {
3616         struct wpi_softc *sc = arg;
3617
3618         WPI_LOCK(sc);
3619         wpi_rfkill_resume(sc);
3620         WPI_UNLOCK(sc);
3621 }
3622
3623 /*
3624  * Allocate DMA-safe memory for firmware transfer.
3625  */
3626 static int
3627 wpi_alloc_fwmem(struct wpi_softc *sc)
3628 {
3629         /* allocate enough contiguous space to store text and data */
3630         return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
3631             WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 1,
3632             BUS_DMA_NOWAIT);
3633 }
3634
3635 static void
3636 wpi_free_fwmem(struct wpi_softc *sc)
3637 {
3638         wpi_dma_contig_free(&sc->fw_dma);
3639 }
3640
3641 /**
3642  * Called every second, wpi_watchdog used by the watch dog timer
3643  * to check that the card is still alive
3644  */
3645 static void
3646 wpi_watchdog(void *arg)
3647 {
3648         struct wpi_softc *sc = arg;
3649         struct ifnet *ifp = sc->sc_ifp;
3650         struct ieee80211com *ic = ifp->if_l2com;
3651         uint32_t tmp;
3652
3653         DPRINTFN(WPI_DEBUG_WATCHDOG,("Watchdog: tick\n"));
3654
3655         if (sc->flags & WPI_FLAG_HW_RADIO_OFF) {
3656                 /* No need to lock firmware memory */
3657                 tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3658
3659                 if ((tmp & 0x1) == 0) {
3660                         /* Radio kill switch is still off */
3661                         callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3662                         return;
3663                 }
3664
3665                 device_printf(sc->sc_dev, "Hardware Switch Enabled\n");
3666                 ieee80211_runtask(ic, &sc->sc_radiotask);
3667                 return;
3668         }
3669
3670         if (sc->sc_tx_timer > 0) {
3671                 if (--sc->sc_tx_timer == 0) {
3672                         device_printf(sc->sc_dev,"device timeout\n");
3673                         ifp->if_oerrors++;
3674                         ieee80211_runtask(ic, &sc->sc_restarttask);
3675                 }
3676         }
3677         if (sc->sc_scan_timer > 0) {
3678                 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3679                 if (--sc->sc_scan_timer == 0 && vap != NULL) {
3680                         device_printf(sc->sc_dev,"scan timeout\n");
3681                         ieee80211_cancel_scan(vap);
3682                         ieee80211_runtask(ic, &sc->sc_restarttask);
3683                 }
3684         }
3685
3686         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3687                 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3688 }
3689
3690 #ifdef WPI_DEBUG
3691 static const char *wpi_cmd_str(int cmd)
3692 {
3693         switch (cmd) {
3694         case WPI_DISABLE_CMD:   return "WPI_DISABLE_CMD";
3695         case WPI_CMD_CONFIGURE: return "WPI_CMD_CONFIGURE";
3696         case WPI_CMD_ASSOCIATE: return "WPI_CMD_ASSOCIATE";
3697         case WPI_CMD_SET_WME:   return "WPI_CMD_SET_WME";
3698         case WPI_CMD_TSF:       return "WPI_CMD_TSF";
3699         case WPI_CMD_ADD_NODE:  return "WPI_CMD_ADD_NODE";
3700         case WPI_CMD_TX_DATA:   return "WPI_CMD_TX_DATA";
3701         case WPI_CMD_MRR_SETUP: return "WPI_CMD_MRR_SETUP";
3702         case WPI_CMD_SET_LED:   return "WPI_CMD_SET_LED";
3703         case WPI_CMD_SET_POWER_MODE: return "WPI_CMD_SET_POWER_MODE";
3704         case WPI_CMD_SCAN:      return "WPI_CMD_SCAN";
3705         case WPI_CMD_SET_BEACON:return "WPI_CMD_SET_BEACON";
3706         case WPI_CMD_TXPOWER:   return "WPI_CMD_TXPOWER";
3707         case WPI_CMD_BLUETOOTH: return "WPI_CMD_BLUETOOTH";
3708
3709         default:
3710                 KASSERT(1, ("Unknown Command: %d\n", cmd));
3711                 return "UNKNOWN CMD";   /* Make the compiler happy */
3712         }
3713 }
3714 #endif
3715
3716 MODULE_DEPEND(wpi, pci,  1, 1, 1);
3717 MODULE_DEPEND(wpi, wlan, 1, 1, 1);
3718 MODULE_DEPEND(wpi, firmware, 1, 1, 1);