]> CyberLeo.Net >> Repos - FreeBSD/releng/8.2.git/blob - sys/dev/wpi/if_wpi.c
MFC r216824:
[FreeBSD/releng/8.2.git] / sys / dev / wpi / if_wpi.c
1 /*-
2  * Copyright (c) 2006,2007
3  *      Damien Bergamini <damien.bergamini@free.fr>
4  *      Benjamin Close <Benjamin.Close@clearchain.com>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18
19 #define VERSION "20071127"
20
21 #include <sys/cdefs.h>
22 __FBSDID("$FreeBSD$");
23
24 /*
25  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
26  *
27  * The 3945ABG network adapter doesn't use traditional hardware as
28  * many other adaptors do. Instead at run time the eeprom is set into a known
29  * state and told to load boot firmware. The boot firmware loads an init and a
30  * main  binary firmware image into SRAM on the card via DMA.
31  * Once the firmware is loaded, the driver/hw then
32  * communicate by way of circular dma rings via the the SRAM to the firmware.
33  *
34  * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
35  * The 4 tx data rings allow for prioritization QoS.
36  *
37  * The rx data ring consists of 32 dma buffers. Two registers are used to
38  * indicate where in the ring the driver and the firmware are up to. The
39  * driver sets the initial read index (reg1) and the initial write index (reg2),
40  * the firmware updates the read index (reg1) on rx of a packet and fires an
41  * interrupt. The driver then processes the buffers starting at reg1 indicating
42  * to the firmware which buffers have been accessed by updating reg2. At the
43  * same time allocating new memory for the processed buffer.
44  *
45  * A similar thing happens with the tx rings. The difference is the firmware
46  * stop processing buffers once the queue is full and until confirmation
47  * of a successful transmition (tx_intr) has occurred.
48  *
49  * The command ring operates in the same manner as the tx queues.
50  *
51  * All communication direct to the card (ie eeprom) is classed as Stage1
52  * communication
53  *
54  * All communication via the firmware to the card is classed as State2.
55  * The firmware consists of 2 parts. A bootstrap firmware and a runtime
56  * firmware. The bootstrap firmware and runtime firmware are loaded
57  * from host memory via dma to the card then told to execute. From this point
58  * on the majority of communications between the driver and the card goes
59  * via the firmware.
60  */
61
62 #include <sys/param.h>
63 #include <sys/sysctl.h>
64 #include <sys/sockio.h>
65 #include <sys/mbuf.h>
66 #include <sys/kernel.h>
67 #include <sys/socket.h>
68 #include <sys/systm.h>
69 #include <sys/malloc.h>
70 #include <sys/queue.h>
71 #include <sys/taskqueue.h>
72 #include <sys/module.h>
73 #include <sys/bus.h>
74 #include <sys/endian.h>
75 #include <sys/linker.h>
76 #include <sys/firmware.h>
77
78 #include <machine/bus.h>
79 #include <machine/resource.h>
80 #include <sys/rman.h>
81
82 #include <dev/pci/pcireg.h>
83 #include <dev/pci/pcivar.h>
84
85 #include <net/bpf.h>
86 #include <net/if.h>
87 #include <net/if_arp.h>
88 #include <net/ethernet.h>
89 #include <net/if_dl.h>
90 #include <net/if_media.h>
91 #include <net/if_types.h>
92
93 #include <net80211/ieee80211_var.h>
94 #include <net80211/ieee80211_radiotap.h>
95 #include <net80211/ieee80211_regdomain.h>
96 #include <net80211/ieee80211_ratectl.h>
97
98 #include <netinet/in.h>
99 #include <netinet/in_systm.h>
100 #include <netinet/in_var.h>
101 #include <netinet/ip.h>
102 #include <netinet/if_ether.h>
103
104 #include <dev/wpi/if_wpireg.h>
105 #include <dev/wpi/if_wpivar.h>
106
107 #define WPI_DEBUG
108
109 #ifdef WPI_DEBUG
110 #define DPRINTF(x)      do { if (wpi_debug != 0) printf x; } while (0)
111 #define DPRINTFN(n, x)  do { if (wpi_debug & n) printf x; } while (0)
112 #define WPI_DEBUG_SET   (wpi_debug != 0)
113
114 enum {
115         WPI_DEBUG_UNUSED        = 0x00000001,   /* Unused */
116         WPI_DEBUG_HW            = 0x00000002,   /* Stage 1 (eeprom) debugging */
117         WPI_DEBUG_TX            = 0x00000004,   /* Stage 2 TX intrp debugging*/
118         WPI_DEBUG_RX            = 0x00000008,   /* Stage 2 RX intrp debugging */
119         WPI_DEBUG_CMD           = 0x00000010,   /* Stage 2 CMD intrp debugging*/
120         WPI_DEBUG_FIRMWARE      = 0x00000020,   /* firmware(9) loading debug  */
121         WPI_DEBUG_DMA           = 0x00000040,   /* DMA (de)allocations/syncs  */
122         WPI_DEBUG_SCANNING      = 0x00000080,   /* Stage 2 Scanning debugging */
123         WPI_DEBUG_NOTIFY        = 0x00000100,   /* State 2 Noftif intr debug */
124         WPI_DEBUG_TEMP          = 0x00000200,   /* TXPower/Temp Calibration */
125         WPI_DEBUG_OPS           = 0x00000400,   /* wpi_ops taskq debug */
126         WPI_DEBUG_WATCHDOG      = 0x00000800,   /* Watch dog debug */
127         WPI_DEBUG_ANY           = 0xffffffff
128 };
129
130 static int wpi_debug = 0;
131 SYSCTL_INT(_debug, OID_AUTO, wpi, CTLFLAG_RW, &wpi_debug, 0, "wpi debug level");
132 TUNABLE_INT("debug.wpi", &wpi_debug);
133
134 #else
135 #define DPRINTF(x)
136 #define DPRINTFN(n, x)
137 #define WPI_DEBUG_SET   0
138 #endif
139
140 struct wpi_ident {
141         uint16_t        vendor;
142         uint16_t        device;
143         uint16_t        subdevice;
144         const char      *name;
145 };
146
147 static const struct wpi_ident wpi_ident_table[] = {
148         /* The below entries support ABG regardless of the subid */
149         { 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
150         { 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
151         /* The below entries only support BG */
152         { 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG"  },
153         { 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG"  },
154         { 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG"  },
155         { 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG"  },
156         { 0, 0, 0, NULL }
157 };
158
159 static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
160                     const char name[IFNAMSIZ], int unit, int opmode,
161                     int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
162                     const uint8_t mac[IEEE80211_ADDR_LEN]);
163 static void     wpi_vap_delete(struct ieee80211vap *);
164 static int      wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
165                     void **, bus_size_t, bus_size_t, int);
166 static void     wpi_dma_contig_free(struct wpi_dma_info *);
167 static void     wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
168 static int      wpi_alloc_shared(struct wpi_softc *);
169 static void     wpi_free_shared(struct wpi_softc *);
170 static int      wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
171 static void     wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
172 static void     wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
173 static int      wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
174                     int, int);
175 static void     wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
176 static void     wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
177 static void     wpi_newassoc(struct ieee80211_node *, int);
178 static int      wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
179 static void     wpi_mem_lock(struct wpi_softc *);
180 static void     wpi_mem_unlock(struct wpi_softc *);
181 static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t);
182 static void     wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
183 static void     wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
184                     const uint32_t *, int);
185 static uint16_t wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
186 static int      wpi_alloc_fwmem(struct wpi_softc *);
187 static void     wpi_free_fwmem(struct wpi_softc *);
188 static int      wpi_load_firmware(struct wpi_softc *);
189 static void     wpi_unload_firmware(struct wpi_softc *);
190 static int      wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
191 static void     wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
192                     struct wpi_rx_data *);
193 static void     wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
194 static void     wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
195 static void     wpi_notif_intr(struct wpi_softc *);
196 static void     wpi_intr(void *);
197 static uint8_t  wpi_plcp_signal(int);
198 static void     wpi_watchdog(void *);
199 static int      wpi_tx_data(struct wpi_softc *, struct mbuf *,
200                     struct ieee80211_node *, int);
201 static void     wpi_start(struct ifnet *);
202 static void     wpi_start_locked(struct ifnet *);
203 static int      wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
204                     const struct ieee80211_bpf_params *);
205 static void     wpi_scan_start(struct ieee80211com *);
206 static void     wpi_scan_end(struct ieee80211com *);
207 static void     wpi_set_channel(struct ieee80211com *);
208 static void     wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
209 static void     wpi_scan_mindwell(struct ieee80211_scan_state *);
210 static int      wpi_ioctl(struct ifnet *, u_long, caddr_t);
211 static void     wpi_read_eeprom(struct wpi_softc *,
212                     uint8_t macaddr[IEEE80211_ADDR_LEN]);
213 static void     wpi_read_eeprom_channels(struct wpi_softc *, int);
214 static void     wpi_read_eeprom_group(struct wpi_softc *, int);
215 static int      wpi_cmd(struct wpi_softc *, int, const void *, int, int);
216 static int      wpi_wme_update(struct ieee80211com *);
217 static int      wpi_mrr_setup(struct wpi_softc *);
218 static void     wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
219 static void     wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
220 #if 0
221 static int      wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
222 #endif
223 static int      wpi_auth(struct wpi_softc *, struct ieee80211vap *);
224 static int      wpi_run(struct wpi_softc *, struct ieee80211vap *);
225 static int      wpi_scan(struct wpi_softc *);
226 static int      wpi_config(struct wpi_softc *);
227 static void     wpi_stop_master(struct wpi_softc *);
228 static int      wpi_power_up(struct wpi_softc *);
229 static int      wpi_reset(struct wpi_softc *);
230 static void     wpi_hwreset(void *, int);
231 static void     wpi_rfreset(void *, int);
232 static void     wpi_hw_config(struct wpi_softc *);
233 static void     wpi_init(void *);
234 static void     wpi_init_locked(struct wpi_softc *, int);
235 static void     wpi_stop(struct wpi_softc *);
236 static void     wpi_stop_locked(struct wpi_softc *);
237
238 static int      wpi_set_txpower(struct wpi_softc *, struct ieee80211_channel *,
239                     int);
240 static void     wpi_calib_timeout(void *);
241 static void     wpi_power_calibration(struct wpi_softc *, int);
242 static int      wpi_get_power_index(struct wpi_softc *,
243                     struct wpi_power_group *, struct ieee80211_channel *, int);
244 #ifdef WPI_DEBUG
245 static const char *wpi_cmd_str(int);
246 #endif
247 static int wpi_probe(device_t);
248 static int wpi_attach(device_t);
249 static int wpi_detach(device_t);
250 static int wpi_shutdown(device_t);
251 static int wpi_suspend(device_t);
252 static int wpi_resume(device_t);
253
254
255 static device_method_t wpi_methods[] = {
256         /* Device interface */
257         DEVMETHOD(device_probe,         wpi_probe),
258         DEVMETHOD(device_attach,        wpi_attach),
259         DEVMETHOD(device_detach,        wpi_detach),
260         DEVMETHOD(device_shutdown,      wpi_shutdown),
261         DEVMETHOD(device_suspend,       wpi_suspend),
262         DEVMETHOD(device_resume,        wpi_resume),
263
264         { 0, 0 }
265 };
266
267 static driver_t wpi_driver = {
268         "wpi",
269         wpi_methods,
270         sizeof (struct wpi_softc)
271 };
272
273 static devclass_t wpi_devclass;
274
275 DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, 0, 0);
276
277 static const uint8_t wpi_ridx_to_plcp[] = {
278         /* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */
279         /* R1-R4 (ral/ural is R4-R1) */
280         0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3,
281         /* CCK: device-dependent */
282         10, 20, 55, 110
283 };
284 static const uint8_t wpi_ridx_to_rate[] = {
285         12, 18, 24, 36, 48, 72, 96, 108, /* OFDM */
286         2, 4, 11, 22 /*CCK */
287 };
288
289
290 static int
291 wpi_probe(device_t dev)
292 {
293         const struct wpi_ident *ident;
294
295         for (ident = wpi_ident_table; ident->name != NULL; ident++) {
296                 if (pci_get_vendor(dev) == ident->vendor &&
297                     pci_get_device(dev) == ident->device) {
298                         device_set_desc(dev, ident->name);
299                         return 0;
300                 }
301         }
302         return ENXIO;
303 }
304
305 /**
306  * Load the firmare image from disk to the allocated dma buffer.
307  * we also maintain the reference to the firmware pointer as there
308  * is times where we may need to reload the firmware but we are not
309  * in a context that can access the filesystem (ie taskq cause by restart)
310  *
311  * @return 0 on success, an errno on failure
312  */
313 static int
314 wpi_load_firmware(struct wpi_softc *sc)
315 {
316         const struct firmware *fp;
317         struct wpi_dma_info *dma = &sc->fw_dma;
318         const struct wpi_firmware_hdr *hdr;
319         const uint8_t *itext, *idata, *rtext, *rdata, *btext;
320         uint32_t itextsz, idatasz, rtextsz, rdatasz, btextsz;
321         int error;
322
323         DPRINTFN(WPI_DEBUG_FIRMWARE,
324             ("Attempting Loading Firmware from wpi_fw module\n"));
325
326         WPI_UNLOCK(sc);
327
328         if (sc->fw_fp == NULL && (sc->fw_fp = firmware_get("wpifw")) == NULL) {
329                 device_printf(sc->sc_dev,
330                     "could not load firmware image 'wpifw'\n");
331                 error = ENOENT;
332                 WPI_LOCK(sc);
333                 goto fail;
334         }
335
336         fp = sc->fw_fp;
337
338         WPI_LOCK(sc);
339
340         /* Validate the firmware is minimum a particular version */
341         if (fp->version < WPI_FW_MINVERSION) {
342             device_printf(sc->sc_dev,
343                            "firmware version is too old. Need %d, got %d\n",
344                            WPI_FW_MINVERSION,
345                            fp->version);
346             error = ENXIO;
347             goto fail;
348         }
349
350         if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
351                 device_printf(sc->sc_dev,
352                     "firmware file too short: %zu bytes\n", fp->datasize);
353                 error = ENXIO;
354                 goto fail;
355         }
356
357         hdr = (const struct wpi_firmware_hdr *)fp->data;
358
359         /*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
360            |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
361
362         rtextsz = le32toh(hdr->rtextsz);
363         rdatasz = le32toh(hdr->rdatasz);
364         itextsz = le32toh(hdr->itextsz);
365         idatasz = le32toh(hdr->idatasz);
366         btextsz = le32toh(hdr->btextsz);
367
368         /* check that all firmware segments are present */
369         if (fp->datasize < sizeof (struct wpi_firmware_hdr) +
370                 rtextsz + rdatasz + itextsz + idatasz + btextsz) {
371                 device_printf(sc->sc_dev,
372                     "firmware file too short: %zu bytes\n", fp->datasize);
373                 error = ENXIO; /* XXX appropriate error code? */
374                 goto fail;
375         }
376
377         /* get pointers to firmware segments */
378         rtext = (const uint8_t *)(hdr + 1);
379         rdata = rtext + rtextsz;
380         itext = rdata + rdatasz;
381         idata = itext + itextsz;
382         btext = idata + idatasz;
383
384         DPRINTFN(WPI_DEBUG_FIRMWARE,
385             ("Firmware Version: Major %d, Minor %d, Driver %d, \n"
386              "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n",
387              (le32toh(hdr->version) & 0xff000000) >> 24,
388              (le32toh(hdr->version) & 0x00ff0000) >> 16,
389              (le32toh(hdr->version) & 0x0000ffff),
390              rtextsz, rdatasz,
391              itextsz, idatasz, btextsz));
392
393         DPRINTFN(WPI_DEBUG_FIRMWARE,("rtext 0x%x\n", *(const uint32_t *)rtext));
394         DPRINTFN(WPI_DEBUG_FIRMWARE,("rdata 0x%x\n", *(const uint32_t *)rdata));
395         DPRINTFN(WPI_DEBUG_FIRMWARE,("itext 0x%x\n", *(const uint32_t *)itext));
396         DPRINTFN(WPI_DEBUG_FIRMWARE,("idata 0x%x\n", *(const uint32_t *)idata));
397         DPRINTFN(WPI_DEBUG_FIRMWARE,("btext 0x%x\n", *(const uint32_t *)btext));
398
399         /* sanity checks */
400         if (rtextsz > WPI_FW_MAIN_TEXT_MAXSZ ||
401             rdatasz > WPI_FW_MAIN_DATA_MAXSZ ||
402             itextsz > WPI_FW_INIT_TEXT_MAXSZ ||
403             idatasz > WPI_FW_INIT_DATA_MAXSZ ||
404             btextsz > WPI_FW_BOOT_TEXT_MAXSZ ||
405             (btextsz & 3) != 0) {
406                 device_printf(sc->sc_dev, "firmware invalid\n");
407                 error = EINVAL;
408                 goto fail;
409         }
410
411         /* copy initialization images into pre-allocated DMA-safe memory */
412         memcpy(dma->vaddr, idata, idatasz);
413         memcpy(dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, itext, itextsz);
414
415         bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
416
417         /* tell adapter where to find initialization images */
418         wpi_mem_lock(sc);
419         wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
420         wpi_mem_write(sc, WPI_MEM_DATA_SIZE, idatasz);
421         wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
422             dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
423         wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, itextsz);
424         wpi_mem_unlock(sc);
425
426         /* load firmware boot code */
427         if ((error = wpi_load_microcode(sc, btext, btextsz)) != 0) {
428             device_printf(sc->sc_dev, "Failed to load microcode\n");
429             goto fail;
430         }
431
432         /* now press "execute" */
433         WPI_WRITE(sc, WPI_RESET, 0);
434
435         /* wait at most one second for the first alive notification */
436         if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
437                 device_printf(sc->sc_dev,
438                     "timeout waiting for adapter to initialize\n");
439                 goto fail;
440         }
441
442         /* copy runtime images into pre-allocated DMA-sage memory */
443         memcpy(dma->vaddr, rdata, rdatasz);
444         memcpy(dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, rtext, rtextsz);
445         bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
446
447         /* tell adapter where to find runtime images */
448         wpi_mem_lock(sc);
449         wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
450         wpi_mem_write(sc, WPI_MEM_DATA_SIZE, rdatasz);
451         wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
452             dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
453         wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | rtextsz);
454         wpi_mem_unlock(sc);
455
456         /* wait at most one second for the first alive notification */
457         if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
458                 device_printf(sc->sc_dev,
459                     "timeout waiting for adapter to initialize2\n");
460                 goto fail;
461         }
462
463         DPRINTFN(WPI_DEBUG_FIRMWARE,
464             ("Firmware loaded to driver successfully\n"));
465         return error;
466 fail:
467         wpi_unload_firmware(sc);
468         return error;
469 }
470
471 /**
472  * Free the referenced firmware image
473  */
474 static void
475 wpi_unload_firmware(struct wpi_softc *sc)
476 {
477
478         if (sc->fw_fp) {
479                 WPI_UNLOCK(sc);
480                 firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
481                 WPI_LOCK(sc);
482                 sc->fw_fp = NULL;
483         }
484 }
485
486 static int
487 wpi_attach(device_t dev)
488 {
489         struct wpi_softc *sc = device_get_softc(dev);
490         struct ifnet *ifp;
491         struct ieee80211com *ic;
492         int ac, error, supportsa = 1;
493         uint32_t tmp;
494         const struct wpi_ident *ident;
495         uint8_t macaddr[IEEE80211_ADDR_LEN];
496
497         sc->sc_dev = dev;
498
499         if (bootverbose || WPI_DEBUG_SET)
500             device_printf(sc->sc_dev,"Driver Revision %s\n", VERSION);
501
502         /*
503          * Some card's only support 802.11b/g not a, check to see if
504          * this is one such card. A 0x0 in the subdevice table indicates
505          * the entire subdevice range is to be ignored.
506          */
507         for (ident = wpi_ident_table; ident->name != NULL; ident++) {
508                 if (ident->subdevice &&
509                     pci_get_subdevice(dev) == ident->subdevice) {
510                     supportsa = 0;
511                     break;
512                 }
513         }
514
515         /* Create the tasks that can be queued */
516         TASK_INIT(&sc->sc_restarttask, 0, wpi_hwreset, sc);
517         TASK_INIT(&sc->sc_radiotask, 0, wpi_rfreset, sc);
518
519         WPI_LOCK_INIT(sc);
520
521         callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
522         callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
523
524         if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
525                 device_printf(dev, "chip is in D%d power mode "
526                     "-- setting to D0\n", pci_get_powerstate(dev));
527                 pci_set_powerstate(dev, PCI_POWERSTATE_D0);
528         }
529
530         /* disable the retry timeout register */
531         pci_write_config(dev, 0x41, 0, 1);
532
533         /* enable bus-mastering */
534         pci_enable_busmaster(dev);
535
536         sc->mem_rid = PCIR_BAR(0);
537         sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
538             RF_ACTIVE);
539         if (sc->mem == NULL) {
540                 device_printf(dev, "could not allocate memory resource\n");
541                 error = ENOMEM;
542                 goto fail;
543         }
544
545         sc->sc_st = rman_get_bustag(sc->mem);
546         sc->sc_sh = rman_get_bushandle(sc->mem);
547
548         sc->irq_rid = 0;
549         sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
550             RF_ACTIVE | RF_SHAREABLE);
551         if (sc->irq == NULL) {
552                 device_printf(dev, "could not allocate interrupt resource\n");
553                 error = ENOMEM;
554                 goto fail;
555         }
556
557         /*
558          * Allocate DMA memory for firmware transfers.
559          */
560         if ((error = wpi_alloc_fwmem(sc)) != 0) {
561                 printf(": could not allocate firmware memory\n");
562                 error = ENOMEM;
563                 goto fail;
564         }
565
566         /*
567          * Put adapter into a known state.
568          */
569         if ((error = wpi_reset(sc)) != 0) {
570                 device_printf(dev, "could not reset adapter\n");
571                 goto fail;
572         }
573
574         wpi_mem_lock(sc);
575         tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
576         if (bootverbose || WPI_DEBUG_SET)
577             device_printf(sc->sc_dev, "Hardware Revision (0x%X)\n", tmp);
578
579         wpi_mem_unlock(sc);
580
581         /* Allocate shared page */
582         if ((error = wpi_alloc_shared(sc)) != 0) {
583                 device_printf(dev, "could not allocate shared page\n");
584                 goto fail;
585         }
586
587         /* tx data queues  - 4 for QoS purposes */
588         for (ac = 0; ac < WME_NUM_AC; ac++) {
589                 error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
590                 if (error != 0) {
591                     device_printf(dev, "could not allocate Tx ring %d\n",ac);
592                     goto fail;
593                 }
594         }
595
596         /* command queue to talk to the card's firmware */
597         error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
598         if (error != 0) {
599                 device_printf(dev, "could not allocate command ring\n");
600                 goto fail;
601         }
602
603         /* receive data queue */
604         error = wpi_alloc_rx_ring(sc, &sc->rxq);
605         if (error != 0) {
606                 device_printf(dev, "could not allocate Rx ring\n");
607                 goto fail;
608         }
609
610         ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
611         if (ifp == NULL) {
612                 device_printf(dev, "can not if_alloc()\n");
613                 error = ENOMEM;
614                 goto fail;
615         }
616         ic = ifp->if_l2com;
617
618         ic->ic_ifp = ifp;
619         ic->ic_phytype = IEEE80211_T_OFDM;      /* not only, but not used */
620         ic->ic_opmode = IEEE80211_M_STA;        /* default to BSS mode */
621
622         /* set device capabilities */
623         ic->ic_caps =
624                   IEEE80211_C_STA               /* station mode supported */
625                 | IEEE80211_C_MONITOR           /* monitor mode supported */
626                 | IEEE80211_C_TXPMGT            /* tx power management */
627                 | IEEE80211_C_SHSLOT            /* short slot time supported */
628                 | IEEE80211_C_SHPREAMBLE        /* short preamble supported */
629                 | IEEE80211_C_WPA               /* 802.11i */
630 /* XXX looks like WME is partly supported? */
631 #if 0
632                 | IEEE80211_C_IBSS              /* IBSS mode support */
633                 | IEEE80211_C_BGSCAN            /* capable of bg scanning */
634                 | IEEE80211_C_WME               /* 802.11e */
635                 | IEEE80211_C_HOSTAP            /* Host access point mode */
636 #endif
637                 ;
638
639         /*
640          * Read in the eeprom and also setup the channels for
641          * net80211. We don't set the rates as net80211 does this for us
642          */
643         wpi_read_eeprom(sc, macaddr);
644
645         if (bootverbose || WPI_DEBUG_SET) {
646             device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain);
647             device_printf(sc->sc_dev, "Hardware Type: %c\n",
648                           sc->type > 1 ? 'B': '?');
649             device_printf(sc->sc_dev, "Hardware Revision: %c\n",
650                           ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?');
651             device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
652                           supportsa ? "does" : "does not");
653
654             /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check
655                what sc->rev really represents - benjsc 20070615 */
656         }
657
658         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
659         ifp->if_softc = sc;
660         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
661         ifp->if_init = wpi_init;
662         ifp->if_ioctl = wpi_ioctl;
663         ifp->if_start = wpi_start;
664         IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
665         ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
666         IFQ_SET_READY(&ifp->if_snd);
667
668         ieee80211_ifattach(ic, macaddr);
669         /* override default methods */
670         ic->ic_raw_xmit = wpi_raw_xmit;
671         ic->ic_newassoc = wpi_newassoc;
672         ic->ic_wme.wme_update = wpi_wme_update;
673         ic->ic_scan_start = wpi_scan_start;
674         ic->ic_scan_end = wpi_scan_end;
675         ic->ic_set_channel = wpi_set_channel;
676         ic->ic_scan_curchan = wpi_scan_curchan;
677         ic->ic_scan_mindwell = wpi_scan_mindwell;
678
679         ic->ic_vap_create = wpi_vap_create;
680         ic->ic_vap_delete = wpi_vap_delete;
681
682         ieee80211_radiotap_attach(ic,
683             &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
684                 WPI_TX_RADIOTAP_PRESENT,
685             &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
686                 WPI_RX_RADIOTAP_PRESENT);
687
688         /*
689          * Hook our interrupt after all initialization is complete.
690          */
691         error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET |INTR_MPSAFE,
692             NULL, wpi_intr, sc, &sc->sc_ih);
693         if (error != 0) {
694                 device_printf(dev, "could not set up interrupt\n");
695                 goto fail;
696         }
697
698         if (bootverbose)
699                 ieee80211_announce(ic);
700 #ifdef XXX_DEBUG
701         ieee80211_announce_channels(ic);
702 #endif
703         return 0;
704
705 fail:   wpi_detach(dev);
706         return ENXIO;
707 }
708
709 static int
710 wpi_detach(device_t dev)
711 {
712         struct wpi_softc *sc = device_get_softc(dev);
713         struct ifnet *ifp = sc->sc_ifp;
714         struct ieee80211com *ic;
715         int ac;
716
717         if (ifp != NULL) {
718                 ic = ifp->if_l2com;
719
720                 ieee80211_draintask(ic, &sc->sc_restarttask);
721                 ieee80211_draintask(ic, &sc->sc_radiotask);
722                 wpi_stop(sc);
723                 callout_drain(&sc->watchdog_to);
724                 callout_drain(&sc->calib_to);
725                 ieee80211_ifdetach(ic);
726         }
727
728         WPI_LOCK(sc);
729         if (sc->txq[0].data_dmat) {
730                 for (ac = 0; ac < WME_NUM_AC; ac++)
731                         wpi_free_tx_ring(sc, &sc->txq[ac]);
732
733                 wpi_free_tx_ring(sc, &sc->cmdq);
734                 wpi_free_rx_ring(sc, &sc->rxq);
735                 wpi_free_shared(sc);
736         }
737
738         if (sc->fw_fp != NULL) {
739                 wpi_unload_firmware(sc);
740         }
741
742         if (sc->fw_dma.tag)
743                 wpi_free_fwmem(sc);
744         WPI_UNLOCK(sc);
745
746         if (sc->irq != NULL) {
747                 bus_teardown_intr(dev, sc->irq, sc->sc_ih);
748                 bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
749         }
750
751         if (sc->mem != NULL)
752                 bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
753
754         if (ifp != NULL)
755                 if_free(ifp);
756
757         WPI_LOCK_DESTROY(sc);
758
759         return 0;
760 }
761
762 static struct ieee80211vap *
763 wpi_vap_create(struct ieee80211com *ic,
764         const char name[IFNAMSIZ], int unit, int opmode, int flags,
765         const uint8_t bssid[IEEE80211_ADDR_LEN],
766         const uint8_t mac[IEEE80211_ADDR_LEN])
767 {
768         struct wpi_vap *wvp;
769         struct ieee80211vap *vap;
770
771         if (!TAILQ_EMPTY(&ic->ic_vaps))         /* only one at a time */
772                 return NULL;
773         wvp = (struct wpi_vap *) malloc(sizeof(struct wpi_vap),
774             M_80211_VAP, M_NOWAIT | M_ZERO);
775         if (wvp == NULL)
776                 return NULL;
777         vap = &wvp->vap;
778         ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
779         /* override with driver methods */
780         wvp->newstate = vap->iv_newstate;
781         vap->iv_newstate = wpi_newstate;
782
783         ieee80211_ratectl_init(vap);
784         /* complete setup */
785         ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
786         ic->ic_opmode = opmode;
787         return vap;
788 }
789
790 static void
791 wpi_vap_delete(struct ieee80211vap *vap)
792 {
793         struct wpi_vap *wvp = WPI_VAP(vap);
794
795         ieee80211_ratectl_deinit(vap);
796         ieee80211_vap_detach(vap);
797         free(wvp, M_80211_VAP);
798 }
799
800 static void
801 wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
802 {
803         if (error != 0)
804                 return;
805
806         KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
807
808         *(bus_addr_t *)arg = segs[0].ds_addr;
809 }
810
811 /*
812  * Allocates a contiguous block of dma memory of the requested size and
813  * alignment. Due to limitations of the FreeBSD dma subsystem as of 20071217,
814  * allocations greater than 4096 may fail. Hence if the requested alignment is
815  * greater we allocate 'alignment' size extra memory and shift the vaddr and
816  * paddr after the dma load. This bypasses the problem at the cost of a little
817  * more memory.
818  */
819 static int
820 wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
821     void **kvap, bus_size_t size, bus_size_t alignment, int flags)
822 {
823         int error;
824         bus_size_t align;
825         bus_size_t reqsize;
826
827         DPRINTFN(WPI_DEBUG_DMA,
828             ("Size: %zd - alignment %zd\n", size, alignment));
829
830         dma->size = size;
831         dma->tag = NULL;
832
833         if (alignment > 4096) {
834                 align = PAGE_SIZE;
835                 reqsize = size + alignment;
836         } else {
837                 align = alignment;
838                 reqsize = size;
839         }
840         error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), align,
841             0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
842             NULL, NULL, reqsize,
843             1, reqsize, flags,
844             NULL, NULL, &dma->tag);
845         if (error != 0) {
846                 device_printf(sc->sc_dev,
847                     "could not create shared page DMA tag\n");
848                 goto fail;
849         }
850         error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr_start,
851             flags | BUS_DMA_ZERO, &dma->map);
852         if (error != 0) {
853                 device_printf(sc->sc_dev,
854                     "could not allocate shared page DMA memory\n");
855                 goto fail;
856         }
857
858         error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr_start,
859             reqsize,  wpi_dma_map_addr, &dma->paddr_start, flags);
860
861         /* Save the original pointers so we can free all the memory */
862         dma->paddr = dma->paddr_start;
863         dma->vaddr = dma->vaddr_start;
864
865         /*
866          * Check the alignment and increment by 4096 until we get the
867          * requested alignment. Fail if can't obtain the alignment
868          * we requested.
869          */
870         if ((dma->paddr & (alignment -1 )) != 0) {
871                 int i;
872
873                 for (i = 0; i < alignment / 4096; i++) {
874                         if ((dma->paddr & (alignment - 1 )) == 0)
875                                 break;
876                         dma->paddr += 4096;
877                         dma->vaddr += 4096;
878                 }
879                 if (i == alignment / 4096) {
880                         device_printf(sc->sc_dev,
881                             "alignment requirement was not satisfied\n");
882                         goto fail;
883                 }
884         }
885
886         if (error != 0) {
887                 device_printf(sc->sc_dev,
888                     "could not load shared page DMA map\n");
889                 goto fail;
890         }
891
892         if (kvap != NULL)
893                 *kvap = dma->vaddr;
894
895         return 0;
896
897 fail:
898         wpi_dma_contig_free(dma);
899         return error;
900 }
901
902 static void
903 wpi_dma_contig_free(struct wpi_dma_info *dma)
904 {
905         if (dma->tag) {
906                 if (dma->map != NULL) {
907                         if (dma->paddr_start != 0) {
908                                 bus_dmamap_sync(dma->tag, dma->map,
909                                     BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
910                                 bus_dmamap_unload(dma->tag, dma->map);
911                         }
912                         bus_dmamem_free(dma->tag, &dma->vaddr_start, dma->map);
913                 }
914                 bus_dma_tag_destroy(dma->tag);
915         }
916 }
917
918 /*
919  * Allocate a shared page between host and NIC.
920  */
921 static int
922 wpi_alloc_shared(struct wpi_softc *sc)
923 {
924         int error;
925
926         error = wpi_dma_contig_alloc(sc, &sc->shared_dma,
927             (void **)&sc->shared, sizeof (struct wpi_shared),
928             PAGE_SIZE,
929             BUS_DMA_NOWAIT);
930
931         if (error != 0) {
932                 device_printf(sc->sc_dev,
933                     "could not allocate shared area DMA memory\n");
934         }
935
936         return error;
937 }
938
939 static void
940 wpi_free_shared(struct wpi_softc *sc)
941 {
942         wpi_dma_contig_free(&sc->shared_dma);
943 }
944
945 static int
946 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
947 {
948
949         int i, error;
950
951         ring->cur = 0;
952
953         error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
954             (void **)&ring->desc, WPI_RX_RING_COUNT * sizeof (uint32_t),
955             WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
956
957         if (error != 0) {
958                 device_printf(sc->sc_dev,
959                     "%s: could not allocate rx ring DMA memory, error %d\n",
960                     __func__, error);
961                 goto fail;
962         }
963
964         error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 
965             BUS_SPACE_MAXADDR_32BIT,
966             BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1,
967             MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL, &ring->data_dmat);
968         if (error != 0) {
969                 device_printf(sc->sc_dev,
970                     "%s: bus_dma_tag_create_failed, error %d\n",
971                     __func__, error);
972                 goto fail;
973         }
974
975         /*
976          * Setup Rx buffers.
977          */
978         for (i = 0; i < WPI_RX_RING_COUNT; i++) {
979                 struct wpi_rx_data *data = &ring->data[i];
980                 struct mbuf *m;
981                 bus_addr_t paddr;
982
983                 error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
984                 if (error != 0) {
985                         device_printf(sc->sc_dev,
986                             "%s: bus_dmamap_create failed, error %d\n",
987                             __func__, error);
988                         goto fail;
989                 }
990                 m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
991                 if (m == NULL) {
992                         device_printf(sc->sc_dev,
993                            "%s: could not allocate rx mbuf\n", __func__);
994                         error = ENOMEM;
995                         goto fail;
996                 }
997                 /* map page */
998                 error = bus_dmamap_load(ring->data_dmat, data->map,
999                     mtod(m, caddr_t), MJUMPAGESIZE,
1000                     wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1001                 if (error != 0 && error != EFBIG) {
1002                         device_printf(sc->sc_dev,
1003                             "%s: bus_dmamap_load failed, error %d\n",
1004                             __func__, error);
1005                         m_freem(m);
1006                         error = ENOMEM; /* XXX unique code */
1007                         goto fail;
1008                 }
1009                 bus_dmamap_sync(ring->data_dmat, data->map, 
1010                     BUS_DMASYNC_PREWRITE);
1011
1012                 data->m = m;
1013                 ring->desc[i] = htole32(paddr);
1014         }
1015         bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1016             BUS_DMASYNC_PREWRITE);
1017         return 0;
1018 fail:
1019         wpi_free_rx_ring(sc, ring);
1020         return error;
1021 }
1022
1023 static void
1024 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1025 {
1026         int ntries;
1027
1028         wpi_mem_lock(sc);
1029
1030         WPI_WRITE(sc, WPI_RX_CONFIG, 0);
1031
1032         for (ntries = 0; ntries < 100; ntries++) {
1033                 if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
1034                         break;
1035                 DELAY(10);
1036         }
1037
1038         wpi_mem_unlock(sc);
1039
1040 #ifdef WPI_DEBUG
1041         if (ntries == 100 && wpi_debug > 0)
1042                 device_printf(sc->sc_dev, "timeout resetting Rx ring\n");
1043 #endif
1044
1045         ring->cur = 0;
1046 }
1047
1048 static void
1049 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1050 {
1051         int i;
1052
1053         wpi_dma_contig_free(&ring->desc_dma);
1054
1055         for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1056                 struct wpi_rx_data *data = &ring->data[i];
1057
1058                 if (data->m != NULL) {
1059                         bus_dmamap_sync(ring->data_dmat, data->map,
1060                             BUS_DMASYNC_POSTREAD);
1061                         bus_dmamap_unload(ring->data_dmat, data->map);
1062                         m_freem(data->m);
1063                 }
1064                 if (data->map != NULL)
1065                         bus_dmamap_destroy(ring->data_dmat, data->map);
1066         }
1067 }
1068
1069 static int
1070 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
1071         int qid)
1072 {
1073         struct wpi_tx_data *data;
1074         int i, error;
1075
1076         ring->qid = qid;
1077         ring->count = count;
1078         ring->queued = 0;
1079         ring->cur = 0;
1080         ring->data = NULL;
1081
1082         error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
1083                 (void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
1084                 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
1085
1086         if (error != 0) {
1087             device_printf(sc->sc_dev, "could not allocate tx dma memory\n");
1088             goto fail;
1089         }
1090
1091         /* update shared page with ring's base address */
1092         sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1093
1094         error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1095                 count * sizeof (struct wpi_tx_cmd), WPI_RING_DMA_ALIGN,
1096                 BUS_DMA_NOWAIT);
1097
1098         if (error != 0) {
1099                 device_printf(sc->sc_dev,
1100                     "could not allocate tx command DMA memory\n");
1101                 goto fail;
1102         }
1103
1104         ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
1105             M_NOWAIT | M_ZERO);
1106         if (ring->data == NULL) {
1107                 device_printf(sc->sc_dev,
1108                     "could not allocate tx data slots\n");
1109                 goto fail;
1110         }
1111
1112         error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1113             BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1114             WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
1115             &ring->data_dmat);
1116         if (error != 0) {
1117                 device_printf(sc->sc_dev, "could not create data DMA tag\n");
1118                 goto fail;
1119         }
1120
1121         for (i = 0; i < count; i++) {
1122                 data = &ring->data[i];
1123
1124                 error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1125                 if (error != 0) {
1126                         device_printf(sc->sc_dev,
1127                             "could not create tx buf DMA map\n");
1128                         goto fail;
1129                 }
1130                 bus_dmamap_sync(ring->data_dmat, data->map,
1131                     BUS_DMASYNC_PREWRITE);
1132         }
1133
1134         return 0;
1135
1136 fail:
1137         wpi_free_tx_ring(sc, ring);
1138         return error;
1139 }
1140
1141 static void
1142 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1143 {
1144         struct wpi_tx_data *data;
1145         int i, ntries;
1146
1147         wpi_mem_lock(sc);
1148
1149         WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
1150         for (ntries = 0; ntries < 100; ntries++) {
1151                 if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
1152                         break;
1153                 DELAY(10);
1154         }
1155 #ifdef WPI_DEBUG
1156         if (ntries == 100 && wpi_debug > 0)
1157                 device_printf(sc->sc_dev, "timeout resetting Tx ring %d\n",
1158                     ring->qid);
1159 #endif
1160         wpi_mem_unlock(sc);
1161
1162         for (i = 0; i < ring->count; i++) {
1163                 data = &ring->data[i];
1164
1165                 if (data->m != NULL) {
1166                         bus_dmamap_unload(ring->data_dmat, data->map);
1167                         m_freem(data->m);
1168                         data->m = NULL;
1169                 }
1170         }
1171
1172         ring->queued = 0;
1173         ring->cur = 0;
1174 }
1175
1176 static void
1177 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1178 {
1179         struct wpi_tx_data *data;
1180         int i;
1181
1182         wpi_dma_contig_free(&ring->desc_dma);
1183         wpi_dma_contig_free(&ring->cmd_dma);
1184
1185         if (ring->data != NULL) {
1186                 for (i = 0; i < ring->count; i++) {
1187                         data = &ring->data[i];
1188
1189                         if (data->m != NULL) {
1190                                 bus_dmamap_sync(ring->data_dmat, data->map,
1191                                     BUS_DMASYNC_POSTWRITE);
1192                                 bus_dmamap_unload(ring->data_dmat, data->map);
1193                                 m_freem(data->m);
1194                                 data->m = NULL;
1195                         }
1196                 }
1197                 free(ring->data, M_DEVBUF);
1198         }
1199
1200         if (ring->data_dmat != NULL)
1201                 bus_dma_tag_destroy(ring->data_dmat);
1202 }
1203
1204 static int
1205 wpi_shutdown(device_t dev)
1206 {
1207         struct wpi_softc *sc = device_get_softc(dev);
1208
1209         WPI_LOCK(sc);
1210         wpi_stop_locked(sc);
1211         wpi_unload_firmware(sc);
1212         WPI_UNLOCK(sc);
1213
1214         return 0;
1215 }
1216
1217 static int
1218 wpi_suspend(device_t dev)
1219 {
1220         struct wpi_softc *sc = device_get_softc(dev);
1221
1222         wpi_stop(sc);
1223         return 0;
1224 }
1225
1226 static int
1227 wpi_resume(device_t dev)
1228 {
1229         struct wpi_softc *sc = device_get_softc(dev);
1230         struct ifnet *ifp = sc->sc_ifp;
1231
1232         pci_write_config(dev, 0x41, 0, 1);
1233
1234         if (ifp->if_flags & IFF_UP) {
1235                 wpi_init(ifp->if_softc);
1236                 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1237                         wpi_start(ifp);
1238         }
1239         return 0;
1240 }
1241
1242 /**
1243  * Called by net80211 when ever there is a change to 80211 state machine
1244  */
1245 static int
1246 wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1247 {
1248         struct wpi_vap *wvp = WPI_VAP(vap);
1249         struct ieee80211com *ic = vap->iv_ic;
1250         struct ifnet *ifp = ic->ic_ifp;
1251         struct wpi_softc *sc = ifp->if_softc;
1252         int error;
1253
1254         DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__,
1255                 ieee80211_state_name[vap->iv_state],
1256                 ieee80211_state_name[nstate], sc->flags));
1257
1258         IEEE80211_UNLOCK(ic);
1259         WPI_LOCK(sc);
1260         if (nstate == IEEE80211_S_SCAN && vap->iv_state != IEEE80211_S_INIT) {
1261                 /*
1262                  * On !INIT -> SCAN transitions, we need to clear any possible
1263                  * knowledge about associations.
1264                  */
1265                 error = wpi_config(sc);
1266                 if (error != 0) {
1267                         device_printf(sc->sc_dev,
1268                             "%s: device config failed, error %d\n",
1269                             __func__, error);
1270                 }
1271         }
1272         if (nstate == IEEE80211_S_AUTH ||
1273             (nstate == IEEE80211_S_ASSOC && vap->iv_state == IEEE80211_S_RUN)) {
1274                 /*
1275                  * The node must be registered in the firmware before auth.
1276                  * Also the associd must be cleared on RUN -> ASSOC
1277                  * transitions.
1278                  */
1279                 error = wpi_auth(sc, vap);
1280                 if (error != 0) {
1281                         device_printf(sc->sc_dev,
1282                             "%s: could not move to auth state, error %d\n",
1283                             __func__, error);
1284                 }
1285         }
1286         if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) {
1287                 error = wpi_run(sc, vap);
1288                 if (error != 0) {
1289                         device_printf(sc->sc_dev,
1290                             "%s: could not move to run state, error %d\n",
1291                             __func__, error);
1292                 }
1293         }
1294         if (nstate == IEEE80211_S_RUN) {
1295                 /* RUN -> RUN transition; just restart the timers */
1296                 wpi_calib_timeout(sc);
1297                 /* XXX split out rate control timer */
1298         }
1299         WPI_UNLOCK(sc);
1300         IEEE80211_LOCK(ic);
1301         return wvp->newstate(vap, nstate, arg);
1302 }
1303
1304 /*
1305  * Grab exclusive access to NIC memory.
1306  */
1307 static void
1308 wpi_mem_lock(struct wpi_softc *sc)
1309 {
1310         int ntries;
1311         uint32_t tmp;
1312
1313         tmp = WPI_READ(sc, WPI_GPIO_CTL);
1314         WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1315
1316         /* spin until we actually get the lock */
1317         for (ntries = 0; ntries < 100; ntries++) {
1318                 if ((WPI_READ(sc, WPI_GPIO_CTL) &
1319                         (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1320                         break;
1321                 DELAY(10);
1322         }
1323         if (ntries == 100)
1324                 device_printf(sc->sc_dev, "could not lock memory\n");
1325 }
1326
1327 /*
1328  * Release lock on NIC memory.
1329  */
1330 static void
1331 wpi_mem_unlock(struct wpi_softc *sc)
1332 {
1333         uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1334         WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1335 }
1336
1337 static uint32_t
1338 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1339 {
1340         WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1341         return WPI_READ(sc, WPI_READ_MEM_DATA);
1342 }
1343
1344 static void
1345 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1346 {
1347         WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1348         WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1349 }
1350
1351 static void
1352 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1353     const uint32_t *data, int wlen)
1354 {
1355         for (; wlen > 0; wlen--, data++, addr+=4)
1356                 wpi_mem_write(sc, addr, *data);
1357 }
1358
1359 /*
1360  * Read data from the EEPROM.  We access EEPROM through the MAC instead of
1361  * using the traditional bit-bang method. Data is read up until len bytes have
1362  * been obtained.
1363  */
1364 static uint16_t
1365 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1366 {
1367         int ntries;
1368         uint32_t val;
1369         uint8_t *out = data;
1370
1371         wpi_mem_lock(sc);
1372
1373         for (; len > 0; len -= 2, addr++) {
1374                 WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1375
1376                 for (ntries = 0; ntries < 10; ntries++) {
1377                         if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY)
1378                                 break;
1379                         DELAY(5);
1380                 }
1381
1382                 if (ntries == 10) {
1383                         device_printf(sc->sc_dev, "could not read EEPROM\n");
1384                         return ETIMEDOUT;
1385                 }
1386
1387                 *out++= val >> 16;
1388                 if (len > 1)
1389                         *out ++= val >> 24;
1390         }
1391
1392         wpi_mem_unlock(sc);
1393
1394         return 0;
1395 }
1396
1397 /*
1398  * The firmware text and data segments are transferred to the NIC using DMA.
1399  * The driver just copies the firmware into DMA-safe memory and tells the NIC
1400  * where to find it.  Once the NIC has copied the firmware into its internal
1401  * memory, we can free our local copy in the driver.
1402  */
1403 static int
1404 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *fw, int size)
1405 {
1406         int error, ntries;
1407
1408         DPRINTFN(WPI_DEBUG_HW,("Loading microcode  size 0x%x\n", size));
1409
1410         size /= sizeof(uint32_t);
1411
1412         wpi_mem_lock(sc);
1413
1414         wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1415             (const uint32_t *)fw, size);
1416
1417         wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1418         wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1419         wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1420
1421         /* run microcode */
1422         wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1423
1424         /* wait while the adapter is busy copying the firmware */
1425         for (error = 0, ntries = 0; ntries < 1000; ntries++) {
1426                 uint32_t status = WPI_READ(sc, WPI_TX_STATUS);
1427                 DPRINTFN(WPI_DEBUG_HW,
1428                     ("firmware status=0x%x, val=0x%x, result=0x%x\n", status,
1429                      WPI_TX_IDLE(6), status & WPI_TX_IDLE(6)));
1430                 if (status & WPI_TX_IDLE(6)) {
1431                         DPRINTFN(WPI_DEBUG_HW,
1432                             ("Status Match! - ntries = %d\n", ntries));
1433                         break;
1434                 }
1435                 DELAY(10);
1436         }
1437         if (ntries == 1000) {
1438                 device_printf(sc->sc_dev, "timeout transferring firmware\n");
1439                 error = ETIMEDOUT;
1440         }
1441
1442         /* start the microcode executing */
1443         wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1444
1445         wpi_mem_unlock(sc);
1446
1447         return (error);
1448 }
1449
1450 static void
1451 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1452         struct wpi_rx_data *data)
1453 {
1454         struct ifnet *ifp = sc->sc_ifp;
1455         struct ieee80211com *ic = ifp->if_l2com;
1456         struct wpi_rx_ring *ring = &sc->rxq;
1457         struct wpi_rx_stat *stat;
1458         struct wpi_rx_head *head;
1459         struct wpi_rx_tail *tail;
1460         struct ieee80211_node *ni;
1461         struct mbuf *m, *mnew;
1462         bus_addr_t paddr;
1463         int error;
1464
1465         stat = (struct wpi_rx_stat *)(desc + 1);
1466
1467         if (stat->len > WPI_STAT_MAXLEN) {
1468                 device_printf(sc->sc_dev, "invalid rx statistic header\n");
1469                 ifp->if_ierrors++;
1470                 return;
1471         }
1472
1473         bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
1474         head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1475         tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len));
1476
1477         DPRINTFN(WPI_DEBUG_RX, ("rx intr: idx=%d len=%d stat len=%d rssi=%d "
1478             "rate=%x chan=%d tstamp=%ju\n", ring->cur, le32toh(desc->len),
1479             le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1480             (uintmax_t)le64toh(tail->tstamp)));
1481
1482         /* discard Rx frames with bad CRC early */
1483         if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1484                 DPRINTFN(WPI_DEBUG_RX, ("%s: rx flags error %x\n", __func__,
1485                     le32toh(tail->flags)));
1486                 ifp->if_ierrors++;
1487                 return;
1488         }
1489         if (le16toh(head->len) < sizeof (struct ieee80211_frame)) {
1490                 DPRINTFN(WPI_DEBUG_RX, ("%s: frame too short: %d\n", __func__,
1491                     le16toh(head->len)));
1492                 ifp->if_ierrors++;
1493                 return;
1494         }
1495
1496         /* XXX don't need mbuf, just dma buffer */
1497         mnew = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1498         if (mnew == NULL) {
1499                 DPRINTFN(WPI_DEBUG_RX, ("%s: no mbuf to restock ring\n",
1500                     __func__));
1501                 ifp->if_ierrors++;
1502                 return;
1503         }
1504         bus_dmamap_unload(ring->data_dmat, data->map);
1505
1506         error = bus_dmamap_load(ring->data_dmat, data->map,
1507             mtod(mnew, caddr_t), MJUMPAGESIZE,
1508             wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1509         if (error != 0 && error != EFBIG) {
1510                 device_printf(sc->sc_dev,
1511                     "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1512                 m_freem(mnew);
1513                 ifp->if_ierrors++;
1514                 return;
1515         }
1516         bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1517
1518         /* finalize mbuf and swap in new one */
1519         m = data->m;
1520         m->m_pkthdr.rcvif = ifp;
1521         m->m_data = (caddr_t)(head + 1);
1522         m->m_pkthdr.len = m->m_len = le16toh(head->len);
1523
1524         data->m = mnew;
1525         /* update Rx descriptor */
1526         ring->desc[ring->cur] = htole32(paddr);
1527
1528         if (ieee80211_radiotap_active(ic)) {
1529                 struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1530
1531                 tap->wr_flags = 0;
1532                 tap->wr_chan_freq =
1533                         htole16(ic->ic_channels[head->chan].ic_freq);
1534                 tap->wr_chan_flags =
1535                         htole16(ic->ic_channels[head->chan].ic_flags);
1536                 tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1537                 tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1538                 tap->wr_tsft = tail->tstamp;
1539                 tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1540                 switch (head->rate) {
1541                 /* CCK rates */
1542                 case  10: tap->wr_rate =   2; break;
1543                 case  20: tap->wr_rate =   4; break;
1544                 case  55: tap->wr_rate =  11; break;
1545                 case 110: tap->wr_rate =  22; break;
1546                 /* OFDM rates */
1547                 case 0xd: tap->wr_rate =  12; break;
1548                 case 0xf: tap->wr_rate =  18; break;
1549                 case 0x5: tap->wr_rate =  24; break;
1550                 case 0x7: tap->wr_rate =  36; break;
1551                 case 0x9: tap->wr_rate =  48; break;
1552                 case 0xb: tap->wr_rate =  72; break;
1553                 case 0x1: tap->wr_rate =  96; break;
1554                 case 0x3: tap->wr_rate = 108; break;
1555                 /* unknown rate: should not happen */
1556                 default:  tap->wr_rate =   0;
1557                 }
1558                 if (le16toh(head->flags) & 0x4)
1559                         tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1560         }
1561
1562         WPI_UNLOCK(sc);
1563
1564         ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
1565         if (ni != NULL) {
1566                 (void) ieee80211_input(ni, m, stat->rssi, 0);
1567                 ieee80211_free_node(ni);
1568         } else
1569                 (void) ieee80211_input_all(ic, m, stat->rssi, 0);
1570
1571         WPI_LOCK(sc);
1572 }
1573
1574 static void
1575 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1576 {
1577         struct ifnet *ifp = sc->sc_ifp;
1578         struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1579         struct wpi_tx_data *txdata = &ring->data[desc->idx];
1580         struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1581         struct ieee80211_node *ni = txdata->ni;
1582         struct ieee80211vap *vap = ni->ni_vap;
1583         int retrycnt = 0;
1584
1585         DPRINTFN(WPI_DEBUG_TX, ("tx done: qid=%d idx=%d retries=%d nkill=%d "
1586             "rate=%x duration=%d status=%x\n", desc->qid, desc->idx,
1587             stat->ntries, stat->nkill, stat->rate, le32toh(stat->duration),
1588             le32toh(stat->status)));
1589
1590         /*
1591          * Update rate control statistics for the node.
1592          * XXX we should not count mgmt frames since they're always sent at
1593          * the lowest available bit-rate.
1594          * XXX frames w/o ACK shouldn't be used either
1595          */
1596         if (stat->ntries > 0) {
1597                 DPRINTFN(WPI_DEBUG_TX, ("%d retries\n", stat->ntries));
1598                 retrycnt = 1;
1599         }
1600         ieee80211_ratectl_tx_complete(vap, ni, IEEE80211_RATECTL_TX_SUCCESS,
1601             &retrycnt, NULL);
1602
1603         /* XXX oerrors should only count errors !maxtries */
1604         if ((le32toh(stat->status) & 0xff) != 1)
1605                 ifp->if_oerrors++;
1606         else
1607                 ifp->if_opackets++;
1608
1609         bus_dmamap_sync(ring->data_dmat, txdata->map, BUS_DMASYNC_POSTWRITE);
1610         bus_dmamap_unload(ring->data_dmat, txdata->map);
1611         /* XXX handle M_TXCB? */
1612         m_freem(txdata->m);
1613         txdata->m = NULL;
1614         ieee80211_free_node(txdata->ni);
1615         txdata->ni = NULL;
1616
1617         ring->queued--;
1618
1619         sc->sc_tx_timer = 0;
1620         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1621         wpi_start_locked(ifp);
1622 }
1623
1624 static void
1625 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1626 {
1627         struct wpi_tx_ring *ring = &sc->cmdq;
1628         struct wpi_tx_data *data;
1629
1630         DPRINTFN(WPI_DEBUG_CMD, ("cmd notification qid=%x idx=%d flags=%x "
1631                                  "type=%s len=%d\n", desc->qid, desc->idx,
1632                                  desc->flags, wpi_cmd_str(desc->type),
1633                                  le32toh(desc->len)));
1634
1635         if ((desc->qid & 7) != 4)
1636                 return; /* not a command ack */
1637
1638         data = &ring->data[desc->idx];
1639
1640         /* if the command was mapped in a mbuf, free it */
1641         if (data->m != NULL) {
1642                 bus_dmamap_unload(ring->data_dmat, data->map);
1643                 m_freem(data->m);
1644                 data->m = NULL;
1645         }
1646
1647         sc->flags &= ~WPI_FLAG_BUSY;
1648         wakeup(&ring->cmd[desc->idx]);
1649 }
1650
1651 static void
1652 wpi_notif_intr(struct wpi_softc *sc)
1653 {
1654         struct ifnet *ifp = sc->sc_ifp;
1655         struct ieee80211com *ic = ifp->if_l2com;
1656         struct wpi_rx_desc *desc;
1657         struct wpi_rx_data *data;
1658         uint32_t hw;
1659
1660         bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
1661             BUS_DMASYNC_POSTREAD);
1662
1663         hw = le32toh(sc->shared->next);
1664         while (sc->rxq.cur != hw) {
1665                 data = &sc->rxq.data[sc->rxq.cur];
1666
1667                 bus_dmamap_sync(sc->rxq.data_dmat, data->map,
1668                     BUS_DMASYNC_POSTREAD);
1669                 desc = (void *)data->m->m_ext.ext_buf;
1670
1671                 DPRINTFN(WPI_DEBUG_NOTIFY,
1672                          ("notify qid=%x idx=%d flags=%x type=%d len=%d\n",
1673                           desc->qid,
1674                           desc->idx,
1675                           desc->flags,
1676                           desc->type,
1677                           le32toh(desc->len)));
1678
1679                 if (!(desc->qid & 0x80))        /* reply to a command */
1680                         wpi_cmd_intr(sc, desc);
1681
1682                 switch (desc->type) {
1683                 case WPI_RX_DONE:
1684                         /* a 802.11 frame was received */
1685                         wpi_rx_intr(sc, desc, data);
1686                         break;
1687
1688                 case WPI_TX_DONE:
1689                         /* a 802.11 frame has been transmitted */
1690                         wpi_tx_intr(sc, desc);
1691                         break;
1692
1693                 case WPI_UC_READY:
1694                 {
1695                         struct wpi_ucode_info *uc =
1696                                 (struct wpi_ucode_info *)(desc + 1);
1697
1698                         /* the microcontroller is ready */
1699                         DPRINTF(("microcode alive notification version %x "
1700                                 "alive %x\n", le32toh(uc->version),
1701                                 le32toh(uc->valid)));
1702
1703                         if (le32toh(uc->valid) != 1) {
1704                                 device_printf(sc->sc_dev,
1705                                     "microcontroller initialization failed\n");
1706                                 wpi_stop_locked(sc);
1707                         }
1708                         break;
1709                 }
1710                 case WPI_STATE_CHANGED:
1711                 {
1712                         uint32_t *status = (uint32_t *)(desc + 1);
1713
1714                         /* enabled/disabled notification */
1715                         DPRINTF(("state changed to %x\n", le32toh(*status)));
1716
1717                         if (le32toh(*status) & 1) {
1718                                 device_printf(sc->sc_dev,
1719                                     "Radio transmitter is switched off\n");
1720                                 sc->flags |= WPI_FLAG_HW_RADIO_OFF;
1721                                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1722                                 /* Disable firmware commands */
1723                                 WPI_WRITE(sc, WPI_UCODE_SET, WPI_DISABLE_CMD);
1724                         }
1725                         break;
1726                 }
1727                 case WPI_START_SCAN:
1728                 {
1729 #ifdef WPI_DEBUG
1730                         struct wpi_start_scan *scan =
1731                                 (struct wpi_start_scan *)(desc + 1);
1732 #endif
1733
1734                         DPRINTFN(WPI_DEBUG_SCANNING,
1735                                  ("scanning channel %d status %x\n",
1736                             scan->chan, le32toh(scan->status)));
1737                         break;
1738                 }
1739                 case WPI_STOP_SCAN:
1740                 {
1741 #ifdef WPI_DEBUG
1742                         struct wpi_stop_scan *scan =
1743                                 (struct wpi_stop_scan *)(desc + 1);
1744 #endif
1745                         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1746
1747                         DPRINTFN(WPI_DEBUG_SCANNING,
1748                             ("scan finished nchan=%d status=%d chan=%d\n",
1749                              scan->nchan, scan->status, scan->chan));
1750
1751                         sc->sc_scan_timer = 0;
1752                         ieee80211_scan_next(vap);
1753                         break;
1754                 }
1755                 case WPI_MISSED_BEACON:
1756                 {
1757                         struct wpi_missed_beacon *beacon =
1758                                 (struct wpi_missed_beacon *)(desc + 1);
1759                         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1760
1761                         if (le32toh(beacon->consecutive) >=
1762                             vap->iv_bmissthreshold) {
1763                                 DPRINTF(("Beacon miss: %u >= %u\n",
1764                                          le32toh(beacon->consecutive),
1765                                          vap->iv_bmissthreshold));
1766                                 ieee80211_beacon_miss(ic);
1767                         }
1768                         break;
1769                 }
1770                 }
1771
1772                 sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1773         }
1774
1775         /* tell the firmware what we have processed */
1776         hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1777         WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1778 }
1779
1780 static void
1781 wpi_intr(void *arg)
1782 {
1783         struct wpi_softc *sc = arg;
1784         uint32_t r;
1785
1786         WPI_LOCK(sc);
1787
1788         r = WPI_READ(sc, WPI_INTR);
1789         if (r == 0 || r == 0xffffffff) {
1790                 WPI_UNLOCK(sc);
1791                 return;
1792         }
1793
1794         /* disable interrupts */
1795         WPI_WRITE(sc, WPI_MASK, 0);
1796         /* ack interrupts */
1797         WPI_WRITE(sc, WPI_INTR, r);
1798
1799         if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1800                 struct ifnet *ifp = sc->sc_ifp;
1801                 struct ieee80211com *ic = ifp->if_l2com;
1802                 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1803
1804                 device_printf(sc->sc_dev, "fatal firmware error\n");
1805                 DPRINTFN(6,("(%s)\n", (r & WPI_SW_ERROR) ? "(Software Error)" :
1806                                 "(Hardware Error)"));
1807                 if (vap != NULL)
1808                         ieee80211_cancel_scan(vap);
1809                 ieee80211_runtask(ic, &sc->sc_restarttask);
1810                 sc->flags &= ~WPI_FLAG_BUSY;
1811                 WPI_UNLOCK(sc);
1812                 return;
1813         }
1814
1815         if (r & WPI_RX_INTR)
1816                 wpi_notif_intr(sc);
1817
1818         if (r & WPI_ALIVE_INTR) /* firmware initialized */
1819                 wakeup(sc);
1820
1821         /* re-enable interrupts */
1822         if (sc->sc_ifp->if_flags & IFF_UP)
1823                 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1824
1825         WPI_UNLOCK(sc);
1826 }
1827
1828 static uint8_t
1829 wpi_plcp_signal(int rate)
1830 {
1831         switch (rate) {
1832         /* CCK rates (returned values are device-dependent) */
1833         case 2:         return 10;
1834         case 4:         return 20;
1835         case 11:        return 55;
1836         case 22:        return 110;
1837
1838         /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1839         /* R1-R4 (ral/ural is R4-R1) */
1840         case 12:        return 0xd;
1841         case 18:        return 0xf;
1842         case 24:        return 0x5;
1843         case 36:        return 0x7;
1844         case 48:        return 0x9;
1845         case 72:        return 0xb;
1846         case 96:        return 0x1;
1847         case 108:       return 0x3;
1848
1849         /* unsupported rates (should not get there) */
1850         default:        return 0;
1851         }
1852 }
1853
1854 /* quickly determine if a given rate is CCK or OFDM */
1855 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1856
1857 /*
1858  * Construct the data packet for a transmit buffer and acutally put
1859  * the buffer onto the transmit ring, kicking the card to process the
1860  * the buffer.
1861  */
1862 static int
1863 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1864         int ac)
1865 {
1866         struct ieee80211vap *vap = ni->ni_vap;
1867         struct ifnet *ifp = sc->sc_ifp;
1868         struct ieee80211com *ic = ifp->if_l2com;
1869         const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
1870         struct wpi_tx_ring *ring = &sc->txq[ac];
1871         struct wpi_tx_desc *desc;
1872         struct wpi_tx_data *data;
1873         struct wpi_tx_cmd *cmd;
1874         struct wpi_cmd_data *tx;
1875         struct ieee80211_frame *wh;
1876         const struct ieee80211_txparam *tp;
1877         struct ieee80211_key *k;
1878         struct mbuf *mnew;
1879         int i, error, nsegs, rate, hdrlen, ismcast;
1880         bus_dma_segment_t segs[WPI_MAX_SCATTER];
1881
1882         desc = &ring->desc[ring->cur];
1883         data = &ring->data[ring->cur];
1884
1885         wh = mtod(m0, struct ieee80211_frame *);
1886
1887         hdrlen = ieee80211_hdrsize(wh);
1888         ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1889
1890         if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1891                 k = ieee80211_crypto_encap(ni, m0);
1892                 if (k == NULL) {
1893                         m_freem(m0);
1894                         return ENOBUFS;
1895                 }
1896                 /* packet header may have moved, reset our local pointer */
1897                 wh = mtod(m0, struct ieee80211_frame *);
1898         }
1899
1900         cmd = &ring->cmd[ring->cur];
1901         cmd->code = WPI_CMD_TX_DATA;
1902         cmd->flags = 0;
1903         cmd->qid = ring->qid;
1904         cmd->idx = ring->cur;
1905
1906         tx = (struct wpi_cmd_data *)cmd->data;
1907         tx->flags = htole32(WPI_TX_AUTO_SEQ);
1908         tx->timeout = htole16(0);
1909         tx->ofdm_mask = 0xff;
1910         tx->cck_mask = 0x0f;
1911         tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1912         tx->id = ismcast ? WPI_ID_BROADCAST : WPI_ID_BSS;
1913         tx->len = htole16(m0->m_pkthdr.len);
1914
1915         if (!ismcast) {
1916                 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0 ||
1917                     !cap->cap_wmeParams[ac].wmep_noackPolicy)
1918                         tx->flags |= htole32(WPI_TX_NEED_ACK);
1919                 if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
1920                         tx->flags |= htole32(WPI_TX_NEED_RTS|WPI_TX_FULL_TXOP);
1921                         tx->rts_ntries = 7;
1922                 }
1923         }
1924         /* pick a rate */
1925         tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
1926         if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT) {
1927                 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1928                 /* tell h/w to set timestamp in probe responses */
1929                 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1930                         tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1931                 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
1932                     subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
1933                         tx->timeout = htole16(3);
1934                 else
1935                         tx->timeout = htole16(2);
1936                 rate = tp->mgmtrate;
1937         } else if (ismcast) {
1938                 rate = tp->mcastrate;
1939         } else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
1940                 rate = tp->ucastrate;
1941         } else {
1942                 (void) ieee80211_ratectl_rate(ni, NULL, 0);
1943                 rate = ni->ni_txrate;
1944         }
1945         tx->rate = wpi_plcp_signal(rate);
1946
1947         /* be very persistant at sending frames out */
1948 #if 0
1949         tx->data_ntries = tp->maxretry;
1950 #else
1951         tx->data_ntries = 15;           /* XXX way too high */
1952 #endif
1953
1954         if (ieee80211_radiotap_active_vap(vap)) {
1955                 struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1956                 tap->wt_flags = 0;
1957                 tap->wt_rate = rate;
1958                 tap->wt_hwqueue = ac;
1959                 if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1960                         tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1961
1962                 ieee80211_radiotap_tx(vap, m0);
1963         }
1964
1965         /* save and trim IEEE802.11 header */
1966         m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh);
1967         m_adj(m0, hdrlen);
1968
1969         error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m0, segs,
1970             &nsegs, BUS_DMA_NOWAIT);
1971         if (error != 0 && error != EFBIG) {
1972                 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1973                     error);
1974                 m_freem(m0);
1975                 return error;
1976         }
1977         if (error != 0) {
1978                 /* XXX use m_collapse */
1979                 mnew = m_defrag(m0, M_DONTWAIT);
1980                 if (mnew == NULL) {
1981                         device_printf(sc->sc_dev,
1982                             "could not defragment mbuf\n");
1983                         m_freem(m0);
1984                         return ENOBUFS;
1985                 }
1986                 m0 = mnew;
1987
1988                 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
1989                     m0, segs, &nsegs, BUS_DMA_NOWAIT);
1990                 if (error != 0) {
1991                         device_printf(sc->sc_dev,
1992                             "could not map mbuf (error %d)\n", error);
1993                         m_freem(m0);
1994                         return error;
1995                 }
1996         }
1997
1998         data->m = m0;
1999         data->ni = ni;
2000
2001         DPRINTFN(WPI_DEBUG_TX, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
2002             ring->qid, ring->cur, m0->m_pkthdr.len, nsegs));
2003
2004         /* first scatter/gather segment is used by the tx data command */
2005         desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
2006             (1 + nsegs) << 24);
2007         desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2008             ring->cur * sizeof (struct wpi_tx_cmd));
2009         desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data));
2010         for (i = 1; i <= nsegs; i++) {
2011                 desc->segs[i].addr = htole32(segs[i - 1].ds_addr);
2012                 desc->segs[i].len  = htole32(segs[i - 1].ds_len);
2013         }
2014
2015         bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2016         bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2017             BUS_DMASYNC_PREWRITE);
2018
2019         ring->queued++;
2020
2021         /* kick ring */
2022         ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2023         WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2024
2025         return 0;
2026 }
2027
2028 /**
2029  * Process data waiting to be sent on the IFNET output queue
2030  */
2031 static void
2032 wpi_start(struct ifnet *ifp)
2033 {
2034         struct wpi_softc *sc = ifp->if_softc;
2035
2036         WPI_LOCK(sc);
2037         wpi_start_locked(ifp);
2038         WPI_UNLOCK(sc);
2039 }
2040
2041 static void
2042 wpi_start_locked(struct ifnet *ifp)
2043 {
2044         struct wpi_softc *sc = ifp->if_softc;
2045         struct ieee80211_node *ni;
2046         struct mbuf *m;
2047         int ac;
2048
2049         WPI_LOCK_ASSERT(sc);
2050
2051         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
2052                 return;
2053
2054         for (;;) {
2055                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
2056                 if (m == NULL)
2057                         break;
2058                 ac = M_WME_GETAC(m);
2059                 if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2060                         /* there is no place left in this ring */
2061                         IFQ_DRV_PREPEND(&ifp->if_snd, m);
2062                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2063                         break;
2064                 }
2065                 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
2066                 if (wpi_tx_data(sc, m, ni, ac) != 0) {
2067                         ieee80211_free_node(ni);
2068                         ifp->if_oerrors++;
2069                         break;
2070                 }
2071                 sc->sc_tx_timer = 5;
2072         }
2073 }
2074
2075 static int
2076 wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2077         const struct ieee80211_bpf_params *params)
2078 {
2079         struct ieee80211com *ic = ni->ni_ic;
2080         struct ifnet *ifp = ic->ic_ifp;
2081         struct wpi_softc *sc = ifp->if_softc;
2082
2083         /* prevent management frames from being sent if we're not ready */
2084         if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2085                 m_freem(m);
2086                 ieee80211_free_node(ni);
2087                 return ENETDOWN;
2088         }
2089         WPI_LOCK(sc);
2090
2091         /* management frames go into ring 0 */
2092         if (sc->txq[0].queued > sc->txq[0].count - 8) {
2093                 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2094                 m_freem(m);
2095                 WPI_UNLOCK(sc);
2096                 ieee80211_free_node(ni);
2097                 return ENOBUFS;         /* XXX */
2098         }
2099
2100         ifp->if_opackets++;
2101         if (wpi_tx_data(sc, m, ni, 0) != 0)
2102                 goto bad;
2103         sc->sc_tx_timer = 5;
2104         callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
2105
2106         WPI_UNLOCK(sc);
2107         return 0;
2108 bad:
2109         ifp->if_oerrors++;
2110         WPI_UNLOCK(sc);
2111         ieee80211_free_node(ni);
2112         return EIO;             /* XXX */
2113 }
2114
2115 static int
2116 wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2117 {
2118         struct wpi_softc *sc = ifp->if_softc;
2119         struct ieee80211com *ic = ifp->if_l2com;
2120         struct ifreq *ifr = (struct ifreq *) data;
2121         int error = 0, startall = 0;
2122
2123         switch (cmd) {
2124         case SIOCSIFFLAGS:
2125                 WPI_LOCK(sc);
2126                 if ((ifp->if_flags & IFF_UP)) {
2127                         if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2128                                 wpi_init_locked(sc, 0);
2129                                 startall = 1;
2130                         }
2131                 } else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) ||
2132                            (sc->flags & WPI_FLAG_HW_RADIO_OFF))
2133                         wpi_stop_locked(sc);
2134                 WPI_UNLOCK(sc);
2135                 if (startall)
2136                         ieee80211_start_all(ic);
2137                 break;
2138         case SIOCGIFMEDIA:
2139                 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
2140                 break;
2141         case SIOCGIFADDR:
2142                 error = ether_ioctl(ifp, cmd, data);
2143                 break;
2144         default:
2145                 error = EINVAL;
2146                 break;
2147         }
2148         return error;
2149 }
2150
2151 /*
2152  * Extract various information from EEPROM.
2153  */
2154 static void
2155 wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
2156 {
2157         int i;
2158
2159         /* read the hardware capabilities, revision and SKU type */
2160         wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap,1);
2161         wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,2);
2162         wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2163
2164         /* read the regulatory domain */
2165         wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 4);
2166
2167         /* read in the hw MAC address */
2168         wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr, 6);
2169
2170         /* read the list of authorized channels */
2171         for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2172                 wpi_read_eeprom_channels(sc,i);
2173
2174         /* read the power level calibration info for each group */
2175         for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2176                 wpi_read_eeprom_group(sc,i);
2177 }
2178
2179 /*
2180  * Send a command to the firmware.
2181  */
2182 static int
2183 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2184 {
2185         struct wpi_tx_ring *ring = &sc->cmdq;
2186         struct wpi_tx_desc *desc;
2187         struct wpi_tx_cmd *cmd;
2188
2189 #ifdef WPI_DEBUG
2190         if (!async) {
2191                 WPI_LOCK_ASSERT(sc);
2192         }
2193 #endif
2194
2195         DPRINTFN(WPI_DEBUG_CMD,("wpi_cmd %d size %d async %d\n", code, size,
2196                     async));
2197
2198         if (sc->flags & WPI_FLAG_BUSY) {
2199                 device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
2200                     __func__, code);
2201                 return EAGAIN;
2202         }
2203         sc->flags|= WPI_FLAG_BUSY;
2204
2205         KASSERT(size <= sizeof cmd->data, ("command %d too large: %d bytes",
2206             code, size));
2207
2208         desc = &ring->desc[ring->cur];
2209         cmd = &ring->cmd[ring->cur];
2210
2211         cmd->code = code;
2212         cmd->flags = 0;
2213         cmd->qid = ring->qid;
2214         cmd->idx = ring->cur;
2215         memcpy(cmd->data, buf, size);
2216
2217         desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2218         desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2219                 ring->cur * sizeof (struct wpi_tx_cmd));
2220         desc->segs[0].len  = htole32(4 + size);
2221
2222         /* kick cmd ring */
2223         ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2224         WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2225
2226         if (async) {
2227                 sc->flags &= ~ WPI_FLAG_BUSY;
2228                 return 0;
2229         }
2230
2231         return msleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz);
2232 }
2233
2234 static int
2235 wpi_wme_update(struct ieee80211com *ic)
2236 {
2237 #define WPI_EXP2(v)     htole16((1 << (v)) - 1)
2238 #define WPI_USEC(v)     htole16(IEEE80211_TXOP_TO_US(v))
2239         struct wpi_softc *sc = ic->ic_ifp->if_softc;
2240         const struct wmeParams *wmep;
2241         struct wpi_wme_setup wme;
2242         int ac;
2243
2244         /* don't override default WME values if WME is not actually enabled */
2245         if (!(ic->ic_flags & IEEE80211_F_WME))
2246                 return 0;
2247
2248         wme.flags = 0;
2249         for (ac = 0; ac < WME_NUM_AC; ac++) {
2250                 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2251                 wme.ac[ac].aifsn = wmep->wmep_aifsn;
2252                 wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2253                 wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2254                 wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
2255
2256                 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2257                     "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2258                     wme.ac[ac].cwmax, wme.ac[ac].txop));
2259         }
2260         return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2261 #undef WPI_USEC
2262 #undef WPI_EXP2
2263 }
2264
2265 /*
2266  * Configure h/w multi-rate retries.
2267  */
2268 static int
2269 wpi_mrr_setup(struct wpi_softc *sc)
2270 {
2271         struct ifnet *ifp = sc->sc_ifp;
2272         struct ieee80211com *ic = ifp->if_l2com;
2273         struct wpi_mrr_setup mrr;
2274         int i, error;
2275
2276         memset(&mrr, 0, sizeof (struct wpi_mrr_setup));
2277
2278         /* CCK rates (not used with 802.11a) */
2279         for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2280                 mrr.rates[i].flags = 0;
2281                 mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2282                 /* fallback to the immediate lower CCK rate (if any) */
2283                 mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2284                 /* try one time at this rate before falling back to "next" */
2285                 mrr.rates[i].ntries = 1;
2286         }
2287
2288         /* OFDM rates (not used with 802.11b) */
2289         for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2290                 mrr.rates[i].flags = 0;
2291                 mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2292                 /* fallback to the immediate lower OFDM rate (if any) */
2293                 /* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2294                 mrr.rates[i].next = (i == WPI_OFDM6) ?
2295                     ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2296                         WPI_OFDM6 : WPI_CCK2) :
2297                     i - 1;
2298                 /* try one time at this rate before falling back to "next" */
2299                 mrr.rates[i].ntries = 1;
2300         }
2301
2302         /* setup MRR for control frames */
2303         mrr.which = htole32(WPI_MRR_CTL);
2304         error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2305         if (error != 0) {
2306                 device_printf(sc->sc_dev,
2307                     "could not setup MRR for control frames\n");
2308                 return error;
2309         }
2310
2311         /* setup MRR for data frames */
2312         mrr.which = htole32(WPI_MRR_DATA);
2313         error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2314         if (error != 0) {
2315                 device_printf(sc->sc_dev,
2316                     "could not setup MRR for data frames\n");
2317                 return error;
2318         }
2319
2320         return 0;
2321 }
2322
2323 static void
2324 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2325 {
2326         struct wpi_cmd_led led;
2327
2328         led.which = which;
2329         led.unit = htole32(100000);     /* on/off in unit of 100ms */
2330         led.off = off;
2331         led.on = on;
2332
2333         (void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2334 }
2335
2336 static void
2337 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2338 {
2339         struct wpi_cmd_tsf tsf;
2340         uint64_t val, mod;
2341
2342         memset(&tsf, 0, sizeof tsf);
2343         memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2344         tsf.bintval = htole16(ni->ni_intval);
2345         tsf.lintval = htole16(10);
2346
2347         /* compute remaining time until next beacon */
2348         val = (uint64_t)ni->ni_intval  * 1024;  /* msec -> usec */
2349         mod = le64toh(tsf.tstamp) % val;
2350         tsf.binitval = htole32((uint32_t)(val - mod));
2351
2352         if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2353                 device_printf(sc->sc_dev, "could not enable TSF\n");
2354 }
2355
2356 #if 0
2357 /*
2358  * Build a beacon frame that the firmware will broadcast periodically in
2359  * IBSS or HostAP modes.
2360  */
2361 static int
2362 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2363 {
2364         struct ifnet *ifp = sc->sc_ifp;
2365         struct ieee80211com *ic = ifp->if_l2com;
2366         struct wpi_tx_ring *ring = &sc->cmdq;
2367         struct wpi_tx_desc *desc;
2368         struct wpi_tx_data *data;
2369         struct wpi_tx_cmd *cmd;
2370         struct wpi_cmd_beacon *bcn;
2371         struct ieee80211_beacon_offsets bo;
2372         struct mbuf *m0;
2373         bus_addr_t physaddr;
2374         int error;
2375
2376         desc = &ring->desc[ring->cur];
2377         data = &ring->data[ring->cur];
2378
2379         m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2380         if (m0 == NULL) {
2381                 device_printf(sc->sc_dev, "could not allocate beacon frame\n");
2382                 return ENOMEM;
2383         }
2384
2385         cmd = &ring->cmd[ring->cur];
2386         cmd->code = WPI_CMD_SET_BEACON;
2387         cmd->flags = 0;
2388         cmd->qid = ring->qid;
2389         cmd->idx = ring->cur;
2390
2391         bcn = (struct wpi_cmd_beacon *)cmd->data;
2392         memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2393         bcn->id = WPI_ID_BROADCAST;
2394         bcn->ofdm_mask = 0xff;
2395         bcn->cck_mask = 0x0f;
2396         bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2397         bcn->len = htole16(m0->m_pkthdr.len);
2398         bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2399                 wpi_plcp_signal(12) : wpi_plcp_signal(2);
2400         bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2401
2402         /* save and trim IEEE802.11 header */
2403         m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh);
2404         m_adj(m0, sizeof (struct ieee80211_frame));
2405
2406         /* assume beacon frame is contiguous */
2407         error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m0, void *),
2408             m0->m_pkthdr.len, wpi_dma_map_addr, &physaddr, 0);
2409         if (error != 0) {
2410                 device_printf(sc->sc_dev, "could not map beacon\n");
2411                 m_freem(m0);
2412                 return error;
2413         }
2414
2415         data->m = m0;
2416
2417         /* first scatter/gather segment is used by the beacon command */
2418         desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2419         desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2420                 ring->cur * sizeof (struct wpi_tx_cmd));
2421         desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
2422         desc->segs[1].addr = htole32(physaddr);
2423         desc->segs[1].len  = htole32(m0->m_pkthdr.len);
2424
2425         /* kick cmd ring */
2426         ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2427         WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2428
2429         return 0;
2430 }
2431 #endif
2432
2433 static int
2434 wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
2435 {
2436         struct ieee80211com *ic = vap->iv_ic;
2437         struct ieee80211_node *ni = vap->iv_bss;
2438         struct wpi_node_info node;
2439         int error;
2440
2441
2442         /* update adapter's configuration */
2443         sc->config.associd = 0;
2444         sc->config.filter &= ~htole32(WPI_FILTER_BSS);
2445         IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2446         sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2447         if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2448                 sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2449                     WPI_CONFIG_24GHZ);
2450         } else {
2451                 sc->config.flags &= ~htole32(WPI_CONFIG_AUTO |
2452                     WPI_CONFIG_24GHZ);
2453         }
2454         if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
2455                 sc->config.cck_mask  = 0;
2456                 sc->config.ofdm_mask = 0x15;
2457         } else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
2458                 sc->config.cck_mask  = 0x03;
2459                 sc->config.ofdm_mask = 0;
2460         } else {
2461                 /* XXX assume 802.11b/g */
2462                 sc->config.cck_mask  = 0x0f;
2463                 sc->config.ofdm_mask = 0x15;
2464         }
2465
2466         DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2467                 sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2468         error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2469                 sizeof (struct wpi_config), 1);
2470         if (error != 0) {
2471                 device_printf(sc->sc_dev, "could not configure\n");
2472                 return error;
2473         }
2474
2475         /* configuration has changed, set Tx power accordingly */
2476         if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2477                 device_printf(sc->sc_dev, "could not set Tx power\n");
2478                 return error;
2479         }
2480
2481         /* add default node */
2482         memset(&node, 0, sizeof node);
2483         IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2484         node.id = WPI_ID_BSS;
2485         node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2486             wpi_plcp_signal(12) : wpi_plcp_signal(2);
2487         node.action = htole32(WPI_ACTION_SET_RATE);
2488         node.antenna = WPI_ANTENNA_BOTH;
2489         error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2490         if (error != 0)
2491                 device_printf(sc->sc_dev, "could not add BSS node\n");
2492
2493         return (error);
2494 }
2495
2496 static int
2497 wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
2498 {
2499         struct ieee80211com *ic = vap->iv_ic;
2500         struct ieee80211_node *ni = vap->iv_bss;
2501         int error;
2502
2503         if (vap->iv_opmode == IEEE80211_M_MONITOR) {
2504                 /* link LED blinks while monitoring */
2505                 wpi_set_led(sc, WPI_LED_LINK, 5, 5);
2506                 return 0;
2507         }
2508
2509         wpi_enable_tsf(sc, ni);
2510
2511         /* update adapter's configuration */
2512         sc->config.associd = htole16(ni->ni_associd & ~0xc000);
2513         /* short preamble/slot time are negotiated when associating */
2514         sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
2515             WPI_CONFIG_SHSLOT);
2516         if (ic->ic_flags & IEEE80211_F_SHSLOT)
2517                 sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
2518         if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2519                 sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
2520         sc->config.filter |= htole32(WPI_FILTER_BSS);
2521
2522         /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
2523
2524         DPRINTF(("config chan %d flags %x\n", sc->config.chan,
2525                     sc->config.flags));
2526         error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, sizeof (struct
2527                     wpi_config), 1);
2528         if (error != 0) {
2529                 device_printf(sc->sc_dev, "could not update configuration\n");
2530                 return error;
2531         }
2532
2533         error = wpi_set_txpower(sc, ni->ni_chan, 1);
2534         if (error != 0) {
2535                 device_printf(sc->sc_dev, "could set txpower\n");
2536                 return error;
2537         }
2538
2539         /* link LED always on while associated */
2540         wpi_set_led(sc, WPI_LED_LINK, 0, 1);
2541
2542         /* start automatic rate control timer */
2543         callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
2544
2545         return (error);
2546 }
2547
2548 /*
2549  * Send a scan request to the firmware.  Since this command is huge, we map it
2550  * into a mbufcluster instead of using the pre-allocated set of commands. Note,
2551  * much of this code is similar to that in wpi_cmd but because we must manually
2552  * construct the probe & channels, we duplicate what's needed here. XXX In the
2553  * future, this function should be modified to use wpi_cmd to help cleanup the
2554  * code base.
2555  */
2556 static int
2557 wpi_scan(struct wpi_softc *sc)
2558 {
2559         struct ifnet *ifp = sc->sc_ifp;
2560         struct ieee80211com *ic = ifp->if_l2com;
2561         struct ieee80211_scan_state *ss = ic->ic_scan;
2562         struct wpi_tx_ring *ring = &sc->cmdq;
2563         struct wpi_tx_desc *desc;
2564         struct wpi_tx_data *data;
2565         struct wpi_tx_cmd *cmd;
2566         struct wpi_scan_hdr *hdr;
2567         struct wpi_scan_chan *chan;
2568         struct ieee80211_frame *wh;
2569         struct ieee80211_rateset *rs;
2570         struct ieee80211_channel *c;
2571         enum ieee80211_phymode mode;
2572         uint8_t *frm;
2573         int nrates, pktlen, error, i, nssid;
2574         bus_addr_t physaddr;
2575
2576         desc = &ring->desc[ring->cur];
2577         data = &ring->data[ring->cur];
2578
2579         data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2580         if (data->m == NULL) {
2581                 device_printf(sc->sc_dev,
2582                     "could not allocate mbuf for scan command\n");
2583                 return ENOMEM;
2584         }
2585
2586         cmd = mtod(data->m, struct wpi_tx_cmd *);
2587         cmd->code = WPI_CMD_SCAN;
2588         cmd->flags = 0;
2589         cmd->qid = ring->qid;
2590         cmd->idx = ring->cur;
2591
2592         hdr = (struct wpi_scan_hdr *)cmd->data;
2593         memset(hdr, 0, sizeof(struct wpi_scan_hdr));
2594
2595         /*
2596          * Move to the next channel if no packets are received within 5 msecs
2597          * after sending the probe request (this helps to reduce the duration
2598          * of active scans).
2599          */
2600         hdr->quiet = htole16(5);
2601         hdr->threshold = htole16(1);
2602
2603         if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) {
2604                 /* send probe requests at 6Mbps */
2605                 hdr->tx.rate = wpi_ridx_to_plcp[WPI_OFDM6];
2606
2607                 /* Enable crc checking */
2608                 hdr->promotion = htole16(1);
2609         } else {
2610                 hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2611                 /* send probe requests at 1Mbps */
2612                 hdr->tx.rate = wpi_ridx_to_plcp[WPI_CCK1];
2613         }
2614         hdr->tx.id = WPI_ID_BROADCAST;
2615         hdr->tx.lifetime = htole32(WPI_LIFETIME_INFINITE);
2616         hdr->tx.flags = htole32(WPI_TX_AUTO_SEQ);
2617
2618         memset(hdr->scan_essids, 0, sizeof(hdr->scan_essids));
2619         nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
2620         for (i = 0; i < nssid; i++) {
2621                 hdr->scan_essids[i].id = IEEE80211_ELEMID_SSID;
2622                 hdr->scan_essids[i].esslen = MIN(ss->ss_ssid[i].len, 32);
2623                 memcpy(hdr->scan_essids[i].essid, ss->ss_ssid[i].ssid,
2624                     hdr->scan_essids[i].esslen);
2625 #ifdef WPI_DEBUG
2626                 if (wpi_debug & WPI_DEBUG_SCANNING) {
2627                         printf("Scanning Essid: ");
2628                         ieee80211_print_essid(hdr->scan_essids[i].essid,
2629                             hdr->scan_essids[i].esslen);
2630                         printf("\n");
2631                 }
2632 #endif
2633         }
2634
2635         /*
2636          * Build a probe request frame.  Most of the following code is a
2637          * copy & paste of what is done in net80211.
2638          */
2639         wh = (struct ieee80211_frame *)&hdr->scan_essids[4];
2640         wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2641                 IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2642         wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2643         IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
2644         IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp));
2645         IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
2646         *(u_int16_t *)&wh->i_dur[0] = 0;        /* filled by h/w */
2647         *(u_int16_t *)&wh->i_seq[0] = 0;        /* filled by h/w */
2648
2649         frm = (uint8_t *)(wh + 1);
2650
2651         /* add essid IE, the hardware will fill this in for us */
2652         *frm++ = IEEE80211_ELEMID_SSID;
2653         *frm++ = 0;
2654
2655         mode = ieee80211_chan2mode(ic->ic_curchan);
2656         rs = &ic->ic_sup_rates[mode];
2657
2658         /* add supported rates IE */
2659         *frm++ = IEEE80211_ELEMID_RATES;
2660         nrates = rs->rs_nrates;
2661         if (nrates > IEEE80211_RATE_SIZE)
2662                 nrates = IEEE80211_RATE_SIZE;
2663         *frm++ = nrates;
2664         memcpy(frm, rs->rs_rates, nrates);
2665         frm += nrates;
2666
2667         /* add supported xrates IE */
2668         if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2669                 nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2670                 *frm++ = IEEE80211_ELEMID_XRATES;
2671                 *frm++ = nrates;
2672                 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2673                 frm += nrates;
2674         }
2675
2676         /* setup length of probe request */
2677         hdr->tx.len = htole16(frm - (uint8_t *)wh);
2678
2679         /*
2680          * Construct information about the channel that we
2681          * want to scan. The firmware expects this to be directly
2682          * after the scan probe request
2683          */
2684         c = ic->ic_curchan;
2685         chan = (struct wpi_scan_chan *)frm;
2686         chan->chan = ieee80211_chan2ieee(ic, c);
2687         chan->flags = 0;
2688         if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2689                 chan->flags |= WPI_CHAN_ACTIVE;
2690                 if (nssid != 0)
2691                         chan->flags |= WPI_CHAN_DIRECT;
2692         }
2693         chan->gain_dsp = 0x6e; /* Default level */
2694         if (IEEE80211_IS_CHAN_5GHZ(c)) {
2695                 chan->active = htole16(10);
2696                 chan->passive = htole16(ss->ss_maxdwell);
2697                 chan->gain_radio = 0x3b;
2698         } else {
2699                 chan->active = htole16(20);
2700                 chan->passive = htole16(ss->ss_maxdwell);
2701                 chan->gain_radio = 0x28;
2702         }
2703
2704         DPRINTFN(WPI_DEBUG_SCANNING,
2705             ("Scanning %u Passive: %d\n",
2706              chan->chan,
2707              c->ic_flags & IEEE80211_CHAN_PASSIVE));
2708
2709         hdr->nchan++;
2710         chan++;
2711
2712         frm += sizeof (struct wpi_scan_chan);
2713 #if 0
2714         // XXX All Channels....
2715         for (c  = &ic->ic_channels[1];
2716              c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2717                 if ((c->ic_flags & ic->ic_curchan->ic_flags) != ic->ic_curchan->ic_flags)
2718                         continue;
2719
2720                 chan->chan = ieee80211_chan2ieee(ic, c);
2721                 chan->flags = 0;
2722                 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2723                     chan->flags |= WPI_CHAN_ACTIVE;
2724                     if (ic->ic_des_ssid[0].len != 0)
2725                         chan->flags |= WPI_CHAN_DIRECT;
2726                 }
2727                 chan->gain_dsp = 0x6e; /* Default level */
2728                 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2729                         chan->active = htole16(10);
2730                         chan->passive = htole16(110);
2731                         chan->gain_radio = 0x3b;
2732                 } else {
2733                         chan->active = htole16(20);
2734                         chan->passive = htole16(120);
2735                         chan->gain_radio = 0x28;
2736                 }
2737
2738                 DPRINTFN(WPI_DEBUG_SCANNING,
2739                          ("Scanning %u Passive: %d\n",
2740                           chan->chan,
2741                           c->ic_flags & IEEE80211_CHAN_PASSIVE));
2742
2743                 hdr->nchan++;
2744                 chan++;
2745
2746                 frm += sizeof (struct wpi_scan_chan);
2747         }
2748 #endif
2749
2750         hdr->len = htole16(frm - (uint8_t *)hdr);
2751         pktlen = frm - (uint8_t *)cmd;
2752
2753         error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen,
2754             wpi_dma_map_addr, &physaddr, BUS_DMA_NOWAIT);
2755         if (error != 0) {
2756                 device_printf(sc->sc_dev, "could not map scan command\n");
2757                 m_freem(data->m);
2758                 data->m = NULL;
2759                 return error;
2760         }
2761
2762         desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2763         desc->segs[0].addr = htole32(physaddr);
2764         desc->segs[0].len  = htole32(pktlen);
2765
2766         bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2767             BUS_DMASYNC_PREWRITE);
2768         bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2769
2770         /* kick cmd ring */
2771         ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2772         WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2773
2774         sc->sc_scan_timer = 5;
2775         return 0;       /* will be notified async. of failure/success */
2776 }
2777
2778 /**
2779  * Configure the card to listen to a particular channel, this transisions the
2780  * card in to being able to receive frames from remote devices.
2781  */
2782 static int
2783 wpi_config(struct wpi_softc *sc)
2784 {
2785         struct ifnet *ifp = sc->sc_ifp;
2786         struct ieee80211com *ic = ifp->if_l2com;
2787         struct wpi_power power;
2788         struct wpi_bluetooth bluetooth;
2789         struct wpi_node_info node;
2790         int error;
2791
2792         /* set power mode */
2793         memset(&power, 0, sizeof power);
2794         power.flags = htole32(WPI_POWER_CAM|0x8);
2795         error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2796         if (error != 0) {
2797                 device_printf(sc->sc_dev, "could not set power mode\n");
2798                 return error;
2799         }
2800
2801         /* configure bluetooth coexistence */
2802         memset(&bluetooth, 0, sizeof bluetooth);
2803         bluetooth.flags = 3;
2804         bluetooth.lead = 0xaa;
2805         bluetooth.kill = 1;
2806         error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2807             0);
2808         if (error != 0) {
2809                 device_printf(sc->sc_dev,
2810                     "could not configure bluetooth coexistence\n");
2811                 return error;
2812         }
2813
2814         /* configure adapter */
2815         memset(&sc->config, 0, sizeof (struct wpi_config));
2816         IEEE80211_ADDR_COPY(sc->config.myaddr, IF_LLADDR(ifp));
2817         /*set default channel*/
2818         sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan));
2819         sc->config.flags = htole32(WPI_CONFIG_TSF);
2820         if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
2821                 sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2822                     WPI_CONFIG_24GHZ);
2823         }
2824         sc->config.filter = 0;
2825         switch (ic->ic_opmode) {
2826         case IEEE80211_M_STA:
2827         case IEEE80211_M_WDS:   /* No know setup, use STA for now */
2828                 sc->config.mode = WPI_MODE_STA;
2829                 sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2830                 break;
2831         case IEEE80211_M_IBSS:
2832         case IEEE80211_M_AHDEMO:
2833                 sc->config.mode = WPI_MODE_IBSS;
2834                 sc->config.filter |= htole32(WPI_FILTER_BEACON |
2835                                              WPI_FILTER_MULTICAST);
2836                 break;
2837         case IEEE80211_M_HOSTAP:
2838                 sc->config.mode = WPI_MODE_HOSTAP;
2839                 break;
2840         case IEEE80211_M_MONITOR:
2841                 sc->config.mode = WPI_MODE_MONITOR;
2842                 sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2843                         WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2844                 break;
2845         default:
2846                 device_printf(sc->sc_dev, "unknown opmode %d\n", ic->ic_opmode);
2847                 return EINVAL;
2848         }
2849         sc->config.cck_mask  = 0x0f;    /* not yet negotiated */
2850         sc->config.ofdm_mask = 0xff;    /* not yet negotiated */
2851         error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2852                 sizeof (struct wpi_config), 0);
2853         if (error != 0) {
2854                 device_printf(sc->sc_dev, "configure command failed\n");
2855                 return error;
2856         }
2857
2858         /* configuration has changed, set Tx power accordingly */
2859         if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) {
2860             device_printf(sc->sc_dev, "could not set Tx power\n");
2861             return error;
2862         }
2863
2864         /* add broadcast node */
2865         memset(&node, 0, sizeof node);
2866         IEEE80211_ADDR_COPY(node.bssid, ifp->if_broadcastaddr);
2867         node.id = WPI_ID_BROADCAST;
2868         node.rate = wpi_plcp_signal(2);
2869         error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2870         if (error != 0) {
2871                 device_printf(sc->sc_dev, "could not add broadcast node\n");
2872                 return error;
2873         }
2874
2875         /* Setup rate scalling */
2876         error = wpi_mrr_setup(sc);
2877         if (error != 0) {
2878                 device_printf(sc->sc_dev, "could not setup MRR\n");
2879                 return error;
2880         }
2881
2882         return 0;
2883 }
2884
2885 static void
2886 wpi_stop_master(struct wpi_softc *sc)
2887 {
2888         uint32_t tmp;
2889         int ntries;
2890
2891         DPRINTFN(WPI_DEBUG_HW,("Disabling Firmware execution\n"));
2892
2893         tmp = WPI_READ(sc, WPI_RESET);
2894         WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER | WPI_NEVO_RESET);
2895
2896         tmp = WPI_READ(sc, WPI_GPIO_CTL);
2897         if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2898                 return; /* already asleep */
2899
2900         for (ntries = 0; ntries < 100; ntries++) {
2901                 if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2902                         break;
2903                 DELAY(10);
2904         }
2905         if (ntries == 100) {
2906                 device_printf(sc->sc_dev, "timeout waiting for master\n");
2907         }
2908 }
2909
2910 static int
2911 wpi_power_up(struct wpi_softc *sc)
2912 {
2913         uint32_t tmp;
2914         int ntries;
2915
2916         wpi_mem_lock(sc);
2917         tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2918         wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2919         wpi_mem_unlock(sc);
2920
2921         for (ntries = 0; ntries < 5000; ntries++) {
2922                 if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
2923                         break;
2924                 DELAY(10);
2925         }
2926         if (ntries == 5000) {
2927                 device_printf(sc->sc_dev,
2928                     "timeout waiting for NIC to power up\n");
2929                 return ETIMEDOUT;
2930         }
2931         return 0;
2932 }
2933
2934 static int
2935 wpi_reset(struct wpi_softc *sc)
2936 {
2937         uint32_t tmp;
2938         int ntries;
2939
2940         DPRINTFN(WPI_DEBUG_HW,
2941             ("Resetting the card - clearing any uploaded firmware\n"));
2942
2943         /* clear any pending interrupts */
2944         WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2945
2946         tmp = WPI_READ(sc, WPI_PLL_CTL);
2947         WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
2948
2949         tmp = WPI_READ(sc, WPI_CHICKEN);
2950         WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
2951
2952         tmp = WPI_READ(sc, WPI_GPIO_CTL);
2953         WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
2954
2955         /* wait for clock stabilization */
2956         for (ntries = 0; ntries < 25000; ntries++) {
2957                 if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
2958                         break;
2959                 DELAY(10);
2960         }
2961         if (ntries == 25000) {
2962                 device_printf(sc->sc_dev,
2963                     "timeout waiting for clock stabilization\n");
2964                 return ETIMEDOUT;
2965         }
2966
2967         /* initialize EEPROM */
2968         tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
2969
2970         if ((tmp & WPI_EEPROM_VERSION) == 0) {
2971                 device_printf(sc->sc_dev, "EEPROM not found\n");
2972                 return EIO;
2973         }
2974         WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
2975
2976         return 0;
2977 }
2978
2979 static void
2980 wpi_hw_config(struct wpi_softc *sc)
2981 {
2982         uint32_t rev, hw;
2983
2984         /* voodoo from the Linux "driver".. */
2985         hw = WPI_READ(sc, WPI_HWCONFIG);
2986
2987         rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
2988         if ((rev & 0xc0) == 0x40)
2989                 hw |= WPI_HW_ALM_MB;
2990         else if (!(rev & 0x80))
2991                 hw |= WPI_HW_ALM_MM;
2992
2993         if (sc->cap == 0x80)
2994                 hw |= WPI_HW_SKU_MRC;
2995
2996         hw &= ~WPI_HW_REV_D;
2997         if ((le16toh(sc->rev) & 0xf0) == 0xd0)
2998                 hw |= WPI_HW_REV_D;
2999
3000         if (sc->type > 1)
3001                 hw |= WPI_HW_TYPE_B;
3002
3003         WPI_WRITE(sc, WPI_HWCONFIG, hw);
3004 }
3005
3006 static void
3007 wpi_rfkill_resume(struct wpi_softc *sc)
3008 {
3009         struct ifnet *ifp = sc->sc_ifp;
3010         struct ieee80211com *ic = ifp->if_l2com;
3011         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3012         int ntries;
3013
3014         /* enable firmware again */
3015         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3016         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3017
3018         /* wait for thermal sensors to calibrate */
3019         for (ntries = 0; ntries < 1000; ntries++) {
3020                 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3021                         break;
3022                 DELAY(10);
3023         }
3024
3025         if (ntries == 1000) {
3026                 device_printf(sc->sc_dev,
3027                     "timeout waiting for thermal calibration\n");
3028                 return;
3029         }
3030         DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3031
3032         if (wpi_config(sc) != 0) {
3033                 device_printf(sc->sc_dev, "device config failed\n");
3034                 return;
3035         }
3036
3037         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3038         ifp->if_drv_flags |= IFF_DRV_RUNNING;
3039         sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3040
3041         if (vap != NULL) {
3042                 if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3043                         if (vap->iv_opmode != IEEE80211_M_MONITOR) {
3044                                 ieee80211_beacon_miss(ic);
3045                                 wpi_set_led(sc, WPI_LED_LINK, 0, 1);
3046                         } else
3047                                 wpi_set_led(sc, WPI_LED_LINK, 5, 5);
3048                 } else {
3049                         ieee80211_scan_next(vap);
3050                         wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3051                 }
3052         }
3053
3054         callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3055 }
3056
3057 static void
3058 wpi_init_locked(struct wpi_softc *sc, int force)
3059 {
3060         struct ifnet *ifp = sc->sc_ifp;
3061         uint32_t tmp;
3062         int ntries, qid;
3063
3064         wpi_stop_locked(sc);
3065         (void)wpi_reset(sc);
3066
3067         wpi_mem_lock(sc);
3068         wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3069         DELAY(20);
3070         tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3071         wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3072         wpi_mem_unlock(sc);
3073
3074         (void)wpi_power_up(sc);
3075         wpi_hw_config(sc);
3076
3077         /* init Rx ring */
3078         wpi_mem_lock(sc);
3079         WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3080         WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3081             offsetof(struct wpi_shared, next));
3082         WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3083         WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3084         wpi_mem_unlock(sc);
3085
3086         /* init Tx rings */
3087         wpi_mem_lock(sc);
3088         wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3089         wpi_mem_write(sc, WPI_MEM_RA, 1);   /* enable RA0 */
3090         wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3091         wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3092         wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3093         wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3094         wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3095
3096         WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3097         WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3098
3099         for (qid = 0; qid < 6; qid++) {
3100                 WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3101                 WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3102                 WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3103         }
3104         wpi_mem_unlock(sc);
3105
3106         /* clear "radio off" and "disable command" bits (reversed logic) */
3107         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3108         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3109         sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3110
3111         /* clear any pending interrupts */
3112         WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3113
3114         /* enable interrupts */
3115         WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3116
3117         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3118         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3119
3120         if ((wpi_load_firmware(sc)) != 0) {
3121             device_printf(sc->sc_dev,
3122                 "A problem occurred loading the firmware to the driver\n");
3123             return;
3124         }
3125
3126         /* At this point the firmware is up and running. If the hardware
3127          * RF switch is turned off thermal calibration will fail, though
3128          * the card is still happy to continue to accept commands, catch
3129          * this case and schedule a task to watch for it to be turned on.
3130          */
3131         wpi_mem_lock(sc);
3132         tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3133         wpi_mem_unlock(sc);
3134
3135         if (!(tmp & 0x1)) {
3136                 sc->flags |= WPI_FLAG_HW_RADIO_OFF;
3137                 device_printf(sc->sc_dev,"Radio Transmitter is switched off\n");
3138                 goto out;
3139         }
3140
3141         /* wait for thermal sensors to calibrate */
3142         for (ntries = 0; ntries < 1000; ntries++) {
3143                 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3144                         break;
3145                 DELAY(10);
3146         }
3147
3148         if (ntries == 1000) {
3149                 device_printf(sc->sc_dev,
3150                     "timeout waiting for thermal sensors calibration\n");
3151                 return;
3152         }
3153         DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3154
3155         if (wpi_config(sc) != 0) {
3156                 device_printf(sc->sc_dev, "device config failed\n");
3157                 return;
3158         }
3159
3160         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3161         ifp->if_drv_flags |= IFF_DRV_RUNNING;
3162 out:
3163         callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3164 }
3165
3166 static void
3167 wpi_init(void *arg)
3168 {
3169         struct wpi_softc *sc = arg;
3170         struct ifnet *ifp = sc->sc_ifp;
3171         struct ieee80211com *ic = ifp->if_l2com;
3172
3173         WPI_LOCK(sc);
3174         wpi_init_locked(sc, 0);
3175         WPI_UNLOCK(sc);
3176
3177         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3178                 ieee80211_start_all(ic);                /* start all vaps */
3179 }
3180
3181 static void
3182 wpi_stop_locked(struct wpi_softc *sc)
3183 {
3184         struct ifnet *ifp = sc->sc_ifp;
3185         uint32_t tmp;
3186         int ac;
3187
3188         sc->sc_tx_timer = 0;
3189         sc->sc_scan_timer = 0;
3190         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3191         sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3192         callout_stop(&sc->watchdog_to);
3193         callout_stop(&sc->calib_to);
3194
3195
3196         /* disable interrupts */
3197         WPI_WRITE(sc, WPI_MASK, 0);
3198         WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3199         WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3200         WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3201
3202         wpi_mem_lock(sc);
3203         wpi_mem_write(sc, WPI_MEM_MODE, 0);
3204         wpi_mem_unlock(sc);
3205
3206         /* reset all Tx rings */
3207         for (ac = 0; ac < 4; ac++)
3208                 wpi_reset_tx_ring(sc, &sc->txq[ac]);
3209         wpi_reset_tx_ring(sc, &sc->cmdq);
3210
3211         /* reset Rx ring */
3212         wpi_reset_rx_ring(sc, &sc->rxq);
3213
3214         wpi_mem_lock(sc);
3215         wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3216         wpi_mem_unlock(sc);
3217
3218         DELAY(5);
3219
3220         wpi_stop_master(sc);
3221
3222         tmp = WPI_READ(sc, WPI_RESET);
3223         WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3224         sc->flags &= ~WPI_FLAG_BUSY;
3225 }
3226
3227 static void
3228 wpi_stop(struct wpi_softc *sc)
3229 {
3230         WPI_LOCK(sc);
3231         wpi_stop_locked(sc);
3232         WPI_UNLOCK(sc);
3233 }
3234
3235 static void
3236 wpi_newassoc(struct ieee80211_node *ni, int isnew)
3237 {
3238
3239         /* XXX move */
3240         ieee80211_ratectl_node_init(ni);
3241 }
3242
3243 static void
3244 wpi_calib_timeout(void *arg)
3245 {
3246         struct wpi_softc *sc = arg;
3247         struct ifnet *ifp = sc->sc_ifp;
3248         struct ieee80211com *ic = ifp->if_l2com;
3249         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3250         int temp;
3251
3252         if (vap->iv_state != IEEE80211_S_RUN)
3253                 return;
3254
3255         /* update sensor data */
3256         temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
3257         DPRINTFN(WPI_DEBUG_TEMP,("Temp in calibration is: %d\n", temp));
3258
3259         wpi_power_calibration(sc, temp);
3260
3261         callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
3262 }
3263
3264 /*
3265  * This function is called periodically (every 60 seconds) to adjust output
3266  * power to temperature changes.
3267  */
3268 static void
3269 wpi_power_calibration(struct wpi_softc *sc, int temp)
3270 {
3271         struct ifnet *ifp = sc->sc_ifp;
3272         struct ieee80211com *ic = ifp->if_l2com;
3273         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3274
3275         /* sanity-check read value */
3276         if (temp < -260 || temp > 25) {
3277                 /* this can't be correct, ignore */
3278                 DPRINTFN(WPI_DEBUG_TEMP,
3279                     ("out-of-range temperature reported: %d\n", temp));
3280                 return;
3281         }
3282
3283         DPRINTFN(WPI_DEBUG_TEMP,("temperature %d->%d\n", sc->temp, temp));
3284
3285         /* adjust Tx power if need be */
3286         if (abs(temp - sc->temp) <= 6)
3287                 return;
3288
3289         sc->temp = temp;
3290
3291         if (wpi_set_txpower(sc, vap->iv_bss->ni_chan, 1) != 0) {
3292                 /* just warn, too bad for the automatic calibration... */
3293                 device_printf(sc->sc_dev,"could not adjust Tx power\n");
3294         }
3295 }
3296
3297 /**
3298  * Read the eeprom to find out what channels are valid for the given
3299  * band and update net80211 with what we find.
3300  */
3301 static void
3302 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
3303 {
3304         struct ifnet *ifp = sc->sc_ifp;
3305         struct ieee80211com *ic = ifp->if_l2com;
3306         const struct wpi_chan_band *band = &wpi_bands[n];
3307         struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
3308         struct ieee80211_channel *c;
3309         int chan, i, passive;
3310
3311         wpi_read_prom_data(sc, band->addr, channels,
3312             band->nchan * sizeof (struct wpi_eeprom_chan));
3313
3314         for (i = 0; i < band->nchan; i++) {
3315                 if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
3316                         DPRINTFN(WPI_DEBUG_HW,
3317                             ("Channel Not Valid: %d, band %d\n",
3318                              band->chan[i],n));
3319                         continue;
3320                 }
3321
3322                 passive = 0;
3323                 chan = band->chan[i];
3324                 c = &ic->ic_channels[ic->ic_nchans++];
3325
3326                 /* is active scan allowed on this channel? */
3327                 if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
3328                         passive = IEEE80211_CHAN_PASSIVE;
3329                 }
3330
3331                 if (n == 0) {   /* 2GHz band */
3332                         c->ic_ieee = chan;
3333                         c->ic_freq = ieee80211_ieee2mhz(chan,
3334                             IEEE80211_CHAN_2GHZ);
3335                         c->ic_flags = IEEE80211_CHAN_B | passive;
3336
3337                         c = &ic->ic_channels[ic->ic_nchans++];
3338                         c->ic_ieee = chan;
3339                         c->ic_freq = ieee80211_ieee2mhz(chan,
3340                             IEEE80211_CHAN_2GHZ);
3341                         c->ic_flags = IEEE80211_CHAN_G | passive;
3342
3343                 } else {        /* 5GHz band */
3344                         /*
3345                          * Some 3945ABG adapters support channels 7, 8, 11
3346                          * and 12 in the 2GHz *and* 5GHz bands.
3347                          * Because of limitations in our net80211(9) stack,
3348                          * we can't support these channels in 5GHz band.
3349                          * XXX not true; just need to map to proper frequency
3350                          */
3351                         if (chan <= 14)
3352                                 continue;
3353
3354                         c->ic_ieee = chan;
3355                         c->ic_freq = ieee80211_ieee2mhz(chan,
3356                             IEEE80211_CHAN_5GHZ);
3357                         c->ic_flags = IEEE80211_CHAN_A | passive;
3358                 }
3359
3360                 /* save maximum allowed power for this channel */
3361                 sc->maxpwr[chan] = channels[i].maxpwr;
3362
3363 #if 0
3364                 // XXX We can probably use this an get rid of maxpwr - ben 20070617
3365                 ic->ic_channels[chan].ic_maxpower = channels[i].maxpwr;
3366                 //ic->ic_channels[chan].ic_minpower...
3367                 //ic->ic_channels[chan].ic_maxregtxpower...
3368 #endif
3369
3370                 DPRINTF(("adding chan %d (%dMHz) flags=0x%x maxpwr=%d"
3371                     " passive=%d, offset %d\n", chan, c->ic_freq,
3372                     channels[i].flags, sc->maxpwr[chan],
3373                     (c->ic_flags & IEEE80211_CHAN_PASSIVE) != 0,
3374                     ic->ic_nchans));
3375         }
3376 }
3377
3378 static void
3379 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
3380 {
3381         struct wpi_power_group *group = &sc->groups[n];
3382         struct wpi_eeprom_group rgroup;
3383         int i;
3384
3385         wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
3386             sizeof rgroup);
3387
3388         /* save power group information */
3389         group->chan   = rgroup.chan;
3390         group->maxpwr = rgroup.maxpwr;
3391         /* temperature at which the samples were taken */
3392         group->temp   = (int16_t)le16toh(rgroup.temp);
3393
3394         DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
3395                     group->chan, group->maxpwr, group->temp));
3396
3397         for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
3398                 group->samples[i].index = rgroup.samples[i].index;
3399                 group->samples[i].power = rgroup.samples[i].power;
3400
3401                 DPRINTF(("\tsample %d: index=%d power=%d\n", i,
3402                             group->samples[i].index, group->samples[i].power));
3403         }
3404 }
3405
3406 /*
3407  * Update Tx power to match what is defined for channel `c'.
3408  */
3409 static int
3410 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
3411 {
3412         struct ifnet *ifp = sc->sc_ifp;
3413         struct ieee80211com *ic = ifp->if_l2com;
3414         struct wpi_power_group *group;
3415         struct wpi_cmd_txpower txpower;
3416         u_int chan;
3417         int i;
3418
3419         /* get channel number */
3420         chan = ieee80211_chan2ieee(ic, c);
3421
3422         /* find the power group to which this channel belongs */
3423         if (IEEE80211_IS_CHAN_5GHZ(c)) {
3424                 for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3425                         if (chan <= group->chan)
3426                                 break;
3427         } else
3428                 group = &sc->groups[0];
3429
3430         memset(&txpower, 0, sizeof txpower);
3431         txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
3432         txpower.channel = htole16(chan);
3433
3434         /* set Tx power for all OFDM and CCK rates */
3435         for (i = 0; i <= 11 ; i++) {
3436                 /* retrieve Tx power for this channel/rate combination */
3437                 int idx = wpi_get_power_index(sc, group, c,
3438                     wpi_ridx_to_rate[i]);
3439
3440                 txpower.rates[i].rate = wpi_ridx_to_plcp[i];
3441
3442                 if (IEEE80211_IS_CHAN_5GHZ(c)) {
3443                         txpower.rates[i].gain_radio = wpi_rf_gain_5ghz[idx];
3444                         txpower.rates[i].gain_dsp = wpi_dsp_gain_5ghz[idx];
3445                 } else {
3446                         txpower.rates[i].gain_radio = wpi_rf_gain_2ghz[idx];
3447                         txpower.rates[i].gain_dsp = wpi_dsp_gain_2ghz[idx];
3448                 }
3449                 DPRINTFN(WPI_DEBUG_TEMP,("chan %d/rate %d: power index %d\n",
3450                             chan, wpi_ridx_to_rate[i], idx));
3451         }
3452
3453         return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
3454 }
3455
3456 /*
3457  * Determine Tx power index for a given channel/rate combination.
3458  * This takes into account the regulatory information from EEPROM and the
3459  * current temperature.
3460  */
3461 static int
3462 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3463     struct ieee80211_channel *c, int rate)
3464 {
3465 /* fixed-point arithmetic division using a n-bit fractional part */
3466 #define fdivround(a, b, n)      \
3467         ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3468
3469 /* linear interpolation */
3470 #define interpolate(x, x1, y1, x2, y2, n)       \
3471         ((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3472
3473         struct ifnet *ifp = sc->sc_ifp;
3474         struct ieee80211com *ic = ifp->if_l2com;
3475         struct wpi_power_sample *sample;
3476         int pwr, idx;
3477         u_int chan;
3478
3479         /* get channel number */
3480         chan = ieee80211_chan2ieee(ic, c);
3481
3482         /* default power is group's maximum power - 3dB */
3483         pwr = group->maxpwr / 2;
3484
3485         /* decrease power for highest OFDM rates to reduce distortion */
3486         switch (rate) {
3487                 case 72:        /* 36Mb/s */
3488                         pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
3489                         break;
3490                 case 96:        /* 48Mb/s */
3491                         pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
3492                         break;
3493                 case 108:       /* 54Mb/s */
3494                         pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
3495                         break;
3496         }
3497
3498         /* never exceed channel's maximum allowed Tx power */
3499         pwr = min(pwr, sc->maxpwr[chan]);
3500
3501         /* retrieve power index into gain tables from samples */
3502         for (sample = group->samples; sample < &group->samples[3]; sample++)
3503                 if (pwr > sample[1].power)
3504                         break;
3505         /* fixed-point linear interpolation using a 19-bit fractional part */
3506         idx = interpolate(pwr, sample[0].power, sample[0].index,
3507             sample[1].power, sample[1].index, 19);
3508
3509         /*
3510          *  Adjust power index based on current temperature
3511          *      - if colder than factory-calibrated: decreate output power
3512          *      - if warmer than factory-calibrated: increase output power
3513          */
3514         idx -= (sc->temp - group->temp) * 11 / 100;
3515
3516         /* decrease power for CCK rates (-5dB) */
3517         if (!WPI_RATE_IS_OFDM(rate))
3518                 idx += 10;
3519
3520         /* keep power index in a valid range */
3521         if (idx < 0)
3522                 return 0;
3523         if (idx > WPI_MAX_PWR_INDEX)
3524                 return WPI_MAX_PWR_INDEX;
3525         return idx;
3526
3527 #undef interpolate
3528 #undef fdivround
3529 }
3530
3531 /**
3532  * Called by net80211 framework to indicate that a scan
3533  * is starting. This function doesn't actually do the scan,
3534  * wpi_scan_curchan starts things off. This function is more
3535  * of an early warning from the framework we should get ready
3536  * for the scan.
3537  */
3538 static void
3539 wpi_scan_start(struct ieee80211com *ic)
3540 {
3541         struct ifnet *ifp = ic->ic_ifp;
3542         struct wpi_softc *sc = ifp->if_softc;
3543
3544         WPI_LOCK(sc);
3545         wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3546         WPI_UNLOCK(sc);
3547 }
3548
3549 /**
3550  * Called by the net80211 framework, indicates that the
3551  * scan has ended. If there is a scan in progress on the card
3552  * then it should be aborted.
3553  */
3554 static void
3555 wpi_scan_end(struct ieee80211com *ic)
3556 {
3557         /* XXX ignore */
3558 }
3559
3560 /**
3561  * Called by the net80211 framework to indicate to the driver
3562  * that the channel should be changed
3563  */
3564 static void
3565 wpi_set_channel(struct ieee80211com *ic)
3566 {
3567         struct ifnet *ifp = ic->ic_ifp;
3568         struct wpi_softc *sc = ifp->if_softc;
3569         int error;
3570
3571         /*
3572          * Only need to set the channel in Monitor mode. AP scanning and auth
3573          * are already taken care of by their respective firmware commands.
3574          */
3575         if (ic->ic_opmode == IEEE80211_M_MONITOR) {
3576                 WPI_LOCK(sc);
3577                 error = wpi_config(sc);
3578                 WPI_UNLOCK(sc);
3579                 if (error != 0)
3580                         device_printf(sc->sc_dev,
3581                             "error %d settting channel\n", error);
3582         }
3583 }
3584
3585 /**
3586  * Called by net80211 to indicate that we need to scan the current
3587  * channel. The channel is previously be set via the wpi_set_channel
3588  * callback.
3589  */
3590 static void
3591 wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
3592 {
3593         struct ieee80211vap *vap = ss->ss_vap;
3594         struct ifnet *ifp = vap->iv_ic->ic_ifp;
3595         struct wpi_softc *sc = ifp->if_softc;
3596
3597         WPI_LOCK(sc);
3598         if (wpi_scan(sc))
3599                 ieee80211_cancel_scan(vap);
3600         WPI_UNLOCK(sc);
3601 }
3602
3603 /**
3604  * Called by the net80211 framework to indicate
3605  * the minimum dwell time has been met, terminate the scan.
3606  * We don't actually terminate the scan as the firmware will notify
3607  * us when it's finished and we have no way to interrupt it.
3608  */
3609 static void
3610 wpi_scan_mindwell(struct ieee80211_scan_state *ss)
3611 {
3612         /* NB: don't try to abort scan; wait for firmware to finish */
3613 }
3614
3615 static void
3616 wpi_hwreset(void *arg, int pending)
3617 {
3618         struct wpi_softc *sc = arg;
3619
3620         WPI_LOCK(sc);
3621         wpi_init_locked(sc, 0);
3622         WPI_UNLOCK(sc);
3623 }
3624
3625 static void
3626 wpi_rfreset(void *arg, int pending)
3627 {
3628         struct wpi_softc *sc = arg;
3629
3630         WPI_LOCK(sc);
3631         wpi_rfkill_resume(sc);
3632         WPI_UNLOCK(sc);
3633 }
3634
3635 /*
3636  * Allocate DMA-safe memory for firmware transfer.
3637  */
3638 static int
3639 wpi_alloc_fwmem(struct wpi_softc *sc)
3640 {
3641         /* allocate enough contiguous space to store text and data */
3642         return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
3643             WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 1,
3644             BUS_DMA_NOWAIT);
3645 }
3646
3647 static void
3648 wpi_free_fwmem(struct wpi_softc *sc)
3649 {
3650         wpi_dma_contig_free(&sc->fw_dma);
3651 }
3652
3653 /**
3654  * Called every second, wpi_watchdog used by the watch dog timer
3655  * to check that the card is still alive
3656  */
3657 static void
3658 wpi_watchdog(void *arg)
3659 {
3660         struct wpi_softc *sc = arg;
3661         struct ifnet *ifp = sc->sc_ifp;
3662         struct ieee80211com *ic = ifp->if_l2com;
3663         uint32_t tmp;
3664
3665         DPRINTFN(WPI_DEBUG_WATCHDOG,("Watchdog: tick\n"));
3666
3667         if (sc->flags & WPI_FLAG_HW_RADIO_OFF) {
3668                 /* No need to lock firmware memory */
3669                 tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3670
3671                 if ((tmp & 0x1) == 0) {
3672                         /* Radio kill switch is still off */
3673                         callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3674                         return;
3675                 }
3676
3677                 device_printf(sc->sc_dev, "Hardware Switch Enabled\n");
3678                 ieee80211_runtask(ic, &sc->sc_radiotask);
3679                 return;
3680         }
3681
3682         if (sc->sc_tx_timer > 0) {
3683                 if (--sc->sc_tx_timer == 0) {
3684                         device_printf(sc->sc_dev,"device timeout\n");
3685                         ifp->if_oerrors++;
3686                         ieee80211_runtask(ic, &sc->sc_restarttask);
3687                 }
3688         }
3689         if (sc->sc_scan_timer > 0) {
3690                 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3691                 if (--sc->sc_scan_timer == 0 && vap != NULL) {
3692                         device_printf(sc->sc_dev,"scan timeout\n");
3693                         ieee80211_cancel_scan(vap);
3694                         ieee80211_runtask(ic, &sc->sc_restarttask);
3695                 }
3696         }
3697
3698         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3699                 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3700 }
3701
3702 #ifdef WPI_DEBUG
3703 static const char *wpi_cmd_str(int cmd)
3704 {
3705         switch (cmd) {
3706         case WPI_DISABLE_CMD:   return "WPI_DISABLE_CMD";
3707         case WPI_CMD_CONFIGURE: return "WPI_CMD_CONFIGURE";
3708         case WPI_CMD_ASSOCIATE: return "WPI_CMD_ASSOCIATE";
3709         case WPI_CMD_SET_WME:   return "WPI_CMD_SET_WME";
3710         case WPI_CMD_TSF:       return "WPI_CMD_TSF";
3711         case WPI_CMD_ADD_NODE:  return "WPI_CMD_ADD_NODE";
3712         case WPI_CMD_TX_DATA:   return "WPI_CMD_TX_DATA";
3713         case WPI_CMD_MRR_SETUP: return "WPI_CMD_MRR_SETUP";
3714         case WPI_CMD_SET_LED:   return "WPI_CMD_SET_LED";
3715         case WPI_CMD_SET_POWER_MODE: return "WPI_CMD_SET_POWER_MODE";
3716         case WPI_CMD_SCAN:      return "WPI_CMD_SCAN";
3717         case WPI_CMD_SET_BEACON:return "WPI_CMD_SET_BEACON";
3718         case WPI_CMD_TXPOWER:   return "WPI_CMD_TXPOWER";
3719         case WPI_CMD_BLUETOOTH: return "WPI_CMD_BLUETOOTH";
3720
3721         default:
3722                 KASSERT(1, ("Unknown Command: %d\n", cmd));
3723                 return "UNKNOWN CMD";   /* Make the compiler happy */
3724         }
3725 }
3726 #endif
3727
3728 MODULE_DEPEND(wpi, pci,  1, 1, 1);
3729 MODULE_DEPEND(wpi, wlan, 1, 1, 1);
3730 MODULE_DEPEND(wpi, firmware, 1, 1, 1);