]> CyberLeo.Net >> Repos - FreeBSD/releng/8.2.git/blob - sys/kern/kern_proc.c
MFC stable/8 r217711
[FreeBSD/releng/8.2.git] / sys / kern / kern_proc.c
1 /*-
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *      @(#)kern_proc.c 8.7 (Berkeley) 2/14/95
30  */
31
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34
35 #include "opt_compat.h"
36 #include "opt_ddb.h"
37 #include "opt_kdtrace.h"
38 #include "opt_ktrace.h"
39 #include "opt_kstack_pages.h"
40 #include "opt_stack.h"
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/limits.h>
46 #include <sys/lock.h>
47 #include <sys/malloc.h>
48 #include <sys/mount.h>
49 #include <sys/mutex.h>
50 #include <sys/proc.h>
51 #include <sys/refcount.h>
52 #include <sys/sbuf.h>
53 #include <sys/sysent.h>
54 #include <sys/sched.h>
55 #include <sys/smp.h>
56 #include <sys/stack.h>
57 #include <sys/sysctl.h>
58 #include <sys/filedesc.h>
59 #include <sys/tty.h>
60 #include <sys/signalvar.h>
61 #include <sys/sdt.h>
62 #include <sys/sx.h>
63 #include <sys/user.h>
64 #include <sys/jail.h>
65 #include <sys/vnode.h>
66 #include <sys/eventhandler.h>
67 #ifdef KTRACE
68 #include <sys/uio.h>
69 #include <sys/ktrace.h>
70 #endif
71
72 #ifdef DDB
73 #include <ddb/ddb.h>
74 #endif
75
76 #include <vm/vm.h>
77 #include <vm/vm_extern.h>
78 #include <vm/pmap.h>
79 #include <vm/vm_map.h>
80 #include <vm/vm_object.h>
81 #include <vm/uma.h>
82
83 #ifdef COMPAT_FREEBSD32
84 #include <compat/freebsd32/freebsd32.h>
85 #include <compat/freebsd32/freebsd32_util.h>
86 #endif
87
88 SDT_PROVIDER_DEFINE(proc);
89 SDT_PROBE_DEFINE(proc, kernel, ctor, entry);
90 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 0, "struct proc *");
91 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 1, "int");
92 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 2, "void *");
93 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 3, "int");
94 SDT_PROBE_DEFINE(proc, kernel, ctor, return);
95 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 0, "struct proc *");
96 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 1, "int");
97 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 2, "void *");
98 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 3, "int");
99 SDT_PROBE_DEFINE(proc, kernel, dtor, entry);
100 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 0, "struct proc *");
101 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 1, "int");
102 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 2, "void *");
103 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 3, "struct thread *");
104 SDT_PROBE_DEFINE(proc, kernel, dtor, return);
105 SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 0, "struct proc *");
106 SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 1, "int");
107 SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 2, "void *");
108 SDT_PROBE_DEFINE(proc, kernel, init, entry);
109 SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 0, "struct proc *");
110 SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 1, "int");
111 SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 2, "int");
112 SDT_PROBE_DEFINE(proc, kernel, init, return);
113 SDT_PROBE_ARGTYPE(proc, kernel, init, return, 0, "struct proc *");
114 SDT_PROBE_ARGTYPE(proc, kernel, init, return, 1, "int");
115 SDT_PROBE_ARGTYPE(proc, kernel, init, return, 2, "int");
116
117 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header");
118 MALLOC_DEFINE(M_SESSION, "session", "session header");
119 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
120 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
121
122 static void doenterpgrp(struct proc *, struct pgrp *);
123 static void orphanpg(struct pgrp *pg);
124 static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp);
125 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp);
126 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp,
127     int preferthread);
128 static void pgadjustjobc(struct pgrp *pgrp, int entering);
129 static void pgdelete(struct pgrp *);
130 static int proc_ctor(void *mem, int size, void *arg, int flags);
131 static void proc_dtor(void *mem, int size, void *arg);
132 static int proc_init(void *mem, int size, int flags);
133 static void proc_fini(void *mem, int size);
134 static void pargs_free(struct pargs *pa);
135
136 /*
137  * Other process lists
138  */
139 struct pidhashhead *pidhashtbl;
140 u_long pidhash;
141 struct pgrphashhead *pgrphashtbl;
142 u_long pgrphash;
143 struct proclist allproc;
144 struct proclist zombproc;
145 struct sx allproc_lock;
146 struct sx proctree_lock;
147 struct mtx ppeers_lock;
148 uma_zone_t proc_zone;
149
150 int kstack_pages = KSTACK_PAGES;
151 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0,
152     "Kernel stack size in pages");
153
154 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
155 #ifdef COMPAT_FREEBSD32
156 CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE);
157 #endif
158
159 /*
160  * Initialize global process hashing structures.
161  */
162 void
163 procinit()
164 {
165
166         sx_init(&allproc_lock, "allproc");
167         sx_init(&proctree_lock, "proctree");
168         mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF);
169         LIST_INIT(&allproc);
170         LIST_INIT(&zombproc);
171         pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash);
172         pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash);
173         proc_zone = uma_zcreate("PROC", sched_sizeof_proc(),
174             proc_ctor, proc_dtor, proc_init, proc_fini,
175             UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
176         uihashinit();
177 }
178
179 /*
180  * Prepare a proc for use.
181  */
182 static int
183 proc_ctor(void *mem, int size, void *arg, int flags)
184 {
185         struct proc *p;
186
187         p = (struct proc *)mem;
188         SDT_PROBE(proc, kernel, ctor , entry, p, size, arg, flags, 0);
189         EVENTHANDLER_INVOKE(process_ctor, p);
190         SDT_PROBE(proc, kernel, ctor , return, p, size, arg, flags, 0);
191         return (0);
192 }
193
194 /*
195  * Reclaim a proc after use.
196  */
197 static void
198 proc_dtor(void *mem, int size, void *arg)
199 {
200         struct proc *p;
201         struct thread *td;
202
203         /* INVARIANTS checks go here */
204         p = (struct proc *)mem;
205         td = FIRST_THREAD_IN_PROC(p);
206         SDT_PROBE(proc, kernel, dtor, entry, p, size, arg, td, 0);
207         if (td != NULL) {
208 #ifdef INVARIANTS
209                 KASSERT((p->p_numthreads == 1),
210                     ("bad number of threads in exiting process"));
211                 KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr"));
212 #endif
213                 /* Free all OSD associated to this thread. */
214                 osd_thread_exit(td);
215         }
216         EVENTHANDLER_INVOKE(process_dtor, p);
217         if (p->p_ksi != NULL)
218                 KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue"));
219         SDT_PROBE(proc, kernel, dtor, return, p, size, arg, 0, 0);
220 }
221
222 /*
223  * Initialize type-stable parts of a proc (when newly created).
224  */
225 static int
226 proc_init(void *mem, int size, int flags)
227 {
228         struct proc *p;
229
230         p = (struct proc *)mem;
231         SDT_PROBE(proc, kernel, init, entry, p, size, flags, 0, 0);
232         p->p_sched = (struct p_sched *)&p[1];
233         bzero(&p->p_mtx, sizeof(struct mtx));
234         mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK);
235         mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_RECURSE);
236         cv_init(&p->p_pwait, "ppwait");
237         TAILQ_INIT(&p->p_threads);           /* all threads in proc */
238         EVENTHANDLER_INVOKE(process_init, p);
239         p->p_stats = pstats_alloc();
240         SDT_PROBE(proc, kernel, init, return, p, size, flags, 0, 0);
241         return (0);
242 }
243
244 /*
245  * UMA should ensure that this function is never called.
246  * Freeing a proc structure would violate type stability.
247  */
248 static void
249 proc_fini(void *mem, int size)
250 {
251 #ifdef notnow
252         struct proc *p;
253
254         p = (struct proc *)mem;
255         EVENTHANDLER_INVOKE(process_fini, p);
256         pstats_free(p->p_stats);
257         thread_free(FIRST_THREAD_IN_PROC(p));
258         mtx_destroy(&p->p_mtx);
259         if (p->p_ksi != NULL)
260                 ksiginfo_free(p->p_ksi);
261 #else
262         panic("proc reclaimed");
263 #endif
264 }
265
266 /*
267  * Is p an inferior of the current process?
268  */
269 int
270 inferior(p)
271         register struct proc *p;
272 {
273
274         sx_assert(&proctree_lock, SX_LOCKED);
275         for (; p != curproc; p = p->p_pptr)
276                 if (p->p_pid == 0)
277                         return (0);
278         return (1);
279 }
280
281 /*
282  * Locate a process by number; return only "live" processes -- i.e., neither
283  * zombies nor newly born but incompletely initialized processes.  By not
284  * returning processes in the PRS_NEW state, we allow callers to avoid
285  * testing for that condition to avoid dereferencing p_ucred, et al.
286  */
287 struct proc *
288 pfind(pid)
289         register pid_t pid;
290 {
291         register struct proc *p;
292
293         sx_slock(&allproc_lock);
294         LIST_FOREACH(p, PIDHASH(pid), p_hash)
295                 if (p->p_pid == pid) {
296                         if (p->p_state == PRS_NEW) {
297                                 p = NULL;
298                                 break;
299                         }
300                         PROC_LOCK(p);
301                         break;
302                 }
303         sx_sunlock(&allproc_lock);
304         return (p);
305 }
306
307 /*
308  * Locate a process group by number.
309  * The caller must hold proctree_lock.
310  */
311 struct pgrp *
312 pgfind(pgid)
313         register pid_t pgid;
314 {
315         register struct pgrp *pgrp;
316
317         sx_assert(&proctree_lock, SX_LOCKED);
318
319         LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) {
320                 if (pgrp->pg_id == pgid) {
321                         PGRP_LOCK(pgrp);
322                         return (pgrp);
323                 }
324         }
325         return (NULL);
326 }
327
328 /*
329  * Create a new process group.
330  * pgid must be equal to the pid of p.
331  * Begin a new session if required.
332  */
333 int
334 enterpgrp(p, pgid, pgrp, sess)
335         register struct proc *p;
336         pid_t pgid;
337         struct pgrp *pgrp;
338         struct session *sess;
339 {
340         struct pgrp *pgrp2;
341
342         sx_assert(&proctree_lock, SX_XLOCKED);
343
344         KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL"));
345         KASSERT(p->p_pid == pgid,
346             ("enterpgrp: new pgrp and pid != pgid"));
347
348         pgrp2 = pgfind(pgid);
349
350         KASSERT(pgrp2 == NULL,
351             ("enterpgrp: pgrp with pgid exists"));
352         KASSERT(!SESS_LEADER(p),
353             ("enterpgrp: session leader attempted setpgrp"));
354
355         mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK);
356
357         if (sess != NULL) {
358                 /*
359                  * new session
360                  */
361                 mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF);
362                 PROC_LOCK(p);
363                 p->p_flag &= ~P_CONTROLT;
364                 PROC_UNLOCK(p);
365                 PGRP_LOCK(pgrp);
366                 sess->s_leader = p;
367                 sess->s_sid = p->p_pid;
368                 refcount_init(&sess->s_count, 1);
369                 sess->s_ttyvp = NULL;
370                 sess->s_ttyp = NULL;
371                 bcopy(p->p_session->s_login, sess->s_login,
372                             sizeof(sess->s_login));
373                 pgrp->pg_session = sess;
374                 KASSERT(p == curproc,
375                     ("enterpgrp: mksession and p != curproc"));
376         } else {
377                 pgrp->pg_session = p->p_session;
378                 sess_hold(pgrp->pg_session);
379                 PGRP_LOCK(pgrp);
380         }
381         pgrp->pg_id = pgid;
382         LIST_INIT(&pgrp->pg_members);
383
384         /*
385          * As we have an exclusive lock of proctree_lock,
386          * this should not deadlock.
387          */
388         LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash);
389         pgrp->pg_jobc = 0;
390         SLIST_INIT(&pgrp->pg_sigiolst);
391         PGRP_UNLOCK(pgrp);
392
393         doenterpgrp(p, pgrp);
394
395         return (0);
396 }
397
398 /*
399  * Move p to an existing process group
400  */
401 int
402 enterthispgrp(p, pgrp)
403         register struct proc *p;
404         struct pgrp *pgrp;
405 {
406
407         sx_assert(&proctree_lock, SX_XLOCKED);
408         PROC_LOCK_ASSERT(p, MA_NOTOWNED);
409         PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
410         PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
411         SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
412         KASSERT(pgrp->pg_session == p->p_session,
413                 ("%s: pgrp's session %p, p->p_session %p.\n",
414                 __func__,
415                 pgrp->pg_session,
416                 p->p_session));
417         KASSERT(pgrp != p->p_pgrp,
418                 ("%s: p belongs to pgrp.", __func__));
419
420         doenterpgrp(p, pgrp);
421
422         return (0);
423 }
424
425 /*
426  * Move p to a process group
427  */
428 static void
429 doenterpgrp(p, pgrp)
430         struct proc *p;
431         struct pgrp *pgrp;
432 {
433         struct pgrp *savepgrp;
434
435         sx_assert(&proctree_lock, SX_XLOCKED);
436         PROC_LOCK_ASSERT(p, MA_NOTOWNED);
437         PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
438         PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
439         SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
440
441         savepgrp = p->p_pgrp;
442
443         /*
444          * Adjust eligibility of affected pgrps to participate in job control.
445          * Increment eligibility counts before decrementing, otherwise we
446          * could reach 0 spuriously during the first call.
447          */
448         fixjobc(p, pgrp, 1);
449         fixjobc(p, p->p_pgrp, 0);
450
451         PGRP_LOCK(pgrp);
452         PGRP_LOCK(savepgrp);
453         PROC_LOCK(p);
454         LIST_REMOVE(p, p_pglist);
455         p->p_pgrp = pgrp;
456         PROC_UNLOCK(p);
457         LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
458         PGRP_UNLOCK(savepgrp);
459         PGRP_UNLOCK(pgrp);
460         if (LIST_EMPTY(&savepgrp->pg_members))
461                 pgdelete(savepgrp);
462 }
463
464 /*
465  * remove process from process group
466  */
467 int
468 leavepgrp(p)
469         register struct proc *p;
470 {
471         struct pgrp *savepgrp;
472
473         sx_assert(&proctree_lock, SX_XLOCKED);
474         savepgrp = p->p_pgrp;
475         PGRP_LOCK(savepgrp);
476         PROC_LOCK(p);
477         LIST_REMOVE(p, p_pglist);
478         p->p_pgrp = NULL;
479         PROC_UNLOCK(p);
480         PGRP_UNLOCK(savepgrp);
481         if (LIST_EMPTY(&savepgrp->pg_members))
482                 pgdelete(savepgrp);
483         return (0);
484 }
485
486 /*
487  * delete a process group
488  */
489 static void
490 pgdelete(pgrp)
491         register struct pgrp *pgrp;
492 {
493         struct session *savesess;
494         struct tty *tp;
495
496         sx_assert(&proctree_lock, SX_XLOCKED);
497         PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
498         SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
499
500         /*
501          * Reset any sigio structures pointing to us as a result of
502          * F_SETOWN with our pgid.
503          */
504         funsetownlst(&pgrp->pg_sigiolst);
505
506         PGRP_LOCK(pgrp);
507         tp = pgrp->pg_session->s_ttyp;
508         LIST_REMOVE(pgrp, pg_hash);
509         savesess = pgrp->pg_session;
510         PGRP_UNLOCK(pgrp);
511
512         /* Remove the reference to the pgrp before deallocating it. */
513         if (tp != NULL) {
514                 tty_lock(tp);
515                 tty_rel_pgrp(tp, pgrp);
516         }
517
518         mtx_destroy(&pgrp->pg_mtx);
519         free(pgrp, M_PGRP);
520         sess_release(savesess);
521 }
522
523 static void
524 pgadjustjobc(pgrp, entering)
525         struct pgrp *pgrp;
526         int entering;
527 {
528
529         PGRP_LOCK(pgrp);
530         if (entering)
531                 pgrp->pg_jobc++;
532         else {
533                 --pgrp->pg_jobc;
534                 if (pgrp->pg_jobc == 0)
535                         orphanpg(pgrp);
536         }
537         PGRP_UNLOCK(pgrp);
538 }
539
540 /*
541  * Adjust pgrp jobc counters when specified process changes process group.
542  * We count the number of processes in each process group that "qualify"
543  * the group for terminal job control (those with a parent in a different
544  * process group of the same session).  If that count reaches zero, the
545  * process group becomes orphaned.  Check both the specified process'
546  * process group and that of its children.
547  * entering == 0 => p is leaving specified group.
548  * entering == 1 => p is entering specified group.
549  */
550 void
551 fixjobc(p, pgrp, entering)
552         register struct proc *p;
553         register struct pgrp *pgrp;
554         int entering;
555 {
556         register struct pgrp *hispgrp;
557         register struct session *mysession;
558
559         sx_assert(&proctree_lock, SX_LOCKED);
560         PROC_LOCK_ASSERT(p, MA_NOTOWNED);
561         PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
562         SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
563
564         /*
565          * Check p's parent to see whether p qualifies its own process
566          * group; if so, adjust count for p's process group.
567          */
568         mysession = pgrp->pg_session;
569         if ((hispgrp = p->p_pptr->p_pgrp) != pgrp &&
570             hispgrp->pg_session == mysession)
571                 pgadjustjobc(pgrp, entering);
572
573         /*
574          * Check this process' children to see whether they qualify
575          * their process groups; if so, adjust counts for children's
576          * process groups.
577          */
578         LIST_FOREACH(p, &p->p_children, p_sibling) {
579                 hispgrp = p->p_pgrp;
580                 if (hispgrp == pgrp ||
581                     hispgrp->pg_session != mysession)
582                         continue;
583                 PROC_LOCK(p);
584                 if (p->p_state == PRS_ZOMBIE) {
585                         PROC_UNLOCK(p);
586                         continue;
587                 }
588                 PROC_UNLOCK(p);
589                 pgadjustjobc(hispgrp, entering);
590         }
591 }
592
593 /*
594  * A process group has become orphaned;
595  * if there are any stopped processes in the group,
596  * hang-up all process in that group.
597  */
598 static void
599 orphanpg(pg)
600         struct pgrp *pg;
601 {
602         register struct proc *p;
603
604         PGRP_LOCK_ASSERT(pg, MA_OWNED);
605
606         LIST_FOREACH(p, &pg->pg_members, p_pglist) {
607                 PROC_LOCK(p);
608                 if (P_SHOULDSTOP(p)) {
609                         PROC_UNLOCK(p);
610                         LIST_FOREACH(p, &pg->pg_members, p_pglist) {
611                                 PROC_LOCK(p);
612                                 psignal(p, SIGHUP);
613                                 psignal(p, SIGCONT);
614                                 PROC_UNLOCK(p);
615                         }
616                         return;
617                 }
618                 PROC_UNLOCK(p);
619         }
620 }
621
622 void
623 sess_hold(struct session *s)
624 {
625
626         refcount_acquire(&s->s_count);
627 }
628
629 void
630 sess_release(struct session *s)
631 {
632
633         if (refcount_release(&s->s_count)) {
634                 if (s->s_ttyp != NULL) {
635                         tty_lock(s->s_ttyp);
636                         tty_rel_sess(s->s_ttyp, s);
637                 }
638                 mtx_destroy(&s->s_mtx);
639                 free(s, M_SESSION);
640         }
641 }
642
643 #include "opt_ddb.h"
644 #ifdef DDB
645 #include <ddb/ddb.h>
646
647 DB_SHOW_COMMAND(pgrpdump, pgrpdump)
648 {
649         register struct pgrp *pgrp;
650         register struct proc *p;
651         register int i;
652
653         for (i = 0; i <= pgrphash; i++) {
654                 if (!LIST_EMPTY(&pgrphashtbl[i])) {
655                         printf("\tindx %d\n", i);
656                         LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) {
657                                 printf(
658                         "\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n",
659                                     (void *)pgrp, (long)pgrp->pg_id,
660                                     (void *)pgrp->pg_session,
661                                     pgrp->pg_session->s_count,
662                                     (void *)LIST_FIRST(&pgrp->pg_members));
663                                 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
664                                         printf("\t\tpid %ld addr %p pgrp %p\n", 
665                                             (long)p->p_pid, (void *)p,
666                                             (void *)p->p_pgrp);
667                                 }
668                         }
669                 }
670         }
671 }
672 #endif /* DDB */
673
674 /*
675  * Calculate the kinfo_proc members which contain process-wide
676  * informations.
677  * Must be called with the target process locked.
678  */
679 static void
680 fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp)
681 {
682         struct thread *td;
683
684         PROC_LOCK_ASSERT(p, MA_OWNED);
685
686         kp->ki_estcpu = 0;
687         kp->ki_pctcpu = 0;
688         FOREACH_THREAD_IN_PROC(p, td) {
689                 thread_lock(td);
690                 kp->ki_pctcpu += sched_pctcpu(td);
691                 kp->ki_estcpu += td->td_estcpu;
692                 thread_unlock(td);
693         }
694 }
695
696 /*
697  * Clear kinfo_proc and fill in any information that is common
698  * to all threads in the process.
699  * Must be called with the target process locked.
700  */
701 static void
702 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp)
703 {
704         struct thread *td0;
705         struct tty *tp;
706         struct session *sp;
707         struct ucred *cred;
708         struct sigacts *ps;
709
710         PROC_LOCK_ASSERT(p, MA_OWNED);
711         bzero(kp, sizeof(*kp));
712
713         kp->ki_structsize = sizeof(*kp);
714         kp->ki_paddr = p;
715         kp->ki_addr =/* p->p_addr; */0; /* XXX */
716         kp->ki_args = p->p_args;
717         kp->ki_textvp = p->p_textvp;
718 #ifdef KTRACE
719         kp->ki_tracep = p->p_tracevp;
720         mtx_lock(&ktrace_mtx);
721         kp->ki_traceflag = p->p_traceflag;
722         mtx_unlock(&ktrace_mtx);
723 #endif
724         kp->ki_fd = p->p_fd;
725         kp->ki_vmspace = p->p_vmspace;
726         kp->ki_flag = p->p_flag;
727         cred = p->p_ucred;
728         if (cred) {
729                 kp->ki_uid = cred->cr_uid;
730                 kp->ki_ruid = cred->cr_ruid;
731                 kp->ki_svuid = cred->cr_svuid;
732                 kp->ki_cr_flags = cred->cr_flags;
733                 /* XXX bde doesn't like KI_NGROUPS */
734                 if (cred->cr_ngroups > KI_NGROUPS) {
735                         kp->ki_ngroups = KI_NGROUPS;
736                         kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW;
737                 } else
738                         kp->ki_ngroups = cred->cr_ngroups;
739                 bcopy(cred->cr_groups, kp->ki_groups,
740                     kp->ki_ngroups * sizeof(gid_t));
741                 kp->ki_rgid = cred->cr_rgid;
742                 kp->ki_svgid = cred->cr_svgid;
743                 /* If jailed(cred), emulate the old P_JAILED flag. */
744                 if (jailed(cred)) {
745                         kp->ki_flag |= P_JAILED;
746                         /* If inside the jail, use 0 as a jail ID. */
747                         if (cred->cr_prison != curthread->td_ucred->cr_prison)
748                                 kp->ki_jid = cred->cr_prison->pr_id;
749                 }
750         }
751         ps = p->p_sigacts;
752         if (ps) {
753                 mtx_lock(&ps->ps_mtx);
754                 kp->ki_sigignore = ps->ps_sigignore;
755                 kp->ki_sigcatch = ps->ps_sigcatch;
756                 mtx_unlock(&ps->ps_mtx);
757         }
758         PROC_SLOCK(p);
759         if (p->p_state != PRS_NEW &&
760             p->p_state != PRS_ZOMBIE &&
761             p->p_vmspace != NULL) {
762                 struct vmspace *vm = p->p_vmspace;
763
764                 kp->ki_size = vm->vm_map.size;
765                 kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/
766                 FOREACH_THREAD_IN_PROC(p, td0) {
767                         if (!TD_IS_SWAPPED(td0))
768                                 kp->ki_rssize += td0->td_kstack_pages;
769                 }
770                 kp->ki_swrss = vm->vm_swrss;
771                 kp->ki_tsize = vm->vm_tsize;
772                 kp->ki_dsize = vm->vm_dsize;
773                 kp->ki_ssize = vm->vm_ssize;
774         } else if (p->p_state == PRS_ZOMBIE)
775                 kp->ki_stat = SZOMB;
776         if (kp->ki_flag & P_INMEM)
777                 kp->ki_sflag = PS_INMEM;
778         else
779                 kp->ki_sflag = 0;
780         /* Calculate legacy swtime as seconds since 'swtick'. */
781         kp->ki_swtime = (ticks - p->p_swtick) / hz;
782         kp->ki_pid = p->p_pid;
783         kp->ki_nice = p->p_nice;
784         rufetch(p, &kp->ki_rusage);
785         kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime);
786         PROC_SUNLOCK(p);
787         if ((p->p_flag & P_INMEM) && p->p_stats != NULL) {
788                 kp->ki_start = p->p_stats->p_start;
789                 timevaladd(&kp->ki_start, &boottime);
790                 PROC_SLOCK(p);
791                 calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime);
792                 PROC_SUNLOCK(p);
793                 calccru(p, &kp->ki_childutime, &kp->ki_childstime);
794
795                 /* Some callers want child-times in a single value */
796                 kp->ki_childtime = kp->ki_childstime;
797                 timevaladd(&kp->ki_childtime, &kp->ki_childutime);
798         }
799         tp = NULL;
800         if (p->p_pgrp) {
801                 kp->ki_pgid = p->p_pgrp->pg_id;
802                 kp->ki_jobc = p->p_pgrp->pg_jobc;
803                 sp = p->p_pgrp->pg_session;
804
805                 if (sp != NULL) {
806                         kp->ki_sid = sp->s_sid;
807                         SESS_LOCK(sp);
808                         strlcpy(kp->ki_login, sp->s_login,
809                             sizeof(kp->ki_login));
810                         if (sp->s_ttyvp)
811                                 kp->ki_kiflag |= KI_CTTY;
812                         if (SESS_LEADER(p))
813                                 kp->ki_kiflag |= KI_SLEADER;
814                         /* XXX proctree_lock */
815                         tp = sp->s_ttyp;
816                         SESS_UNLOCK(sp);
817                 }
818         }
819         if ((p->p_flag & P_CONTROLT) && tp != NULL) {
820                 kp->ki_tdev = tty_udev(tp);
821                 kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
822                 if (tp->t_session)
823                         kp->ki_tsid = tp->t_session->s_sid;
824         } else
825                 kp->ki_tdev = NODEV;
826         if (p->p_comm[0] != '\0')
827                 strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm));
828         if (p->p_sysent && p->p_sysent->sv_name != NULL &&
829             p->p_sysent->sv_name[0] != '\0')
830                 strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul));
831         kp->ki_siglist = p->p_siglist;
832         kp->ki_xstat = p->p_xstat;
833         kp->ki_acflag = p->p_acflag;
834         kp->ki_lock = p->p_lock;
835         if (p->p_pptr)
836                 kp->ki_ppid = p->p_pptr->p_pid;
837 }
838
839 /*
840  * Fill in information that is thread specific.  Must be called with
841  * target process locked.  If 'preferthread' is set, overwrite certain
842  * process-related fields that are maintained for both threads and
843  * processes.
844  */
845 static void
846 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread)
847 {
848         struct proc *p;
849
850         p = td->td_proc;
851         kp->ki_tdaddr = td;
852         PROC_LOCK_ASSERT(p, MA_OWNED);
853
854         thread_lock(td);
855         if (td->td_wmesg != NULL)
856                 strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg));
857         else
858                 bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg));
859         strlcpy(kp->ki_ocomm, td->td_name, sizeof(kp->ki_ocomm));
860         if (TD_ON_LOCK(td)) {
861                 kp->ki_kiflag |= KI_LOCKBLOCK;
862                 strlcpy(kp->ki_lockname, td->td_lockname,
863                     sizeof(kp->ki_lockname));
864         } else {
865                 kp->ki_kiflag &= ~KI_LOCKBLOCK;
866                 bzero(kp->ki_lockname, sizeof(kp->ki_lockname));
867         }
868
869         if (p->p_state == PRS_NORMAL) { /* approximate. */
870                 if (TD_ON_RUNQ(td) ||
871                     TD_CAN_RUN(td) ||
872                     TD_IS_RUNNING(td)) {
873                         kp->ki_stat = SRUN;
874                 } else if (P_SHOULDSTOP(p)) {
875                         kp->ki_stat = SSTOP;
876                 } else if (TD_IS_SLEEPING(td)) {
877                         kp->ki_stat = SSLEEP;
878                 } else if (TD_ON_LOCK(td)) {
879                         kp->ki_stat = SLOCK;
880                 } else {
881                         kp->ki_stat = SWAIT;
882                 }
883         } else if (p->p_state == PRS_ZOMBIE) {
884                 kp->ki_stat = SZOMB;
885         } else {
886                 kp->ki_stat = SIDL;
887         }
888
889         /* Things in the thread */
890         kp->ki_wchan = td->td_wchan;
891         kp->ki_pri.pri_level = td->td_priority;
892         kp->ki_pri.pri_native = td->td_base_pri;
893         kp->ki_lastcpu = td->td_lastcpu;
894         kp->ki_oncpu = td->td_oncpu;
895         kp->ki_tdflags = td->td_flags;
896         kp->ki_tid = td->td_tid;
897         kp->ki_numthreads = p->p_numthreads;
898         kp->ki_pcb = td->td_pcb;
899         kp->ki_kstack = (void *)td->td_kstack;
900         kp->ki_slptime = (ticks - td->td_slptick) / hz;
901         kp->ki_pri.pri_class = td->td_pri_class;
902         kp->ki_pri.pri_user = td->td_user_pri;
903
904         if (preferthread) {
905                 kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime);
906                 kp->ki_pctcpu = sched_pctcpu(td);
907                 kp->ki_estcpu = td->td_estcpu;
908         }
909
910         /* We can't get this anymore but ps etc never used it anyway. */
911         kp->ki_rqindex = 0;
912
913         if (preferthread)
914                 kp->ki_siglist = td->td_siglist;
915         kp->ki_sigmask = td->td_sigmask;
916         thread_unlock(td);
917 }
918
919 /*
920  * Fill in a kinfo_proc structure for the specified process.
921  * Must be called with the target process locked.
922  */
923 void
924 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp)
925 {
926
927         MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
928
929         fill_kinfo_proc_only(p, kp);
930         fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0);
931         fill_kinfo_aggregate(p, kp);
932 }
933
934 struct pstats *
935 pstats_alloc(void)
936 {
937
938         return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK));
939 }
940
941 /*
942  * Copy parts of p_stats; zero the rest of p_stats (statistics).
943  */
944 void
945 pstats_fork(struct pstats *src, struct pstats *dst)
946 {
947
948         bzero(&dst->pstat_startzero,
949             __rangeof(struct pstats, pstat_startzero, pstat_endzero));
950         bcopy(&src->pstat_startcopy, &dst->pstat_startcopy,
951             __rangeof(struct pstats, pstat_startcopy, pstat_endcopy));
952 }
953
954 void
955 pstats_free(struct pstats *ps)
956 {
957
958         free(ps, M_SUBPROC);
959 }
960
961 /*
962  * Locate a zombie process by number
963  */
964 struct proc *
965 zpfind(pid_t pid)
966 {
967         struct proc *p;
968
969         sx_slock(&allproc_lock);
970         LIST_FOREACH(p, &zombproc, p_list)
971                 if (p->p_pid == pid) {
972                         PROC_LOCK(p);
973                         break;
974                 }
975         sx_sunlock(&allproc_lock);
976         return (p);
977 }
978
979 #define KERN_PROC_ZOMBMASK      0x3
980 #define KERN_PROC_NOTHREADS     0x4
981
982 #ifdef COMPAT_FREEBSD32
983
984 /*
985  * This function is typically used to copy out the kernel address, so
986  * it can be replaced by assignment of zero.
987  */
988 static inline uint32_t
989 ptr32_trim(void *ptr)
990 {
991         uintptr_t uptr;
992
993         uptr = (uintptr_t)ptr;
994         return ((uptr > UINT_MAX) ? 0 : uptr);
995 }
996
997 #define PTRTRIM_CP(src,dst,fld) \
998         do { (dst).fld = ptr32_trim((src).fld); } while (0)
999
1000 static void
1001 freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32)
1002 {
1003         int i;
1004
1005         bzero(ki32, sizeof(struct kinfo_proc32));
1006         ki32->ki_structsize = sizeof(struct kinfo_proc32);
1007         CP(*ki, *ki32, ki_layout);
1008         PTRTRIM_CP(*ki, *ki32, ki_args);
1009         PTRTRIM_CP(*ki, *ki32, ki_paddr);
1010         PTRTRIM_CP(*ki, *ki32, ki_addr);
1011         PTRTRIM_CP(*ki, *ki32, ki_tracep);
1012         PTRTRIM_CP(*ki, *ki32, ki_textvp);
1013         PTRTRIM_CP(*ki, *ki32, ki_fd);
1014         PTRTRIM_CP(*ki, *ki32, ki_vmspace);
1015         PTRTRIM_CP(*ki, *ki32, ki_wchan);
1016         CP(*ki, *ki32, ki_pid);
1017         CP(*ki, *ki32, ki_ppid);
1018         CP(*ki, *ki32, ki_pgid);
1019         CP(*ki, *ki32, ki_tpgid);
1020         CP(*ki, *ki32, ki_sid);
1021         CP(*ki, *ki32, ki_tsid);
1022         CP(*ki, *ki32, ki_jobc);
1023         CP(*ki, *ki32, ki_tdev);
1024         CP(*ki, *ki32, ki_siglist);
1025         CP(*ki, *ki32, ki_sigmask);
1026         CP(*ki, *ki32, ki_sigignore);
1027         CP(*ki, *ki32, ki_sigcatch);
1028         CP(*ki, *ki32, ki_uid);
1029         CP(*ki, *ki32, ki_ruid);
1030         CP(*ki, *ki32, ki_svuid);
1031         CP(*ki, *ki32, ki_rgid);
1032         CP(*ki, *ki32, ki_svgid);
1033         CP(*ki, *ki32, ki_ngroups);
1034         for (i = 0; i < KI_NGROUPS; i++)
1035                 CP(*ki, *ki32, ki_groups[i]);
1036         CP(*ki, *ki32, ki_size);
1037         CP(*ki, *ki32, ki_rssize);
1038         CP(*ki, *ki32, ki_swrss);
1039         CP(*ki, *ki32, ki_tsize);
1040         CP(*ki, *ki32, ki_dsize);
1041         CP(*ki, *ki32, ki_ssize);
1042         CP(*ki, *ki32, ki_xstat);
1043         CP(*ki, *ki32, ki_acflag);
1044         CP(*ki, *ki32, ki_pctcpu);
1045         CP(*ki, *ki32, ki_estcpu);
1046         CP(*ki, *ki32, ki_slptime);
1047         CP(*ki, *ki32, ki_swtime);
1048         CP(*ki, *ki32, ki_runtime);
1049         TV_CP(*ki, *ki32, ki_start);
1050         TV_CP(*ki, *ki32, ki_childtime);
1051         CP(*ki, *ki32, ki_flag);
1052         CP(*ki, *ki32, ki_kiflag);
1053         CP(*ki, *ki32, ki_traceflag);
1054         CP(*ki, *ki32, ki_stat);
1055         CP(*ki, *ki32, ki_nice);
1056         CP(*ki, *ki32, ki_lock);
1057         CP(*ki, *ki32, ki_rqindex);
1058         CP(*ki, *ki32, ki_oncpu);
1059         CP(*ki, *ki32, ki_lastcpu);
1060         bcopy(ki->ki_ocomm, ki32->ki_ocomm, OCOMMLEN + 1);
1061         bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1);
1062         bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1);
1063         bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1);
1064         bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1);
1065         bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1);
1066         CP(*ki, *ki32, ki_cr_flags);
1067         CP(*ki, *ki32, ki_jid);
1068         CP(*ki, *ki32, ki_numthreads);
1069         CP(*ki, *ki32, ki_tid);
1070         CP(*ki, *ki32, ki_pri);
1071         freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage);
1072         freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch);
1073         PTRTRIM_CP(*ki, *ki32, ki_pcb);
1074         PTRTRIM_CP(*ki, *ki32, ki_kstack);
1075         PTRTRIM_CP(*ki, *ki32, ki_udata);
1076         CP(*ki, *ki32, ki_sflag);
1077         CP(*ki, *ki32, ki_tdflags);
1078 }
1079
1080 static int
1081 sysctl_out_proc_copyout(struct kinfo_proc *ki, struct sysctl_req *req)
1082 {
1083         struct kinfo_proc32 ki32;
1084         int error;
1085
1086         if (req->flags & SCTL_MASK32) {
1087                 freebsd32_kinfo_proc_out(ki, &ki32);
1088                 error = SYSCTL_OUT(req, &ki32, sizeof(struct kinfo_proc32));
1089         } else
1090                 error = SYSCTL_OUT(req, ki, sizeof(struct kinfo_proc));
1091         return (error);
1092 }
1093 #else
1094 static int
1095 sysctl_out_proc_copyout(struct kinfo_proc *ki, struct sysctl_req *req)
1096 {
1097
1098         return (SYSCTL_OUT(req, ki, sizeof(struct kinfo_proc)));
1099 }
1100 #endif
1101
1102 /*
1103  * Must be called with the process locked and will return with it unlocked.
1104  */
1105 static int
1106 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags)
1107 {
1108         struct thread *td;
1109         struct kinfo_proc kinfo_proc;
1110         int error = 0;
1111         struct proc *np;
1112         pid_t pid = p->p_pid;
1113
1114         PROC_LOCK_ASSERT(p, MA_OWNED);
1115         MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
1116
1117         fill_kinfo_proc(p, &kinfo_proc);
1118         if (flags & KERN_PROC_NOTHREADS)
1119                 error = sysctl_out_proc_copyout(&kinfo_proc, req);
1120         else {
1121                 FOREACH_THREAD_IN_PROC(p, td) {
1122                         fill_kinfo_thread(td, &kinfo_proc, 1);
1123                         error = sysctl_out_proc_copyout(&kinfo_proc, req);
1124                         if (error)
1125                                 break;
1126                 }
1127         }
1128         PROC_UNLOCK(p);
1129         if (error)
1130                 return (error);
1131         if (flags & KERN_PROC_ZOMBMASK)
1132                 np = zpfind(pid);
1133         else {
1134                 if (pid == 0)
1135                         return (0);
1136                 np = pfind(pid);
1137         }
1138         if (np == NULL)
1139                 return (ESRCH);
1140         if (np != p) {
1141                 PROC_UNLOCK(np);
1142                 return (ESRCH);
1143         }
1144         PROC_UNLOCK(np);
1145         return (0);
1146 }
1147
1148 static int
1149 sysctl_kern_proc(SYSCTL_HANDLER_ARGS)
1150 {
1151         int *name = (int*) arg1;
1152         u_int namelen = arg2;
1153         struct proc *p;
1154         int flags, doingzomb, oid_number;
1155         int error = 0;
1156
1157         oid_number = oidp->oid_number;
1158         if (oid_number != KERN_PROC_ALL &&
1159             (oid_number & KERN_PROC_INC_THREAD) == 0)
1160                 flags = KERN_PROC_NOTHREADS;
1161         else {
1162                 flags = 0;
1163                 oid_number &= ~KERN_PROC_INC_THREAD;
1164         }
1165         if (oid_number == KERN_PROC_PID) {
1166                 if (namelen != 1) 
1167                         return (EINVAL);
1168                 error = sysctl_wire_old_buffer(req, 0);
1169                 if (error)
1170                         return (error);         
1171                 p = pfind((pid_t)name[0]);
1172                 if (!p)
1173                         return (ESRCH);
1174                 if ((error = p_cansee(curthread, p))) {
1175                         PROC_UNLOCK(p);
1176                         return (error);
1177                 }
1178                 error = sysctl_out_proc(p, req, flags);
1179                 return (error);
1180         }
1181
1182         switch (oid_number) {
1183         case KERN_PROC_ALL:
1184                 if (namelen != 0)
1185                         return (EINVAL);
1186                 break;
1187         case KERN_PROC_PROC:
1188                 if (namelen != 0 && namelen != 1)
1189                         return (EINVAL);
1190                 break;
1191         default:
1192                 if (namelen != 1)
1193                         return (EINVAL);
1194                 break;
1195         }
1196         
1197         if (!req->oldptr) {
1198                 /* overestimate by 5 procs */
1199                 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5);
1200                 if (error)
1201                         return (error);
1202         }
1203         error = sysctl_wire_old_buffer(req, 0);
1204         if (error != 0)
1205                 return (error);
1206         sx_slock(&allproc_lock);
1207         for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) {
1208                 if (!doingzomb)
1209                         p = LIST_FIRST(&allproc);
1210                 else
1211                         p = LIST_FIRST(&zombproc);
1212                 for (; p != 0; p = LIST_NEXT(p, p_list)) {
1213                         /*
1214                          * Skip embryonic processes.
1215                          */
1216                         PROC_SLOCK(p);
1217                         if (p->p_state == PRS_NEW) {
1218                                 PROC_SUNLOCK(p);
1219                                 continue;
1220                         }
1221                         PROC_SUNLOCK(p);
1222                         PROC_LOCK(p);
1223                         KASSERT(p->p_ucred != NULL,
1224                             ("process credential is NULL for non-NEW proc"));
1225                         /*
1226                          * Show a user only appropriate processes.
1227                          */
1228                         if (p_cansee(curthread, p)) {
1229                                 PROC_UNLOCK(p);
1230                                 continue;
1231                         }
1232                         /*
1233                          * TODO - make more efficient (see notes below).
1234                          * do by session.
1235                          */
1236                         switch (oid_number) {
1237
1238                         case KERN_PROC_GID:
1239                                 if (p->p_ucred->cr_gid != (gid_t)name[0]) {
1240                                         PROC_UNLOCK(p);
1241                                         continue;
1242                                 }
1243                                 break;
1244
1245                         case KERN_PROC_PGRP:
1246                                 /* could do this by traversing pgrp */
1247                                 if (p->p_pgrp == NULL ||
1248                                     p->p_pgrp->pg_id != (pid_t)name[0]) {
1249                                         PROC_UNLOCK(p);
1250                                         continue;
1251                                 }
1252                                 break;
1253
1254                         case KERN_PROC_RGID:
1255                                 if (p->p_ucred->cr_rgid != (gid_t)name[0]) {
1256                                         PROC_UNLOCK(p);
1257                                         continue;
1258                                 }
1259                                 break;
1260
1261                         case KERN_PROC_SESSION:
1262                                 if (p->p_session == NULL ||
1263                                     p->p_session->s_sid != (pid_t)name[0]) {
1264                                         PROC_UNLOCK(p);
1265                                         continue;
1266                                 }
1267                                 break;
1268
1269                         case KERN_PROC_TTY:
1270                                 if ((p->p_flag & P_CONTROLT) == 0 ||
1271                                     p->p_session == NULL) {
1272                                         PROC_UNLOCK(p);
1273                                         continue;
1274                                 }
1275                                 /* XXX proctree_lock */
1276                                 SESS_LOCK(p->p_session);
1277                                 if (p->p_session->s_ttyp == NULL ||
1278                                     tty_udev(p->p_session->s_ttyp) != 
1279                                     (dev_t)name[0]) {
1280                                         SESS_UNLOCK(p->p_session);
1281                                         PROC_UNLOCK(p);
1282                                         continue;
1283                                 }
1284                                 SESS_UNLOCK(p->p_session);
1285                                 break;
1286
1287                         case KERN_PROC_UID:
1288                                 if (p->p_ucred->cr_uid != (uid_t)name[0]) {
1289                                         PROC_UNLOCK(p);
1290                                         continue;
1291                                 }
1292                                 break;
1293
1294                         case KERN_PROC_RUID:
1295                                 if (p->p_ucred->cr_ruid != (uid_t)name[0]) {
1296                                         PROC_UNLOCK(p);
1297                                         continue;
1298                                 }
1299                                 break;
1300
1301                         case KERN_PROC_PROC:
1302                                 break;
1303
1304                         default:
1305                                 break;
1306
1307                         }
1308
1309                         error = sysctl_out_proc(p, req, flags | doingzomb);
1310                         if (error) {
1311                                 sx_sunlock(&allproc_lock);
1312                                 return (error);
1313                         }
1314                 }
1315         }
1316         sx_sunlock(&allproc_lock);
1317         return (0);
1318 }
1319
1320 struct pargs *
1321 pargs_alloc(int len)
1322 {
1323         struct pargs *pa;
1324
1325         pa = malloc(sizeof(struct pargs) + len, M_PARGS,
1326                 M_WAITOK);
1327         refcount_init(&pa->ar_ref, 1);
1328         pa->ar_length = len;
1329         return (pa);
1330 }
1331
1332 static void
1333 pargs_free(struct pargs *pa)
1334 {
1335
1336         free(pa, M_PARGS);
1337 }
1338
1339 void
1340 pargs_hold(struct pargs *pa)
1341 {
1342
1343         if (pa == NULL)
1344                 return;
1345         refcount_acquire(&pa->ar_ref);
1346 }
1347
1348 void
1349 pargs_drop(struct pargs *pa)
1350 {
1351
1352         if (pa == NULL)
1353                 return;
1354         if (refcount_release(&pa->ar_ref))
1355                 pargs_free(pa);
1356 }
1357
1358 /*
1359  * This sysctl allows a process to retrieve the argument list or process
1360  * title for another process without groping around in the address space
1361  * of the other process.  It also allow a process to set its own "process 
1362  * title to a string of its own choice.
1363  */
1364 static int
1365 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS)
1366 {
1367         int *name = (int*) arg1;
1368         u_int namelen = arg2;
1369         struct pargs *newpa, *pa;
1370         struct proc *p;
1371         int error = 0;
1372
1373         if (namelen != 1) 
1374                 return (EINVAL);
1375
1376         p = pfind((pid_t)name[0]);
1377         if (!p)
1378                 return (ESRCH);
1379
1380         if ((error = p_cansee(curthread, p)) != 0) {
1381                 PROC_UNLOCK(p);
1382                 return (error);
1383         }
1384
1385         if (req->newptr && curproc != p) {
1386                 PROC_UNLOCK(p);
1387                 return (EPERM);
1388         }
1389
1390         pa = p->p_args;
1391         pargs_hold(pa);
1392         PROC_UNLOCK(p);
1393         if (req->oldptr != NULL && pa != NULL)
1394                 error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length);
1395         pargs_drop(pa);
1396         if (error != 0 || req->newptr == NULL)
1397                 return (error);
1398
1399         if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit)
1400                 return (ENOMEM);
1401         newpa = pargs_alloc(req->newlen);
1402         error = SYSCTL_IN(req, newpa->ar_args, req->newlen);
1403         if (error != 0) {
1404                 pargs_free(newpa);
1405                 return (error);
1406         }
1407         PROC_LOCK(p);
1408         pa = p->p_args;
1409         p->p_args = newpa;
1410         PROC_UNLOCK(p);
1411         pargs_drop(pa);
1412         return (0);
1413 }
1414
1415 /*
1416  * This sysctl allows a process to retrieve the path of the executable for
1417  * itself or another process.
1418  */
1419 static int
1420 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS)
1421 {
1422         pid_t *pidp = (pid_t *)arg1;
1423         unsigned int arglen = arg2;
1424         struct proc *p;
1425         struct vnode *vp;
1426         char *retbuf, *freebuf;
1427         int error, vfslocked;
1428
1429         if (arglen != 1)
1430                 return (EINVAL);
1431         if (*pidp == -1) {      /* -1 means this process */
1432                 p = req->td->td_proc;
1433         } else {
1434                 p = pfind(*pidp);
1435                 if (p == NULL)
1436                         return (ESRCH);
1437                 if ((error = p_cansee(curthread, p)) != 0) {
1438                         PROC_UNLOCK(p);
1439                         return (error);
1440                 }
1441         }
1442
1443         vp = p->p_textvp;
1444         if (vp == NULL) {
1445                 if (*pidp != -1)
1446                         PROC_UNLOCK(p);
1447                 return (0);
1448         }
1449         vref(vp);
1450         if (*pidp != -1)
1451                 PROC_UNLOCK(p);
1452         error = vn_fullpath(req->td, vp, &retbuf, &freebuf);
1453         vfslocked = VFS_LOCK_GIANT(vp->v_mount);
1454         vrele(vp);
1455         VFS_UNLOCK_GIANT(vfslocked);
1456         if (error)
1457                 return (error);
1458         error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1);
1459         free(freebuf, M_TEMP);
1460         return (error);
1461 }
1462
1463 static int
1464 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS)
1465 {
1466         struct proc *p;
1467         char *sv_name;
1468         int *name;
1469         int namelen;
1470         int error;
1471
1472         namelen = arg2;
1473         if (namelen != 1) 
1474                 return (EINVAL);
1475
1476         name = (int *)arg1;
1477         if ((p = pfind((pid_t)name[0])) == NULL)
1478                 return (ESRCH);
1479         if ((error = p_cansee(curthread, p))) {
1480                 PROC_UNLOCK(p);
1481                 return (error);
1482         }
1483         sv_name = p->p_sysent->sv_name;
1484         PROC_UNLOCK(p);
1485         return (sysctl_handle_string(oidp, sv_name, 0, req));
1486 }
1487
1488 #ifdef KINFO_OVMENTRY_SIZE
1489 CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE);
1490 #endif
1491
1492 #ifdef COMPAT_FREEBSD7
1493 static int
1494 sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS)
1495 {
1496         vm_map_entry_t entry, tmp_entry;
1497         unsigned int last_timestamp;
1498         char *fullpath, *freepath;
1499         struct kinfo_ovmentry *kve;
1500         struct vattr va;
1501         struct ucred *cred;
1502         int error, *name;
1503         struct vnode *vp;
1504         struct proc *p;
1505         vm_map_t map;
1506         struct vmspace *vm;
1507
1508         name = (int *)arg1;
1509         if ((p = pfind((pid_t)name[0])) == NULL)
1510                 return (ESRCH);
1511         if (p->p_flag & P_WEXIT) {
1512                 PROC_UNLOCK(p);
1513                 return (ESRCH);
1514         }
1515         if ((error = p_candebug(curthread, p))) {
1516                 PROC_UNLOCK(p);
1517                 return (error);
1518         }
1519         _PHOLD(p);
1520         PROC_UNLOCK(p);
1521         vm = vmspace_acquire_ref(p);
1522         if (vm == NULL) {
1523                 PRELE(p);
1524                 return (ESRCH);
1525         }
1526         kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK);
1527
1528         map = &p->p_vmspace->vm_map;    /* XXXRW: More locking required? */
1529         vm_map_lock_read(map);
1530         for (entry = map->header.next; entry != &map->header;
1531             entry = entry->next) {
1532                 vm_object_t obj, tobj, lobj;
1533                 vm_offset_t addr;
1534                 int vfslocked;
1535
1536                 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
1537                         continue;
1538
1539                 bzero(kve, sizeof(*kve));
1540                 kve->kve_structsize = sizeof(*kve);
1541
1542                 kve->kve_private_resident = 0;
1543                 obj = entry->object.vm_object;
1544                 if (obj != NULL) {
1545                         VM_OBJECT_LOCK(obj);
1546                         if (obj->shadow_count == 1)
1547                                 kve->kve_private_resident =
1548                                     obj->resident_page_count;
1549                 }
1550                 kve->kve_resident = 0;
1551                 addr = entry->start;
1552                 while (addr < entry->end) {
1553                         if (pmap_extract(map->pmap, addr))
1554                                 kve->kve_resident++;
1555                         addr += PAGE_SIZE;
1556                 }
1557
1558                 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) {
1559                         if (tobj != obj)
1560                                 VM_OBJECT_LOCK(tobj);
1561                         if (lobj != obj)
1562                                 VM_OBJECT_UNLOCK(lobj);
1563                         lobj = tobj;
1564                 }
1565
1566                 kve->kve_start = (void*)entry->start;
1567                 kve->kve_end = (void*)entry->end;
1568                 kve->kve_offset = (off_t)entry->offset;
1569
1570                 if (entry->protection & VM_PROT_READ)
1571                         kve->kve_protection |= KVME_PROT_READ;
1572                 if (entry->protection & VM_PROT_WRITE)
1573                         kve->kve_protection |= KVME_PROT_WRITE;
1574                 if (entry->protection & VM_PROT_EXECUTE)
1575                         kve->kve_protection |= KVME_PROT_EXEC;
1576
1577                 if (entry->eflags & MAP_ENTRY_COW)
1578                         kve->kve_flags |= KVME_FLAG_COW;
1579                 if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
1580                         kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
1581                 if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
1582                         kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
1583
1584                 last_timestamp = map->timestamp;
1585                 vm_map_unlock_read(map);
1586
1587                 kve->kve_fileid = 0;
1588                 kve->kve_fsid = 0;
1589                 freepath = NULL;
1590                 fullpath = "";
1591                 if (lobj) {
1592                         vp = NULL;
1593                         switch (lobj->type) {
1594                         case OBJT_DEFAULT:
1595                                 kve->kve_type = KVME_TYPE_DEFAULT;
1596                                 break;
1597                         case OBJT_VNODE:
1598                                 kve->kve_type = KVME_TYPE_VNODE;
1599                                 vp = lobj->handle;
1600                                 vref(vp);
1601                                 break;
1602                         case OBJT_SWAP:
1603                                 kve->kve_type = KVME_TYPE_SWAP;
1604                                 break;
1605                         case OBJT_DEVICE:
1606                                 kve->kve_type = KVME_TYPE_DEVICE;
1607                                 break;
1608                         case OBJT_PHYS:
1609                                 kve->kve_type = KVME_TYPE_PHYS;
1610                                 break;
1611                         case OBJT_DEAD:
1612                                 kve->kve_type = KVME_TYPE_DEAD;
1613                                 break;
1614                         case OBJT_SG:
1615                                 kve->kve_type = KVME_TYPE_SG;
1616                                 break;
1617                         default:
1618                                 kve->kve_type = KVME_TYPE_UNKNOWN;
1619                                 break;
1620                         }
1621                         if (lobj != obj)
1622                                 VM_OBJECT_UNLOCK(lobj);
1623
1624                         kve->kve_ref_count = obj->ref_count;
1625                         kve->kve_shadow_count = obj->shadow_count;
1626                         VM_OBJECT_UNLOCK(obj);
1627                         if (vp != NULL) {
1628                                 vn_fullpath(curthread, vp, &fullpath,
1629                                     &freepath);
1630                                 cred = curthread->td_ucred;
1631                                 vfslocked = VFS_LOCK_GIANT(vp->v_mount);
1632                                 vn_lock(vp, LK_SHARED | LK_RETRY);
1633                                 if (VOP_GETATTR(vp, &va, cred) == 0) {
1634                                         kve->kve_fileid = va.va_fileid;
1635                                         kve->kve_fsid = va.va_fsid;
1636                                 }
1637                                 vput(vp);
1638                                 VFS_UNLOCK_GIANT(vfslocked);
1639                         }
1640                 } else {
1641                         kve->kve_type = KVME_TYPE_NONE;
1642                         kve->kve_ref_count = 0;
1643                         kve->kve_shadow_count = 0;
1644                 }
1645
1646                 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
1647                 if (freepath != NULL)
1648                         free(freepath, M_TEMP);
1649
1650                 error = SYSCTL_OUT(req, kve, sizeof(*kve));
1651                 vm_map_lock_read(map);
1652                 if (error)
1653                         break;
1654                 if (last_timestamp != map->timestamp) {
1655                         vm_map_lookup_entry(map, addr - 1, &tmp_entry);
1656                         entry = tmp_entry;
1657                 }
1658         }
1659         vm_map_unlock_read(map);
1660         vmspace_free(vm);
1661         PRELE(p);
1662         free(kve, M_TEMP);
1663         return (error);
1664 }
1665 #endif  /* COMPAT_FREEBSD7 */
1666
1667 #ifdef KINFO_VMENTRY_SIZE
1668 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE);
1669 #endif
1670
1671 static int
1672 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS)
1673 {
1674         vm_map_entry_t entry, tmp_entry;
1675         unsigned int last_timestamp;
1676         char *fullpath, *freepath;
1677         struct kinfo_vmentry *kve;
1678         struct vattr va;
1679         struct ucred *cred;
1680         int error, *name;
1681         struct vnode *vp;
1682         struct proc *p;
1683         struct vmspace *vm;
1684         vm_map_t map;
1685
1686         name = (int *)arg1;
1687         if ((p = pfind((pid_t)name[0])) == NULL)
1688                 return (ESRCH);
1689         if (p->p_flag & P_WEXIT) {
1690                 PROC_UNLOCK(p);
1691                 return (ESRCH);
1692         }
1693         if ((error = p_candebug(curthread, p))) {
1694                 PROC_UNLOCK(p);
1695                 return (error);
1696         }
1697         _PHOLD(p);
1698         PROC_UNLOCK(p);
1699         vm = vmspace_acquire_ref(p);
1700         if (vm == NULL) {
1701                 PRELE(p);
1702                 return (ESRCH);
1703         }
1704         kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK);
1705
1706         map = &vm->vm_map;      /* XXXRW: More locking required? */
1707         vm_map_lock_read(map);
1708         for (entry = map->header.next; entry != &map->header;
1709             entry = entry->next) {
1710                 vm_object_t obj, tobj, lobj;
1711                 vm_offset_t addr;
1712                 int vfslocked;
1713
1714                 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
1715                         continue;
1716
1717                 bzero(kve, sizeof(*kve));
1718
1719                 kve->kve_private_resident = 0;
1720                 obj = entry->object.vm_object;
1721                 if (obj != NULL) {
1722                         VM_OBJECT_LOCK(obj);
1723                         if (obj->shadow_count == 1)
1724                                 kve->kve_private_resident =
1725                                     obj->resident_page_count;
1726                 }
1727                 kve->kve_resident = 0;
1728                 addr = entry->start;
1729                 while (addr < entry->end) {
1730                         if (pmap_extract(map->pmap, addr))
1731                                 kve->kve_resident++;
1732                         addr += PAGE_SIZE;
1733                 }
1734
1735                 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) {
1736                         if (tobj != obj)
1737                                 VM_OBJECT_LOCK(tobj);
1738                         if (lobj != obj)
1739                                 VM_OBJECT_UNLOCK(lobj);
1740                         lobj = tobj;
1741                 }
1742
1743                 kve->kve_start = entry->start;
1744                 kve->kve_end = entry->end;
1745                 kve->kve_offset = entry->offset;
1746
1747                 if (entry->protection & VM_PROT_READ)
1748                         kve->kve_protection |= KVME_PROT_READ;
1749                 if (entry->protection & VM_PROT_WRITE)
1750                         kve->kve_protection |= KVME_PROT_WRITE;
1751                 if (entry->protection & VM_PROT_EXECUTE)
1752                         kve->kve_protection |= KVME_PROT_EXEC;
1753
1754                 if (entry->eflags & MAP_ENTRY_COW)
1755                         kve->kve_flags |= KVME_FLAG_COW;
1756                 if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
1757                         kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
1758                 if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
1759                         kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
1760
1761                 last_timestamp = map->timestamp;
1762                 vm_map_unlock_read(map);
1763
1764                 kve->kve_fileid = 0;
1765                 kve->kve_fsid = 0;
1766                 freepath = NULL;
1767                 fullpath = "";
1768                 if (lobj) {
1769                         vp = NULL;
1770                         switch (lobj->type) {
1771                         case OBJT_DEFAULT:
1772                                 kve->kve_type = KVME_TYPE_DEFAULT;
1773                                 break;
1774                         case OBJT_VNODE:
1775                                 kve->kve_type = KVME_TYPE_VNODE;
1776                                 vp = lobj->handle;
1777                                 vref(vp);
1778                                 break;
1779                         case OBJT_SWAP:
1780                                 kve->kve_type = KVME_TYPE_SWAP;
1781                                 break;
1782                         case OBJT_DEVICE:
1783                                 kve->kve_type = KVME_TYPE_DEVICE;
1784                                 break;
1785                         case OBJT_PHYS:
1786                                 kve->kve_type = KVME_TYPE_PHYS;
1787                                 break;
1788                         case OBJT_DEAD:
1789                                 kve->kve_type = KVME_TYPE_DEAD;
1790                                 break;
1791                         case OBJT_SG:
1792                                 kve->kve_type = KVME_TYPE_SG;
1793                                 break;
1794                         default:
1795                                 kve->kve_type = KVME_TYPE_UNKNOWN;
1796                                 break;
1797                         }
1798                         if (lobj != obj)
1799                                 VM_OBJECT_UNLOCK(lobj);
1800
1801                         kve->kve_ref_count = obj->ref_count;
1802                         kve->kve_shadow_count = obj->shadow_count;
1803                         VM_OBJECT_UNLOCK(obj);
1804                         if (vp != NULL) {
1805                                 vn_fullpath(curthread, vp, &fullpath,
1806                                     &freepath);
1807                                 cred = curthread->td_ucred;
1808                                 vfslocked = VFS_LOCK_GIANT(vp->v_mount);
1809                                 vn_lock(vp, LK_SHARED | LK_RETRY);
1810                                 if (VOP_GETATTR(vp, &va, cred) == 0) {
1811                                         kve->kve_fileid = va.va_fileid;
1812                                         kve->kve_fsid = va.va_fsid;
1813                                 }
1814                                 vput(vp);
1815                                 VFS_UNLOCK_GIANT(vfslocked);
1816                         }
1817                 } else {
1818                         kve->kve_type = KVME_TYPE_NONE;
1819                         kve->kve_ref_count = 0;
1820                         kve->kve_shadow_count = 0;
1821                 }
1822
1823                 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
1824                 if (freepath != NULL)
1825                         free(freepath, M_TEMP);
1826
1827                 /* Pack record size down */
1828                 kve->kve_structsize = offsetof(struct kinfo_vmentry, kve_path) +
1829                     strlen(kve->kve_path) + 1;
1830                 kve->kve_structsize = roundup(kve->kve_structsize,
1831                     sizeof(uint64_t));
1832                 error = SYSCTL_OUT(req, kve, kve->kve_structsize);
1833                 vm_map_lock_read(map);
1834                 if (error)
1835                         break;
1836                 if (last_timestamp != map->timestamp) {
1837                         vm_map_lookup_entry(map, addr - 1, &tmp_entry);
1838                         entry = tmp_entry;
1839                 }
1840         }
1841         vm_map_unlock_read(map);
1842         vmspace_free(vm);
1843         PRELE(p);
1844         free(kve, M_TEMP);
1845         return (error);
1846 }
1847
1848 #if defined(STACK) || defined(DDB)
1849 static int
1850 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS)
1851 {
1852         struct kinfo_kstack *kkstp;
1853         int error, i, *name, numthreads;
1854         lwpid_t *lwpidarray;
1855         struct thread *td;
1856         struct stack *st;
1857         struct sbuf sb;
1858         struct proc *p;
1859
1860         name = (int *)arg1;
1861         if ((p = pfind((pid_t)name[0])) == NULL)
1862                 return (ESRCH);
1863         /* XXXRW: Not clear ESRCH is the right error during proc execve(). */
1864         if (p->p_flag & P_WEXIT || p->p_flag & P_INEXEC) {
1865                 PROC_UNLOCK(p);
1866                 return (ESRCH);
1867         }
1868         if ((error = p_candebug(curthread, p))) {
1869                 PROC_UNLOCK(p);
1870                 return (error);
1871         }
1872         _PHOLD(p);
1873         PROC_UNLOCK(p);
1874
1875         kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK);
1876         st = stack_create();
1877
1878         lwpidarray = NULL;
1879         numthreads = 0;
1880         PROC_LOCK(p);
1881 repeat:
1882         if (numthreads < p->p_numthreads) {
1883                 if (lwpidarray != NULL) {
1884                         free(lwpidarray, M_TEMP);
1885                         lwpidarray = NULL;
1886                 }
1887                 numthreads = p->p_numthreads;
1888                 PROC_UNLOCK(p);
1889                 lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP,
1890                     M_WAITOK | M_ZERO);
1891                 PROC_LOCK(p);
1892                 goto repeat;
1893         }
1894         i = 0;
1895
1896         /*
1897          * XXXRW: During the below loop, execve(2) and countless other sorts
1898          * of changes could have taken place.  Should we check to see if the
1899          * vmspace has been replaced, or the like, in order to prevent
1900          * giving a snapshot that spans, say, execve(2), with some threads
1901          * before and some after?  Among other things, the credentials could
1902          * have changed, in which case the right to extract debug info might
1903          * no longer be assured.
1904          */
1905         FOREACH_THREAD_IN_PROC(p, td) {
1906                 KASSERT(i < numthreads,
1907                     ("sysctl_kern_proc_kstack: numthreads"));
1908                 lwpidarray[i] = td->td_tid;
1909                 i++;
1910         }
1911         numthreads = i;
1912         for (i = 0; i < numthreads; i++) {
1913                 td = thread_find(p, lwpidarray[i]);
1914                 if (td == NULL) {
1915                         continue;
1916                 }
1917                 bzero(kkstp, sizeof(*kkstp));
1918                 (void)sbuf_new(&sb, kkstp->kkst_trace,
1919                     sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN);
1920                 thread_lock(td);
1921                 kkstp->kkst_tid = td->td_tid;
1922                 if (TD_IS_SWAPPED(td))
1923                         kkstp->kkst_state = KKST_STATE_SWAPPED;
1924                 else if (TD_IS_RUNNING(td))
1925                         kkstp->kkst_state = KKST_STATE_RUNNING;
1926                 else {
1927                         kkstp->kkst_state = KKST_STATE_STACKOK;
1928                         stack_save_td(st, td);
1929                 }
1930                 thread_unlock(td);
1931                 PROC_UNLOCK(p);
1932                 stack_sbuf_print(&sb, st);
1933                 sbuf_finish(&sb);
1934                 sbuf_delete(&sb);
1935                 error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp));
1936                 PROC_LOCK(p);
1937                 if (error)
1938                         break;
1939         }
1940         _PRELE(p);
1941         PROC_UNLOCK(p);
1942         if (lwpidarray != NULL)
1943                 free(lwpidarray, M_TEMP);
1944         stack_destroy(st);
1945         free(kkstp, M_TEMP);
1946         return (error);
1947 }
1948 #endif
1949
1950 /*
1951  * This sysctl allows a process to retrieve the full list of groups from
1952  * itself or another process.
1953  */
1954 static int
1955 sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS)
1956 {
1957         pid_t *pidp = (pid_t *)arg1;
1958         unsigned int arglen = arg2;
1959         struct proc *p;
1960         struct ucred *cred;
1961         int error;
1962
1963         if (arglen != 1)
1964                 return (EINVAL);
1965         if (*pidp == -1) {      /* -1 means this process */
1966                 p = req->td->td_proc;
1967         } else {
1968                 p = pfind(*pidp);
1969                 if (p == NULL)
1970                         return (ESRCH);
1971                 if ((error = p_cansee(curthread, p)) != 0) {
1972                         PROC_UNLOCK(p);
1973                         return (error);
1974                 }
1975         }
1976
1977         cred = crhold(p->p_ucred);
1978         if (*pidp != -1)
1979                 PROC_UNLOCK(p);
1980
1981         error = SYSCTL_OUT(req, cred->cr_groups,
1982             cred->cr_ngroups * sizeof(gid_t));
1983         crfree(cred);
1984         return (error);
1985 }
1986
1987 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD,  0, "Process table");
1988
1989 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT|
1990         CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc",
1991         "Return entire process table");
1992
1993 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE,
1994         sysctl_kern_proc, "Process table");
1995
1996 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE,
1997         sysctl_kern_proc, "Process table");
1998
1999 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2000         sysctl_kern_proc, "Process table");
2001
2002 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD |
2003         CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2004
2005 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE, 
2006         sysctl_kern_proc, "Process table");
2007
2008 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE, 
2009         sysctl_kern_proc, "Process table");
2010
2011 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2012         sysctl_kern_proc, "Process table");
2013
2014 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2015         sysctl_kern_proc, "Process table");
2016
2017 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE,
2018         sysctl_kern_proc, "Return process table, no threads");
2019
2020 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args,
2021         CTLFLAG_RW | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE,
2022         sysctl_kern_proc_args, "Process argument list");
2023
2024 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD |
2025         CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path");
2026
2027 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD |
2028         CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name,
2029         "Process syscall vector name (ABI type)");
2030
2031 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td,
2032         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2033
2034 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td,
2035         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2036
2037 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td,
2038         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2039
2040 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD),
2041         sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2042
2043 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td,
2044         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2045
2046 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td,
2047         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2048
2049 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td,
2050         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2051
2052 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td,
2053         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2054
2055 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td,
2056         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc,
2057         "Return process table, no threads");
2058
2059 #ifdef COMPAT_FREEBSD7
2060 static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD |
2061         CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries");
2062 #endif
2063
2064 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD |
2065         CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries");
2066
2067 #if defined(STACK) || defined(DDB)
2068 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD |
2069         CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks");
2070 #endif
2071
2072 static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD |
2073         CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups");