]> CyberLeo.Net >> Repos - FreeBSD/releng/8.2.git/blob - sys/netinet/in_pcb.c
MFC: 217169
[FreeBSD/releng/8.2.git] / sys / netinet / in_pcb.c
1 /*-
2  * Copyright (c) 1982, 1986, 1991, 1993, 1995
3  *      The Regents of the University of California.
4  * Copyright (c) 2007-2009 Robert N. M. Watson
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 4. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *      @(#)in_pcb.c    8.4 (Berkeley) 5/24/95
32  */
33
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36
37 #include "opt_ddb.h"
38 #include "opt_ipsec.h"
39 #include "opt_inet6.h"
40
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/malloc.h>
44 #include <sys/mbuf.h>
45 #include <sys/domain.h>
46 #include <sys/protosw.h>
47 #include <sys/socket.h>
48 #include <sys/socketvar.h>
49 #include <sys/priv.h>
50 #include <sys/proc.h>
51 #include <sys/jail.h>
52 #include <sys/kernel.h>
53 #include <sys/sysctl.h>
54
55 #ifdef DDB
56 #include <ddb/ddb.h>
57 #endif
58
59 #include <vm/uma.h>
60
61 #include <net/if.h>
62 #include <net/if_types.h>
63 #include <net/route.h>
64 #include <net/vnet.h>
65
66 #include <netinet/in.h>
67 #include <netinet/in_pcb.h>
68 #include <netinet/in_var.h>
69 #include <netinet/ip_var.h>
70 #include <netinet/tcp_var.h>
71 #include <netinet/udp.h>
72 #include <netinet/udp_var.h>
73 #ifdef INET6
74 #include <netinet/ip6.h>
75 #include <netinet6/ip6_var.h>
76 #endif /* INET6 */
77
78
79 #ifdef IPSEC
80 #include <netipsec/ipsec.h>
81 #include <netipsec/key.h>
82 #endif /* IPSEC */
83
84 #include <security/mac/mac_framework.h>
85
86 /*
87  * These configure the range of local port addresses assigned to
88  * "unspecified" outgoing connections/packets/whatever.
89  */
90 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1;    /* 1023 */
91 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART;    /* 600 */
92 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST;     /* 10000 */
93 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST;       /* 65535 */
94 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO;      /* 49152 */
95 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO;        /* 65535 */
96
97 /*
98  * Reserved ports accessible only to root. There are significant
99  * security considerations that must be accounted for when changing these,
100  * but the security benefits can be great. Please be careful.
101  */
102 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1;    /* 1023 */
103 VNET_DEFINE(int, ipport_reservedlow);
104
105 /* Variables dealing with random ephemeral port allocation. */
106 VNET_DEFINE(int, ipport_randomized) = 1;        /* user controlled via sysctl */
107 VNET_DEFINE(int, ipport_randomcps) = 10;        /* user controlled via sysctl */
108 VNET_DEFINE(int, ipport_randomtime) = 45;       /* user controlled via sysctl */
109 VNET_DEFINE(int, ipport_stoprandom);            /* toggled by ipport_tick */
110 VNET_DEFINE(int, ipport_tcpallocs);
111 static VNET_DEFINE(int, ipport_tcplastcount);
112
113 #define V_ipport_tcplastcount           VNET(ipport_tcplastcount)
114
115 #define RANGECHK(var, min, max) \
116         if ((var) < (min)) { (var) = (min); } \
117         else if ((var) > (max)) { (var) = (max); }
118
119 static void     in_pcbremlists(struct inpcb *inp);
120
121 static int
122 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS)
123 {
124         int error;
125
126 #ifdef VIMAGE
127         error = vnet_sysctl_handle_int(oidp, arg1, arg2, req);
128 #else
129         error = sysctl_handle_int(oidp, arg1, arg2, req);
130 #endif
131         if (error == 0) {
132                 RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1);
133                 RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1);
134                 RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX);
135                 RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX);
136                 RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX);
137                 RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX);
138         }
139         return (error);
140 }
141
142 #undef RANGECHK
143
144 SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0, "IP Ports");
145
146 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst,
147         CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_lowfirstauto), 0,
148         &sysctl_net_ipport_check, "I", "");
149 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast,
150         CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_lowlastauto), 0,
151         &sysctl_net_ipport_check, "I", "");
152 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, first,
153         CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_firstauto), 0,
154         &sysctl_net_ipport_check, "I", "");
155 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, last,
156         CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_lastauto), 0,
157         &sysctl_net_ipport_check, "I", "");
158 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst,
159         CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_hifirstauto), 0,
160         &sysctl_net_ipport_check, "I", "");
161 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, hilast,
162         CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_hilastauto), 0,
163         &sysctl_net_ipport_check, "I", "");
164 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh,
165         CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedhigh), 0, "");
166 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow,
167         CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, "");
168 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, randomized, CTLFLAG_RW,
169         &VNET_NAME(ipport_randomized), 0, "Enable random port allocation");
170 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, randomcps, CTLFLAG_RW,
171         &VNET_NAME(ipport_randomcps), 0, "Maximum number of random port "
172         "allocations before switching to a sequental one");
173 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, randomtime, CTLFLAG_RW,
174         &VNET_NAME(ipport_randomtime), 0,
175         "Minimum time to keep sequental port "
176         "allocation before switching to a random one");
177
178 /*
179  * in_pcb.c: manage the Protocol Control Blocks.
180  *
181  * NOTE: It is assumed that most of these functions will be called with
182  * the pcbinfo lock held, and often, the inpcb lock held, as these utility
183  * functions often modify hash chains or addresses in pcbs.
184  */
185
186 /*
187  * Allocate a PCB and associate it with the socket.
188  * On success return with the PCB locked.
189  */
190 int
191 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo)
192 {
193         struct inpcb *inp;
194         int error;
195
196         INP_INFO_WLOCK_ASSERT(pcbinfo);
197         error = 0;
198         inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT);
199         if (inp == NULL)
200                 return (ENOBUFS);
201         bzero(inp, inp_zero_size);
202         inp->inp_pcbinfo = pcbinfo;
203         inp->inp_socket = so;
204         inp->inp_cred = crhold(so->so_cred);
205         inp->inp_inc.inc_fibnum = so->so_fibnum;
206 #ifdef MAC
207         error = mac_inpcb_init(inp, M_NOWAIT);
208         if (error != 0)
209                 goto out;
210         mac_inpcb_create(so, inp);
211 #endif
212 #ifdef IPSEC
213         error = ipsec_init_policy(so, &inp->inp_sp);
214         if (error != 0) {
215 #ifdef MAC
216                 mac_inpcb_destroy(inp);
217 #endif
218                 goto out;
219         }
220 #endif /*IPSEC*/
221 #ifdef INET6
222         if (INP_SOCKAF(so) == AF_INET6) {
223                 inp->inp_vflag |= INP_IPV6PROTO;
224                 if (V_ip6_v6only)
225                         inp->inp_flags |= IN6P_IPV6_V6ONLY;
226         }
227 #endif
228         LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list);
229         pcbinfo->ipi_count++;
230         so->so_pcb = (caddr_t)inp;
231 #ifdef INET6
232         if (V_ip6_auto_flowlabel)
233                 inp->inp_flags |= IN6P_AUTOFLOWLABEL;
234 #endif
235         INP_WLOCK(inp);
236         inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
237         inp->inp_refcount = 1;  /* Reference from the inpcbinfo */
238 #if defined(IPSEC) || defined(MAC)
239 out:
240         if (error != 0) {
241                 crfree(inp->inp_cred);
242                 uma_zfree(pcbinfo->ipi_zone, inp);
243         }
244 #endif
245         return (error);
246 }
247
248 int
249 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
250 {
251         int anonport, error;
252
253         INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo);
254         INP_WLOCK_ASSERT(inp);
255
256         if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY)
257                 return (EINVAL);
258         anonport = inp->inp_lport == 0 && (nam == NULL ||
259             ((struct sockaddr_in *)nam)->sin_port == 0);
260         error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr,
261             &inp->inp_lport, cred);
262         if (error)
263                 return (error);
264         if (in_pcbinshash(inp) != 0) {
265                 inp->inp_laddr.s_addr = INADDR_ANY;
266                 inp->inp_lport = 0;
267                 return (EAGAIN);
268         }
269         if (anonport)
270                 inp->inp_flags |= INP_ANONPORT;
271         return (0);
272 }
273
274 /*
275  * Set up a bind operation on a PCB, performing port allocation
276  * as required, but do not actually modify the PCB. Callers can
277  * either complete the bind by setting inp_laddr/inp_lport and
278  * calling in_pcbinshash(), or they can just use the resulting
279  * port and address to authorise the sending of a once-off packet.
280  *
281  * On error, the values of *laddrp and *lportp are not changed.
282  */
283 int
284 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp,
285     u_short *lportp, struct ucred *cred)
286 {
287         struct socket *so = inp->inp_socket;
288         unsigned short *lastport;
289         struct sockaddr_in *sin;
290         struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
291         struct in_addr laddr;
292         u_short lport = 0;
293         int wild = 0, reuseport = (so->so_options & SO_REUSEPORT);
294         int error;
295         int dorandom;
296
297         /*
298          * Because no actual state changes occur here, a global write lock on
299          * the pcbinfo isn't required.
300          */
301         INP_INFO_LOCK_ASSERT(pcbinfo);
302         INP_LOCK_ASSERT(inp);
303
304         if (TAILQ_EMPTY(&V_in_ifaddrhead)) /* XXX broken! */
305                 return (EADDRNOTAVAIL);
306         laddr.s_addr = *laddrp;
307         if (nam != NULL && laddr.s_addr != INADDR_ANY)
308                 return (EINVAL);
309         if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0)
310                 wild = INPLOOKUP_WILDCARD;
311         if (nam == NULL) {
312                 if ((error = prison_local_ip4(cred, &laddr)) != 0)
313                         return (error);
314         } else {
315                 sin = (struct sockaddr_in *)nam;
316                 if (nam->sa_len != sizeof (*sin))
317                         return (EINVAL);
318 #ifdef notdef
319                 /*
320                  * We should check the family, but old programs
321                  * incorrectly fail to initialize it.
322                  */
323                 if (sin->sin_family != AF_INET)
324                         return (EAFNOSUPPORT);
325 #endif
326                 error = prison_local_ip4(cred, &sin->sin_addr);
327                 if (error)
328                         return (error);
329                 if (sin->sin_port != *lportp) {
330                         /* Don't allow the port to change. */
331                         if (*lportp != 0)
332                                 return (EINVAL);
333                         lport = sin->sin_port;
334                 }
335                 /* NB: lport is left as 0 if the port isn't being changed. */
336                 if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) {
337                         /*
338                          * Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
339                          * allow complete duplication of binding if
340                          * SO_REUSEPORT is set, or if SO_REUSEADDR is set
341                          * and a multicast address is bound on both
342                          * new and duplicated sockets.
343                          */
344                         if (so->so_options & SO_REUSEADDR)
345                                 reuseport = SO_REUSEADDR|SO_REUSEPORT;
346                 } else if (sin->sin_addr.s_addr != INADDR_ANY) {
347                         sin->sin_port = 0;              /* yech... */
348                         bzero(&sin->sin_zero, sizeof(sin->sin_zero));
349                         /*
350                          * Is the address a local IP address? 
351                          * If INP_BINDANY is set, then the socket may be bound
352                          * to any endpoint address, local or not.
353                          */
354                         if ((inp->inp_flags & INP_BINDANY) == 0 &&
355                             ifa_ifwithaddr_check((struct sockaddr *)sin) == 0) 
356                                 return (EADDRNOTAVAIL);
357                 }
358                 laddr = sin->sin_addr;
359                 if (lport) {
360                         struct inpcb *t;
361                         struct tcptw *tw;
362
363                         /* GROSS */
364                         if (ntohs(lport) <= V_ipport_reservedhigh &&
365                             ntohs(lport) >= V_ipport_reservedlow &&
366                             priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT,
367                             0))
368                                 return (EACCES);
369                         if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) &&
370                             priv_check_cred(inp->inp_cred,
371                             PRIV_NETINET_REUSEPORT, 0) != 0) {
372                                 t = in_pcblookup_local(pcbinfo, sin->sin_addr,
373                                     lport, INPLOOKUP_WILDCARD, cred);
374         /*
375          * XXX
376          * This entire block sorely needs a rewrite.
377          */
378                                 if (t &&
379                                     ((t->inp_flags & INP_TIMEWAIT) == 0) &&
380                                     (so->so_type != SOCK_STREAM ||
381                                      ntohl(t->inp_faddr.s_addr) == INADDR_ANY) &&
382                                     (ntohl(sin->sin_addr.s_addr) != INADDR_ANY ||
383                                      ntohl(t->inp_laddr.s_addr) != INADDR_ANY ||
384                                      (t->inp_socket->so_options &
385                                          SO_REUSEPORT) == 0) &&
386                                     (inp->inp_cred->cr_uid !=
387                                      t->inp_cred->cr_uid))
388                                         return (EADDRINUSE);
389                         }
390                         t = in_pcblookup_local(pcbinfo, sin->sin_addr,
391                             lport, wild, cred);
392                         if (t && (t->inp_flags & INP_TIMEWAIT)) {
393                                 /*
394                                  * XXXRW: If an incpb has had its timewait
395                                  * state recycled, we treat the address as
396                                  * being in use (for now).  This is better
397                                  * than a panic, but not desirable.
398                                  */
399                                 tw = intotw(inp);
400                                 if (tw == NULL ||
401                                     (reuseport & tw->tw_so_options) == 0)
402                                         return (EADDRINUSE);
403                         } else if (t &&
404                             (reuseport & t->inp_socket->so_options) == 0) {
405 #ifdef INET6
406                                 if (ntohl(sin->sin_addr.s_addr) !=
407                                     INADDR_ANY ||
408                                     ntohl(t->inp_laddr.s_addr) !=
409                                     INADDR_ANY ||
410                                     INP_SOCKAF(so) ==
411                                     INP_SOCKAF(t->inp_socket))
412 #endif
413                                 return (EADDRINUSE);
414                         }
415                 }
416         }
417         if (*lportp != 0)
418                 lport = *lportp;
419         if (lport == 0) {
420                 u_short first, last, aux;
421                 int count;
422
423                 if (inp->inp_flags & INP_HIGHPORT) {
424                         first = V_ipport_hifirstauto;   /* sysctl */
425                         last  = V_ipport_hilastauto;
426                         lastport = &pcbinfo->ipi_lasthi;
427                 } else if (inp->inp_flags & INP_LOWPORT) {
428                         error = priv_check_cred(cred,
429                             PRIV_NETINET_RESERVEDPORT, 0);
430                         if (error)
431                                 return error;
432                         first = V_ipport_lowfirstauto;  /* 1023 */
433                         last  = V_ipport_lowlastauto;   /* 600 */
434                         lastport = &pcbinfo->ipi_lastlow;
435                 } else {
436                         first = V_ipport_firstauto;     /* sysctl */
437                         last  = V_ipport_lastauto;
438                         lastport = &pcbinfo->ipi_lastport;
439                 }
440                 /*
441                  * For UDP, use random port allocation as long as the user
442                  * allows it.  For TCP (and as of yet unknown) connections,
443                  * use random port allocation only if the user allows it AND
444                  * ipport_tick() allows it.
445                  */
446                 if (V_ipport_randomized &&
447                         (!V_ipport_stoprandom || pcbinfo == &V_udbinfo))
448                         dorandom = 1;
449                 else
450                         dorandom = 0;
451                 /*
452                  * It makes no sense to do random port allocation if
453                  * we have the only port available.
454                  */
455                 if (first == last)
456                         dorandom = 0;
457                 /* Make sure to not include UDP packets in the count. */
458                 if (pcbinfo != &V_udbinfo)
459                         V_ipport_tcpallocs++;
460                 /*
461                  * Instead of having two loops further down counting up or down
462                  * make sure that first is always <= last and go with only one
463                  * code path implementing all logic.
464                  */
465                 if (first > last) {
466                         aux = first;
467                         first = last;
468                         last = aux;
469                 }
470
471                 if (dorandom)
472                         *lastport = first +
473                                     (arc4random() % (last - first));
474
475                 count = last - first;
476
477                 do {
478                         if (count-- < 0)        /* completely used? */
479                                 return (EADDRNOTAVAIL);
480                         ++*lastport;
481                         if (*lastport < first || *lastport > last)
482                                 *lastport = first;
483                         lport = htons(*lastport);
484                 } while (in_pcblookup_local(pcbinfo, laddr,
485                     lport, wild, cred));
486         }
487         *laddrp = laddr.s_addr;
488         *lportp = lport;
489         return (0);
490 }
491
492 /*
493  * Connect from a socket to a specified address.
494  * Both address and port must be specified in argument sin.
495  * If don't have a local address for this socket yet,
496  * then pick one.
497  */
498 int
499 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
500 {
501         u_short lport, fport;
502         in_addr_t laddr, faddr;
503         int anonport, error;
504
505         INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo);
506         INP_WLOCK_ASSERT(inp);
507
508         lport = inp->inp_lport;
509         laddr = inp->inp_laddr.s_addr;
510         anonport = (lport == 0);
511         error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport,
512             NULL, cred);
513         if (error)
514                 return (error);
515
516         /* Do the initial binding of the local address if required. */
517         if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) {
518                 inp->inp_lport = lport;
519                 inp->inp_laddr.s_addr = laddr;
520                 if (in_pcbinshash(inp) != 0) {
521                         inp->inp_laddr.s_addr = INADDR_ANY;
522                         inp->inp_lport = 0;
523                         return (EAGAIN);
524                 }
525         }
526
527         /* Commit the remaining changes. */
528         inp->inp_lport = lport;
529         inp->inp_laddr.s_addr = laddr;
530         inp->inp_faddr.s_addr = faddr;
531         inp->inp_fport = fport;
532         in_pcbrehash(inp);
533
534         if (anonport)
535                 inp->inp_flags |= INP_ANONPORT;
536         return (0);
537 }
538
539 /*
540  * Do proper source address selection on an unbound socket in case
541  * of connect. Take jails into account as well.
542  */
543 static int
544 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr,
545     struct ucred *cred)
546 {
547         struct ifaddr *ifa;
548         struct sockaddr *sa;
549         struct sockaddr_in *sin;
550         struct route sro;
551         int error;
552
553         KASSERT(laddr != NULL, ("%s: laddr NULL", __func__));
554
555         /*
556          * Bypass source address selection and use the primary jail IP
557          * if requested.
558          */
559         if (cred != NULL && !prison_saddrsel_ip4(cred, laddr))
560                 return (0);
561
562         error = 0;
563         bzero(&sro, sizeof(sro));
564
565         sin = (struct sockaddr_in *)&sro.ro_dst;
566         sin->sin_family = AF_INET;
567         sin->sin_len = sizeof(struct sockaddr_in);
568         sin->sin_addr.s_addr = faddr->s_addr;
569
570         /*
571          * If route is known our src addr is taken from the i/f,
572          * else punt.
573          *
574          * Find out route to destination.
575          */
576         if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0)
577                 in_rtalloc_ign(&sro, 0, inp->inp_inc.inc_fibnum);
578
579         /*
580          * If we found a route, use the address corresponding to
581          * the outgoing interface.
582          * 
583          * Otherwise assume faddr is reachable on a directly connected
584          * network and try to find a corresponding interface to take
585          * the source address from.
586          */
587         if (sro.ro_rt == NULL || sro.ro_rt->rt_ifp == NULL) {
588                 struct in_ifaddr *ia;
589                 struct ifnet *ifp;
590
591                 ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin));
592                 if (ia == NULL)
593                         ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0));
594                 if (ia == NULL) {
595                         error = ENETUNREACH;
596                         goto done;
597                 }
598
599                 if (cred == NULL || !prison_flag(cred, PR_IP4)) {
600                         laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
601                         ifa_free(&ia->ia_ifa);
602                         goto done;
603                 }
604
605                 ifp = ia->ia_ifp;
606                 ifa_free(&ia->ia_ifa);
607                 ia = NULL;
608                 IF_ADDR_LOCK(ifp);
609                 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
610
611                         sa = ifa->ifa_addr;
612                         if (sa->sa_family != AF_INET)
613                                 continue;
614                         sin = (struct sockaddr_in *)sa;
615                         if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
616                                 ia = (struct in_ifaddr *)ifa;
617                                 break;
618                         }
619                 }
620                 if (ia != NULL) {
621                         laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
622                         IF_ADDR_UNLOCK(ifp);
623                         goto done;
624                 }
625                 IF_ADDR_UNLOCK(ifp);
626
627                 /* 3. As a last resort return the 'default' jail address. */
628                 error = prison_get_ip4(cred, laddr);
629                 goto done;
630         }
631
632         /*
633          * If the outgoing interface on the route found is not
634          * a loopback interface, use the address from that interface.
635          * In case of jails do those three steps:
636          * 1. check if the interface address belongs to the jail. If so use it.
637          * 2. check if we have any address on the outgoing interface
638          *    belonging to this jail. If so use it.
639          * 3. as a last resort return the 'default' jail address.
640          */
641         if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) {
642                 struct in_ifaddr *ia;
643                 struct ifnet *ifp;
644
645                 /* If not jailed, use the default returned. */
646                 if (cred == NULL || !prison_flag(cred, PR_IP4)) {
647                         ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
648                         laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
649                         goto done;
650                 }
651
652                 /* Jailed. */
653                 /* 1. Check if the iface address belongs to the jail. */
654                 sin = (struct sockaddr_in *)sro.ro_rt->rt_ifa->ifa_addr;
655                 if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
656                         ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
657                         laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
658                         goto done;
659                 }
660
661                 /*
662                  * 2. Check if we have any address on the outgoing interface
663                  *    belonging to this jail.
664                  */
665                 ia = NULL;
666                 ifp = sro.ro_rt->rt_ifp;
667                 IF_ADDR_LOCK(ifp);
668                 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
669                         sa = ifa->ifa_addr;
670                         if (sa->sa_family != AF_INET)
671                                 continue;
672                         sin = (struct sockaddr_in *)sa;
673                         if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
674                                 ia = (struct in_ifaddr *)ifa;
675                                 break;
676                         }
677                 }
678                 if (ia != NULL) {
679                         laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
680                         IF_ADDR_UNLOCK(ifp);
681                         goto done;
682                 }
683                 IF_ADDR_UNLOCK(ifp);
684
685                 /* 3. As a last resort return the 'default' jail address. */
686                 error = prison_get_ip4(cred, laddr);
687                 goto done;
688         }
689
690         /*
691          * The outgoing interface is marked with 'loopback net', so a route
692          * to ourselves is here.
693          * Try to find the interface of the destination address and then
694          * take the address from there. That interface is not necessarily
695          * a loopback interface.
696          * In case of jails, check that it is an address of the jail
697          * and if we cannot find, fall back to the 'default' jail address.
698          */
699         if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) {
700                 struct sockaddr_in sain;
701                 struct in_ifaddr *ia;
702
703                 bzero(&sain, sizeof(struct sockaddr_in));
704                 sain.sin_family = AF_INET;
705                 sain.sin_len = sizeof(struct sockaddr_in);
706                 sain.sin_addr.s_addr = faddr->s_addr;
707
708                 ia = ifatoia(ifa_ifwithdstaddr(sintosa(&sain)));
709                 if (ia == NULL)
710                         ia = ifatoia(ifa_ifwithnet(sintosa(&sain), 0));
711                 if (ia == NULL)
712                         ia = ifatoia(ifa_ifwithaddr(sintosa(&sain)));
713
714                 if (cred == NULL || !prison_flag(cred, PR_IP4)) {
715                         if (ia == NULL) {
716                                 error = ENETUNREACH;
717                                 goto done;
718                         }
719                         laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
720                         ifa_free(&ia->ia_ifa);
721                         goto done;
722                 }
723
724                 /* Jailed. */
725                 if (ia != NULL) {
726                         struct ifnet *ifp;
727
728                         ifp = ia->ia_ifp;
729                         ifa_free(&ia->ia_ifa);
730                         ia = NULL;
731                         IF_ADDR_LOCK(ifp);
732                         TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
733
734                                 sa = ifa->ifa_addr;
735                                 if (sa->sa_family != AF_INET)
736                                         continue;
737                                 sin = (struct sockaddr_in *)sa;
738                                 if (prison_check_ip4(cred,
739                                     &sin->sin_addr) == 0) {
740                                         ia = (struct in_ifaddr *)ifa;
741                                         break;
742                                 }
743                         }
744                         if (ia != NULL) {
745                                 laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
746                                 IF_ADDR_UNLOCK(ifp);
747                                 goto done;
748                         }
749                         IF_ADDR_UNLOCK(ifp);
750                 }
751
752                 /* 3. As a last resort return the 'default' jail address. */
753                 error = prison_get_ip4(cred, laddr);
754                 goto done;
755         }
756
757 done:
758         if (sro.ro_rt != NULL)
759                 RTFREE(sro.ro_rt);
760         return (error);
761 }
762
763 /*
764  * Set up for a connect from a socket to the specified address.
765  * On entry, *laddrp and *lportp should contain the current local
766  * address and port for the PCB; these are updated to the values
767  * that should be placed in inp_laddr and inp_lport to complete
768  * the connect.
769  *
770  * On success, *faddrp and *fportp will be set to the remote address
771  * and port. These are not updated in the error case.
772  *
773  * If the operation fails because the connection already exists,
774  * *oinpp will be set to the PCB of that connection so that the
775  * caller can decide to override it. In all other cases, *oinpp
776  * is set to NULL.
777  */
778 int
779 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam,
780     in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp,
781     struct inpcb **oinpp, struct ucred *cred)
782 {
783         struct sockaddr_in *sin = (struct sockaddr_in *)nam;
784         struct in_ifaddr *ia;
785         struct inpcb *oinp;
786         struct in_addr laddr, faddr;
787         u_short lport, fport;
788         int error;
789
790         /*
791          * Because a global state change doesn't actually occur here, a read
792          * lock is sufficient.
793          */
794         INP_INFO_LOCK_ASSERT(inp->inp_pcbinfo);
795         INP_LOCK_ASSERT(inp);
796
797         if (oinpp != NULL)
798                 *oinpp = NULL;
799         if (nam->sa_len != sizeof (*sin))
800                 return (EINVAL);
801         if (sin->sin_family != AF_INET)
802                 return (EAFNOSUPPORT);
803         if (sin->sin_port == 0)
804                 return (EADDRNOTAVAIL);
805         laddr.s_addr = *laddrp;
806         lport = *lportp;
807         faddr = sin->sin_addr;
808         fport = sin->sin_port;
809
810         if (!TAILQ_EMPTY(&V_in_ifaddrhead)) {
811                 /*
812                  * If the destination address is INADDR_ANY,
813                  * use the primary local address.
814                  * If the supplied address is INADDR_BROADCAST,
815                  * and the primary interface supports broadcast,
816                  * choose the broadcast address for that interface.
817                  */
818                 if (faddr.s_addr == INADDR_ANY) {
819                         IN_IFADDR_RLOCK();
820                         faddr =
821                             IA_SIN(TAILQ_FIRST(&V_in_ifaddrhead))->sin_addr;
822                         IN_IFADDR_RUNLOCK();
823                         if (cred != NULL &&
824                             (error = prison_get_ip4(cred, &faddr)) != 0)
825                                 return (error);
826                 } else if (faddr.s_addr == (u_long)INADDR_BROADCAST) {
827                         IN_IFADDR_RLOCK();
828                         if (TAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags &
829                             IFF_BROADCAST)
830                                 faddr = satosin(&TAILQ_FIRST(
831                                     &V_in_ifaddrhead)->ia_broadaddr)->sin_addr;
832                         IN_IFADDR_RUNLOCK();
833                 }
834         }
835         if (laddr.s_addr == INADDR_ANY) {
836                 error = in_pcbladdr(inp, &faddr, &laddr, cred);
837                 /*
838                  * If the destination address is multicast and an outgoing
839                  * interface has been set as a multicast option, prefer the
840                  * address of that interface as our source address.
841                  */
842                 if (IN_MULTICAST(ntohl(faddr.s_addr)) &&
843                     inp->inp_moptions != NULL) {
844                         struct ip_moptions *imo;
845                         struct ifnet *ifp;
846
847                         imo = inp->inp_moptions;
848                         if (imo->imo_multicast_ifp != NULL) {
849                                 ifp = imo->imo_multicast_ifp;
850                                 IN_IFADDR_RLOCK();
851                                 TAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link)
852                                         if (ia->ia_ifp == ifp)
853                                                 break;
854                                 if (ia == NULL) {
855                                         IN_IFADDR_RUNLOCK();
856                                         error = EADDRNOTAVAIL;
857                                 } else {
858                                         laddr = ia->ia_addr.sin_addr;
859                                         IN_IFADDR_RUNLOCK();
860                                         error = 0;
861                                 }
862                         }
863                 }
864                 if (error)
865                         return (error);
866         }
867         oinp = in_pcblookup_hash(inp->inp_pcbinfo, faddr, fport, laddr, lport,
868             0, NULL);
869         if (oinp != NULL) {
870                 if (oinpp != NULL)
871                         *oinpp = oinp;
872                 return (EADDRINUSE);
873         }
874         if (lport == 0) {
875                 error = in_pcbbind_setup(inp, NULL, &laddr.s_addr, &lport,
876                     cred);
877                 if (error)
878                         return (error);
879         }
880         *laddrp = laddr.s_addr;
881         *lportp = lport;
882         *faddrp = faddr.s_addr;
883         *fportp = fport;
884         return (0);
885 }
886
887 void
888 in_pcbdisconnect(struct inpcb *inp)
889 {
890
891         INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo);
892         INP_WLOCK_ASSERT(inp);
893
894         inp->inp_faddr.s_addr = INADDR_ANY;
895         inp->inp_fport = 0;
896         in_pcbrehash(inp);
897 }
898
899 /*
900  * in_pcbdetach() is responsibe for disassociating a socket from an inpcb.
901  * For most protocols, this will be invoked immediately prior to calling
902  * in_pcbfree().  However, with TCP the inpcb may significantly outlive the
903  * socket, in which case in_pcbfree() is deferred.
904  */
905 void
906 in_pcbdetach(struct inpcb *inp)
907 {
908
909         KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__));
910
911         inp->inp_socket->so_pcb = NULL;
912         inp->inp_socket = NULL;
913 }
914
915 /*
916  * in_pcbfree_internal() frees an inpcb that has been detached from its
917  * socket, and whose reference count has reached 0.  It will also remove the
918  * inpcb from any global lists it might remain on.
919  */
920 static void
921 in_pcbfree_internal(struct inpcb *inp)
922 {
923         struct inpcbinfo *ipi = inp->inp_pcbinfo;
924
925         KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
926         KASSERT(inp->inp_refcount == 0, ("%s: refcount !0", __func__));
927
928         INP_INFO_WLOCK_ASSERT(ipi);
929         INP_WLOCK_ASSERT(inp);
930
931 #ifdef IPSEC
932         if (inp->inp_sp != NULL)
933                 ipsec_delete_pcbpolicy(inp);
934 #endif /* IPSEC */
935         inp->inp_gencnt = ++ipi->ipi_gencnt;
936         in_pcbremlists(inp);
937 #ifdef INET6
938         if (inp->inp_vflag & INP_IPV6PROTO) {
939                 ip6_freepcbopts(inp->in6p_outputopts);
940                 if (inp->in6p_moptions != NULL)
941                         ip6_freemoptions(inp->in6p_moptions);
942         }
943 #endif
944         if (inp->inp_options)
945                 (void)m_free(inp->inp_options);
946         if (inp->inp_moptions != NULL)
947                 inp_freemoptions(inp->inp_moptions);
948         inp->inp_vflag = 0;
949         crfree(inp->inp_cred);
950
951 #ifdef MAC
952         mac_inpcb_destroy(inp);
953 #endif
954         INP_WUNLOCK(inp);
955         uma_zfree(ipi->ipi_zone, inp);
956 }
957
958 /*
959  * in_pcbref() bumps the reference count on an inpcb in order to maintain
960  * stability of an inpcb pointer despite the inpcb lock being released.  This
961  * is used in TCP when the inpcbinfo lock needs to be acquired or upgraded,
962  * but where the inpcb lock is already held.
963  *
964  * While the inpcb will not be freed, releasing the inpcb lock means that the
965  * connection's state may change, so the caller should be careful to
966  * revalidate any cached state on reacquiring the lock.  Drop the reference
967  * using in_pcbrele().
968  */
969 void
970 in_pcbref(struct inpcb *inp)
971 {
972
973         INP_WLOCK_ASSERT(inp);
974
975         KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
976
977         inp->inp_refcount++;
978 }
979
980 /*
981  * Drop a refcount on an inpcb elevated using in_pcbref(); because a call to
982  * in_pcbfree() may have been made between in_pcbref() and in_pcbrele(), we
983  * return a flag indicating whether or not the inpcb remains valid.  If it is
984  * valid, we return with the inpcb lock held.
985  */
986 int
987 in_pcbrele(struct inpcb *inp)
988 {
989 #ifdef INVARIANTS
990         struct inpcbinfo *ipi = inp->inp_pcbinfo;
991 #endif
992
993         KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
994
995         INP_INFO_WLOCK_ASSERT(ipi);
996         INP_WLOCK_ASSERT(inp);
997
998         inp->inp_refcount--;
999         if (inp->inp_refcount > 0)
1000                 return (0);
1001         in_pcbfree_internal(inp);
1002         return (1);
1003 }
1004
1005 /*
1006  * Unconditionally schedule an inpcb to be freed by decrementing its
1007  * reference count, which should occur only after the inpcb has been detached
1008  * from its socket.  If another thread holds a temporary reference (acquired
1009  * using in_pcbref()) then the free is deferred until that reference is
1010  * released using in_pcbrele(), but the inpcb is still unlocked.
1011  */
1012 void
1013 in_pcbfree(struct inpcb *inp)
1014 {
1015 #ifdef INVARIANTS
1016         struct inpcbinfo *ipi = inp->inp_pcbinfo;
1017 #endif
1018
1019         KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL",
1020             __func__));
1021
1022         INP_INFO_WLOCK_ASSERT(ipi);
1023         INP_WLOCK_ASSERT(inp);
1024
1025         if (!in_pcbrele(inp))
1026                 INP_WUNLOCK(inp);
1027 }
1028
1029 /*
1030  * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and
1031  * port reservation, and preventing it from being returned by inpcb lookups.
1032  *
1033  * It is used by TCP to mark an inpcb as unused and avoid future packet
1034  * delivery or event notification when a socket remains open but TCP has
1035  * closed.  This might occur as a result of a shutdown()-initiated TCP close
1036  * or a RST on the wire, and allows the port binding to be reused while still
1037  * maintaining the invariant that so_pcb always points to a valid inpcb until
1038  * in_pcbdetach().
1039  *
1040  * XXXRW: An inp_lport of 0 is used to indicate that the inpcb is not on hash
1041  * lists, but can lead to confusing netstat output, as open sockets with
1042  * closed TCP connections will no longer appear to have their bound port
1043  * number.  An explicit flag would be better, as it would allow us to leave
1044  * the port number intact after the connection is dropped.
1045  *
1046  * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by
1047  * in_pcbnotifyall() and in_pcbpurgeif0()?
1048  */
1049 void
1050 in_pcbdrop(struct inpcb *inp)
1051 {
1052
1053         INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo);
1054         INP_WLOCK_ASSERT(inp);
1055
1056         inp->inp_flags |= INP_DROPPED;
1057         if (inp->inp_flags & INP_INHASHLIST) {
1058                 struct inpcbport *phd = inp->inp_phd;
1059
1060                 LIST_REMOVE(inp, inp_hash);
1061                 LIST_REMOVE(inp, inp_portlist);
1062                 if (LIST_FIRST(&phd->phd_pcblist) == NULL) {
1063                         LIST_REMOVE(phd, phd_hash);
1064                         free(phd, M_PCB);
1065                 }
1066                 inp->inp_flags &= ~INP_INHASHLIST;
1067         }
1068 }
1069
1070 /*
1071  * Common routines to return the socket addresses associated with inpcbs.
1072  */
1073 struct sockaddr *
1074 in_sockaddr(in_port_t port, struct in_addr *addr_p)
1075 {
1076         struct sockaddr_in *sin;
1077
1078         sin = malloc(sizeof *sin, M_SONAME,
1079                 M_WAITOK | M_ZERO);
1080         sin->sin_family = AF_INET;
1081         sin->sin_len = sizeof(*sin);
1082         sin->sin_addr = *addr_p;
1083         sin->sin_port = port;
1084
1085         return (struct sockaddr *)sin;
1086 }
1087
1088 int
1089 in_getsockaddr(struct socket *so, struct sockaddr **nam)
1090 {
1091         struct inpcb *inp;
1092         struct in_addr addr;
1093         in_port_t port;
1094
1095         inp = sotoinpcb(so);
1096         KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL"));
1097
1098         INP_RLOCK(inp);
1099         port = inp->inp_lport;
1100         addr = inp->inp_laddr;
1101         INP_RUNLOCK(inp);
1102
1103         *nam = in_sockaddr(port, &addr);
1104         return 0;
1105 }
1106
1107 int
1108 in_getpeeraddr(struct socket *so, struct sockaddr **nam)
1109 {
1110         struct inpcb *inp;
1111         struct in_addr addr;
1112         in_port_t port;
1113
1114         inp = sotoinpcb(so);
1115         KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL"));
1116
1117         INP_RLOCK(inp);
1118         port = inp->inp_fport;
1119         addr = inp->inp_faddr;
1120         INP_RUNLOCK(inp);
1121
1122         *nam = in_sockaddr(port, &addr);
1123         return 0;
1124 }
1125
1126 void
1127 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno,
1128     struct inpcb *(*notify)(struct inpcb *, int))
1129 {
1130         struct inpcb *inp, *inp_temp;
1131
1132         INP_INFO_WLOCK(pcbinfo);
1133         LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) {
1134                 INP_WLOCK(inp);
1135 #ifdef INET6
1136                 if ((inp->inp_vflag & INP_IPV4) == 0) {
1137                         INP_WUNLOCK(inp);
1138                         continue;
1139                 }
1140 #endif
1141                 if (inp->inp_faddr.s_addr != faddr.s_addr ||
1142                     inp->inp_socket == NULL) {
1143                         INP_WUNLOCK(inp);
1144                         continue;
1145                 }
1146                 if ((*notify)(inp, errno))
1147                         INP_WUNLOCK(inp);
1148         }
1149         INP_INFO_WUNLOCK(pcbinfo);
1150 }
1151
1152 void
1153 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp)
1154 {
1155         struct inpcb *inp;
1156         struct ip_moptions *imo;
1157         int i, gap;
1158
1159         INP_INFO_RLOCK(pcbinfo);
1160         LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) {
1161                 INP_WLOCK(inp);
1162                 imo = inp->inp_moptions;
1163                 if ((inp->inp_vflag & INP_IPV4) &&
1164                     imo != NULL) {
1165                         /*
1166                          * Unselect the outgoing interface if it is being
1167                          * detached.
1168                          */
1169                         if (imo->imo_multicast_ifp == ifp)
1170                                 imo->imo_multicast_ifp = NULL;
1171
1172                         /*
1173                          * Drop multicast group membership if we joined
1174                          * through the interface being detached.
1175                          */
1176                         for (i = 0, gap = 0; i < imo->imo_num_memberships;
1177                             i++) {
1178                                 if (imo->imo_membership[i]->inm_ifp == ifp) {
1179                                         in_delmulti(imo->imo_membership[i]);
1180                                         gap++;
1181                                 } else if (gap != 0)
1182                                         imo->imo_membership[i - gap] =
1183                                             imo->imo_membership[i];
1184                         }
1185                         imo->imo_num_memberships -= gap;
1186                 }
1187                 INP_WUNLOCK(inp);
1188         }
1189         INP_INFO_RUNLOCK(pcbinfo);
1190 }
1191
1192 /*
1193  * Lookup a PCB based on the local address and port.
1194  */
1195 #define INP_LOOKUP_MAPPED_PCB_COST      3
1196 struct inpcb *
1197 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr,
1198     u_short lport, int wild_okay, struct ucred *cred)
1199 {
1200         struct inpcb *inp;
1201 #ifdef INET6
1202         int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST;
1203 #else
1204         int matchwild = 3;
1205 #endif
1206         int wildcard;
1207
1208         INP_INFO_LOCK_ASSERT(pcbinfo);
1209
1210         if (!wild_okay) {
1211                 struct inpcbhead *head;
1212                 /*
1213                  * Look for an unconnected (wildcard foreign addr) PCB that
1214                  * matches the local address and port we're looking for.
1215                  */
1216                 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
1217                     0, pcbinfo->ipi_hashmask)];
1218                 LIST_FOREACH(inp, head, inp_hash) {
1219 #ifdef INET6
1220                         /* XXX inp locking */
1221                         if ((inp->inp_vflag & INP_IPV4) == 0)
1222                                 continue;
1223 #endif
1224                         if (inp->inp_faddr.s_addr == INADDR_ANY &&
1225                             inp->inp_laddr.s_addr == laddr.s_addr &&
1226                             inp->inp_lport == lport) {
1227                                 /*
1228                                  * Found?
1229                                  */
1230                                 if (cred == NULL ||
1231                                     prison_equal_ip4(cred->cr_prison,
1232                                         inp->inp_cred->cr_prison))
1233                                         return (inp);
1234                         }
1235                 }
1236                 /*
1237                  * Not found.
1238                  */
1239                 return (NULL);
1240         } else {
1241                 struct inpcbporthead *porthash;
1242                 struct inpcbport *phd;
1243                 struct inpcb *match = NULL;
1244                 /*
1245                  * Best fit PCB lookup.
1246                  *
1247                  * First see if this local port is in use by looking on the
1248                  * port hash list.
1249                  */
1250                 porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport,
1251                     pcbinfo->ipi_porthashmask)];
1252                 LIST_FOREACH(phd, porthash, phd_hash) {
1253                         if (phd->phd_port == lport)
1254                                 break;
1255                 }
1256                 if (phd != NULL) {
1257                         /*
1258                          * Port is in use by one or more PCBs. Look for best
1259                          * fit.
1260                          */
1261                         LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) {
1262                                 wildcard = 0;
1263                                 if (cred != NULL &&
1264                                     !prison_equal_ip4(inp->inp_cred->cr_prison,
1265                                         cred->cr_prison))
1266                                         continue;
1267 #ifdef INET6
1268                                 /* XXX inp locking */
1269                                 if ((inp->inp_vflag & INP_IPV4) == 0)
1270                                         continue;
1271                                 /*
1272                                  * We never select the PCB that has
1273                                  * INP_IPV6 flag and is bound to :: if
1274                                  * we have another PCB which is bound
1275                                  * to 0.0.0.0.  If a PCB has the
1276                                  * INP_IPV6 flag, then we set its cost
1277                                  * higher than IPv4 only PCBs.
1278                                  *
1279                                  * Note that the case only happens
1280                                  * when a socket is bound to ::, under
1281                                  * the condition that the use of the
1282                                  * mapped address is allowed.
1283                                  */
1284                                 if ((inp->inp_vflag & INP_IPV6) != 0)
1285                                         wildcard += INP_LOOKUP_MAPPED_PCB_COST;
1286 #endif
1287                                 if (inp->inp_faddr.s_addr != INADDR_ANY)
1288                                         wildcard++;
1289                                 if (inp->inp_laddr.s_addr != INADDR_ANY) {
1290                                         if (laddr.s_addr == INADDR_ANY)
1291                                                 wildcard++;
1292                                         else if (inp->inp_laddr.s_addr != laddr.s_addr)
1293                                                 continue;
1294                                 } else {
1295                                         if (laddr.s_addr != INADDR_ANY)
1296                                                 wildcard++;
1297                                 }
1298                                 if (wildcard < matchwild) {
1299                                         match = inp;
1300                                         matchwild = wildcard;
1301                                         if (matchwild == 0)
1302                                                 break;
1303                                 }
1304                         }
1305                 }
1306                 return (match);
1307         }
1308 }
1309 #undef INP_LOOKUP_MAPPED_PCB_COST
1310
1311 /*
1312  * Lookup PCB in hash list.
1313  */
1314 struct inpcb *
1315 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr,
1316     u_int fport_arg, struct in_addr laddr, u_int lport_arg, int wildcard,
1317     struct ifnet *ifp)
1318 {
1319         struct inpcbhead *head;
1320         struct inpcb *inp, *tmpinp;
1321         u_short fport = fport_arg, lport = lport_arg;
1322
1323         INP_INFO_LOCK_ASSERT(pcbinfo);
1324
1325         /*
1326          * First look for an exact match.
1327          */
1328         tmpinp = NULL;
1329         head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
1330             pcbinfo->ipi_hashmask)];
1331         LIST_FOREACH(inp, head, inp_hash) {
1332 #ifdef INET6
1333                 /* XXX inp locking */
1334                 if ((inp->inp_vflag & INP_IPV4) == 0)
1335                         continue;
1336 #endif
1337                 if (inp->inp_faddr.s_addr == faddr.s_addr &&
1338                     inp->inp_laddr.s_addr == laddr.s_addr &&
1339                     inp->inp_fport == fport &&
1340                     inp->inp_lport == lport) {
1341                         /*
1342                          * XXX We should be able to directly return
1343                          * the inp here, without any checks.
1344                          * Well unless both bound with SO_REUSEPORT?
1345                          */
1346                         if (prison_flag(inp->inp_cred, PR_IP4))
1347                                 return (inp);
1348                         if (tmpinp == NULL)
1349                                 tmpinp = inp;
1350                 }
1351         }
1352         if (tmpinp != NULL)
1353                 return (tmpinp);
1354
1355         /*
1356          * Then look for a wildcard match, if requested.
1357          */
1358         if (wildcard == INPLOOKUP_WILDCARD) {
1359                 struct inpcb *local_wild = NULL, *local_exact = NULL;
1360 #ifdef INET6
1361                 struct inpcb *local_wild_mapped = NULL;
1362 #endif
1363                 struct inpcb *jail_wild = NULL;
1364                 int injail;
1365
1366                 /*
1367                  * Order of socket selection - we always prefer jails.
1368                  *      1. jailed, non-wild.
1369                  *      2. jailed, wild.
1370                  *      3. non-jailed, non-wild.
1371                  *      4. non-jailed, wild.
1372                  */
1373
1374                 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
1375                     0, pcbinfo->ipi_hashmask)];
1376                 LIST_FOREACH(inp, head, inp_hash) {
1377 #ifdef INET6
1378                         /* XXX inp locking */
1379                         if ((inp->inp_vflag & INP_IPV4) == 0)
1380                                 continue;
1381 #endif
1382                         if (inp->inp_faddr.s_addr != INADDR_ANY ||
1383                             inp->inp_lport != lport)
1384                                 continue;
1385
1386                         /* XXX inp locking */
1387                         if (ifp && ifp->if_type == IFT_FAITH &&
1388                             (inp->inp_flags & INP_FAITH) == 0)
1389                                 continue;
1390
1391                         injail = prison_flag(inp->inp_cred, PR_IP4);
1392                         if (injail) {
1393                                 if (prison_check_ip4(inp->inp_cred,
1394                                     &laddr) != 0)
1395                                         continue;
1396                         } else {
1397                                 if (local_exact != NULL)
1398                                         continue;
1399                         }
1400
1401                         if (inp->inp_laddr.s_addr == laddr.s_addr) {
1402                                 if (injail)
1403                                         return (inp);
1404                                 else
1405                                         local_exact = inp;
1406                         } else if (inp->inp_laddr.s_addr == INADDR_ANY) {
1407 #ifdef INET6
1408                                 /* XXX inp locking, NULL check */
1409                                 if (inp->inp_vflag & INP_IPV6PROTO)
1410                                         local_wild_mapped = inp;
1411                                 else
1412 #endif /* INET6 */
1413                                         if (injail)
1414                                                 jail_wild = inp;
1415                                         else
1416                                                 local_wild = inp;
1417                         }
1418                 } /* LIST_FOREACH */
1419                 if (jail_wild != NULL)
1420                         return (jail_wild);
1421                 if (local_exact != NULL)
1422                         return (local_exact);
1423                 if (local_wild != NULL)
1424                         return (local_wild);
1425 #ifdef INET6
1426                 if (local_wild_mapped != NULL)
1427                         return (local_wild_mapped);
1428 #endif /* defined(INET6) */
1429         } /* if (wildcard == INPLOOKUP_WILDCARD) */
1430
1431         return (NULL);
1432 }
1433
1434 /*
1435  * Insert PCB onto various hash lists.
1436  */
1437 int
1438 in_pcbinshash(struct inpcb *inp)
1439 {
1440         struct inpcbhead *pcbhash;
1441         struct inpcbporthead *pcbporthash;
1442         struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1443         struct inpcbport *phd;
1444         u_int32_t hashkey_faddr;
1445
1446         INP_INFO_WLOCK_ASSERT(pcbinfo);
1447         INP_WLOCK_ASSERT(inp);
1448         KASSERT((inp->inp_flags & INP_INHASHLIST) == 0,
1449             ("in_pcbinshash: INP_INHASHLIST"));
1450
1451 #ifdef INET6
1452         if (inp->inp_vflag & INP_IPV6)
1453                 hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */;
1454         else
1455 #endif /* INET6 */
1456         hashkey_faddr = inp->inp_faddr.s_addr;
1457
1458         pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
1459                  inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
1460
1461         pcbporthash = &pcbinfo->ipi_porthashbase[
1462             INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)];
1463
1464         /*
1465          * Go through port list and look for a head for this lport.
1466          */
1467         LIST_FOREACH(phd, pcbporthash, phd_hash) {
1468                 if (phd->phd_port == inp->inp_lport)
1469                         break;
1470         }
1471         /*
1472          * If none exists, malloc one and tack it on.
1473          */
1474         if (phd == NULL) {
1475                 phd = malloc(sizeof(struct inpcbport), M_PCB, M_NOWAIT);
1476                 if (phd == NULL) {
1477                         return (ENOBUFS); /* XXX */
1478                 }
1479                 phd->phd_port = inp->inp_lport;
1480                 LIST_INIT(&phd->phd_pcblist);
1481                 LIST_INSERT_HEAD(pcbporthash, phd, phd_hash);
1482         }
1483         inp->inp_phd = phd;
1484         LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist);
1485         LIST_INSERT_HEAD(pcbhash, inp, inp_hash);
1486         inp->inp_flags |= INP_INHASHLIST;
1487         return (0);
1488 }
1489
1490 /*
1491  * Move PCB to the proper hash bucket when { faddr, fport } have  been
1492  * changed. NOTE: This does not handle the case of the lport changing (the
1493  * hashed port list would have to be updated as well), so the lport must
1494  * not change after in_pcbinshash() has been called.
1495  */
1496 void
1497 in_pcbrehash(struct inpcb *inp)
1498 {
1499         struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1500         struct inpcbhead *head;
1501         u_int32_t hashkey_faddr;
1502
1503         INP_INFO_WLOCK_ASSERT(pcbinfo);
1504         INP_WLOCK_ASSERT(inp);
1505         KASSERT(inp->inp_flags & INP_INHASHLIST,
1506             ("in_pcbrehash: !INP_INHASHLIST"));
1507
1508 #ifdef INET6
1509         if (inp->inp_vflag & INP_IPV6)
1510                 hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */;
1511         else
1512 #endif /* INET6 */
1513         hashkey_faddr = inp->inp_faddr.s_addr;
1514
1515         head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
1516                 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
1517
1518         LIST_REMOVE(inp, inp_hash);
1519         LIST_INSERT_HEAD(head, inp, inp_hash);
1520 }
1521
1522 /*
1523  * Remove PCB from various lists.
1524  */
1525 static void
1526 in_pcbremlists(struct inpcb *inp)
1527 {
1528         struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1529
1530         INP_INFO_WLOCK_ASSERT(pcbinfo);
1531         INP_WLOCK_ASSERT(inp);
1532
1533         inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
1534         if (inp->inp_flags & INP_INHASHLIST) {
1535                 struct inpcbport *phd = inp->inp_phd;
1536
1537                 LIST_REMOVE(inp, inp_hash);
1538                 LIST_REMOVE(inp, inp_portlist);
1539                 if (LIST_FIRST(&phd->phd_pcblist) == NULL) {
1540                         LIST_REMOVE(phd, phd_hash);
1541                         free(phd, M_PCB);
1542                 }
1543                 inp->inp_flags &= ~INP_INHASHLIST;
1544         }
1545         LIST_REMOVE(inp, inp_list);
1546         pcbinfo->ipi_count--;
1547 }
1548
1549 /*
1550  * A set label operation has occurred at the socket layer, propagate the
1551  * label change into the in_pcb for the socket.
1552  */
1553 void
1554 in_pcbsosetlabel(struct socket *so)
1555 {
1556 #ifdef MAC
1557         struct inpcb *inp;
1558
1559         inp = sotoinpcb(so);
1560         KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL"));
1561
1562         INP_WLOCK(inp);
1563         SOCK_LOCK(so);
1564         mac_inpcb_sosetlabel(so, inp);
1565         SOCK_UNLOCK(so);
1566         INP_WUNLOCK(inp);
1567 #endif
1568 }
1569
1570 /*
1571  * ipport_tick runs once per second, determining if random port allocation
1572  * should be continued.  If more than ipport_randomcps ports have been
1573  * allocated in the last second, then we return to sequential port
1574  * allocation. We return to random allocation only once we drop below
1575  * ipport_randomcps for at least ipport_randomtime seconds.
1576  */
1577 void
1578 ipport_tick(void *xtp)
1579 {
1580         VNET_ITERATOR_DECL(vnet_iter);
1581
1582         VNET_LIST_RLOCK_NOSLEEP();
1583         VNET_FOREACH(vnet_iter) {
1584                 CURVNET_SET(vnet_iter); /* XXX appease INVARIANTS here */
1585                 if (V_ipport_tcpallocs <=
1586                     V_ipport_tcplastcount + V_ipport_randomcps) {
1587                         if (V_ipport_stoprandom > 0)
1588                                 V_ipport_stoprandom--;
1589                 } else
1590                         V_ipport_stoprandom = V_ipport_randomtime;
1591                 V_ipport_tcplastcount = V_ipport_tcpallocs;
1592                 CURVNET_RESTORE();
1593         }
1594         VNET_LIST_RUNLOCK_NOSLEEP();
1595         callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL);
1596 }
1597
1598 void
1599 inp_wlock(struct inpcb *inp)
1600 {
1601
1602         INP_WLOCK(inp);
1603 }
1604
1605 void
1606 inp_wunlock(struct inpcb *inp)
1607 {
1608
1609         INP_WUNLOCK(inp);
1610 }
1611
1612 void
1613 inp_rlock(struct inpcb *inp)
1614 {
1615
1616         INP_RLOCK(inp);
1617 }
1618
1619 void
1620 inp_runlock(struct inpcb *inp)
1621 {
1622
1623         INP_RUNLOCK(inp);
1624 }
1625
1626 #ifdef INVARIANTS
1627 void
1628 inp_lock_assert(struct inpcb *inp)
1629 {
1630
1631         INP_WLOCK_ASSERT(inp);
1632 }
1633
1634 void
1635 inp_unlock_assert(struct inpcb *inp)
1636 {
1637
1638         INP_UNLOCK_ASSERT(inp);
1639 }
1640 #endif
1641
1642 void
1643 inp_apply_all(void (*func)(struct inpcb *, void *), void *arg)
1644 {
1645         struct inpcb *inp;
1646
1647         INP_INFO_RLOCK(&V_tcbinfo);
1648         LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) {
1649                 INP_WLOCK(inp);
1650                 func(inp, arg);
1651                 INP_WUNLOCK(inp);
1652         }
1653         INP_INFO_RUNLOCK(&V_tcbinfo);
1654 }
1655
1656 struct socket *
1657 inp_inpcbtosocket(struct inpcb *inp)
1658 {
1659
1660         INP_WLOCK_ASSERT(inp);
1661         return (inp->inp_socket);
1662 }
1663
1664 struct tcpcb *
1665 inp_inpcbtotcpcb(struct inpcb *inp)
1666 {
1667
1668         INP_WLOCK_ASSERT(inp);
1669         return ((struct tcpcb *)inp->inp_ppcb);
1670 }
1671
1672 int
1673 inp_ip_tos_get(const struct inpcb *inp)
1674 {
1675
1676         return (inp->inp_ip_tos);
1677 }
1678
1679 void
1680 inp_ip_tos_set(struct inpcb *inp, int val)
1681 {
1682
1683         inp->inp_ip_tos = val;
1684 }
1685
1686 void
1687 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp,
1688     uint32_t *faddr, uint16_t *fp)
1689 {
1690
1691         INP_LOCK_ASSERT(inp);
1692         *laddr = inp->inp_laddr.s_addr;
1693         *faddr = inp->inp_faddr.s_addr;
1694         *lp = inp->inp_lport;
1695         *fp = inp->inp_fport;
1696 }
1697
1698 struct inpcb *
1699 so_sotoinpcb(struct socket *so)
1700 {
1701
1702         return (sotoinpcb(so));
1703 }
1704
1705 struct tcpcb *
1706 so_sototcpcb(struct socket *so)
1707 {
1708
1709         return (sototcpcb(so));
1710 }
1711
1712 #ifdef DDB
1713 static void
1714 db_print_indent(int indent)
1715 {
1716         int i;
1717
1718         for (i = 0; i < indent; i++)
1719                 db_printf(" ");
1720 }
1721
1722 static void
1723 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent)
1724 {
1725         char faddr_str[48], laddr_str[48];
1726
1727         db_print_indent(indent);
1728         db_printf("%s at %p\n", name, inc);
1729
1730         indent += 2;
1731
1732 #ifdef INET6
1733         if (inc->inc_flags & INC_ISIPV6) {
1734                 /* IPv6. */
1735                 ip6_sprintf(laddr_str, &inc->inc6_laddr);
1736                 ip6_sprintf(faddr_str, &inc->inc6_faddr);
1737         } else {
1738 #endif
1739                 /* IPv4. */
1740                 inet_ntoa_r(inc->inc_laddr, laddr_str);
1741                 inet_ntoa_r(inc->inc_faddr, faddr_str);
1742 #ifdef INET6
1743         }
1744 #endif
1745         db_print_indent(indent);
1746         db_printf("inc_laddr %s   inc_lport %u\n", laddr_str,
1747             ntohs(inc->inc_lport));
1748         db_print_indent(indent);
1749         db_printf("inc_faddr %s   inc_fport %u\n", faddr_str,
1750             ntohs(inc->inc_fport));
1751 }
1752
1753 static void
1754 db_print_inpflags(int inp_flags)
1755 {
1756         int comma;
1757
1758         comma = 0;
1759         if (inp_flags & INP_RECVOPTS) {
1760                 db_printf("%sINP_RECVOPTS", comma ? ", " : "");
1761                 comma = 1;
1762         }
1763         if (inp_flags & INP_RECVRETOPTS) {
1764                 db_printf("%sINP_RECVRETOPTS", comma ? ", " : "");
1765                 comma = 1;
1766         }
1767         if (inp_flags & INP_RECVDSTADDR) {
1768                 db_printf("%sINP_RECVDSTADDR", comma ? ", " : "");
1769                 comma = 1;
1770         }
1771         if (inp_flags & INP_HDRINCL) {
1772                 db_printf("%sINP_HDRINCL", comma ? ", " : "");
1773                 comma = 1;
1774         }
1775         if (inp_flags & INP_HIGHPORT) {
1776                 db_printf("%sINP_HIGHPORT", comma ? ", " : "");
1777                 comma = 1;
1778         }
1779         if (inp_flags & INP_LOWPORT) {
1780                 db_printf("%sINP_LOWPORT", comma ? ", " : "");
1781                 comma = 1;
1782         }
1783         if (inp_flags & INP_ANONPORT) {
1784                 db_printf("%sINP_ANONPORT", comma ? ", " : "");
1785                 comma = 1;
1786         }
1787         if (inp_flags & INP_RECVIF) {
1788                 db_printf("%sINP_RECVIF", comma ? ", " : "");
1789                 comma = 1;
1790         }
1791         if (inp_flags & INP_MTUDISC) {
1792                 db_printf("%sINP_MTUDISC", comma ? ", " : "");
1793                 comma = 1;
1794         }
1795         if (inp_flags & INP_FAITH) {
1796                 db_printf("%sINP_FAITH", comma ? ", " : "");
1797                 comma = 1;
1798         }
1799         if (inp_flags & INP_RECVTTL) {
1800                 db_printf("%sINP_RECVTTL", comma ? ", " : "");
1801                 comma = 1;
1802         }
1803         if (inp_flags & INP_DONTFRAG) {
1804                 db_printf("%sINP_DONTFRAG", comma ? ", " : "");
1805                 comma = 1;
1806         }
1807         if (inp_flags & IN6P_IPV6_V6ONLY) {
1808                 db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : "");
1809                 comma = 1;
1810         }
1811         if (inp_flags & IN6P_PKTINFO) {
1812                 db_printf("%sIN6P_PKTINFO", comma ? ", " : "");
1813                 comma = 1;
1814         }
1815         if (inp_flags & IN6P_HOPLIMIT) {
1816                 db_printf("%sIN6P_HOPLIMIT", comma ? ", " : "");
1817                 comma = 1;
1818         }
1819         if (inp_flags & IN6P_HOPOPTS) {
1820                 db_printf("%sIN6P_HOPOPTS", comma ? ", " : "");
1821                 comma = 1;
1822         }
1823         if (inp_flags & IN6P_DSTOPTS) {
1824                 db_printf("%sIN6P_DSTOPTS", comma ? ", " : "");
1825                 comma = 1;
1826         }
1827         if (inp_flags & IN6P_RTHDR) {
1828                 db_printf("%sIN6P_RTHDR", comma ? ", " : "");
1829                 comma = 1;
1830         }
1831         if (inp_flags & IN6P_RTHDRDSTOPTS) {
1832                 db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : "");
1833                 comma = 1;
1834         }
1835         if (inp_flags & IN6P_TCLASS) {
1836                 db_printf("%sIN6P_TCLASS", comma ? ", " : "");
1837                 comma = 1;
1838         }
1839         if (inp_flags & IN6P_AUTOFLOWLABEL) {
1840                 db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : "");
1841                 comma = 1;
1842         }
1843         if (inp_flags & INP_TIMEWAIT) {
1844                 db_printf("%sINP_TIMEWAIT", comma ? ", " : "");
1845                 comma  = 1;
1846         }
1847         if (inp_flags & INP_ONESBCAST) {
1848                 db_printf("%sINP_ONESBCAST", comma ? ", " : "");
1849                 comma  = 1;
1850         }
1851         if (inp_flags & INP_DROPPED) {
1852                 db_printf("%sINP_DROPPED", comma ? ", " : "");
1853                 comma  = 1;
1854         }
1855         if (inp_flags & INP_SOCKREF) {
1856                 db_printf("%sINP_SOCKREF", comma ? ", " : "");
1857                 comma  = 1;
1858         }
1859         if (inp_flags & IN6P_RFC2292) {
1860                 db_printf("%sIN6P_RFC2292", comma ? ", " : "");
1861                 comma = 1;
1862         }
1863         if (inp_flags & IN6P_MTU) {
1864                 db_printf("IN6P_MTU%s", comma ? ", " : "");
1865                 comma = 1;
1866         }
1867 }
1868
1869 static void
1870 db_print_inpvflag(u_char inp_vflag)
1871 {
1872         int comma;
1873
1874         comma = 0;
1875         if (inp_vflag & INP_IPV4) {
1876                 db_printf("%sINP_IPV4", comma ? ", " : "");
1877                 comma  = 1;
1878         }
1879         if (inp_vflag & INP_IPV6) {
1880                 db_printf("%sINP_IPV6", comma ? ", " : "");
1881                 comma  = 1;
1882         }
1883         if (inp_vflag & INP_IPV6PROTO) {
1884                 db_printf("%sINP_IPV6PROTO", comma ? ", " : "");
1885                 comma  = 1;
1886         }
1887 }
1888
1889 static void
1890 db_print_inpcb(struct inpcb *inp, const char *name, int indent)
1891 {
1892
1893         db_print_indent(indent);
1894         db_printf("%s at %p\n", name, inp);
1895
1896         indent += 2;
1897
1898         db_print_indent(indent);
1899         db_printf("inp_flow: 0x%x\n", inp->inp_flow);
1900
1901         db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent);
1902
1903         db_print_indent(indent);
1904         db_printf("inp_ppcb: %p   inp_pcbinfo: %p   inp_socket: %p\n",
1905             inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket);
1906
1907         db_print_indent(indent);
1908         db_printf("inp_label: %p   inp_flags: 0x%x (",
1909            inp->inp_label, inp->inp_flags);
1910         db_print_inpflags(inp->inp_flags);
1911         db_printf(")\n");
1912
1913         db_print_indent(indent);
1914         db_printf("inp_sp: %p   inp_vflag: 0x%x (", inp->inp_sp,
1915             inp->inp_vflag);
1916         db_print_inpvflag(inp->inp_vflag);
1917         db_printf(")\n");
1918
1919         db_print_indent(indent);
1920         db_printf("inp_ip_ttl: %d   inp_ip_p: %d   inp_ip_minttl: %d\n",
1921             inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl);
1922
1923         db_print_indent(indent);
1924 #ifdef INET6
1925         if (inp->inp_vflag & INP_IPV6) {
1926                 db_printf("in6p_options: %p   in6p_outputopts: %p   "
1927                     "in6p_moptions: %p\n", inp->in6p_options,
1928                     inp->in6p_outputopts, inp->in6p_moptions);
1929                 db_printf("in6p_icmp6filt: %p   in6p_cksum %d   "
1930                     "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum,
1931                     inp->in6p_hops);
1932         } else
1933 #endif
1934         {
1935                 db_printf("inp_ip_tos: %d   inp_ip_options: %p   "
1936                     "inp_ip_moptions: %p\n", inp->inp_ip_tos,
1937                     inp->inp_options, inp->inp_moptions);
1938         }
1939
1940         db_print_indent(indent);
1941         db_printf("inp_phd: %p   inp_gencnt: %ju\n", inp->inp_phd,
1942             (uintmax_t)inp->inp_gencnt);
1943 }
1944
1945 DB_SHOW_COMMAND(inpcb, db_show_inpcb)
1946 {
1947         struct inpcb *inp;
1948
1949         if (!have_addr) {
1950                 db_printf("usage: show inpcb <addr>\n");
1951                 return;
1952         }
1953         inp = (struct inpcb *)addr;
1954
1955         db_print_inpcb(inp, "inpcb", 0);
1956 }
1957 #endif