]> CyberLeo.Net >> Repos - FreeBSD/releng/8.2.git/blob - sys/vm/vm_fault.c
Copy stable/8 to releng/8.2 in preparation for FreeBSD-8.2 release.
[FreeBSD/releng/8.2.git] / sys / vm / vm_fault.c
1 /*-
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  *
10  * This code is derived from software contributed to Berkeley by
11  * The Mach Operating System project at Carnegie-Mellon University.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *      This product includes software developed by the University of
24  *      California, Berkeley and its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *      from: @(#)vm_fault.c    8.4 (Berkeley) 1/12/94
42  *
43  *
44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45  * All rights reserved.
46  *
47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48  *
49  * Permission to use, copy, modify and distribute this software and
50  * its documentation is hereby granted, provided that both the copyright
51  * notice and this permission notice appear in all copies of the
52  * software, derivative works or modified versions, and any portions
53  * thereof, and that both notices appear in supporting documentation.
54  *
55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58  *
59  * Carnegie Mellon requests users of this software to return to
60  *
61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62  *  School of Computer Science
63  *  Carnegie Mellon University
64  *  Pittsburgh PA 15213-3890
65  *
66  * any improvements or extensions that they make and grant Carnegie the
67  * rights to redistribute these changes.
68  */
69
70 /*
71  *      Page fault handling module.
72  */
73
74 #include <sys/cdefs.h>
75 __FBSDID("$FreeBSD$");
76
77 #include "opt_vm.h"
78
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/lock.h>
83 #include <sys/mutex.h>
84 #include <sys/proc.h>
85 #include <sys/resourcevar.h>
86 #include <sys/sysctl.h>
87 #include <sys/vmmeter.h>
88 #include <sys/vnode.h>
89
90 #include <vm/vm.h>
91 #include <vm/vm_param.h>
92 #include <vm/pmap.h>
93 #include <vm/vm_map.h>
94 #include <vm/vm_object.h>
95 #include <vm/vm_page.h>
96 #include <vm/vm_pageout.h>
97 #include <vm/vm_kern.h>
98 #include <vm/vm_pager.h>
99 #include <vm/vnode_pager.h>
100 #include <vm/vm_extern.h>
101
102 #include <sys/mount.h>  /* XXX Temporary for VFS_LOCK_GIANT() */
103
104 #define PFBAK 4
105 #define PFFOR 4
106 #define PAGEORDER_SIZE (PFBAK+PFFOR)
107
108 static int prefault_pageorder[] = {
109         -1 * PAGE_SIZE, 1 * PAGE_SIZE,
110         -2 * PAGE_SIZE, 2 * PAGE_SIZE,
111         -3 * PAGE_SIZE, 3 * PAGE_SIZE,
112         -4 * PAGE_SIZE, 4 * PAGE_SIZE
113 };
114
115 static int vm_fault_additional_pages(vm_page_t, int, int, vm_page_t *, int *);
116 static void vm_fault_prefault(pmap_t, vm_offset_t, vm_map_entry_t);
117
118 #define VM_FAULT_READ_AHEAD 8
119 #define VM_FAULT_READ_BEHIND 7
120 #define VM_FAULT_READ (VM_FAULT_READ_AHEAD+VM_FAULT_READ_BEHIND+1)
121
122 struct faultstate {
123         vm_page_t m;
124         vm_object_t object;
125         vm_pindex_t pindex;
126         vm_page_t first_m;
127         vm_object_t     first_object;
128         vm_pindex_t first_pindex;
129         vm_map_t map;
130         vm_map_entry_t entry;
131         int lookup_still_valid;
132         struct vnode *vp;
133         int vfslocked;
134 };
135
136 static inline void
137 release_page(struct faultstate *fs)
138 {
139
140         vm_page_wakeup(fs->m);
141         vm_page_lock_queues();
142         vm_page_deactivate(fs->m);
143         vm_page_unlock_queues();
144         fs->m = NULL;
145 }
146
147 static inline void
148 unlock_map(struct faultstate *fs)
149 {
150
151         if (fs->lookup_still_valid) {
152                 vm_map_lookup_done(fs->map, fs->entry);
153                 fs->lookup_still_valid = FALSE;
154         }
155 }
156
157 static void
158 unlock_and_deallocate(struct faultstate *fs)
159 {
160
161         vm_object_pip_wakeup(fs->object);
162         VM_OBJECT_UNLOCK(fs->object);
163         if (fs->object != fs->first_object) {
164                 VM_OBJECT_LOCK(fs->first_object);
165                 vm_page_lock_queues();
166                 vm_page_free(fs->first_m);
167                 vm_page_unlock_queues();
168                 vm_object_pip_wakeup(fs->first_object);
169                 VM_OBJECT_UNLOCK(fs->first_object);
170                 fs->first_m = NULL;
171         }
172         vm_object_deallocate(fs->first_object);
173         unlock_map(fs); 
174         if (fs->vp != NULL) { 
175                 vput(fs->vp);
176                 fs->vp = NULL;
177         }
178         VFS_UNLOCK_GIANT(fs->vfslocked);
179         fs->vfslocked = 0;
180 }
181
182 /*
183  * TRYPAGER - used by vm_fault to calculate whether the pager for the
184  *            current object *might* contain the page.
185  *
186  *            default objects are zero-fill, there is no real pager.
187  */
188 #define TRYPAGER        (fs.object->type != OBJT_DEFAULT && \
189                         (((fault_flags & VM_FAULT_WIRE_MASK) == 0) || wired))
190
191 /*
192  *      vm_fault:
193  *
194  *      Handle a page fault occurring at the given address,
195  *      requiring the given permissions, in the map specified.
196  *      If successful, the page is inserted into the
197  *      associated physical map.
198  *
199  *      NOTE: the given address should be truncated to the
200  *      proper page address.
201  *
202  *      KERN_SUCCESS is returned if the page fault is handled; otherwise,
203  *      a standard error specifying why the fault is fatal is returned.
204  *
205  *
206  *      The map in question must be referenced, and remains so.
207  *      Caller may hold no locks.
208  */
209 int
210 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
211          int fault_flags)
212 {
213         vm_prot_t prot;
214         int is_first_object_locked, result;
215         boolean_t are_queues_locked, growstack, wired;
216         int map_generation;
217         vm_object_t next_object;
218         vm_page_t marray[VM_FAULT_READ], mt, mt_prev;
219         int hardfault;
220         int faultcount, ahead, behind, alloc_req;
221         struct faultstate fs;
222         struct vnode *vp;
223         int locked, error;
224
225         hardfault = 0;
226         growstack = TRUE;
227         PCPU_INC(cnt.v_vm_faults);
228         fs.vp = NULL;
229         fs.vfslocked = 0;
230         faultcount = behind = 0;
231
232 RetryFault:;
233
234         /*
235          * Find the backing store object and offset into it to begin the
236          * search.
237          */
238         fs.map = map;
239         result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry,
240             &fs.first_object, &fs.first_pindex, &prot, &wired);
241         if (result != KERN_SUCCESS) {
242                 if (result != KERN_PROTECTION_FAILURE ||
243                     (fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE) {
244                         if (growstack && result == KERN_INVALID_ADDRESS &&
245                             map != kernel_map && curproc != NULL) {
246                                 result = vm_map_growstack(curproc, vaddr);
247                                 if (result != KERN_SUCCESS)
248                                         return (KERN_FAILURE);
249                                 growstack = FALSE;
250                                 goto RetryFault;
251                         }
252                         return (result);
253                 }
254
255                 /*
256                  * If we are user-wiring a r/w segment, and it is COW, then
257                  * we need to do the COW operation.  Note that we don't COW
258                  * currently RO sections now, because it is NOT desirable
259                  * to COW .text.  We simply keep .text from ever being COW'ed
260                  * and take the heat that one cannot debug wired .text sections.
261                  */
262                 result = vm_map_lookup(&fs.map, vaddr,
263                         VM_PROT_READ|VM_PROT_WRITE|VM_PROT_OVERRIDE_WRITE,
264                         &fs.entry, &fs.first_object, &fs.first_pindex, &prot, &wired);
265                 if (result != KERN_SUCCESS)
266                         return (result);
267
268                 /*
269                  * If we don't COW now, on a user wire, the user will never
270                  * be able to write to the mapping.  If we don't make this
271                  * restriction, the bookkeeping would be nearly impossible.
272                  *
273                  * XXX The following assignment modifies the map without
274                  * holding a write lock on it.
275                  */
276                 if ((fs.entry->protection & VM_PROT_WRITE) == 0)
277                         fs.entry->max_protection &= ~VM_PROT_WRITE;
278         }
279
280         map_generation = fs.map->timestamp;
281
282         if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
283                 panic("vm_fault: fault on nofault entry, addr: %lx",
284                     (u_long)vaddr);
285         }
286
287         /*
288          * Make a reference to this object to prevent its disposal while we
289          * are messing with it.  Once we have the reference, the map is free
290          * to be diddled.  Since objects reference their shadows (and copies),
291          * they will stay around as well.
292          *
293          * Bump the paging-in-progress count to prevent size changes (e.g. 
294          * truncation operations) during I/O.  This must be done after
295          * obtaining the vnode lock in order to avoid possible deadlocks.
296          */
297         VM_OBJECT_LOCK(fs.first_object);
298         vm_object_reference_locked(fs.first_object);
299         vm_object_pip_add(fs.first_object, 1);
300
301         fs.lookup_still_valid = TRUE;
302
303         if (wired)
304                 fault_type = prot;
305
306         fs.first_m = NULL;
307
308         /*
309          * Search for the page at object/offset.
310          */
311         fs.object = fs.first_object;
312         fs.pindex = fs.first_pindex;
313         while (TRUE) {
314                 /*
315                  * If the object is dead, we stop here
316                  */
317                 if (fs.object->flags & OBJ_DEAD) {
318                         unlock_and_deallocate(&fs);
319                         return (KERN_PROTECTION_FAILURE);
320                 }
321
322                 /*
323                  * See if page is resident
324                  */
325                 fs.m = vm_page_lookup(fs.object, fs.pindex);
326                 if (fs.m != NULL) {
327                         /* 
328                          * check for page-based copy on write.
329                          * We check fs.object == fs.first_object so
330                          * as to ensure the legacy COW mechanism is
331                          * used when the page in question is part of
332                          * a shadow object.  Otherwise, vm_page_cowfault()
333                          * removes the page from the backing object, 
334                          * which is not what we want.
335                          */
336                         vm_page_lock_queues();
337                         if ((fs.m->cow) && 
338                             (fault_type & VM_PROT_WRITE) &&
339                             (fs.object == fs.first_object)) {
340                                 vm_page_cowfault(fs.m);
341                                 vm_page_unlock_queues();
342                                 unlock_and_deallocate(&fs);
343                                 goto RetryFault;
344                         }
345
346                         /*
347                          * Wait/Retry if the page is busy.  We have to do this
348                          * if the page is busy via either VPO_BUSY or 
349                          * vm_page_t->busy because the vm_pager may be using
350                          * vm_page_t->busy for pageouts ( and even pageins if
351                          * it is the vnode pager ), and we could end up trying
352                          * to pagein and pageout the same page simultaneously.
353                          *
354                          * We can theoretically allow the busy case on a read
355                          * fault if the page is marked valid, but since such
356                          * pages are typically already pmap'd, putting that
357                          * special case in might be more effort then it is 
358                          * worth.  We cannot under any circumstances mess
359                          * around with a vm_page_t->busy page except, perhaps,
360                          * to pmap it.
361                          */
362                         if ((fs.m->oflags & VPO_BUSY) || fs.m->busy) {
363                                 vm_page_unlock_queues();
364                                 if (fs.object != fs.first_object) {
365                                         if (!VM_OBJECT_TRYLOCK(
366                                             fs.first_object)) {
367                                                 VM_OBJECT_UNLOCK(fs.object);
368                                                 VM_OBJECT_LOCK(fs.first_object);
369                                                 VM_OBJECT_LOCK(fs.object);
370                                         }
371                                         vm_page_lock_queues();
372                                         vm_page_free(fs.first_m);
373                                         vm_page_unlock_queues();
374                                         vm_object_pip_wakeup(fs.first_object);
375                                         VM_OBJECT_UNLOCK(fs.first_object);
376                                         fs.first_m = NULL;
377                                 }
378                                 unlock_map(&fs);
379                                 if (fs.m == vm_page_lookup(fs.object,
380                                     fs.pindex)) {
381                                         vm_page_sleep_if_busy(fs.m, TRUE,
382                                             "vmpfw");
383                                 }
384                                 vm_object_pip_wakeup(fs.object);
385                                 VM_OBJECT_UNLOCK(fs.object);
386                                 PCPU_INC(cnt.v_intrans);
387                                 vm_object_deallocate(fs.first_object);
388                                 goto RetryFault;
389                         }
390                         vm_pageq_remove(fs.m);
391                         vm_page_unlock_queues();
392
393                         /*
394                          * Mark page busy for other processes, and the 
395                          * pagedaemon.  If it still isn't completely valid
396                          * (readable), jump to readrest, else break-out ( we
397                          * found the page ).
398                          */
399                         vm_page_busy(fs.m);
400                         if (fs.m->valid != VM_PAGE_BITS_ALL &&
401                                 fs.m->object != kernel_object && fs.m->object != kmem_object) {
402                                 goto readrest;
403                         }
404
405                         break;
406                 }
407
408                 /*
409                  * Page is not resident, If this is the search termination
410                  * or the pager might contain the page, allocate a new page.
411                  */
412                 if (TRYPAGER || fs.object == fs.first_object) {
413                         if (fs.pindex >= fs.object->size) {
414                                 unlock_and_deallocate(&fs);
415                                 return (KERN_PROTECTION_FAILURE);
416                         }
417
418                         /*
419                          * Allocate a new page for this object/offset pair.
420                          *
421                          * Unlocked read of the p_flag is harmless. At
422                          * worst, the P_KILLED might be not observed
423                          * there, and allocation can fail, causing
424                          * restart and new reading of the p_flag.
425                          */
426                         fs.m = NULL;
427                         if (!vm_page_count_severe() || P_KILLED(curproc)) {
428 #if VM_NRESERVLEVEL > 0
429                                 if ((fs.object->flags & OBJ_COLORED) == 0) {
430                                         fs.object->flags |= OBJ_COLORED;
431                                         fs.object->pg_color = atop(vaddr) -
432                                             fs.pindex;
433                                 }
434 #endif
435                                 alloc_req = P_KILLED(curproc) ?
436                                     VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL;
437                                 if (fs.object->type != OBJT_VNODE &&
438                                     fs.object->backing_object == NULL)
439                                         alloc_req |= VM_ALLOC_ZERO;
440                                 fs.m = vm_page_alloc(fs.object, fs.pindex,
441                                     alloc_req);
442                         }
443                         if (fs.m == NULL) {
444                                 unlock_and_deallocate(&fs);
445                                 VM_WAITPFAULT;
446                                 goto RetryFault;
447                         } else if (fs.m->valid == VM_PAGE_BITS_ALL)
448                                 break;
449                 }
450
451 readrest:
452                 /*
453                  * We have found a valid page or we have allocated a new page.
454                  * The page thus may not be valid or may not be entirely 
455                  * valid.
456                  *
457                  * Attempt to fault-in the page if there is a chance that the
458                  * pager has it, and potentially fault in additional pages
459                  * at the same time.
460                  */
461                 if (TRYPAGER) {
462                         int rv;
463                         int reqpage = 0;
464                         u_char behavior = vm_map_entry_behavior(fs.entry);
465
466                         if (behavior == MAP_ENTRY_BEHAV_RANDOM ||
467                             P_KILLED(curproc)) {
468                                 ahead = 0;
469                                 behind = 0;
470                         } else {
471                                 behind = (vaddr - fs.entry->start) >> PAGE_SHIFT;
472                                 if (behind > VM_FAULT_READ_BEHIND)
473                                         behind = VM_FAULT_READ_BEHIND;
474
475                                 ahead = ((fs.entry->end - vaddr) >> PAGE_SHIFT) - 1;
476                                 if (ahead > VM_FAULT_READ_AHEAD)
477                                         ahead = VM_FAULT_READ_AHEAD;
478                         }
479                         is_first_object_locked = FALSE;
480                         if ((behavior == MAP_ENTRY_BEHAV_SEQUENTIAL ||
481                              (behavior != MAP_ENTRY_BEHAV_RANDOM &&
482                               fs.pindex >= fs.entry->lastr &&
483                               fs.pindex < fs.entry->lastr + VM_FAULT_READ)) &&
484                             (fs.first_object == fs.object ||
485                              (is_first_object_locked = VM_OBJECT_TRYLOCK(fs.first_object))) &&
486                             fs.first_object->type != OBJT_DEVICE &&
487                             fs.first_object->type != OBJT_PHYS &&
488                             fs.first_object->type != OBJT_SG) {
489                                 vm_pindex_t firstpindex;
490
491                                 if (fs.first_pindex < 2 * VM_FAULT_READ)
492                                         firstpindex = 0;
493                                 else
494                                         firstpindex = fs.first_pindex - 2 * VM_FAULT_READ;
495                                 mt = fs.first_object != fs.object ?
496                                     fs.first_m : fs.m;
497                                 KASSERT(mt != NULL, ("vm_fault: missing mt"));
498                                 KASSERT((mt->oflags & VPO_BUSY) != 0,
499                                     ("vm_fault: mt %p not busy", mt));
500                                 mt_prev = vm_page_prev(mt);
501
502                                 are_queues_locked = FALSE;
503                                 /*
504                                  * note: partially valid pages cannot be 
505                                  * included in the lookahead - NFS piecemeal
506                                  * writes will barf on it badly.
507                                  */
508                                 while ((mt = mt_prev) != NULL &&
509                                     mt->pindex >= firstpindex &&
510                                     mt->valid == VM_PAGE_BITS_ALL) {
511                                         mt_prev = vm_page_prev(mt);
512                                         if (mt->busy ||
513                                             (mt->oflags & VPO_BUSY))
514                                                 continue;
515                                         if (!are_queues_locked) {
516                                                 are_queues_locked = TRUE;
517                                                 vm_page_lock_queues();
518                                         }
519                                         if (mt->hold_count ||
520                                                 mt->wire_count) 
521                                                 continue;
522                                         pmap_remove_all(mt);
523                                         if (mt->dirty) {
524                                                 vm_page_deactivate(mt);
525                                         } else {
526                                                 vm_page_cache(mt);
527                                         }
528                                 }
529                                 if (are_queues_locked)
530                                         vm_page_unlock_queues();
531                                 ahead += behind;
532                                 behind = 0;
533                         }
534                         if (is_first_object_locked)
535                                 VM_OBJECT_UNLOCK(fs.first_object);
536
537                         /*
538                          * Call the pager to retrieve the data, if any, after
539                          * releasing the lock on the map.  We hold a ref on
540                          * fs.object and the pages are VPO_BUSY'd.
541                          */
542                         unlock_map(&fs);
543
544 vnode_lock:
545                         if (fs.object->type == OBJT_VNODE) {
546                                 vp = fs.object->handle;
547                                 if (vp == fs.vp)
548                                         goto vnode_locked;
549                                 else if (fs.vp != NULL) {
550                                         vput(fs.vp);
551                                         fs.vp = NULL;
552                                 }
553                                 locked = VOP_ISLOCKED(vp);
554
555                                 if (VFS_NEEDSGIANT(vp->v_mount) && !fs.vfslocked) {
556                                         fs.vfslocked = 1;
557                                         if (!mtx_trylock(&Giant)) {
558                                                 VM_OBJECT_UNLOCK(fs.object);
559                                                 mtx_lock(&Giant);
560                                                 VM_OBJECT_LOCK(fs.object);
561                                                 goto vnode_lock;
562                                         }
563                                 }
564                                 if (locked != LK_EXCLUSIVE)
565                                         locked = LK_SHARED;
566                                 /* Do not sleep for vnode lock while fs.m is busy */
567                                 error = vget(vp, locked | LK_CANRECURSE |
568                                     LK_NOWAIT, curthread);
569                                 if (error != 0) {
570                                         int vfslocked;
571
572                                         vfslocked = fs.vfslocked;
573                                         fs.vfslocked = 0; /* Keep Giant */
574                                         vhold(vp);
575                                         release_page(&fs);
576                                         unlock_and_deallocate(&fs);
577                                         error = vget(vp, locked | LK_RETRY |
578                                             LK_CANRECURSE, curthread);
579                                         vdrop(vp);
580                                         fs.vp = vp;
581                                         fs.vfslocked = vfslocked;
582                                         KASSERT(error == 0,
583                                             ("vm_fault: vget failed"));
584                                         goto RetryFault;
585                                 }
586                                 fs.vp = vp;
587                         }
588 vnode_locked:
589                         KASSERT(fs.vp == NULL || !fs.map->system_map,
590                             ("vm_fault: vnode-backed object mapped by system map"));
591
592                         /*
593                          * now we find out if any other pages should be paged
594                          * in at this time this routine checks to see if the
595                          * pages surrounding this fault reside in the same
596                          * object as the page for this fault.  If they do,
597                          * then they are faulted in also into the object.  The
598                          * array "marray" returned contains an array of
599                          * vm_page_t structs where one of them is the
600                          * vm_page_t passed to the routine.  The reqpage
601                          * return value is the index into the marray for the
602                          * vm_page_t passed to the routine.
603                          *
604                          * fs.m plus the additional pages are VPO_BUSY'd.
605                          */
606                         faultcount = vm_fault_additional_pages(
607                             fs.m, behind, ahead, marray, &reqpage);
608
609                         rv = faultcount ?
610                             vm_pager_get_pages(fs.object, marray, faultcount,
611                                 reqpage) : VM_PAGER_FAIL;
612
613                         if (rv == VM_PAGER_OK) {
614                                 /*
615                                  * Found the page. Leave it busy while we play
616                                  * with it.
617                                  */
618
619                                 /*
620                                  * Relookup in case pager changed page. Pager
621                                  * is responsible for disposition of old page
622                                  * if moved.
623                                  */
624                                 fs.m = vm_page_lookup(fs.object, fs.pindex);
625                                 if (!fs.m) {
626                                         unlock_and_deallocate(&fs);
627                                         goto RetryFault;
628                                 }
629
630                                 hardfault++;
631                                 break; /* break to PAGE HAS BEEN FOUND */
632                         }
633                         /*
634                          * Remove the bogus page (which does not exist at this
635                          * object/offset); before doing so, we must get back
636                          * our object lock to preserve our invariant.
637                          *
638                          * Also wake up any other process that may want to bring
639                          * in this page.
640                          *
641                          * If this is the top-level object, we must leave the
642                          * busy page to prevent another process from rushing
643                          * past us, and inserting the page in that object at
644                          * the same time that we are.
645                          */
646                         if (rv == VM_PAGER_ERROR)
647                                 printf("vm_fault: pager read error, pid %d (%s)\n",
648                                     curproc->p_pid, curproc->p_comm);
649                         /*
650                          * Data outside the range of the pager or an I/O error
651                          */
652                         /*
653                          * XXX - the check for kernel_map is a kludge to work
654                          * around having the machine panic on a kernel space
655                          * fault w/ I/O error.
656                          */
657                         if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
658                                 (rv == VM_PAGER_BAD)) {
659                                 vm_page_lock_queues();
660                                 vm_page_free(fs.m);
661                                 vm_page_unlock_queues();
662                                 fs.m = NULL;
663                                 unlock_and_deallocate(&fs);
664                                 return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE);
665                         }
666                         if (fs.object != fs.first_object) {
667                                 vm_page_lock_queues();
668                                 vm_page_free(fs.m);
669                                 vm_page_unlock_queues();
670                                 fs.m = NULL;
671                                 /*
672                                  * XXX - we cannot just fall out at this
673                                  * point, m has been freed and is invalid!
674                                  */
675                         }
676                 }
677
678                 /*
679                  * We get here if the object has default pager (or unwiring) 
680                  * or the pager doesn't have the page.
681                  */
682                 if (fs.object == fs.first_object)
683                         fs.first_m = fs.m;
684
685                 /*
686                  * Move on to the next object.  Lock the next object before
687                  * unlocking the current one.
688                  */
689                 fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset);
690                 next_object = fs.object->backing_object;
691                 if (next_object == NULL) {
692                         /*
693                          * If there's no object left, fill the page in the top
694                          * object with zeros.
695                          */
696                         if (fs.object != fs.first_object) {
697                                 vm_object_pip_wakeup(fs.object);
698                                 VM_OBJECT_UNLOCK(fs.object);
699
700                                 fs.object = fs.first_object;
701                                 fs.pindex = fs.first_pindex;
702                                 fs.m = fs.first_m;
703                                 VM_OBJECT_LOCK(fs.object);
704                         }
705                         fs.first_m = NULL;
706
707                         /*
708                          * Zero the page if necessary and mark it valid.
709                          */
710                         if ((fs.m->flags & PG_ZERO) == 0) {
711                                 pmap_zero_page(fs.m);
712                         } else {
713                                 PCPU_INC(cnt.v_ozfod);
714                         }
715                         PCPU_INC(cnt.v_zfod);
716                         fs.m->valid = VM_PAGE_BITS_ALL;
717                         break;  /* break to PAGE HAS BEEN FOUND */
718                 } else {
719                         KASSERT(fs.object != next_object,
720                             ("object loop %p", next_object));
721                         VM_OBJECT_LOCK(next_object);
722                         vm_object_pip_add(next_object, 1);
723                         if (fs.object != fs.first_object)
724                                 vm_object_pip_wakeup(fs.object);
725                         VM_OBJECT_UNLOCK(fs.object);
726                         fs.object = next_object;
727                 }
728         }
729
730         KASSERT((fs.m->oflags & VPO_BUSY) != 0,
731             ("vm_fault: not busy after main loop"));
732
733         /*
734          * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
735          * is held.]
736          */
737
738         /*
739          * If the page is being written, but isn't already owned by the
740          * top-level object, we have to copy it into a new page owned by the
741          * top-level object.
742          */
743         if (fs.object != fs.first_object) {
744                 /*
745                  * We only really need to copy if we want to write it.
746                  */
747                 if (fault_type & VM_PROT_WRITE) {
748                         /*
749                          * This allows pages to be virtually copied from a 
750                          * backing_object into the first_object, where the 
751                          * backing object has no other refs to it, and cannot
752                          * gain any more refs.  Instead of a bcopy, we just 
753                          * move the page from the backing object to the 
754                          * first object.  Note that we must mark the page 
755                          * dirty in the first object so that it will go out 
756                          * to swap when needed.
757                          */
758                         is_first_object_locked = FALSE;
759                         if (
760                                 /*
761                                  * Only one shadow object
762                                  */
763                                 (fs.object->shadow_count == 1) &&
764                                 /*
765                                  * No COW refs, except us
766                                  */
767                                 (fs.object->ref_count == 1) &&
768                                 /*
769                                  * No one else can look this object up
770                                  */
771                                 (fs.object->handle == NULL) &&
772                                 /*
773                                  * No other ways to look the object up
774                                  */
775                                 ((fs.object->type == OBJT_DEFAULT) ||
776                                  (fs.object->type == OBJT_SWAP)) &&
777                             (is_first_object_locked = VM_OBJECT_TRYLOCK(fs.first_object)) &&
778                                 /*
779                                  * We don't chase down the shadow chain
780                                  */
781                             fs.object == fs.first_object->backing_object) {
782                                 vm_page_lock_queues();
783                                 /*
784                                  * get rid of the unnecessary page
785                                  */
786                                 vm_page_free(fs.first_m);
787                                 /*
788                                  * grab the page and put it into the 
789                                  * process'es object.  The page is 
790                                  * automatically made dirty.
791                                  */
792                                 vm_page_rename(fs.m, fs.first_object, fs.first_pindex);
793                                 vm_page_unlock_queues();
794                                 vm_page_busy(fs.m);
795                                 fs.first_m = fs.m;
796                                 fs.m = NULL;
797                                 PCPU_INC(cnt.v_cow_optim);
798                         } else {
799                                 /*
800                                  * Oh, well, lets copy it.
801                                  */
802                                 pmap_copy_page(fs.m, fs.first_m);
803                                 fs.first_m->valid = VM_PAGE_BITS_ALL;
804                         }
805                         if (fs.m) {
806                                 /*
807                                  * We no longer need the old page or object.
808                                  */
809                                 release_page(&fs);
810                         }
811                         /*
812                          * fs.object != fs.first_object due to above 
813                          * conditional
814                          */
815                         vm_object_pip_wakeup(fs.object);
816                         VM_OBJECT_UNLOCK(fs.object);
817                         /*
818                          * Only use the new page below...
819                          */
820                         fs.object = fs.first_object;
821                         fs.pindex = fs.first_pindex;
822                         fs.m = fs.first_m;
823                         if (!is_first_object_locked)
824                                 VM_OBJECT_LOCK(fs.object);
825                         PCPU_INC(cnt.v_cow_faults);
826                 } else {
827                         prot &= ~VM_PROT_WRITE;
828                 }
829         }
830
831         /*
832          * We must verify that the maps have not changed since our last
833          * lookup.
834          */
835         if (!fs.lookup_still_valid) {
836                 vm_object_t retry_object;
837                 vm_pindex_t retry_pindex;
838                 vm_prot_t retry_prot;
839
840                 if (!vm_map_trylock_read(fs.map)) {
841                         release_page(&fs);
842                         unlock_and_deallocate(&fs);
843                         goto RetryFault;
844                 }
845                 fs.lookup_still_valid = TRUE;
846                 if (fs.map->timestamp != map_generation) {
847                         result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
848                             &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
849
850                         /*
851                          * If we don't need the page any longer, put it on the inactive
852                          * list (the easiest thing to do here).  If no one needs it,
853                          * pageout will grab it eventually.
854                          */
855                         if (result != KERN_SUCCESS) {
856                                 release_page(&fs);
857                                 unlock_and_deallocate(&fs);
858
859                                 /*
860                                  * If retry of map lookup would have blocked then
861                                  * retry fault from start.
862                                  */
863                                 if (result == KERN_FAILURE)
864                                         goto RetryFault;
865                                 return (result);
866                         }
867                         if ((retry_object != fs.first_object) ||
868                             (retry_pindex != fs.first_pindex)) {
869                                 release_page(&fs);
870                                 unlock_and_deallocate(&fs);
871                                 goto RetryFault;
872                         }
873
874                         /*
875                          * Check whether the protection has changed or the object has
876                          * been copied while we left the map unlocked. Changing from
877                          * read to write permission is OK - we leave the page
878                          * write-protected, and catch the write fault. Changing from
879                          * write to read permission means that we can't mark the page
880                          * write-enabled after all.
881                          */
882                         prot &= retry_prot;
883                 }
884         }
885         /*
886          * If the page was filled by a pager, update the map entry's
887          * last read offset.  Since the pager does not return the
888          * actual set of pages that it read, this update is based on
889          * the requested set.  Typically, the requested and actual
890          * sets are the same.
891          *
892          * XXX The following assignment modifies the map
893          * without holding a write lock on it.
894          */
895         if (hardfault)
896                 fs.entry->lastr = fs.pindex + faultcount - behind;
897
898         if (prot & VM_PROT_WRITE) {
899                 vm_object_set_writeable_dirty(fs.object);
900
901                 /*
902                  * If the fault is a write, we know that this page is being
903                  * written NOW so dirty it explicitly to save on 
904                  * pmap_is_modified() calls later.
905                  *
906                  * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC
907                  * if the page is already dirty to prevent data written with
908                  * the expectation of being synced from not being synced.
909                  * Likewise if this entry does not request NOSYNC then make
910                  * sure the page isn't marked NOSYNC.  Applications sharing
911                  * data should use the same flags to avoid ping ponging.
912                  *
913                  * Also tell the backing pager, if any, that it should remove
914                  * any swap backing since the page is now dirty.
915                  */
916                 if (fs.entry->eflags & MAP_ENTRY_NOSYNC) {
917                         if (fs.m->dirty == 0)
918                                 fs.m->oflags |= VPO_NOSYNC;
919                 } else {
920                         fs.m->oflags &= ~VPO_NOSYNC;
921                 }
922                 if (fault_flags & VM_FAULT_DIRTY) {
923                         vm_page_dirty(fs.m);
924                         vm_pager_page_unswapped(fs.m);
925                 }
926         }
927
928         /*
929          * Page had better still be busy
930          */
931         KASSERT(fs.m->oflags & VPO_BUSY,
932                 ("vm_fault: page %p not busy!", fs.m));
933         /*
934          * Page must be completely valid or it is not fit to
935          * map into user space.  vm_pager_get_pages() ensures this.
936          */
937         KASSERT(fs.m->valid == VM_PAGE_BITS_ALL,
938             ("vm_fault: page %p partially invalid", fs.m));
939         VM_OBJECT_UNLOCK(fs.object);
940
941         /*
942          * Put this page into the physical map.  We had to do the unlock above
943          * because pmap_enter() may sleep.  We don't put the page
944          * back on the active queue until later so that the pageout daemon
945          * won't find it (yet).
946          */
947         pmap_enter(fs.map->pmap, vaddr, fault_type, fs.m, prot, wired);
948         if (((fault_flags & VM_FAULT_WIRE_MASK) == 0) && (wired == 0)) {
949                 vm_fault_prefault(fs.map->pmap, vaddr, fs.entry);
950         }
951         VM_OBJECT_LOCK(fs.object);
952         vm_page_lock_queues();
953         vm_page_flag_set(fs.m, PG_REFERENCED);
954
955         /*
956          * If the page is not wired down, then put it where the pageout daemon
957          * can find it.
958          */
959         if (fault_flags & VM_FAULT_WIRE_MASK) {
960                 if (wired)
961                         vm_page_wire(fs.m);
962                 else
963                         vm_page_unwire(fs.m, 1);
964         } else {
965                 vm_page_activate(fs.m);
966         }
967         vm_page_unlock_queues();
968         vm_page_wakeup(fs.m);
969
970         /*
971          * Unlock everything, and return
972          */
973         unlock_and_deallocate(&fs);
974         if (hardfault)
975                 curthread->td_ru.ru_majflt++;
976         else
977                 curthread->td_ru.ru_minflt++;
978
979         return (KERN_SUCCESS);
980 }
981
982 /*
983  * vm_fault_prefault provides a quick way of clustering
984  * pagefaults into a processes address space.  It is a "cousin"
985  * of vm_map_pmap_enter, except it runs at page fault time instead
986  * of mmap time.
987  */
988 static void
989 vm_fault_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry)
990 {
991         int i;
992         vm_offset_t addr, starta;
993         vm_pindex_t pindex;
994         vm_page_t m;
995         vm_object_t object;
996
997         if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
998                 return;
999
1000         object = entry->object.vm_object;
1001
1002         starta = addra - PFBAK * PAGE_SIZE;
1003         if (starta < entry->start) {
1004                 starta = entry->start;
1005         } else if (starta > addra) {
1006                 starta = 0;
1007         }
1008
1009         for (i = 0; i < PAGEORDER_SIZE; i++) {
1010                 vm_object_t backing_object, lobject;
1011
1012                 addr = addra + prefault_pageorder[i];
1013                 if (addr > addra + (PFFOR * PAGE_SIZE))
1014                         addr = 0;
1015
1016                 if (addr < starta || addr >= entry->end)
1017                         continue;
1018
1019                 if (!pmap_is_prefaultable(pmap, addr))
1020                         continue;
1021
1022                 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1023                 lobject = object;
1024                 VM_OBJECT_LOCK(lobject);
1025                 while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
1026                     lobject->type == OBJT_DEFAULT &&
1027                     (backing_object = lobject->backing_object) != NULL) {
1028                         KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
1029                             0, ("vm_fault_prefault: unaligned object offset"));
1030                         pindex += lobject->backing_object_offset >> PAGE_SHIFT;
1031                         VM_OBJECT_LOCK(backing_object);
1032                         VM_OBJECT_UNLOCK(lobject);
1033                         lobject = backing_object;
1034                 }
1035                 /*
1036                  * give-up when a page is not in memory
1037                  */
1038                 if (m == NULL) {
1039                         VM_OBJECT_UNLOCK(lobject);
1040                         break;
1041                 }
1042                 if (m->valid == VM_PAGE_BITS_ALL &&
1043                     (m->flags & PG_FICTITIOUS) == 0) {
1044                         vm_page_lock_queues();
1045                         pmap_enter_quick(pmap, addr, m, entry->protection);
1046                         vm_page_unlock_queues();
1047                 }
1048                 VM_OBJECT_UNLOCK(lobject);
1049         }
1050 }
1051
1052 /*
1053  *      vm_fault_quick:
1054  *
1055  *      Ensure that the requested virtual address, which may be in userland,
1056  *      is valid.  Fault-in the page if necessary.  Return -1 on failure.
1057  */
1058 int
1059 vm_fault_quick(caddr_t v, int prot)
1060 {
1061         int r;
1062
1063         if (prot & VM_PROT_WRITE)
1064                 r = subyte(v, fubyte(v));
1065         else
1066                 r = fubyte(v);
1067         return(r);
1068 }
1069
1070 /*
1071  *      vm_fault_wire:
1072  *
1073  *      Wire down a range of virtual addresses in a map.
1074  */
1075 int
1076 vm_fault_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1077     boolean_t user_wire, boolean_t fictitious)
1078 {
1079         vm_offset_t va;
1080         int rv;
1081
1082         /*
1083          * We simulate a fault to get the page and enter it in the physical
1084          * map.  For user wiring, we only ask for read access on currently
1085          * read-only sections.
1086          */
1087         for (va = start; va < end; va += PAGE_SIZE) {
1088                 rv = vm_fault(map, va,
1089                     user_wire ? VM_PROT_READ : VM_PROT_READ | VM_PROT_WRITE,
1090                     user_wire ? VM_FAULT_USER_WIRE : VM_FAULT_CHANGE_WIRING);
1091                 if (rv) {
1092                         if (va != start)
1093                                 vm_fault_unwire(map, start, va, fictitious);
1094                         return (rv);
1095                 }
1096         }
1097         return (KERN_SUCCESS);
1098 }
1099
1100 /*
1101  *      vm_fault_unwire:
1102  *
1103  *      Unwire a range of virtual addresses in a map.
1104  */
1105 void
1106 vm_fault_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1107     boolean_t fictitious)
1108 {
1109         vm_paddr_t pa;
1110         vm_offset_t va;
1111         pmap_t pmap;
1112
1113         pmap = vm_map_pmap(map);
1114
1115         /*
1116          * Since the pages are wired down, we must be able to get their
1117          * mappings from the physical map system.
1118          */
1119         for (va = start; va < end; va += PAGE_SIZE) {
1120                 pa = pmap_extract(pmap, va);
1121                 if (pa != 0) {
1122                         pmap_change_wiring(pmap, va, FALSE);
1123                         if (!fictitious) {
1124                                 vm_page_lock_queues();
1125                                 vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
1126                                 vm_page_unlock_queues();
1127                         }
1128                 }
1129         }
1130 }
1131
1132 /*
1133  *      Routine:
1134  *              vm_fault_copy_entry
1135  *      Function:
1136  *              Create new shadow object backing dst_entry with private copy of
1137  *              all underlying pages. When src_entry is equal to dst_entry,
1138  *              function implements COW for wired-down map entry. Otherwise,
1139  *              it forks wired entry into dst_map.
1140  *
1141  *      In/out conditions:
1142  *              The source and destination maps must be locked for write.
1143  *              The source map entry must be wired down (or be a sharing map
1144  *              entry corresponding to a main map entry that is wired down).
1145  */
1146 void
1147 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1148     vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
1149     vm_ooffset_t *fork_charge)
1150 {
1151         vm_object_t backing_object, dst_object, object, src_object;
1152         vm_pindex_t dst_pindex, pindex, src_pindex;
1153         vm_prot_t access, prot;
1154         vm_offset_t vaddr;
1155         vm_page_t dst_m;
1156         vm_page_t src_m;
1157         boolean_t src_readonly, upgrade;
1158
1159 #ifdef  lint
1160         src_map++;
1161 #endif  /* lint */
1162
1163         upgrade = src_entry == dst_entry;
1164
1165         src_object = src_entry->object.vm_object;
1166         src_pindex = OFF_TO_IDX(src_entry->offset);
1167         src_readonly = (src_entry->protection & VM_PROT_WRITE) == 0;
1168
1169         /*
1170          * Create the top-level object for the destination entry. (Doesn't
1171          * actually shadow anything - we copy the pages directly.)
1172          */
1173         dst_object = vm_object_allocate(OBJT_DEFAULT,
1174             OFF_TO_IDX(dst_entry->end - dst_entry->start));
1175 #if VM_NRESERVLEVEL > 0
1176         dst_object->flags |= OBJ_COLORED;
1177         dst_object->pg_color = atop(dst_entry->start);
1178 #endif
1179
1180         VM_OBJECT_LOCK(dst_object);
1181         KASSERT(upgrade || dst_entry->object.vm_object == NULL,
1182             ("vm_fault_copy_entry: vm_object not NULL"));
1183         dst_entry->object.vm_object = dst_object;
1184         dst_entry->offset = 0;
1185         dst_object->charge = dst_entry->end - dst_entry->start;
1186         if (fork_charge != NULL) {
1187                 KASSERT(dst_entry->uip == NULL,
1188                     ("vm_fault_copy_entry: leaked swp charge"));
1189                 dst_object->uip = curthread->td_ucred->cr_ruidinfo;
1190                 uihold(dst_object->uip);
1191                 *fork_charge += dst_object->charge;
1192         } else {
1193                 dst_object->uip = dst_entry->uip;
1194                 dst_entry->uip = NULL;
1195         }
1196         access = prot = dst_entry->max_protection;
1197         /*
1198          * If not an upgrade, then enter the mappings in the pmap as
1199          * read and/or execute accesses.  Otherwise, enter them as
1200          * write accesses.
1201          *
1202          * A writeable large page mapping is only created if all of
1203          * the constituent small page mappings are modified. Marking
1204          * PTEs as modified on inception allows promotion to happen
1205          * without taking potentially large number of soft faults.
1206          */
1207         if (!upgrade)
1208                 access &= ~VM_PROT_WRITE;
1209
1210         /*
1211          * Loop through all of the pages in the entry's range, copying each
1212          * one from the source object (it should be there) to the destination
1213          * object.
1214          */
1215         for (vaddr = dst_entry->start, dst_pindex = 0;
1216             vaddr < dst_entry->end;
1217             vaddr += PAGE_SIZE, dst_pindex++) {
1218
1219                 /*
1220                  * Allocate a page in the destination object.
1221                  */
1222                 do {
1223                         dst_m = vm_page_alloc(dst_object, dst_pindex,
1224                             VM_ALLOC_NORMAL);
1225                         if (dst_m == NULL) {
1226                                 VM_OBJECT_UNLOCK(dst_object);
1227                                 VM_WAIT;
1228                                 VM_OBJECT_LOCK(dst_object);
1229                         }
1230                 } while (dst_m == NULL);
1231
1232                 /*
1233                  * Find the page in the source object, and copy it in.
1234                  * (Because the source is wired down, the page will be in
1235                  * memory.)
1236                  */
1237                 VM_OBJECT_LOCK(src_object);
1238                 object = src_object;
1239                 pindex = src_pindex + dst_pindex;
1240                 while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
1241                     src_readonly &&
1242                     (backing_object = object->backing_object) != NULL) {
1243                         /*
1244                          * Allow fallback to backing objects if we are reading.
1245                          */
1246                         VM_OBJECT_LOCK(backing_object);
1247                         pindex += OFF_TO_IDX(object->backing_object_offset);
1248                         VM_OBJECT_UNLOCK(object);
1249                         object = backing_object;
1250                 }
1251                 if (src_m == NULL)
1252                         panic("vm_fault_copy_wired: page missing");
1253                 pmap_copy_page(src_m, dst_m);
1254                 VM_OBJECT_UNLOCK(object);
1255                 dst_m->valid = VM_PAGE_BITS_ALL;
1256                 VM_OBJECT_UNLOCK(dst_object);
1257
1258                 /*
1259                  * Enter it in the pmap. If a wired, copy-on-write
1260                  * mapping is being replaced by a write-enabled
1261                  * mapping, then wire that new mapping.
1262                  */
1263                 pmap_enter(dst_map->pmap, vaddr, access, dst_m, prot, upgrade);
1264
1265                 /*
1266                  * Mark it no longer busy, and put it on the active list.
1267                  */
1268                 VM_OBJECT_LOCK(dst_object);
1269                 vm_page_lock_queues();
1270                 if (upgrade) {
1271                         vm_page_unwire(src_m, 0);
1272                         vm_page_wire(dst_m);
1273                 } else
1274                         vm_page_activate(dst_m);
1275                 vm_page_unlock_queues();
1276                 vm_page_wakeup(dst_m);
1277         }
1278         VM_OBJECT_UNLOCK(dst_object);
1279         if (upgrade) {
1280                 dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
1281                 vm_object_deallocate(src_object);
1282         }
1283 }
1284
1285
1286 /*
1287  * This routine checks around the requested page for other pages that
1288  * might be able to be faulted in.  This routine brackets the viable
1289  * pages for the pages to be paged in.
1290  *
1291  * Inputs:
1292  *      m, rbehind, rahead
1293  *
1294  * Outputs:
1295  *  marray (array of vm_page_t), reqpage (index of requested page)
1296  *
1297  * Return value:
1298  *  number of pages in marray
1299  */
1300 static int
1301 vm_fault_additional_pages(m, rbehind, rahead, marray, reqpage)
1302         vm_page_t m;
1303         int rbehind;
1304         int rahead;
1305         vm_page_t *marray;
1306         int *reqpage;
1307 {
1308         int i,j;
1309         vm_object_t object;
1310         vm_pindex_t pindex, startpindex, endpindex, tpindex;
1311         vm_page_t rtm;
1312         int cbehind, cahead;
1313
1314         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1315
1316         object = m->object;
1317         pindex = m->pindex;
1318         cbehind = cahead = 0;
1319
1320         /*
1321          * if the requested page is not available, then give up now
1322          */
1323         if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1324                 return 0;
1325         }
1326
1327         if ((cbehind == 0) && (cahead == 0)) {
1328                 *reqpage = 0;
1329                 marray[0] = m;
1330                 return 1;
1331         }
1332
1333         if (rahead > cahead) {
1334                 rahead = cahead;
1335         }
1336
1337         if (rbehind > cbehind) {
1338                 rbehind = cbehind;
1339         }
1340
1341         /*
1342          * scan backward for the read behind pages -- in memory 
1343          */
1344         if (pindex > 0) {
1345                 if (rbehind > pindex) {
1346                         rbehind = pindex;
1347                         startpindex = 0;
1348                 } else {
1349                         startpindex = pindex - rbehind;
1350                 }
1351
1352                 if ((rtm = TAILQ_PREV(m, pglist, listq)) != NULL &&
1353                     rtm->pindex >= startpindex)
1354                         startpindex = rtm->pindex + 1;
1355
1356                 /* tpindex is unsigned; beware of numeric underflow. */
1357                 for (i = 0, tpindex = pindex - 1; tpindex >= startpindex &&
1358                     tpindex < pindex; i++, tpindex--) {
1359
1360                         rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1361                             VM_ALLOC_IFNOTCACHED);
1362                         if (rtm == NULL) {
1363                                 /*
1364                                  * Shift the allocated pages to the
1365                                  * beginning of the array.
1366                                  */
1367                                 for (j = 0; j < i; j++) {
1368                                         marray[j] = marray[j + tpindex + 1 -
1369                                             startpindex];
1370                                 }
1371                                 break;
1372                         }
1373
1374                         marray[tpindex - startpindex] = rtm;
1375                 }
1376         } else {
1377                 startpindex = 0;
1378                 i = 0;
1379         }
1380
1381         marray[i] = m;
1382         /* page offset of the required page */
1383         *reqpage = i;
1384
1385         tpindex = pindex + 1;
1386         i++;
1387
1388         /*
1389          * scan forward for the read ahead pages
1390          */
1391         endpindex = tpindex + rahead;
1392         if ((rtm = TAILQ_NEXT(m, listq)) != NULL && rtm->pindex < endpindex)
1393                 endpindex = rtm->pindex;
1394         if (endpindex > object->size)
1395                 endpindex = object->size;
1396
1397         for (; tpindex < endpindex; i++, tpindex++) {
1398
1399                 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1400                     VM_ALLOC_IFNOTCACHED);
1401                 if (rtm == NULL) {
1402                         break;
1403                 }
1404
1405                 marray[i] = rtm;
1406         }
1407
1408         /* return number of pages */
1409         return i;
1410 }