]> CyberLeo.Net >> Repos - FreeBSD/releng/8.2.git/blob - sys/vm/vm_object.c
MFC r217226:
[FreeBSD/releng/8.2.git] / sys / vm / vm_object.c
1 /*-
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60
61 /*
62  *      Virtual memory object module.
63  */
64
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67
68 #include "opt_vm.h"
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/lock.h>
73 #include <sys/mman.h>
74 #include <sys/mount.h>
75 #include <sys/kernel.h>
76 #include <sys/sysctl.h>
77 #include <sys/mutex.h>
78 #include <sys/proc.h>           /* for curproc, pageproc */
79 #include <sys/socket.h>
80 #include <sys/resourcevar.h>
81 #include <sys/vnode.h>
82 #include <sys/vmmeter.h>
83 #include <sys/sx.h>
84
85 #include <vm/vm.h>
86 #include <vm/vm_param.h>
87 #include <vm/pmap.h>
88 #include <vm/vm_map.h>
89 #include <vm/vm_object.h>
90 #include <vm/vm_page.h>
91 #include <vm/vm_pageout.h>
92 #include <vm/vm_pager.h>
93 #include <vm/swap_pager.h>
94 #include <vm/vm_kern.h>
95 #include <vm/vm_extern.h>
96 #include <vm/vm_reserv.h>
97 #include <vm/uma.h>
98
99 static int msync_flush_flags = 0;
100 SYSCTL_INT(_vm, OID_AUTO, msync_flush_flags, CTLFLAG_RW, &msync_flush_flags, 0,
101     "Does nothing; kept for backward compatibility");
102
103 static int old_msync;
104 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
105     "Use old (insecure) msync behavior");
106
107 static int      vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
108                     int pagerflags);
109 static void     vm_object_qcollapse(vm_object_t object);
110 static void     vm_object_vndeallocate(vm_object_t object);
111
112 /*
113  *      Virtual memory objects maintain the actual data
114  *      associated with allocated virtual memory.  A given
115  *      page of memory exists within exactly one object.
116  *
117  *      An object is only deallocated when all "references"
118  *      are given up.  Only one "reference" to a given
119  *      region of an object should be writeable.
120  *
121  *      Associated with each object is a list of all resident
122  *      memory pages belonging to that object; this list is
123  *      maintained by the "vm_page" module, and locked by the object's
124  *      lock.
125  *
126  *      Each object also records a "pager" routine which is
127  *      used to retrieve (and store) pages to the proper backing
128  *      storage.  In addition, objects may be backed by other
129  *      objects from which they were virtual-copied.
130  *
131  *      The only items within the object structure which are
132  *      modified after time of creation are:
133  *              reference count         locked by object's lock
134  *              pager routine           locked by object's lock
135  *
136  */
137
138 struct object_q vm_object_list;
139 struct mtx vm_object_list_mtx;  /* lock for object list and count */
140
141 struct vm_object kernel_object_store;
142 struct vm_object kmem_object_store;
143
144 SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0, "VM object stats");
145
146 static long object_collapses;
147 SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
148     &object_collapses, 0, "VM object collapses");
149
150 static long object_bypasses;
151 SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
152     &object_bypasses, 0, "VM object bypasses");
153
154 static uma_zone_t obj_zone;
155
156 static int vm_object_zinit(void *mem, int size, int flags);
157
158 #ifdef INVARIANTS
159 static void vm_object_zdtor(void *mem, int size, void *arg);
160
161 static void
162 vm_object_zdtor(void *mem, int size, void *arg)
163 {
164         vm_object_t object;
165
166         object = (vm_object_t)mem;
167         KASSERT(TAILQ_EMPTY(&object->memq),
168             ("object %p has resident pages",
169             object));
170 #if VM_NRESERVLEVEL > 0
171         KASSERT(LIST_EMPTY(&object->rvq),
172             ("object %p has reservations",
173             object));
174 #endif
175         KASSERT(object->cache == NULL,
176             ("object %p has cached pages",
177             object));
178         KASSERT(object->paging_in_progress == 0,
179             ("object %p paging_in_progress = %d",
180             object, object->paging_in_progress));
181         KASSERT(object->resident_page_count == 0,
182             ("object %p resident_page_count = %d",
183             object, object->resident_page_count));
184         KASSERT(object->shadow_count == 0,
185             ("object %p shadow_count = %d",
186             object, object->shadow_count));
187 }
188 #endif
189
190 static int
191 vm_object_zinit(void *mem, int size, int flags)
192 {
193         vm_object_t object;
194
195         object = (vm_object_t)mem;
196         bzero(&object->mtx, sizeof(object->mtx));
197         VM_OBJECT_LOCK_INIT(object, "standard object");
198
199         /* These are true for any object that has been freed */
200         object->paging_in_progress = 0;
201         object->resident_page_count = 0;
202         object->shadow_count = 0;
203         return (0);
204 }
205
206 void
207 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
208 {
209
210         TAILQ_INIT(&object->memq);
211         LIST_INIT(&object->shadow_head);
212
213         object->root = NULL;
214         object->type = type;
215         object->size = size;
216         object->generation = 1;
217         object->ref_count = 1;
218         object->memattr = VM_MEMATTR_DEFAULT;
219         object->flags = 0;
220         object->uip = NULL;
221         object->charge = 0;
222         if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
223                 object->flags = OBJ_ONEMAPPING;
224         object->pg_color = 0;
225         object->handle = NULL;
226         object->backing_object = NULL;
227         object->backing_object_offset = (vm_ooffset_t) 0;
228 #if VM_NRESERVLEVEL > 0
229         LIST_INIT(&object->rvq);
230 #endif
231         object->cache = NULL;
232
233         mtx_lock(&vm_object_list_mtx);
234         TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
235         mtx_unlock(&vm_object_list_mtx);
236 }
237
238 /*
239  *      vm_object_init:
240  *
241  *      Initialize the VM objects module.
242  */
243 void
244 vm_object_init(void)
245 {
246         TAILQ_INIT(&vm_object_list);
247         mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
248         
249         VM_OBJECT_LOCK_INIT(&kernel_object_store, "kernel object");
250         _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
251             kernel_object);
252 #if VM_NRESERVLEVEL > 0
253         kernel_object->flags |= OBJ_COLORED;
254         kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
255 #endif
256
257         VM_OBJECT_LOCK_INIT(&kmem_object_store, "kmem object");
258         _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
259             kmem_object);
260 #if VM_NRESERVLEVEL > 0
261         kmem_object->flags |= OBJ_COLORED;
262         kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
263 #endif
264
265         /*
266          * The lock portion of struct vm_object must be type stable due
267          * to vm_pageout_fallback_object_lock locking a vm object
268          * without holding any references to it.
269          */
270         obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
271 #ifdef INVARIANTS
272             vm_object_zdtor,
273 #else
274             NULL,
275 #endif
276             vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM|UMA_ZONE_NOFREE);
277 }
278
279 void
280 vm_object_clear_flag(vm_object_t object, u_short bits)
281 {
282
283         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
284         object->flags &= ~bits;
285 }
286
287 /*
288  *      Sets the default memory attribute for the specified object.  Pages
289  *      that are allocated to this object are by default assigned this memory
290  *      attribute.
291  *
292  *      Presently, this function must be called before any pages are allocated
293  *      to the object.  In the future, this requirement may be relaxed for
294  *      "default" and "swap" objects.
295  */
296 int
297 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
298 {
299
300         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
301         switch (object->type) {
302         case OBJT_DEFAULT:
303         case OBJT_DEVICE:
304         case OBJT_PHYS:
305         case OBJT_SG:
306         case OBJT_SWAP:
307         case OBJT_VNODE:
308                 if (!TAILQ_EMPTY(&object->memq))
309                         return (KERN_FAILURE);
310                 break;
311         case OBJT_DEAD:
312                 return (KERN_INVALID_ARGUMENT);
313         }
314         object->memattr = memattr;
315         return (KERN_SUCCESS);
316 }
317
318 void
319 vm_object_pip_add(vm_object_t object, short i)
320 {
321
322         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
323         object->paging_in_progress += i;
324 }
325
326 void
327 vm_object_pip_subtract(vm_object_t object, short i)
328 {
329
330         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
331         object->paging_in_progress -= i;
332 }
333
334 void
335 vm_object_pip_wakeup(vm_object_t object)
336 {
337
338         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
339         object->paging_in_progress--;
340         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
341                 vm_object_clear_flag(object, OBJ_PIPWNT);
342                 wakeup(object);
343         }
344 }
345
346 void
347 vm_object_pip_wakeupn(vm_object_t object, short i)
348 {
349
350         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
351         if (i)
352                 object->paging_in_progress -= i;
353         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
354                 vm_object_clear_flag(object, OBJ_PIPWNT);
355                 wakeup(object);
356         }
357 }
358
359 void
360 vm_object_pip_wait(vm_object_t object, char *waitid)
361 {
362
363         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
364         while (object->paging_in_progress) {
365                 object->flags |= OBJ_PIPWNT;
366                 msleep(object, VM_OBJECT_MTX(object), PVM, waitid, 0);
367         }
368 }
369
370 /*
371  *      vm_object_allocate:
372  *
373  *      Returns a new object with the given size.
374  */
375 vm_object_t
376 vm_object_allocate(objtype_t type, vm_pindex_t size)
377 {
378         vm_object_t object;
379
380         object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
381         _vm_object_allocate(type, size, object);
382         return (object);
383 }
384
385
386 /*
387  *      vm_object_reference:
388  *
389  *      Gets another reference to the given object.  Note: OBJ_DEAD
390  *      objects can be referenced during final cleaning.
391  */
392 void
393 vm_object_reference(vm_object_t object)
394 {
395         if (object == NULL)
396                 return;
397         VM_OBJECT_LOCK(object);
398         vm_object_reference_locked(object);
399         VM_OBJECT_UNLOCK(object);
400 }
401
402 /*
403  *      vm_object_reference_locked:
404  *
405  *      Gets another reference to the given object.
406  *
407  *      The object must be locked.
408  */
409 void
410 vm_object_reference_locked(vm_object_t object)
411 {
412         struct vnode *vp;
413
414         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
415         object->ref_count++;
416         if (object->type == OBJT_VNODE) {
417                 vp = object->handle;
418                 vref(vp);
419         }
420 }
421
422 /*
423  * Handle deallocating an object of type OBJT_VNODE.
424  */
425 static void
426 vm_object_vndeallocate(vm_object_t object)
427 {
428         struct vnode *vp = (struct vnode *) object->handle;
429
430         VFS_ASSERT_GIANT(vp->v_mount);
431         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
432         KASSERT(object->type == OBJT_VNODE,
433             ("vm_object_vndeallocate: not a vnode object"));
434         KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
435 #ifdef INVARIANTS
436         if (object->ref_count == 0) {
437                 vprint("vm_object_vndeallocate", vp);
438                 panic("vm_object_vndeallocate: bad object reference count");
439         }
440 #endif
441
442         object->ref_count--;
443         if (object->ref_count == 0) {
444                 mp_fixme("Unlocked vflag access.");
445                 vp->v_vflag &= ~VV_TEXT;
446         }
447         VM_OBJECT_UNLOCK(object);
448         /*
449          * vrele may need a vop lock
450          */
451         vrele(vp);
452 }
453
454 /*
455  *      vm_object_deallocate:
456  *
457  *      Release a reference to the specified object,
458  *      gained either through a vm_object_allocate
459  *      or a vm_object_reference call.  When all references
460  *      are gone, storage associated with this object
461  *      may be relinquished.
462  *
463  *      No object may be locked.
464  */
465 void
466 vm_object_deallocate(vm_object_t object)
467 {
468         vm_object_t temp;
469
470         while (object != NULL) {
471                 int vfslocked;
472
473                 vfslocked = 0;
474         restart:
475                 VM_OBJECT_LOCK(object);
476                 if (object->type == OBJT_VNODE) {
477                         struct vnode *vp = (struct vnode *) object->handle;
478
479                         /*
480                          * Conditionally acquire Giant for a vnode-backed
481                          * object.  We have to be careful since the type of
482                          * a vnode object can change while the object is
483                          * unlocked.
484                          */
485                         if (VFS_NEEDSGIANT(vp->v_mount) && !vfslocked) {
486                                 vfslocked = 1;
487                                 if (!mtx_trylock(&Giant)) {
488                                         VM_OBJECT_UNLOCK(object);
489                                         mtx_lock(&Giant);
490                                         goto restart;
491                                 }
492                         }
493                         vm_object_vndeallocate(object);
494                         VFS_UNLOCK_GIANT(vfslocked);
495                         return;
496                 } else
497                         /*
498                          * This is to handle the case that the object
499                          * changed type while we dropped its lock to
500                          * obtain Giant.
501                          */
502                         VFS_UNLOCK_GIANT(vfslocked);
503
504                 KASSERT(object->ref_count != 0,
505                         ("vm_object_deallocate: object deallocated too many times: %d", object->type));
506
507                 /*
508                  * If the reference count goes to 0 we start calling
509                  * vm_object_terminate() on the object chain.
510                  * A ref count of 1 may be a special case depending on the
511                  * shadow count being 0 or 1.
512                  */
513                 object->ref_count--;
514                 if (object->ref_count > 1) {
515                         VM_OBJECT_UNLOCK(object);
516                         return;
517                 } else if (object->ref_count == 1) {
518                         if (object->shadow_count == 0 &&
519                             object->handle == NULL &&
520                             (object->type == OBJT_DEFAULT ||
521                              object->type == OBJT_SWAP)) {
522                                 vm_object_set_flag(object, OBJ_ONEMAPPING);
523                         } else if ((object->shadow_count == 1) &&
524                             (object->handle == NULL) &&
525                             (object->type == OBJT_DEFAULT ||
526                              object->type == OBJT_SWAP)) {
527                                 vm_object_t robject;
528
529                                 robject = LIST_FIRST(&object->shadow_head);
530                                 KASSERT(robject != NULL,
531                                     ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
532                                          object->ref_count,
533                                          object->shadow_count));
534                                 if (!VM_OBJECT_TRYLOCK(robject)) {
535                                         /*
536                                          * Avoid a potential deadlock.
537                                          */
538                                         object->ref_count++;
539                                         VM_OBJECT_UNLOCK(object);
540                                         /*
541                                          * More likely than not the thread
542                                          * holding robject's lock has lower
543                                          * priority than the current thread.
544                                          * Let the lower priority thread run.
545                                          */
546                                         pause("vmo_de", 1);
547                                         continue;
548                                 }
549                                 /*
550                                  * Collapse object into its shadow unless its
551                                  * shadow is dead.  In that case, object will
552                                  * be deallocated by the thread that is
553                                  * deallocating its shadow.
554                                  */
555                                 if ((robject->flags & OBJ_DEAD) == 0 &&
556                                     (robject->handle == NULL) &&
557                                     (robject->type == OBJT_DEFAULT ||
558                                      robject->type == OBJT_SWAP)) {
559
560                                         robject->ref_count++;
561 retry:
562                                         if (robject->paging_in_progress) {
563                                                 VM_OBJECT_UNLOCK(object);
564                                                 vm_object_pip_wait(robject,
565                                                     "objde1");
566                                                 temp = robject->backing_object;
567                                                 if (object == temp) {
568                                                         VM_OBJECT_LOCK(object);
569                                                         goto retry;
570                                                 }
571                                         } else if (object->paging_in_progress) {
572                                                 VM_OBJECT_UNLOCK(robject);
573                                                 object->flags |= OBJ_PIPWNT;
574                                                 msleep(object,
575                                                     VM_OBJECT_MTX(object),
576                                                     PDROP | PVM, "objde2", 0);
577                                                 VM_OBJECT_LOCK(robject);
578                                                 temp = robject->backing_object;
579                                                 if (object == temp) {
580                                                         VM_OBJECT_LOCK(object);
581                                                         goto retry;
582                                                 }
583                                         } else
584                                                 VM_OBJECT_UNLOCK(object);
585
586                                         if (robject->ref_count == 1) {
587                                                 robject->ref_count--;
588                                                 object = robject;
589                                                 goto doterm;
590                                         }
591                                         object = robject;
592                                         vm_object_collapse(object);
593                                         VM_OBJECT_UNLOCK(object);
594                                         continue;
595                                 }
596                                 VM_OBJECT_UNLOCK(robject);
597                         }
598                         VM_OBJECT_UNLOCK(object);
599                         return;
600                 }
601 doterm:
602                 temp = object->backing_object;
603                 if (temp != NULL) {
604                         VM_OBJECT_LOCK(temp);
605                         LIST_REMOVE(object, shadow_list);
606                         temp->shadow_count--;
607                         VM_OBJECT_UNLOCK(temp);
608                         object->backing_object = NULL;
609                 }
610                 /*
611                  * Don't double-terminate, we could be in a termination
612                  * recursion due to the terminate having to sync data
613                  * to disk.
614                  */
615                 if ((object->flags & OBJ_DEAD) == 0)
616                         vm_object_terminate(object);
617                 else
618                         VM_OBJECT_UNLOCK(object);
619                 object = temp;
620         }
621 }
622
623 /*
624  *      vm_object_destroy removes the object from the global object list
625  *      and frees the space for the object.
626  */
627 void
628 vm_object_destroy(vm_object_t object)
629 {
630
631         /*
632          * Remove the object from the global object list.
633          */
634         mtx_lock(&vm_object_list_mtx);
635         TAILQ_REMOVE(&vm_object_list, object, object_list);
636         mtx_unlock(&vm_object_list_mtx);
637
638         /*
639          * Release the allocation charge.
640          */
641         if (object->uip != NULL) {
642                 KASSERT(object->type == OBJT_DEFAULT ||
643                     object->type == OBJT_SWAP,
644                     ("vm_object_terminate: non-swap obj %p has uip",
645                      object));
646                 swap_release_by_uid(object->charge, object->uip);
647                 object->charge = 0;
648                 uifree(object->uip);
649                 object->uip = NULL;
650         }
651
652         /*
653          * Free the space for the object.
654          */
655         uma_zfree(obj_zone, object);
656 }
657
658 /*
659  *      vm_object_terminate actually destroys the specified object, freeing
660  *      up all previously used resources.
661  *
662  *      The object must be locked.
663  *      This routine may block.
664  */
665 void
666 vm_object_terminate(vm_object_t object)
667 {
668         vm_page_t p;
669
670         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
671
672         /*
673          * Make sure no one uses us.
674          */
675         vm_object_set_flag(object, OBJ_DEAD);
676
677         /*
678          * wait for the pageout daemon to be done with the object
679          */
680         vm_object_pip_wait(object, "objtrm");
681
682         KASSERT(!object->paging_in_progress,
683                 ("vm_object_terminate: pageout in progress"));
684
685         /*
686          * Clean and free the pages, as appropriate. All references to the
687          * object are gone, so we don't need to lock it.
688          */
689         if (object->type == OBJT_VNODE) {
690                 struct vnode *vp = (struct vnode *)object->handle;
691
692                 /*
693                  * Clean pages and flush buffers.
694                  */
695                 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
696                 VM_OBJECT_UNLOCK(object);
697
698                 vinvalbuf(vp, V_SAVE, 0, 0);
699
700                 VM_OBJECT_LOCK(object);
701         }
702
703         KASSERT(object->ref_count == 0, 
704                 ("vm_object_terminate: object with references, ref_count=%d",
705                 object->ref_count));
706
707         /*
708          * Now free any remaining pages. For internal objects, this also
709          * removes them from paging queues. Don't free wired pages, just
710          * remove them from the object. 
711          */
712         vm_page_lock_queues();
713         while ((p = TAILQ_FIRST(&object->memq)) != NULL) {
714                 KASSERT(!p->busy && (p->oflags & VPO_BUSY) == 0,
715                         ("vm_object_terminate: freeing busy page %p "
716                         "p->busy = %d, p->oflags %x\n", p, p->busy, p->oflags));
717                 if (p->wire_count == 0) {
718                         vm_page_free(p);
719                         cnt.v_pfree++;
720                 } else {
721                         vm_page_remove(p);
722                 }
723         }
724         vm_page_unlock_queues();
725
726 #if VM_NRESERVLEVEL > 0
727         if (__predict_false(!LIST_EMPTY(&object->rvq)))
728                 vm_reserv_break_all(object);
729 #endif
730         if (__predict_false(object->cache != NULL))
731                 vm_page_cache_free(object, 0, 0);
732
733         /*
734          * Let the pager know object is dead.
735          */
736         vm_pager_deallocate(object);
737         VM_OBJECT_UNLOCK(object);
738
739         vm_object_destroy(object);
740 }
741
742 /*
743  *      vm_object_page_clean
744  *
745  *      Clean all dirty pages in the specified range of object.  Leaves page 
746  *      on whatever queue it is currently on.   If NOSYNC is set then do not
747  *      write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
748  *      leaving the object dirty.
749  *
750  *      When stuffing pages asynchronously, allow clustering.  XXX we need a
751  *      synchronous clustering mode implementation.
752  *
753  *      Odd semantics: if start == end, we clean everything.
754  *
755  *      The object must be locked.
756  */
757 void
758 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
759     int flags)
760 {
761         vm_page_t np, p;
762         vm_pindex_t pi, tend;
763         int clearobjflags, curgeneration, n, pagerflags;
764
765         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
766         KASSERT(object->type == OBJT_VNODE, ("Not a vnode object"));
767         if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 ||
768             object->resident_page_count == 0)
769                 return;
770
771         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
772             VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
773         pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
774
775         tend = (end == 0) ? object->size : end;
776
777         vm_object_set_flag(object, OBJ_CLEANING);
778
779         vm_page_lock_queues();
780
781         /*
782          * Make the page read-only so we can then clear the object flags.
783          *
784          * However, if this is a nosync mmap then the object is likely to 
785          * stay dirty so do not mess with the page and do not clear the
786          * object flags.
787          */
788         clearobjflags = 1;
789         for (p = vm_page_find_least(object, start);
790             p != NULL && p->pindex < tend; p = TAILQ_NEXT(p, listq)) {
791                 if ((flags & OBJPC_NOSYNC) != 0 &&
792                     (p->oflags & VPO_NOSYNC) != 0)
793                         clearobjflags = 0;
794                 else
795                         pmap_remove_write(p);
796         }
797
798         if (clearobjflags && (start == 0) && (tend == object->size))
799                 vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
800
801 rescan:
802         curgeneration = object->generation;
803
804         for (p = vm_page_find_least(object, start); p != NULL; p = np) {
805                 pi = p->pindex;
806                 if (pi >= tend)
807                         break;
808                 np = TAILQ_NEXT(p, listq);
809                 if (p->valid == 0)
810                         continue;
811                 if (vm_page_sleep_if_busy(p, TRUE, "vpcwai")) {
812                         vm_page_lock_queues();
813                         if (object->generation != curgeneration)
814                                 goto rescan;
815                         np = vm_page_find_least(object, pi);
816                         continue;
817                 }
818                 vm_page_test_dirty(p);
819                 if (p->dirty == 0)
820                         continue;
821
822                 /*
823                  * If we have been asked to skip nosync pages and this is a
824                  * nosync page, skip it.  Note that the object flags were
825                  * not cleared in this case so we do not have to set them.
826                  */
827                 if ((flags & OBJPC_NOSYNC) != 0 &&
828                     (p->oflags & VPO_NOSYNC) != 0)
829                         continue;
830
831                 n = vm_object_page_collect_flush(object, p, pagerflags);
832                 if (object->generation != curgeneration)
833                         goto rescan;
834                 np = vm_page_find_least(object, pi + n);
835         }
836         vm_page_unlock_queues();
837 #if 0
838         VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
839 #endif
840
841         vm_object_clear_flag(object, OBJ_CLEANING);
842 }
843
844 static int
845 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags)
846 {
847         vm_page_t ma[vm_pageout_page_count], p_first, tp;
848         int count, i, mreq, runlen;
849
850         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
851
852         count = 1;
853         mreq = 0;
854
855         for (tp = p; count < vm_pageout_page_count; count++) {
856                 tp = vm_page_next(tp);
857                 if (tp == NULL || tp->busy != 0 || (tp->oflags & VPO_BUSY) != 0)
858                         break;
859                 vm_page_test_dirty(tp);
860                 if (tp->dirty == 0)
861                         break;
862         }
863
864         for (p_first = p; count < vm_pageout_page_count; count++) {
865                 tp = vm_page_prev(p_first);
866                 if (tp == NULL || tp->busy != 0 || (tp->oflags & VPO_BUSY) != 0)
867                         break;
868                 vm_page_test_dirty(tp);
869                 if (tp->dirty == 0)
870                         break;
871                 p_first = tp;
872                 mreq++;
873         }
874
875         for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
876                 ma[i] = tp;
877
878         vm_pageout_flush(ma, count, pagerflags, mreq, &runlen);
879         return (runlen);
880 }
881
882 /*
883  * Note that there is absolutely no sense in writing out
884  * anonymous objects, so we track down the vnode object
885  * to write out.
886  * We invalidate (remove) all pages from the address space
887  * for semantic correctness.
888  *
889  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
890  * may start out with a NULL object.
891  */
892 void
893 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
894     boolean_t syncio, boolean_t invalidate)
895 {
896         vm_object_t backing_object;
897         struct vnode *vp;
898         struct mount *mp;
899         int flags;
900
901         if (object == NULL)
902                 return;
903         VM_OBJECT_LOCK(object);
904         while ((backing_object = object->backing_object) != NULL) {
905                 VM_OBJECT_LOCK(backing_object);
906                 offset += object->backing_object_offset;
907                 VM_OBJECT_UNLOCK(object);
908                 object = backing_object;
909                 if (object->size < OFF_TO_IDX(offset + size))
910                         size = IDX_TO_OFF(object->size) - offset;
911         }
912         /*
913          * Flush pages if writing is allowed, invalidate them
914          * if invalidation requested.  Pages undergoing I/O
915          * will be ignored by vm_object_page_remove().
916          *
917          * We cannot lock the vnode and then wait for paging
918          * to complete without deadlocking against vm_fault.
919          * Instead we simply call vm_object_page_remove() and
920          * allow it to block internally on a page-by-page
921          * basis when it encounters pages undergoing async
922          * I/O.
923          */
924         if (object->type == OBJT_VNODE &&
925             (object->flags & OBJ_MIGHTBEDIRTY) != 0) {
926                 int vfslocked;
927                 vp = object->handle;
928                 VM_OBJECT_UNLOCK(object);
929                 (void) vn_start_write(vp, &mp, V_WAIT);
930                 vfslocked = VFS_LOCK_GIANT(vp->v_mount);
931                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
932                 flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
933                 flags |= invalidate ? OBJPC_INVAL : 0;
934                 VM_OBJECT_LOCK(object);
935                 vm_object_page_clean(object,
936                     OFF_TO_IDX(offset),
937                     OFF_TO_IDX(offset + size + PAGE_MASK),
938                     flags);
939                 VM_OBJECT_UNLOCK(object);
940                 VOP_UNLOCK(vp, 0);
941                 VFS_UNLOCK_GIANT(vfslocked);
942                 vn_finished_write(mp);
943                 VM_OBJECT_LOCK(object);
944         }
945         if ((object->type == OBJT_VNODE ||
946              object->type == OBJT_DEVICE) && invalidate) {
947                 boolean_t purge;
948                 purge = old_msync || (object->type == OBJT_DEVICE);
949                 vm_object_page_remove(object,
950                     OFF_TO_IDX(offset),
951                     OFF_TO_IDX(offset + size + PAGE_MASK),
952                     purge ? FALSE : TRUE);
953         }
954         VM_OBJECT_UNLOCK(object);
955 }
956
957 /*
958  *      vm_object_madvise:
959  *
960  *      Implements the madvise function at the object/page level.
961  *
962  *      MADV_WILLNEED   (any object)
963  *
964  *          Activate the specified pages if they are resident.
965  *
966  *      MADV_DONTNEED   (any object)
967  *
968  *          Deactivate the specified pages if they are resident.
969  *
970  *      MADV_FREE       (OBJT_DEFAULT/OBJT_SWAP objects,
971  *                       OBJ_ONEMAPPING only)
972  *
973  *          Deactivate and clean the specified pages if they are
974  *          resident.  This permits the process to reuse the pages
975  *          without faulting or the kernel to reclaim the pages
976  *          without I/O.
977  */
978 void
979 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
980 {
981         vm_pindex_t end, tpindex;
982         vm_object_t backing_object, tobject;
983         vm_page_t m;
984
985         if (object == NULL)
986                 return;
987         VM_OBJECT_LOCK(object);
988         end = pindex + count;
989         /*
990          * Locate and adjust resident pages
991          */
992         for (; pindex < end; pindex += 1) {
993 relookup:
994                 tobject = object;
995                 tpindex = pindex;
996 shadowlookup:
997                 /*
998                  * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
999                  * and those pages must be OBJ_ONEMAPPING.
1000                  */
1001                 if (advise == MADV_FREE) {
1002                         if ((tobject->type != OBJT_DEFAULT &&
1003                              tobject->type != OBJT_SWAP) ||
1004                             (tobject->flags & OBJ_ONEMAPPING) == 0) {
1005                                 goto unlock_tobject;
1006                         }
1007                 } else if (tobject->type == OBJT_PHYS)
1008                         goto unlock_tobject;
1009                 m = vm_page_lookup(tobject, tpindex);
1010                 if (m == NULL && advise == MADV_WILLNEED) {
1011                         /*
1012                          * If the page is cached, reactivate it.
1013                          */
1014                         m = vm_page_alloc(tobject, tpindex, VM_ALLOC_IFCACHED |
1015                             VM_ALLOC_NOBUSY);
1016                 }
1017                 if (m == NULL) {
1018                         /*
1019                          * There may be swap even if there is no backing page
1020                          */
1021                         if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1022                                 swap_pager_freespace(tobject, tpindex, 1);
1023                         /*
1024                          * next object
1025                          */
1026                         backing_object = tobject->backing_object;
1027                         if (backing_object == NULL)
1028                                 goto unlock_tobject;
1029                         VM_OBJECT_LOCK(backing_object);
1030                         tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1031                         if (tobject != object)
1032                                 VM_OBJECT_UNLOCK(tobject);
1033                         tobject = backing_object;
1034                         goto shadowlookup;
1035                 } else if (m->valid != VM_PAGE_BITS_ALL)
1036                         goto unlock_tobject;
1037                 /*
1038                  * If the page is not in a normal state, skip it.
1039                  */
1040                 vm_page_lock_queues();
1041                 if (m->hold_count != 0 || m->wire_count != 0) {
1042                         vm_page_unlock_queues();
1043                         goto unlock_tobject;
1044                 }
1045                 if ((m->oflags & VPO_BUSY) || m->busy) {
1046                         if (advise == MADV_WILLNEED)
1047                                 /*
1048                                  * Reference the page before unlocking and
1049                                  * sleeping so that the page daemon is less
1050                                  * likely to reclaim it. 
1051                                  */
1052                                 vm_page_flag_set(m, PG_REFERENCED);
1053                         vm_page_unlock_queues();
1054                         if (object != tobject)
1055                                 VM_OBJECT_UNLOCK(object);
1056                         m->oflags |= VPO_WANTED;
1057                         msleep(m, VM_OBJECT_MTX(tobject), PDROP | PVM, "madvpo",
1058                             0);
1059                         VM_OBJECT_LOCK(object);
1060                         goto relookup;
1061                 }
1062                 if (advise == MADV_WILLNEED) {
1063                         vm_page_activate(m);
1064                 } else if (advise == MADV_DONTNEED) {
1065                         vm_page_dontneed(m);
1066                 } else if (advise == MADV_FREE) {
1067                         /*
1068                          * Mark the page clean.  This will allow the page
1069                          * to be freed up by the system.  However, such pages
1070                          * are often reused quickly by malloc()/free()
1071                          * so we do not do anything that would cause
1072                          * a page fault if we can help it.
1073                          *
1074                          * Specifically, we do not try to actually free
1075                          * the page now nor do we try to put it in the
1076                          * cache (which would cause a page fault on reuse).
1077                          *
1078                          * But we do make the page is freeable as we
1079                          * can without actually taking the step of unmapping
1080                          * it.
1081                          */
1082                         pmap_clear_modify(m);
1083                         m->dirty = 0;
1084                         m->act_count = 0;
1085                         vm_page_dontneed(m);
1086                 }
1087                 vm_page_unlock_queues();
1088                 if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1089                         swap_pager_freespace(tobject, tpindex, 1);
1090 unlock_tobject:
1091                 if (tobject != object)
1092                         VM_OBJECT_UNLOCK(tobject);
1093         }       
1094         VM_OBJECT_UNLOCK(object);
1095 }
1096
1097 /*
1098  *      vm_object_shadow:
1099  *
1100  *      Create a new object which is backed by the
1101  *      specified existing object range.  The source
1102  *      object reference is deallocated.
1103  *
1104  *      The new object and offset into that object
1105  *      are returned in the source parameters.
1106  */
1107 void
1108 vm_object_shadow(
1109         vm_object_t *object,    /* IN/OUT */
1110         vm_ooffset_t *offset,   /* IN/OUT */
1111         vm_size_t length)
1112 {
1113         vm_object_t source;
1114         vm_object_t result;
1115
1116         source = *object;
1117
1118         /*
1119          * Don't create the new object if the old object isn't shared.
1120          */
1121         if (source != NULL) {
1122                 VM_OBJECT_LOCK(source);
1123                 if (source->ref_count == 1 &&
1124                     source->handle == NULL &&
1125                     (source->type == OBJT_DEFAULT ||
1126                      source->type == OBJT_SWAP)) {
1127                         VM_OBJECT_UNLOCK(source);
1128                         return;
1129                 }
1130                 VM_OBJECT_UNLOCK(source);
1131         }
1132
1133         /*
1134          * Allocate a new object with the given length.
1135          */
1136         result = vm_object_allocate(OBJT_DEFAULT, length);
1137
1138         /*
1139          * The new object shadows the source object, adding a reference to it.
1140          * Our caller changes his reference to point to the new object,
1141          * removing a reference to the source object.  Net result: no change
1142          * of reference count.
1143          *
1144          * Try to optimize the result object's page color when shadowing
1145          * in order to maintain page coloring consistency in the combined 
1146          * shadowed object.
1147          */
1148         result->backing_object = source;
1149         /*
1150          * Store the offset into the source object, and fix up the offset into
1151          * the new object.
1152          */
1153         result->backing_object_offset = *offset;
1154         if (source != NULL) {
1155                 VM_OBJECT_LOCK(source);
1156                 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1157                 source->shadow_count++;
1158 #if VM_NRESERVLEVEL > 0
1159                 result->flags |= source->flags & OBJ_COLORED;
1160                 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1161                     ((1 << (VM_NFREEORDER - 1)) - 1);
1162 #endif
1163                 VM_OBJECT_UNLOCK(source);
1164         }
1165
1166
1167         /*
1168          * Return the new things
1169          */
1170         *offset = 0;
1171         *object = result;
1172 }
1173
1174 /*
1175  *      vm_object_split:
1176  *
1177  * Split the pages in a map entry into a new object.  This affords
1178  * easier removal of unused pages, and keeps object inheritance from
1179  * being a negative impact on memory usage.
1180  */
1181 void
1182 vm_object_split(vm_map_entry_t entry)
1183 {
1184         vm_page_t m, m_next;
1185         vm_object_t orig_object, new_object, source;
1186         vm_pindex_t idx, offidxstart;
1187         vm_size_t size;
1188
1189         orig_object = entry->object.vm_object;
1190         if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1191                 return;
1192         if (orig_object->ref_count <= 1)
1193                 return;
1194         VM_OBJECT_UNLOCK(orig_object);
1195
1196         offidxstart = OFF_TO_IDX(entry->offset);
1197         size = atop(entry->end - entry->start);
1198
1199         /*
1200          * If swap_pager_copy() is later called, it will convert new_object
1201          * into a swap object.
1202          */
1203         new_object = vm_object_allocate(OBJT_DEFAULT, size);
1204
1205         /*
1206          * At this point, the new object is still private, so the order in
1207          * which the original and new objects are locked does not matter.
1208          */
1209         VM_OBJECT_LOCK(new_object);
1210         VM_OBJECT_LOCK(orig_object);
1211         source = orig_object->backing_object;
1212         if (source != NULL) {
1213                 VM_OBJECT_LOCK(source);
1214                 if ((source->flags & OBJ_DEAD) != 0) {
1215                         VM_OBJECT_UNLOCK(source);
1216                         VM_OBJECT_UNLOCK(orig_object);
1217                         VM_OBJECT_UNLOCK(new_object);
1218                         vm_object_deallocate(new_object);
1219                         VM_OBJECT_LOCK(orig_object);
1220                         return;
1221                 }
1222                 LIST_INSERT_HEAD(&source->shadow_head,
1223                                   new_object, shadow_list);
1224                 source->shadow_count++;
1225                 vm_object_reference_locked(source);     /* for new_object */
1226                 vm_object_clear_flag(source, OBJ_ONEMAPPING);
1227                 VM_OBJECT_UNLOCK(source);
1228                 new_object->backing_object_offset = 
1229                         orig_object->backing_object_offset + entry->offset;
1230                 new_object->backing_object = source;
1231         }
1232         if (orig_object->uip != NULL) {
1233                 new_object->uip = orig_object->uip;
1234                 uihold(orig_object->uip);
1235                 new_object->charge = ptoa(size);
1236                 KASSERT(orig_object->charge >= ptoa(size),
1237                     ("orig_object->charge < 0"));
1238                 orig_object->charge -= ptoa(size);
1239         }
1240 retry:
1241         m = vm_page_find_least(orig_object, offidxstart);
1242         vm_page_lock_queues();
1243         for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1244             m = m_next) {
1245                 m_next = TAILQ_NEXT(m, listq);
1246
1247                 /*
1248                  * We must wait for pending I/O to complete before we can
1249                  * rename the page.
1250                  *
1251                  * We do not have to VM_PROT_NONE the page as mappings should
1252                  * not be changed by this operation.
1253                  */
1254                 if ((m->oflags & VPO_BUSY) || m->busy) {
1255                         vm_page_unlock_queues();
1256                         VM_OBJECT_UNLOCK(new_object);
1257                         m->oflags |= VPO_WANTED;
1258                         msleep(m, VM_OBJECT_MTX(orig_object), PVM, "spltwt", 0);
1259                         VM_OBJECT_LOCK(new_object);
1260                         goto retry;
1261                 }
1262                 vm_page_rename(m, new_object, idx);
1263                 /* page automatically made dirty by rename and cache handled */
1264                 vm_page_busy(m);
1265         }
1266         vm_page_unlock_queues();
1267         if (orig_object->type == OBJT_SWAP) {
1268                 /*
1269                  * swap_pager_copy() can sleep, in which case the orig_object's
1270                  * and new_object's locks are released and reacquired. 
1271                  */
1272                 swap_pager_copy(orig_object, new_object, offidxstart, 0);
1273
1274                 /*
1275                  * Transfer any cached pages from orig_object to new_object.
1276                  */
1277                 if (__predict_false(orig_object->cache != NULL))
1278                         vm_page_cache_transfer(orig_object, offidxstart,
1279                             new_object);
1280         }
1281         VM_OBJECT_UNLOCK(orig_object);
1282         TAILQ_FOREACH(m, &new_object->memq, listq)
1283                 vm_page_wakeup(m);
1284         VM_OBJECT_UNLOCK(new_object);
1285         entry->object.vm_object = new_object;
1286         entry->offset = 0LL;
1287         vm_object_deallocate(orig_object);
1288         VM_OBJECT_LOCK(new_object);
1289 }
1290
1291 #define OBSC_TEST_ALL_SHADOWED  0x0001
1292 #define OBSC_COLLAPSE_NOWAIT    0x0002
1293 #define OBSC_COLLAPSE_WAIT      0x0004
1294
1295 static int
1296 vm_object_backing_scan(vm_object_t object, int op)
1297 {
1298         int r = 1;
1299         vm_page_t p;
1300         vm_object_t backing_object;
1301         vm_pindex_t backing_offset_index;
1302
1303         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1304         VM_OBJECT_LOCK_ASSERT(object->backing_object, MA_OWNED);
1305
1306         backing_object = object->backing_object;
1307         backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1308
1309         /*
1310          * Initial conditions
1311          */
1312         if (op & OBSC_TEST_ALL_SHADOWED) {
1313                 /*
1314                  * We do not want to have to test for the existence of cache
1315                  * or swap pages in the backing object.  XXX but with the
1316                  * new swapper this would be pretty easy to do.
1317                  *
1318                  * XXX what about anonymous MAP_SHARED memory that hasn't
1319                  * been ZFOD faulted yet?  If we do not test for this, the
1320                  * shadow test may succeed! XXX
1321                  */
1322                 if (backing_object->type != OBJT_DEFAULT) {
1323                         return (0);
1324                 }
1325         }
1326         if (op & OBSC_COLLAPSE_WAIT) {
1327                 vm_object_set_flag(backing_object, OBJ_DEAD);
1328         }
1329
1330         /*
1331          * Our scan
1332          */
1333         p = TAILQ_FIRST(&backing_object->memq);
1334         while (p) {
1335                 vm_page_t next = TAILQ_NEXT(p, listq);
1336                 vm_pindex_t new_pindex = p->pindex - backing_offset_index;
1337
1338                 if (op & OBSC_TEST_ALL_SHADOWED) {
1339                         vm_page_t pp;
1340
1341                         /*
1342                          * Ignore pages outside the parent object's range
1343                          * and outside the parent object's mapping of the 
1344                          * backing object.
1345                          *
1346                          * note that we do not busy the backing object's
1347                          * page.
1348                          */
1349                         if (
1350                             p->pindex < backing_offset_index ||
1351                             new_pindex >= object->size
1352                         ) {
1353                                 p = next;
1354                                 continue;
1355                         }
1356
1357                         /*
1358                          * See if the parent has the page or if the parent's
1359                          * object pager has the page.  If the parent has the
1360                          * page but the page is not valid, the parent's
1361                          * object pager must have the page.
1362                          *
1363                          * If this fails, the parent does not completely shadow
1364                          * the object and we might as well give up now.
1365                          */
1366
1367                         pp = vm_page_lookup(object, new_pindex);
1368                         if (
1369                             (pp == NULL || pp->valid == 0) &&
1370                             !vm_pager_has_page(object, new_pindex, NULL, NULL)
1371                         ) {
1372                                 r = 0;
1373                                 break;
1374                         }
1375                 }
1376
1377                 /*
1378                  * Check for busy page
1379                  */
1380                 if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1381                         vm_page_t pp;
1382
1383                         if (op & OBSC_COLLAPSE_NOWAIT) {
1384                                 if ((p->oflags & VPO_BUSY) ||
1385                                     !p->valid || 
1386                                     p->busy) {
1387                                         p = next;
1388                                         continue;
1389                                 }
1390                         } else if (op & OBSC_COLLAPSE_WAIT) {
1391                                 if ((p->oflags & VPO_BUSY) || p->busy) {
1392                                         VM_OBJECT_UNLOCK(object);
1393                                         p->oflags |= VPO_WANTED;
1394                                         msleep(p, VM_OBJECT_MTX(backing_object),
1395                                             PDROP | PVM, "vmocol", 0);
1396                                         VM_OBJECT_LOCK(object);
1397                                         VM_OBJECT_LOCK(backing_object);
1398                                         /*
1399                                          * If we slept, anything could have
1400                                          * happened.  Since the object is
1401                                          * marked dead, the backing offset
1402                                          * should not have changed so we
1403                                          * just restart our scan.
1404                                          */
1405                                         p = TAILQ_FIRST(&backing_object->memq);
1406                                         continue;
1407                                 }
1408                         }
1409
1410                         KASSERT(
1411                             p->object == backing_object,
1412                             ("vm_object_backing_scan: object mismatch")
1413                         );
1414
1415                         /*
1416                          * Destroy any associated swap
1417                          */
1418                         if (backing_object->type == OBJT_SWAP) {
1419                                 swap_pager_freespace(
1420                                     backing_object, 
1421                                     p->pindex,
1422                                     1
1423                                 );
1424                         }
1425
1426                         if (
1427                             p->pindex < backing_offset_index ||
1428                             new_pindex >= object->size
1429                         ) {
1430                                 /*
1431                                  * Page is out of the parent object's range, we 
1432                                  * can simply destroy it. 
1433                                  */
1434                                 vm_page_lock_queues();
1435                                 KASSERT(!pmap_page_is_mapped(p),
1436                                     ("freeing mapped page %p", p));
1437                                 if (p->wire_count == 0)
1438                                         vm_page_free(p);
1439                                 else
1440                                         vm_page_remove(p);
1441                                 vm_page_unlock_queues();
1442                                 p = next;
1443                                 continue;
1444                         }
1445
1446                         pp = vm_page_lookup(object, new_pindex);
1447                         if (
1448                             pp != NULL ||
1449                             vm_pager_has_page(object, new_pindex, NULL, NULL)
1450                         ) {
1451                                 /*
1452                                  * page already exists in parent OR swap exists
1453                                  * for this location in the parent.  Destroy 
1454                                  * the original page from the backing object.
1455                                  *
1456                                  * Leave the parent's page alone
1457                                  */
1458                                 vm_page_lock_queues();
1459                                 KASSERT(!pmap_page_is_mapped(p),
1460                                     ("freeing mapped page %p", p));
1461                                 if (p->wire_count == 0)
1462                                         vm_page_free(p);
1463                                 else
1464                                         vm_page_remove(p);
1465                                 vm_page_unlock_queues();
1466                                 p = next;
1467                                 continue;
1468                         }
1469
1470 #if VM_NRESERVLEVEL > 0
1471                         /*
1472                          * Rename the reservation.
1473                          */
1474                         vm_reserv_rename(p, object, backing_object,
1475                             backing_offset_index);
1476 #endif
1477
1478                         /*
1479                          * Page does not exist in parent, rename the
1480                          * page from the backing object to the main object. 
1481                          *
1482                          * If the page was mapped to a process, it can remain 
1483                          * mapped through the rename.
1484                          */
1485                         vm_page_lock_queues();
1486                         vm_page_rename(p, object, new_pindex);
1487                         vm_page_unlock_queues();
1488                         /* page automatically made dirty by rename */
1489                 }
1490                 p = next;
1491         }
1492         return (r);
1493 }
1494
1495
1496 /*
1497  * this version of collapse allows the operation to occur earlier and
1498  * when paging_in_progress is true for an object...  This is not a complete
1499  * operation, but should plug 99.9% of the rest of the leaks.
1500  */
1501 static void
1502 vm_object_qcollapse(vm_object_t object)
1503 {
1504         vm_object_t backing_object = object->backing_object;
1505
1506         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1507         VM_OBJECT_LOCK_ASSERT(backing_object, MA_OWNED);
1508
1509         if (backing_object->ref_count != 1)
1510                 return;
1511
1512         vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1513 }
1514
1515 /*
1516  *      vm_object_collapse:
1517  *
1518  *      Collapse an object with the object backing it.
1519  *      Pages in the backing object are moved into the
1520  *      parent, and the backing object is deallocated.
1521  */
1522 void
1523 vm_object_collapse(vm_object_t object)
1524 {
1525         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1526         
1527         while (TRUE) {
1528                 vm_object_t backing_object;
1529
1530                 /*
1531                  * Verify that the conditions are right for collapse:
1532                  *
1533                  * The object exists and the backing object exists.
1534                  */
1535                 if ((backing_object = object->backing_object) == NULL)
1536                         break;
1537
1538                 /*
1539                  * we check the backing object first, because it is most likely
1540                  * not collapsable.
1541                  */
1542                 VM_OBJECT_LOCK(backing_object);
1543                 if (backing_object->handle != NULL ||
1544                     (backing_object->type != OBJT_DEFAULT &&
1545                      backing_object->type != OBJT_SWAP) ||
1546                     (backing_object->flags & OBJ_DEAD) ||
1547                     object->handle != NULL ||
1548                     (object->type != OBJT_DEFAULT &&
1549                      object->type != OBJT_SWAP) ||
1550                     (object->flags & OBJ_DEAD)) {
1551                         VM_OBJECT_UNLOCK(backing_object);
1552                         break;
1553                 }
1554
1555                 if (
1556                     object->paging_in_progress != 0 ||
1557                     backing_object->paging_in_progress != 0
1558                 ) {
1559                         vm_object_qcollapse(object);
1560                         VM_OBJECT_UNLOCK(backing_object);
1561                         break;
1562                 }
1563                 /*
1564                  * We know that we can either collapse the backing object (if
1565                  * the parent is the only reference to it) or (perhaps) have
1566                  * the parent bypass the object if the parent happens to shadow
1567                  * all the resident pages in the entire backing object.
1568                  *
1569                  * This is ignoring pager-backed pages such as swap pages.
1570                  * vm_object_backing_scan fails the shadowing test in this
1571                  * case.
1572                  */
1573                 if (backing_object->ref_count == 1) {
1574                         /*
1575                          * If there is exactly one reference to the backing
1576                          * object, we can collapse it into the parent.  
1577                          */
1578                         vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1579
1580 #if VM_NRESERVLEVEL > 0
1581                         /*
1582                          * Break any reservations from backing_object.
1583                          */
1584                         if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1585                                 vm_reserv_break_all(backing_object);
1586 #endif
1587
1588                         /*
1589                          * Move the pager from backing_object to object.
1590                          */
1591                         if (backing_object->type == OBJT_SWAP) {
1592                                 /*
1593                                  * swap_pager_copy() can sleep, in which case
1594                                  * the backing_object's and object's locks are
1595                                  * released and reacquired.
1596                                  */
1597                                 swap_pager_copy(
1598                                     backing_object,
1599                                     object,
1600                                     OFF_TO_IDX(object->backing_object_offset), TRUE);
1601
1602                                 /*
1603                                  * Free any cached pages from backing_object.
1604                                  */
1605                                 if (__predict_false(backing_object->cache != NULL))
1606                                         vm_page_cache_free(backing_object, 0, 0);
1607                         }
1608                         /*
1609                          * Object now shadows whatever backing_object did.
1610                          * Note that the reference to 
1611                          * backing_object->backing_object moves from within 
1612                          * backing_object to within object.
1613                          */
1614                         LIST_REMOVE(object, shadow_list);
1615                         backing_object->shadow_count--;
1616                         if (backing_object->backing_object) {
1617                                 VM_OBJECT_LOCK(backing_object->backing_object);
1618                                 LIST_REMOVE(backing_object, shadow_list);
1619                                 LIST_INSERT_HEAD(
1620                                     &backing_object->backing_object->shadow_head,
1621                                     object, shadow_list);
1622                                 /*
1623                                  * The shadow_count has not changed.
1624                                  */
1625                                 VM_OBJECT_UNLOCK(backing_object->backing_object);
1626                         }
1627                         object->backing_object = backing_object->backing_object;
1628                         object->backing_object_offset +=
1629                             backing_object->backing_object_offset;
1630
1631                         /*
1632                          * Discard backing_object.
1633                          *
1634                          * Since the backing object has no pages, no pager left,
1635                          * and no object references within it, all that is
1636                          * necessary is to dispose of it.
1637                          */
1638                         KASSERT(backing_object->ref_count == 1, (
1639 "backing_object %p was somehow re-referenced during collapse!",
1640                             backing_object));
1641                         VM_OBJECT_UNLOCK(backing_object);
1642                         vm_object_destroy(backing_object);
1643
1644                         object_collapses++;
1645                 } else {
1646                         vm_object_t new_backing_object;
1647
1648                         /*
1649                          * If we do not entirely shadow the backing object,
1650                          * there is nothing we can do so we give up.
1651                          */
1652                         if (object->resident_page_count != object->size &&
1653                             vm_object_backing_scan(object,
1654                             OBSC_TEST_ALL_SHADOWED) == 0) {
1655                                 VM_OBJECT_UNLOCK(backing_object);
1656                                 break;
1657                         }
1658
1659                         /*
1660                          * Make the parent shadow the next object in the
1661                          * chain.  Deallocating backing_object will not remove
1662                          * it, since its reference count is at least 2.
1663                          */
1664                         LIST_REMOVE(object, shadow_list);
1665                         backing_object->shadow_count--;
1666
1667                         new_backing_object = backing_object->backing_object;
1668                         if ((object->backing_object = new_backing_object) != NULL) {
1669                                 VM_OBJECT_LOCK(new_backing_object);
1670                                 LIST_INSERT_HEAD(
1671                                     &new_backing_object->shadow_head,
1672                                     object,
1673                                     shadow_list
1674                                 );
1675                                 new_backing_object->shadow_count++;
1676                                 vm_object_reference_locked(new_backing_object);
1677                                 VM_OBJECT_UNLOCK(new_backing_object);
1678                                 object->backing_object_offset +=
1679                                         backing_object->backing_object_offset;
1680                         }
1681
1682                         /*
1683                          * Drop the reference count on backing_object. Since
1684                          * its ref_count was at least 2, it will not vanish.
1685                          */
1686                         backing_object->ref_count--;
1687                         VM_OBJECT_UNLOCK(backing_object);
1688                         object_bypasses++;
1689                 }
1690
1691                 /*
1692                  * Try again with this object's new backing object.
1693                  */
1694         }
1695 }
1696
1697 /*
1698  *      vm_object_page_remove:
1699  *
1700  *      For the given object, either frees or invalidates each of the
1701  *      specified pages.  In general, a page is freed.  However, if a
1702  *      page is wired for any reason other than the existence of a
1703  *      managed, wired mapping, then it may be invalidated but not
1704  *      removed from the object.  Pages are specified by the given
1705  *      range ["start", "end") and Boolean "clean_only".  As a
1706  *      special case, if "end" is zero, then the range extends from
1707  *      "start" to the end of the object.  If "clean_only" is TRUE,
1708  *      then only the non-dirty pages within the specified range are
1709  *      affected.
1710  *
1711  *      In general, this operation should only be performed on objects
1712  *      that contain managed pages.  There are two exceptions.  First,
1713  *      it may be performed on the kernel and kmem objects.  Second,
1714  *      it may be used by msync(..., MS_INVALIDATE) to invalidate
1715  *      device-backed pages.  In both of these cases, "clean_only"
1716  *      must be FALSE.
1717  *
1718  *      The object must be locked.
1719  */
1720 void
1721 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1722     boolean_t clean_only)
1723 {
1724         vm_page_t p, next;
1725         int wirings;
1726
1727         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1728         if (object->resident_page_count == 0)
1729                 goto skipmemq;
1730
1731         /*
1732          * Since physically-backed objects do not use managed pages, we can't
1733          * remove pages from the object (we must instead remove the page
1734          * references, and then destroy the object).
1735          */
1736         KASSERT(object->type != OBJT_PHYS || object == kernel_object ||
1737             object == kmem_object,
1738             ("attempt to remove pages from a physical object"));
1739
1740         vm_object_pip_add(object, 1);
1741 again:
1742         p = vm_page_find_least(object, start);
1743         vm_page_lock_queues();
1744         /*
1745          * Assert: the variable p is either (1) the page with the
1746          * least pindex greater than or equal to the parameter pindex
1747          * or (2) NULL.
1748          */
1749         for (;
1750              p != NULL && (p->pindex < end || end == 0);
1751              p = next) {
1752                 next = TAILQ_NEXT(p, listq);
1753
1754                 /*
1755                  * If the page is wired for any reason besides the
1756                  * existence of managed, wired mappings, then it cannot
1757                  * be freed.  For example, fictitious pages, which
1758                  * represent device memory, are inherently wired and
1759                  * cannot be freed.  They can, however, be invalidated
1760                  * if "clean_only" is FALSE.
1761                  */
1762                 if ((wirings = p->wire_count) != 0 &&
1763                     (wirings = pmap_page_wired_mappings(p)) != p->wire_count) {
1764                         /* Fictitious pages do not have managed mappings. */
1765                         if ((p->flags & PG_FICTITIOUS) == 0)
1766                                 pmap_remove_all(p);
1767                         /* Account for removal of managed, wired mappings. */
1768                         p->wire_count -= wirings;
1769                         if (!clean_only) {
1770                                 p->valid = 0;
1771                                 vm_page_undirty(p);
1772                         }
1773                         continue;
1774                 }
1775                 if (vm_page_sleep_if_busy(p, TRUE, "vmopar"))
1776                         goto again;
1777                 KASSERT((p->flags & PG_FICTITIOUS) == 0,
1778                     ("vm_object_page_remove: page %p is fictitious", p));
1779                 if (clean_only && p->valid) {
1780                         pmap_remove_write(p);
1781                         if (p->dirty)
1782                                 continue;
1783                 }
1784                 pmap_remove_all(p);
1785                 /* Account for removal of managed, wired mappings. */
1786                 if (wirings != 0)
1787                         p->wire_count -= wirings;
1788                 vm_page_free(p);
1789         }
1790         vm_page_unlock_queues();
1791         vm_object_pip_wakeup(object);
1792 skipmemq:
1793         if (__predict_false(object->cache != NULL))
1794                 vm_page_cache_free(object, start, end);
1795 }
1796
1797 /*
1798  *      Populate the specified range of the object with valid pages.  Returns
1799  *      TRUE if the range is successfully populated and FALSE otherwise.
1800  *
1801  *      Note: This function should be optimized to pass a larger array of
1802  *      pages to vm_pager_get_pages() before it is applied to a non-
1803  *      OBJT_DEVICE object.
1804  *
1805  *      The object must be locked.
1806  */
1807 boolean_t
1808 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1809 {
1810         vm_page_t m, ma[1];
1811         vm_pindex_t pindex;
1812         int rv;
1813
1814         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1815         for (pindex = start; pindex < end; pindex++) {
1816                 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL |
1817                     VM_ALLOC_RETRY);
1818                 if (m->valid != VM_PAGE_BITS_ALL) {
1819                         ma[0] = m;
1820                         rv = vm_pager_get_pages(object, ma, 1, 0);
1821                         m = vm_page_lookup(object, pindex);
1822                         if (m == NULL)
1823                                 break;
1824                         if (rv != VM_PAGER_OK) {
1825                                 vm_page_lock_queues();
1826                                 vm_page_free(m);
1827                                 vm_page_unlock_queues();
1828                                 break;
1829                         }
1830                 }
1831                 /*
1832                  * Keep "m" busy because a subsequent iteration may unlock
1833                  * the object.
1834                  */
1835         }
1836         if (pindex > start) {
1837                 m = vm_page_lookup(object, start);
1838                 while (m != NULL && m->pindex < pindex) {
1839                         vm_page_wakeup(m);
1840                         m = TAILQ_NEXT(m, listq);
1841                 }
1842         }
1843         return (pindex == end);
1844 }
1845
1846 /*
1847  *      Routine:        vm_object_coalesce
1848  *      Function:       Coalesces two objects backing up adjoining
1849  *                      regions of memory into a single object.
1850  *
1851  *      returns TRUE if objects were combined.
1852  *
1853  *      NOTE:   Only works at the moment if the second object is NULL -
1854  *              if it's not, which object do we lock first?
1855  *
1856  *      Parameters:
1857  *              prev_object     First object to coalesce
1858  *              prev_offset     Offset into prev_object
1859  *              prev_size       Size of reference to prev_object
1860  *              next_size       Size of reference to the second object
1861  *              reserved        Indicator that extension region has
1862  *                              swap accounted for
1863  *
1864  *      Conditions:
1865  *      The object must *not* be locked.
1866  */
1867 boolean_t
1868 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
1869     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
1870 {
1871         vm_pindex_t next_pindex;
1872
1873         if (prev_object == NULL)
1874                 return (TRUE);
1875         VM_OBJECT_LOCK(prev_object);
1876         if (prev_object->type != OBJT_DEFAULT &&
1877             prev_object->type != OBJT_SWAP) {
1878                 VM_OBJECT_UNLOCK(prev_object);
1879                 return (FALSE);
1880         }
1881
1882         /*
1883          * Try to collapse the object first
1884          */
1885         vm_object_collapse(prev_object);
1886
1887         /*
1888          * Can't coalesce if: . more than one reference . paged out . shadows
1889          * another object . has a copy elsewhere (any of which mean that the
1890          * pages not mapped to prev_entry may be in use anyway)
1891          */
1892         if (prev_object->backing_object != NULL) {
1893                 VM_OBJECT_UNLOCK(prev_object);
1894                 return (FALSE);
1895         }
1896
1897         prev_size >>= PAGE_SHIFT;
1898         next_size >>= PAGE_SHIFT;
1899         next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
1900
1901         if ((prev_object->ref_count > 1) &&
1902             (prev_object->size != next_pindex)) {
1903                 VM_OBJECT_UNLOCK(prev_object);
1904                 return (FALSE);
1905         }
1906
1907         /*
1908          * Account for the charge.
1909          */
1910         if (prev_object->uip != NULL) {
1911
1912                 /*
1913                  * If prev_object was charged, then this mapping,
1914                  * althought not charged now, may become writable
1915                  * later. Non-NULL uip in the object would prevent
1916                  * swap reservation during enabling of the write
1917                  * access, so reserve swap now. Failed reservation
1918                  * cause allocation of the separate object for the map
1919                  * entry, and swap reservation for this entry is
1920                  * managed in appropriate time.
1921                  */
1922                 if (!reserved && !swap_reserve_by_uid(ptoa(next_size),
1923                     prev_object->uip)) {
1924                         return (FALSE);
1925                 }
1926                 prev_object->charge += ptoa(next_size);
1927         }
1928
1929         /*
1930          * Remove any pages that may still be in the object from a previous
1931          * deallocation.
1932          */
1933         if (next_pindex < prev_object->size) {
1934                 vm_object_page_remove(prev_object,
1935                                       next_pindex,
1936                                       next_pindex + next_size, FALSE);
1937                 if (prev_object->type == OBJT_SWAP)
1938                         swap_pager_freespace(prev_object,
1939                                              next_pindex, next_size);
1940 #if 0
1941                 if (prev_object->uip != NULL) {
1942                         KASSERT(prev_object->charge >=
1943                             ptoa(prev_object->size - next_pindex),
1944                             ("object %p overcharged 1 %jx %jx", prev_object,
1945                                 (uintmax_t)next_pindex, (uintmax_t)next_size));
1946                         prev_object->charge -= ptoa(prev_object->size -
1947                             next_pindex);
1948                 }
1949 #endif
1950         }
1951
1952         /*
1953          * Extend the object if necessary.
1954          */
1955         if (next_pindex + next_size > prev_object->size)
1956                 prev_object->size = next_pindex + next_size;
1957
1958         VM_OBJECT_UNLOCK(prev_object);
1959         return (TRUE);
1960 }
1961
1962 void
1963 vm_object_set_writeable_dirty(vm_object_t object)
1964 {
1965
1966         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1967         if (object->type != OBJT_VNODE ||
1968             (object->flags & OBJ_MIGHTBEDIRTY) != 0)
1969                 return;
1970         vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
1971 }
1972
1973 #include "opt_ddb.h"
1974 #ifdef DDB
1975 #include <sys/kernel.h>
1976
1977 #include <sys/cons.h>
1978
1979 #include <ddb/ddb.h>
1980
1981 static int
1982 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
1983 {
1984         vm_map_t tmpm;
1985         vm_map_entry_t tmpe;
1986         vm_object_t obj;
1987         int entcount;
1988
1989         if (map == 0)
1990                 return 0;
1991
1992         if (entry == 0) {
1993                 tmpe = map->header.next;
1994                 entcount = map->nentries;
1995                 while (entcount-- && (tmpe != &map->header)) {
1996                         if (_vm_object_in_map(map, object, tmpe)) {
1997                                 return 1;
1998                         }
1999                         tmpe = tmpe->next;
2000                 }
2001         } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2002                 tmpm = entry->object.sub_map;
2003                 tmpe = tmpm->header.next;
2004                 entcount = tmpm->nentries;
2005                 while (entcount-- && tmpe != &tmpm->header) {
2006                         if (_vm_object_in_map(tmpm, object, tmpe)) {
2007                                 return 1;
2008                         }
2009                         tmpe = tmpe->next;
2010                 }
2011         } else if ((obj = entry->object.vm_object) != NULL) {
2012                 for (; obj; obj = obj->backing_object)
2013                         if (obj == object) {
2014                                 return 1;
2015                         }
2016         }
2017         return 0;
2018 }
2019
2020 static int
2021 vm_object_in_map(vm_object_t object)
2022 {
2023         struct proc *p;
2024
2025         /* sx_slock(&allproc_lock); */
2026         FOREACH_PROC_IN_SYSTEM(p) {
2027                 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2028                         continue;
2029                 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2030                         /* sx_sunlock(&allproc_lock); */
2031                         return 1;
2032                 }
2033         }
2034         /* sx_sunlock(&allproc_lock); */
2035         if (_vm_object_in_map(kernel_map, object, 0))
2036                 return 1;
2037         if (_vm_object_in_map(kmem_map, object, 0))
2038                 return 1;
2039         if (_vm_object_in_map(pager_map, object, 0))
2040                 return 1;
2041         if (_vm_object_in_map(buffer_map, object, 0))
2042                 return 1;
2043         return 0;
2044 }
2045
2046 DB_SHOW_COMMAND(vmochk, vm_object_check)
2047 {
2048         vm_object_t object;
2049
2050         /*
2051          * make sure that internal objs are in a map somewhere
2052          * and none have zero ref counts.
2053          */
2054         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2055                 if (object->handle == NULL &&
2056                     (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2057                         if (object->ref_count == 0) {
2058                                 db_printf("vmochk: internal obj has zero ref count: %ld\n",
2059                                         (long)object->size);
2060                         }
2061                         if (!vm_object_in_map(object)) {
2062                                 db_printf(
2063                         "vmochk: internal obj is not in a map: "
2064                         "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2065                                     object->ref_count, (u_long)object->size, 
2066                                     (u_long)object->size,
2067                                     (void *)object->backing_object);
2068                         }
2069                 }
2070         }
2071 }
2072
2073 /*
2074  *      vm_object_print:        [ debug ]
2075  */
2076 DB_SHOW_COMMAND(object, vm_object_print_static)
2077 {
2078         /* XXX convert args. */
2079         vm_object_t object = (vm_object_t)addr;
2080         boolean_t full = have_addr;
2081
2082         vm_page_t p;
2083
2084         /* XXX count is an (unused) arg.  Avoid shadowing it. */
2085 #define count   was_count
2086
2087         int count;
2088
2089         if (object == NULL)
2090                 return;
2091
2092         db_iprintf(
2093             "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x uip %d charge %jx\n",
2094             object, (int)object->type, (uintmax_t)object->size,
2095             object->resident_page_count, object->ref_count, object->flags,
2096             object->uip ? object->uip->ui_uid : -1, (uintmax_t)object->charge);
2097         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2098             object->shadow_count, 
2099             object->backing_object ? object->backing_object->ref_count : 0,
2100             object->backing_object, (uintmax_t)object->backing_object_offset);
2101
2102         if (!full)
2103                 return;
2104
2105         db_indent += 2;
2106         count = 0;
2107         TAILQ_FOREACH(p, &object->memq, listq) {
2108                 if (count == 0)
2109                         db_iprintf("memory:=");
2110                 else if (count == 6) {
2111                         db_printf("\n");
2112                         db_iprintf(" ...");
2113                         count = 0;
2114                 } else
2115                         db_printf(",");
2116                 count++;
2117
2118                 db_printf("(off=0x%jx,page=0x%jx)",
2119                     (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2120         }
2121         if (count != 0)
2122                 db_printf("\n");
2123         db_indent -= 2;
2124 }
2125
2126 /* XXX. */
2127 #undef count
2128
2129 /* XXX need this non-static entry for calling from vm_map_print. */
2130 void
2131 vm_object_print(
2132         /* db_expr_t */ long addr,
2133         boolean_t have_addr,
2134         /* db_expr_t */ long count,
2135         char *modif)
2136 {
2137         vm_object_print_static(addr, have_addr, count, modif);
2138 }
2139
2140 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2141 {
2142         vm_object_t object;
2143         vm_pindex_t fidx;
2144         vm_paddr_t pa;
2145         vm_page_t m, prev_m;
2146         int rcount, nl, c;
2147
2148         nl = 0;
2149         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2150                 db_printf("new object: %p\n", (void *)object);
2151                 if (nl > 18) {
2152                         c = cngetc();
2153                         if (c != ' ')
2154                                 return;
2155                         nl = 0;
2156                 }
2157                 nl++;
2158                 rcount = 0;
2159                 fidx = 0;
2160                 pa = -1;
2161                 TAILQ_FOREACH(m, &object->memq, listq) {
2162                         if (m->pindex > 128)
2163                                 break;
2164                         if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2165                             prev_m->pindex + 1 != m->pindex) {
2166                                 if (rcount) {
2167                                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2168                                                 (long)fidx, rcount, (long)pa);
2169                                         if (nl > 18) {
2170                                                 c = cngetc();
2171                                                 if (c != ' ')
2172                                                         return;
2173                                                 nl = 0;
2174                                         }
2175                                         nl++;
2176                                         rcount = 0;
2177                                 }
2178                         }                               
2179                         if (rcount &&
2180                                 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2181                                 ++rcount;
2182                                 continue;
2183                         }
2184                         if (rcount) {
2185                                 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2186                                         (long)fidx, rcount, (long)pa);
2187                                 if (nl > 18) {
2188                                         c = cngetc();
2189                                         if (c != ' ')
2190                                                 return;
2191                                         nl = 0;
2192                                 }
2193                                 nl++;
2194                         }
2195                         fidx = m->pindex;
2196                         pa = VM_PAGE_TO_PHYS(m);
2197                         rcount = 1;
2198                 }
2199                 if (rcount) {
2200                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2201                                 (long)fidx, rcount, (long)pa);
2202                         if (nl > 18) {
2203                                 c = cngetc();
2204                                 if (c != ' ')
2205                                         return;
2206                                 nl = 0;
2207                         }
2208                         nl++;
2209                 }
2210         }
2211 }
2212 #endif /* DDB */