]> CyberLeo.Net >> Repos - FreeBSD/releng/8.2.git/blob - sys/vm/vm_pageout.c
Ready for 8.2-RC2.
[FreeBSD/releng/8.2.git] / sys / vm / vm_pageout.c
1 /*-
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  * Copyright (c) 2005 Yahoo! Technologies Norway AS
9  * All rights reserved.
10  *
11  * This code is derived from software contributed to Berkeley by
12  * The Mach Operating System project at Carnegie-Mellon University.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. All advertising materials mentioning features or use of this software
23  *    must display the following acknowledgement:
24  *      This product includes software developed by the University of
25  *      California, Berkeley and its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *      from: @(#)vm_pageout.c  7.4 (Berkeley) 5/7/91
43  *
44  *
45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46  * All rights reserved.
47  *
48  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
49  *
50  * Permission to use, copy, modify and distribute this software and
51  * its documentation is hereby granted, provided that both the copyright
52  * notice and this permission notice appear in all copies of the
53  * software, derivative works or modified versions, and any portions
54  * thereof, and that both notices appear in supporting documentation.
55  *
56  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
57  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
58  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
59  *
60  * Carnegie Mellon requests users of this software to return to
61  *
62  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
63  *  School of Computer Science
64  *  Carnegie Mellon University
65  *  Pittsburgh PA 15213-3890
66  *
67  * any improvements or extensions that they make and grant Carnegie the
68  * rights to redistribute these changes.
69  */
70
71 /*
72  *      The proverbial page-out daemon.
73  */
74
75 #include <sys/cdefs.h>
76 __FBSDID("$FreeBSD$");
77
78 #include "opt_vm.h"
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/eventhandler.h>
83 #include <sys/lock.h>
84 #include <sys/mutex.h>
85 #include <sys/proc.h>
86 #include <sys/kthread.h>
87 #include <sys/ktr.h>
88 #include <sys/mount.h>
89 #include <sys/resourcevar.h>
90 #include <sys/sched.h>
91 #include <sys/signalvar.h>
92 #include <sys/vnode.h>
93 #include <sys/vmmeter.h>
94 #include <sys/sx.h>
95 #include <sys/sysctl.h>
96
97 #include <vm/vm.h>
98 #include <vm/vm_param.h>
99 #include <vm/vm_object.h>
100 #include <vm/vm_page.h>
101 #include <vm/vm_map.h>
102 #include <vm/vm_pageout.h>
103 #include <vm/vm_pager.h>
104 #include <vm/swap_pager.h>
105 #include <vm/vm_extern.h>
106 #include <vm/uma.h>
107
108 /*
109  * System initialization
110  */
111
112 /* the kernel process "vm_pageout"*/
113 static void vm_pageout(void);
114 static int vm_pageout_clean(vm_page_t);
115 static void vm_pageout_scan(int pass);
116
117 struct proc *pageproc;
118
119 static struct kproc_desc page_kp = {
120         "pagedaemon",
121         vm_pageout,
122         &pageproc
123 };
124 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start,
125     &page_kp);
126
127 #if !defined(NO_SWAPPING)
128 /* the kernel process "vm_daemon"*/
129 static void vm_daemon(void);
130 static struct   proc *vmproc;
131
132 static struct kproc_desc vm_kp = {
133         "vmdaemon",
134         vm_daemon,
135         &vmproc
136 };
137 SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp);
138 #endif
139
140
141 int vm_pages_needed;            /* Event on which pageout daemon sleeps */
142 int vm_pageout_deficit;         /* Estimated number of pages deficit */
143 int vm_pageout_pages_needed;    /* flag saying that the pageout daemon needs pages */
144
145 #if !defined(NO_SWAPPING)
146 static int vm_pageout_req_swapout;      /* XXX */
147 static int vm_daemon_needed;
148 static struct mtx vm_daemon_mtx;
149 /* Allow for use by vm_pageout before vm_daemon is initialized. */
150 MTX_SYSINIT(vm_daemon, &vm_daemon_mtx, "vm daemon", MTX_DEF);
151 #endif
152 static int vm_max_launder = 32;
153 static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
154 static int vm_pageout_full_stats_interval = 0;
155 static int vm_pageout_algorithm=0;
156 static int defer_swap_pageouts=0;
157 static int disable_swap_pageouts=0;
158
159 #if defined(NO_SWAPPING)
160 static int vm_swap_enabled=0;
161 static int vm_swap_idle_enabled=0;
162 #else
163 static int vm_swap_enabled=1;
164 static int vm_swap_idle_enabled=0;
165 #endif
166
167 SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
168         CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
169
170 SYSCTL_INT(_vm, OID_AUTO, max_launder,
171         CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
172
173 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
174         CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
175
176 SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
177         CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
178
179 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
180         CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
181
182 #if defined(NO_SWAPPING)
183 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
184         CTLFLAG_RD, &vm_swap_enabled, 0, "Enable entire process swapout");
185 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
186         CTLFLAG_RD, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
187 #else
188 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
189         CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
190 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
191         CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
192 #endif
193
194 SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
195         CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
196
197 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
198         CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
199
200 static int pageout_lock_miss;
201 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
202         CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
203
204 #define VM_PAGEOUT_PAGE_COUNT 16
205 int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
206
207 int vm_page_max_wired;          /* XXX max # of wired pages system-wide */
208 SYSCTL_INT(_vm, OID_AUTO, max_wired,
209         CTLFLAG_RW, &vm_page_max_wired, 0, "System-wide limit to wired page count");
210
211 #if !defined(NO_SWAPPING)
212 static void vm_pageout_map_deactivate_pages(vm_map_t, long);
213 static void vm_pageout_object_deactivate_pages(pmap_t, vm_object_t, long);
214 static void vm_req_vmdaemon(int req);
215 #endif
216 static void vm_pageout_page_stats(void);
217
218 /*
219  * vm_pageout_fallback_object_lock:
220  * 
221  * Lock vm object currently associated with `m'. VM_OBJECT_TRYLOCK is
222  * known to have failed and page queue must be either PQ_ACTIVE or
223  * PQ_INACTIVE.  To avoid lock order violation, unlock the page queues
224  * while locking the vm object.  Use marker page to detect page queue
225  * changes and maintain notion of next page on page queue.  Return
226  * TRUE if no changes were detected, FALSE otherwise.  vm object is
227  * locked on return.
228  * 
229  * This function depends on both the lock portion of struct vm_object
230  * and normal struct vm_page being type stable.
231  */
232 boolean_t
233 vm_pageout_fallback_object_lock(vm_page_t m, vm_page_t *next)
234 {
235         struct vm_page marker;
236         boolean_t unchanged;
237         u_short queue;
238         vm_object_t object;
239
240         /*
241          * Initialize our marker
242          */
243         bzero(&marker, sizeof(marker));
244         marker.flags = PG_FICTITIOUS | PG_MARKER;
245         marker.oflags = VPO_BUSY;
246         marker.queue = m->queue;
247         marker.wire_count = 1;
248
249         queue = m->queue;
250         object = m->object;
251         
252         TAILQ_INSERT_AFTER(&vm_page_queues[queue].pl,
253                            m, &marker, pageq);
254         vm_page_unlock_queues();
255         VM_OBJECT_LOCK(object);
256         vm_page_lock_queues();
257
258         /* Page queue might have changed. */
259         *next = TAILQ_NEXT(&marker, pageq);
260         unchanged = (m->queue == queue &&
261                      m->object == object &&
262                      &marker == TAILQ_NEXT(m, pageq));
263         TAILQ_REMOVE(&vm_page_queues[queue].pl,
264                      &marker, pageq);
265         return (unchanged);
266 }
267
268 /*
269  * vm_pageout_clean:
270  *
271  * Clean the page and remove it from the laundry.
272  * 
273  * We set the busy bit to cause potential page faults on this page to
274  * block.  Note the careful timing, however, the busy bit isn't set till
275  * late and we cannot do anything that will mess with the page.
276  */
277 static int
278 vm_pageout_clean(m)
279         vm_page_t m;
280 {
281         vm_object_t object;
282         vm_page_t mc[2*vm_pageout_page_count], pb, ps;
283         int pageout_count;
284         int ib, is, page_base;
285         vm_pindex_t pindex = m->pindex;
286
287         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
288         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
289
290         /*
291          * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
292          * with the new swapper, but we could have serious problems paging
293          * out other object types if there is insufficient memory.  
294          *
295          * Unfortunately, checking free memory here is far too late, so the
296          * check has been moved up a procedural level.
297          */
298
299         /*
300          * Can't clean the page if it's busy or held.
301          */
302         if ((m->hold_count != 0) ||
303             ((m->busy != 0) || (m->oflags & VPO_BUSY))) {
304                 return 0;
305         }
306
307         mc[vm_pageout_page_count] = pb = ps = m;
308         pageout_count = 1;
309         page_base = vm_pageout_page_count;
310         ib = 1;
311         is = 1;
312
313         /*
314          * Scan object for clusterable pages.
315          *
316          * We can cluster ONLY if: ->> the page is NOT
317          * clean, wired, busy, held, or mapped into a
318          * buffer, and one of the following:
319          * 1) The page is inactive, or a seldom used
320          *    active page.
321          * -or-
322          * 2) we force the issue.
323          *
324          * During heavy mmap/modification loads the pageout
325          * daemon can really fragment the underlying file
326          * due to flushing pages out of order and not trying
327          * align the clusters (which leave sporatic out-of-order
328          * holes).  To solve this problem we do the reverse scan
329          * first and attempt to align our cluster, then do a 
330          * forward scan if room remains.
331          */
332         object = m->object;
333 more:
334         while (ib && pageout_count < vm_pageout_page_count) {
335                 vm_page_t p;
336
337                 if (ib > pindex) {
338                         ib = 0;
339                         break;
340                 }
341
342                 if ((p = vm_page_prev(pb)) == NULL ||
343                     (p->oflags & VPO_BUSY) != 0 || p->busy != 0) {
344                         ib = 0;
345                         break;
346                 }
347                 vm_page_test_dirty(p);
348                 if (p->dirty == 0 ||
349                     p->queue != PQ_INACTIVE ||
350                     p->hold_count != 0) {       /* may be undergoing I/O */
351                         ib = 0;
352                         break;
353                 }
354                 mc[--page_base] = pb = p;
355                 ++pageout_count;
356                 ++ib;
357                 /*
358                  * alignment boundry, stop here and switch directions.  Do
359                  * not clear ib.
360                  */
361                 if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
362                         break;
363         }
364
365         while (pageout_count < vm_pageout_page_count && 
366             pindex + is < object->size) {
367                 vm_page_t p;
368
369                 if ((p = vm_page_next(ps)) == NULL ||
370                     (p->oflags & VPO_BUSY) != 0 || p->busy != 0)
371                         break;
372                 vm_page_test_dirty(p);
373                 if (p->dirty == 0 ||
374                     p->queue != PQ_INACTIVE ||
375                     p->hold_count != 0) {       /* may be undergoing I/O */
376                         break;
377                 }
378                 mc[page_base + pageout_count] = ps = p;
379                 ++pageout_count;
380                 ++is;
381         }
382
383         /*
384          * If we exhausted our forward scan, continue with the reverse scan
385          * when possible, even past a page boundry.  This catches boundry
386          * conditions.
387          */
388         if (ib && pageout_count < vm_pageout_page_count)
389                 goto more;
390
391         /*
392          * we allow reads during pageouts...
393          */
394         return (vm_pageout_flush(&mc[page_base], pageout_count, 0, 0, NULL));
395 }
396
397 /*
398  * vm_pageout_flush() - launder the given pages
399  *
400  *      The given pages are laundered.  Note that we setup for the start of
401  *      I/O ( i.e. busy the page ), mark it read-only, and bump the object
402  *      reference count all in here rather then in the parent.  If we want
403  *      the parent to do more sophisticated things we may have to change
404  *      the ordering.
405  *
406  *      Returned runlen is the count of pages between mreq and first
407  *      page after mreq with status VM_PAGER_AGAIN.
408  */
409 int
410 vm_pageout_flush(vm_page_t *mc, int count, int flags, int mreq, int *prunlen)
411 {
412         vm_object_t object = mc[0]->object;
413         int pageout_status[count];
414         int numpagedout = 0;
415         int i, runlen;
416
417         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
418         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
419         /*
420          * Initiate I/O.  Bump the vm_page_t->busy counter and
421          * mark the pages read-only.
422          *
423          * We do not have to fixup the clean/dirty bits here... we can
424          * allow the pager to do it after the I/O completes.
425          *
426          * NOTE! mc[i]->dirty may be partial or fragmented due to an
427          * edge case with file fragments.
428          */
429         for (i = 0; i < count; i++) {
430                 KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
431                     ("vm_pageout_flush: partially invalid page %p index %d/%d",
432                         mc[i], i, count));
433                 vm_page_io_start(mc[i]);
434                 pmap_remove_write(mc[i]);
435         }
436         vm_page_unlock_queues();
437         vm_object_pip_add(object, count);
438
439         vm_pager_put_pages(object, mc, count, flags, pageout_status);
440
441         runlen = count - mreq;
442         vm_page_lock_queues();
443         for (i = 0; i < count; i++) {
444                 vm_page_t mt = mc[i];
445
446                 KASSERT(pageout_status[i] == VM_PAGER_PEND ||
447                     (mt->flags & PG_WRITEABLE) == 0,
448                     ("vm_pageout_flush: page %p is not write protected", mt));
449                 switch (pageout_status[i]) {
450                 case VM_PAGER_OK:
451                 case VM_PAGER_PEND:
452                         numpagedout++;
453                         break;
454                 case VM_PAGER_BAD:
455                         /*
456                          * Page outside of range of object. Right now we
457                          * essentially lose the changes by pretending it
458                          * worked.
459                          */
460                         vm_page_undirty(mt);
461                         break;
462                 case VM_PAGER_ERROR:
463                 case VM_PAGER_FAIL:
464                         /*
465                          * If page couldn't be paged out, then reactivate the
466                          * page so it doesn't clog the inactive list.  (We
467                          * will try paging out it again later).
468                          */
469                         vm_page_activate(mt);
470                         break;
471                 case VM_PAGER_AGAIN:
472                         if (i >= mreq && i - mreq < runlen)
473                                 runlen = i - mreq;
474                         break;
475                 }
476
477                 /*
478                  * If the operation is still going, leave the page busy to
479                  * block all other accesses. Also, leave the paging in
480                  * progress indicator set so that we don't attempt an object
481                  * collapse.
482                  */
483                 if (pageout_status[i] != VM_PAGER_PEND) {
484                         vm_object_pip_wakeup(object);
485                         vm_page_io_finish(mt);
486                         if (vm_page_count_severe())
487                                 vm_page_try_to_cache(mt);
488                 }
489         }
490         if (prunlen != NULL)
491                 *prunlen = runlen;
492         return (numpagedout);
493 }
494
495 #if !defined(NO_SWAPPING)
496 /*
497  *      vm_pageout_object_deactivate_pages
498  *
499  *      deactivate enough pages to satisfy the inactive target
500  *      requirements or if vm_page_proc_limit is set, then
501  *      deactivate all of the pages in the object and its
502  *      backing_objects.
503  *
504  *      The object and map must be locked.
505  */
506 static void
507 vm_pageout_object_deactivate_pages(pmap, first_object, desired)
508         pmap_t pmap;
509         vm_object_t first_object;
510         long desired;
511 {
512         vm_object_t backing_object, object;
513         vm_page_t p, next;
514         int actcount, rcount, remove_mode;
515
516         VM_OBJECT_LOCK_ASSERT(first_object, MA_OWNED);
517         if (first_object->type == OBJT_DEVICE ||
518             first_object->type == OBJT_SG ||
519             first_object->type == OBJT_PHYS)
520                 return;
521         for (object = first_object;; object = backing_object) {
522                 if (pmap_resident_count(pmap) <= desired)
523                         goto unlock_return;
524                 if (object->paging_in_progress)
525                         goto unlock_return;
526
527                 remove_mode = 0;
528                 if (object->shadow_count > 1)
529                         remove_mode = 1;
530                 /*
531                  * scan the objects entire memory queue
532                  */
533                 rcount = object->resident_page_count;
534                 p = TAILQ_FIRST(&object->memq);
535                 vm_page_lock_queues();
536                 while (p && (rcount-- > 0)) {
537                         if (pmap_resident_count(pmap) <= desired) {
538                                 vm_page_unlock_queues();
539                                 goto unlock_return;
540                         }
541                         next = TAILQ_NEXT(p, listq);
542                         cnt.v_pdpages++;
543                         if (p->wire_count != 0 ||
544                             p->hold_count != 0 ||
545                             p->busy != 0 ||
546                             (p->oflags & VPO_BUSY) ||
547                             (p->flags & PG_UNMANAGED) ||
548                             !pmap_page_exists_quick(pmap, p)) {
549                                 p = next;
550                                 continue;
551                         }
552                         actcount = pmap_ts_referenced(p);
553                         if (actcount) {
554                                 vm_page_flag_set(p, PG_REFERENCED);
555                         } else if (p->flags & PG_REFERENCED) {
556                                 actcount = 1;
557                         }
558                         if ((p->queue != PQ_ACTIVE) &&
559                                 (p->flags & PG_REFERENCED)) {
560                                 vm_page_activate(p);
561                                 p->act_count += actcount;
562                                 vm_page_flag_clear(p, PG_REFERENCED);
563                         } else if (p->queue == PQ_ACTIVE) {
564                                 if ((p->flags & PG_REFERENCED) == 0) {
565                                         p->act_count -= min(p->act_count, ACT_DECLINE);
566                                         if (!remove_mode && (vm_pageout_algorithm || (p->act_count == 0))) {
567                                                 pmap_remove_all(p);
568                                                 vm_page_deactivate(p);
569                                         } else {
570                                                 vm_page_requeue(p);
571                                         }
572                                 } else {
573                                         vm_page_activate(p);
574                                         vm_page_flag_clear(p, PG_REFERENCED);
575                                         if (p->act_count < (ACT_MAX - ACT_ADVANCE))
576                                                 p->act_count += ACT_ADVANCE;
577                                         vm_page_requeue(p);
578                                 }
579                         } else if (p->queue == PQ_INACTIVE) {
580                                 pmap_remove_all(p);
581                         }
582                         p = next;
583                 }
584                 vm_page_unlock_queues();
585                 if ((backing_object = object->backing_object) == NULL)
586                         goto unlock_return;
587                 VM_OBJECT_LOCK(backing_object);
588                 if (object != first_object)
589                         VM_OBJECT_UNLOCK(object);
590         }
591 unlock_return:
592         if (object != first_object)
593                 VM_OBJECT_UNLOCK(object);
594 }
595
596 /*
597  * deactivate some number of pages in a map, try to do it fairly, but
598  * that is really hard to do.
599  */
600 static void
601 vm_pageout_map_deactivate_pages(map, desired)
602         vm_map_t map;
603         long desired;
604 {
605         vm_map_entry_t tmpe;
606         vm_object_t obj, bigobj;
607         int nothingwired;
608
609         if (!vm_map_trylock(map))
610                 return;
611
612         bigobj = NULL;
613         nothingwired = TRUE;
614
615         /*
616          * first, search out the biggest object, and try to free pages from
617          * that.
618          */
619         tmpe = map->header.next;
620         while (tmpe != &map->header) {
621                 if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
622                         obj = tmpe->object.vm_object;
623                         if (obj != NULL && VM_OBJECT_TRYLOCK(obj)) {
624                                 if (obj->shadow_count <= 1 &&
625                                     (bigobj == NULL ||
626                                      bigobj->resident_page_count < obj->resident_page_count)) {
627                                         if (bigobj != NULL)
628                                                 VM_OBJECT_UNLOCK(bigobj);
629                                         bigobj = obj;
630                                 } else
631                                         VM_OBJECT_UNLOCK(obj);
632                         }
633                 }
634                 if (tmpe->wired_count > 0)
635                         nothingwired = FALSE;
636                 tmpe = tmpe->next;
637         }
638
639         if (bigobj != NULL) {
640                 vm_pageout_object_deactivate_pages(map->pmap, bigobj, desired);
641                 VM_OBJECT_UNLOCK(bigobj);
642         }
643         /*
644          * Next, hunt around for other pages to deactivate.  We actually
645          * do this search sort of wrong -- .text first is not the best idea.
646          */
647         tmpe = map->header.next;
648         while (tmpe != &map->header) {
649                 if (pmap_resident_count(vm_map_pmap(map)) <= desired)
650                         break;
651                 if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
652                         obj = tmpe->object.vm_object;
653                         if (obj != NULL) {
654                                 VM_OBJECT_LOCK(obj);
655                                 vm_pageout_object_deactivate_pages(map->pmap, obj, desired);
656                                 VM_OBJECT_UNLOCK(obj);
657                         }
658                 }
659                 tmpe = tmpe->next;
660         }
661
662         /*
663          * Remove all mappings if a process is swapped out, this will free page
664          * table pages.
665          */
666         if (desired == 0 && nothingwired) {
667                 tmpe = map->header.next;
668                 while (tmpe != &map->header) {
669                         pmap_remove(vm_map_pmap(map), tmpe->start, tmpe->end);
670                         tmpe = tmpe->next;
671                 }
672         }
673         vm_map_unlock(map);
674 }
675 #endif          /* !defined(NO_SWAPPING) */
676
677 /*
678  *      vm_pageout_scan does the dirty work for the pageout daemon.
679  */
680 static void
681 vm_pageout_scan(int pass)
682 {
683         vm_page_t m, next;
684         struct vm_page marker;
685         int page_shortage, maxscan, pcount;
686         int addl_page_shortage, addl_page_shortage_init;
687         vm_object_t object;
688         int actcount;
689         int vnodes_skipped = 0;
690         int maxlaunder;
691
692         /*
693          * Decrease registered cache sizes.
694          */
695         EVENTHANDLER_INVOKE(vm_lowmem, 0);
696         /*
697          * We do this explicitly after the caches have been drained above.
698          */
699         uma_reclaim();
700
701         addl_page_shortage_init = atomic_readandclear_int(&vm_pageout_deficit);
702
703         /*
704          * Calculate the number of pages we want to either free or move
705          * to the cache.
706          */
707         page_shortage = vm_paging_target() + addl_page_shortage_init;
708
709         /*
710          * Initialize our marker
711          */
712         bzero(&marker, sizeof(marker));
713         marker.flags = PG_FICTITIOUS | PG_MARKER;
714         marker.oflags = VPO_BUSY;
715         marker.queue = PQ_INACTIVE;
716         marker.wire_count = 1;
717
718         /*
719          * Start scanning the inactive queue for pages we can move to the
720          * cache or free.  The scan will stop when the target is reached or
721          * we have scanned the entire inactive queue.  Note that m->act_count
722          * is not used to form decisions for the inactive queue, only for the
723          * active queue.
724          *
725          * maxlaunder limits the number of dirty pages we flush per scan.
726          * For most systems a smaller value (16 or 32) is more robust under
727          * extreme memory and disk pressure because any unnecessary writes
728          * to disk can result in extreme performance degredation.  However,
729          * systems with excessive dirty pages (especially when MAP_NOSYNC is
730          * used) will die horribly with limited laundering.  If the pageout
731          * daemon cannot clean enough pages in the first pass, we let it go
732          * all out in succeeding passes.
733          */
734         if ((maxlaunder = vm_max_launder) <= 1)
735                 maxlaunder = 1;
736         if (pass)
737                 maxlaunder = 10000;
738         vm_page_lock_queues();
739 rescan0:
740         addl_page_shortage = addl_page_shortage_init;
741         maxscan = cnt.v_inactive_count;
742
743         for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
744              m != NULL && maxscan-- > 0 && page_shortage > 0;
745              m = next) {
746
747                 cnt.v_pdpages++;
748
749                 if (VM_PAGE_GETQUEUE(m) != PQ_INACTIVE) {
750                         goto rescan0;
751                 }
752
753                 next = TAILQ_NEXT(m, pageq);
754                 object = m->object;
755
756                 /*
757                  * skip marker pages
758                  */
759                 if (m->flags & PG_MARKER)
760                         continue;
761
762                 /*
763                  * A held page may be undergoing I/O, so skip it.
764                  */
765                 if (m->hold_count) {
766                         vm_page_requeue(m);
767                         addl_page_shortage++;
768                         continue;
769                 }
770                 /*
771                  * Don't mess with busy pages, keep in the front of the
772                  * queue, most likely are being paged out.
773                  */
774                 if (!VM_OBJECT_TRYLOCK(object) &&
775                     (!vm_pageout_fallback_object_lock(m, &next) ||
776                      m->hold_count != 0)) {
777                         VM_OBJECT_UNLOCK(object);
778                         addl_page_shortage++;
779                         continue;
780                 }
781                 if (m->busy || (m->oflags & VPO_BUSY)) {
782                         VM_OBJECT_UNLOCK(object);
783                         addl_page_shortage++;
784                         continue;
785                 }
786
787                 /*
788                  * If the object is not being used, we ignore previous 
789                  * references.
790                  */
791                 if (object->ref_count == 0) {
792                         vm_page_flag_clear(m, PG_REFERENCED);
793                         KASSERT(!pmap_page_is_mapped(m),
794                             ("vm_pageout_scan: page %p is mapped", m));
795
796                 /*
797                  * Otherwise, if the page has been referenced while in the 
798                  * inactive queue, we bump the "activation count" upwards, 
799                  * making it less likely that the page will be added back to 
800                  * the inactive queue prematurely again.  Here we check the 
801                  * page tables (or emulated bits, if any), given the upper 
802                  * level VM system not knowing anything about existing 
803                  * references.
804                  */
805                 } else if (((m->flags & PG_REFERENCED) == 0) &&
806                         (actcount = pmap_ts_referenced(m))) {
807                         vm_page_activate(m);
808                         VM_OBJECT_UNLOCK(object);
809                         m->act_count += (actcount + ACT_ADVANCE);
810                         continue;
811                 }
812
813                 /*
814                  * If the upper level VM system knows about any page 
815                  * references, we activate the page.  We also set the 
816                  * "activation count" higher than normal so that we will less 
817                  * likely place pages back onto the inactive queue again.
818                  */
819                 if ((m->flags & PG_REFERENCED) != 0) {
820                         vm_page_flag_clear(m, PG_REFERENCED);
821                         actcount = pmap_ts_referenced(m);
822                         vm_page_activate(m);
823                         VM_OBJECT_UNLOCK(object);
824                         m->act_count += (actcount + ACT_ADVANCE + 1);
825                         continue;
826                 }
827
828                 /*
829                  * If the upper level VM system does not believe that the page
830                  * is fully dirty, but it is mapped for write access, then we
831                  * consult the pmap to see if the page's dirty status should
832                  * be updated.
833                  */
834                 if (m->dirty != VM_PAGE_BITS_ALL &&
835                     (m->flags & PG_WRITEABLE) != 0) {
836                         /*
837                          * Avoid a race condition: Unless write access is
838                          * removed from the page, another processor could
839                          * modify it before all access is removed by the call
840                          * to vm_page_cache() below.  If vm_page_cache() finds
841                          * that the page has been modified when it removes all
842                          * access, it panics because it cannot cache dirty
843                          * pages.  In principle, we could eliminate just write
844                          * access here rather than all access.  In the expected
845                          * case, when there are no last instant modifications
846                          * to the page, removing all access will be cheaper
847                          * overall.
848                          */
849                         if (pmap_is_modified(m))
850                                 vm_page_dirty(m);
851                         else if (m->dirty == 0)
852                                 pmap_remove_all(m);
853                 }
854
855                 if (m->valid == 0) {
856                         /*
857                          * Invalid pages can be easily freed
858                          */
859                         vm_page_free(m);
860                         cnt.v_dfree++;
861                         --page_shortage;
862                 } else if (m->dirty == 0) {
863                         /*
864                          * Clean pages can be placed onto the cache queue.
865                          * This effectively frees them.
866                          */
867                         vm_page_cache(m);
868                         --page_shortage;
869                 } else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
870                         /*
871                          * Dirty pages need to be paged out, but flushing
872                          * a page is extremely expensive verses freeing
873                          * a clean page.  Rather then artificially limiting
874                          * the number of pages we can flush, we instead give
875                          * dirty pages extra priority on the inactive queue
876                          * by forcing them to be cycled through the queue
877                          * twice before being flushed, after which the
878                          * (now clean) page will cycle through once more
879                          * before being freed.  This significantly extends
880                          * the thrash point for a heavily loaded machine.
881                          */
882                         vm_page_flag_set(m, PG_WINATCFLS);
883                         vm_page_requeue(m);
884                 } else if (maxlaunder > 0) {
885                         /*
886                          * We always want to try to flush some dirty pages if
887                          * we encounter them, to keep the system stable.
888                          * Normally this number is small, but under extreme
889                          * pressure where there are insufficient clean pages
890                          * on the inactive queue, we may have to go all out.
891                          */
892                         int swap_pageouts_ok, vfslocked = 0;
893                         struct vnode *vp = NULL;
894                         struct mount *mp = NULL;
895
896                         if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
897                                 swap_pageouts_ok = 1;
898                         } else {
899                                 swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
900                                 swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
901                                 vm_page_count_min());
902                                                                                 
903                         }
904
905                         /*
906                          * We don't bother paging objects that are "dead".  
907                          * Those objects are in a "rundown" state.
908                          */
909                         if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
910                                 VM_OBJECT_UNLOCK(object);
911                                 vm_page_requeue(m);
912                                 continue;
913                         }
914
915                         /*
916                          * Following operations may unlock
917                          * vm_page_queue_mtx, invalidating the 'next'
918                          * pointer.  To prevent an inordinate number
919                          * of restarts we use our marker to remember
920                          * our place.
921                          *
922                          */
923                         TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl,
924                                            m, &marker, pageq);
925                         /*
926                          * The object is already known NOT to be dead.   It
927                          * is possible for the vget() to block the whole
928                          * pageout daemon, but the new low-memory handling
929                          * code should prevent it.
930                          *
931                          * The previous code skipped locked vnodes and, worse,
932                          * reordered pages in the queue.  This results in
933                          * completely non-deterministic operation and, on a
934                          * busy system, can lead to extremely non-optimal
935                          * pageouts.  For example, it can cause clean pages
936                          * to be freed and dirty pages to be moved to the end
937                          * of the queue.  Since dirty pages are also moved to
938                          * the end of the queue once-cleaned, this gives
939                          * way too large a weighting to defering the freeing
940                          * of dirty pages.
941                          *
942                          * We can't wait forever for the vnode lock, we might
943                          * deadlock due to a vn_read() getting stuck in
944                          * vm_wait while holding this vnode.  We skip the 
945                          * vnode if we can't get it in a reasonable amount
946                          * of time.
947                          */
948                         if (object->type == OBJT_VNODE) {
949                                 vp = object->handle;
950                                 if (vp->v_type == VREG &&
951                                     vn_start_write(vp, &mp, V_NOWAIT) != 0) {
952                                         mp = NULL;
953                                         ++pageout_lock_miss;
954                                         if (object->flags & OBJ_MIGHTBEDIRTY)
955                                                 vnodes_skipped++;
956                                         goto unlock_and_continue;
957                                 }
958                                 KASSERT(mp != NULL,
959                                     ("vp %p with NULL v_mount", vp));
960                                 vm_page_unlock_queues();
961                                 vm_object_reference_locked(object);
962                                 VM_OBJECT_UNLOCK(object);
963                                 vfslocked = VFS_LOCK_GIANT(vp->v_mount);
964                                 if (vget(vp, LK_EXCLUSIVE | LK_TIMELOCK,
965                                     curthread)) {
966                                         VM_OBJECT_LOCK(object);
967                                         vm_page_lock_queues();
968                                         ++pageout_lock_miss;
969                                         if (object->flags & OBJ_MIGHTBEDIRTY)
970                                                 vnodes_skipped++;
971                                         vp = NULL;
972                                         goto unlock_and_continue;
973                                 }
974                                 VM_OBJECT_LOCK(object);
975                                 vm_page_lock_queues();
976                                 /*
977                                  * The page might have been moved to another
978                                  * queue during potential blocking in vget()
979                                  * above.  The page might have been freed and
980                                  * reused for another vnode.
981                                  */
982                                 if (VM_PAGE_GETQUEUE(m) != PQ_INACTIVE ||
983                                     m->object != object ||
984                                     TAILQ_NEXT(m, pageq) != &marker) {
985                                         if (object->flags & OBJ_MIGHTBEDIRTY)
986                                                 vnodes_skipped++;
987                                         goto unlock_and_continue;
988                                 }
989         
990                                 /*
991                                  * The page may have been busied during the
992                                  * blocking in vget().  We don't move the
993                                  * page back onto the end of the queue so that
994                                  * statistics are more correct if we don't.
995                                  */
996                                 if (m->busy || (m->oflags & VPO_BUSY)) {
997                                         goto unlock_and_continue;
998                                 }
999
1000                                 /*
1001                                  * If the page has become held it might
1002                                  * be undergoing I/O, so skip it
1003                                  */
1004                                 if (m->hold_count) {
1005                                         vm_page_requeue(m);
1006                                         if (object->flags & OBJ_MIGHTBEDIRTY)
1007                                                 vnodes_skipped++;
1008                                         goto unlock_and_continue;
1009                                 }
1010                         }
1011
1012                         /*
1013                          * If a page is dirty, then it is either being washed
1014                          * (but not yet cleaned) or it is still in the
1015                          * laundry.  If it is still in the laundry, then we
1016                          * start the cleaning operation. 
1017                          *
1018                          * decrement page_shortage on success to account for
1019                          * the (future) cleaned page.  Otherwise we could wind
1020                          * up laundering or cleaning too many pages.
1021                          */
1022                         if (vm_pageout_clean(m) != 0) {
1023                                 --page_shortage;
1024                                 --maxlaunder;
1025                         }
1026 unlock_and_continue:
1027                         VM_OBJECT_UNLOCK(object);
1028                         if (mp != NULL) {
1029                                 vm_page_unlock_queues();
1030                                 if (vp != NULL)
1031                                         vput(vp);
1032                                 VFS_UNLOCK_GIANT(vfslocked);
1033                                 vm_object_deallocate(object);
1034                                 vn_finished_write(mp);
1035                                 vm_page_lock_queues();
1036                         }
1037                         next = TAILQ_NEXT(&marker, pageq);
1038                         TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl,
1039                                      &marker, pageq);
1040                         continue;
1041                 }
1042                 VM_OBJECT_UNLOCK(object);
1043         }
1044
1045         /*
1046          * Compute the number of pages we want to try to move from the
1047          * active queue to the inactive queue.
1048          */
1049         page_shortage = vm_paging_target() +
1050                 cnt.v_inactive_target - cnt.v_inactive_count;
1051         page_shortage += addl_page_shortage;
1052
1053         /*
1054          * Scan the active queue for things we can deactivate. We nominally
1055          * track the per-page activity counter and use it to locate
1056          * deactivation candidates.
1057          */
1058         pcount = cnt.v_active_count;
1059         m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1060
1061         while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
1062
1063                 KASSERT(VM_PAGE_INQUEUE2(m, PQ_ACTIVE),
1064                     ("vm_pageout_scan: page %p isn't active", m));
1065
1066                 next = TAILQ_NEXT(m, pageq);
1067                 object = m->object;
1068                 if ((m->flags & PG_MARKER) != 0) {
1069                         m = next;
1070                         continue;
1071                 }
1072                 if (!VM_OBJECT_TRYLOCK(object) &&
1073                     !vm_pageout_fallback_object_lock(m, &next)) {
1074                         VM_OBJECT_UNLOCK(object);
1075                         m = next;
1076                         continue;
1077                 }
1078
1079                 /*
1080                  * Don't deactivate pages that are busy.
1081                  */
1082                 if ((m->busy != 0) ||
1083                     (m->oflags & VPO_BUSY) ||
1084                     (m->hold_count != 0)) {
1085                         VM_OBJECT_UNLOCK(object);
1086                         vm_page_requeue(m);
1087                         m = next;
1088                         continue;
1089                 }
1090
1091                 /*
1092                  * The count for pagedaemon pages is done after checking the
1093                  * page for eligibility...
1094                  */
1095                 cnt.v_pdpages++;
1096
1097                 /*
1098                  * Check to see "how much" the page has been used.
1099                  */
1100                 actcount = 0;
1101                 if (object->ref_count != 0) {
1102                         if (m->flags & PG_REFERENCED) {
1103                                 actcount += 1;
1104                         }
1105                         actcount += pmap_ts_referenced(m);
1106                         if (actcount) {
1107                                 m->act_count += ACT_ADVANCE + actcount;
1108                                 if (m->act_count > ACT_MAX)
1109                                         m->act_count = ACT_MAX;
1110                         }
1111                 }
1112
1113                 /*
1114                  * Since we have "tested" this bit, we need to clear it now.
1115                  */
1116                 vm_page_flag_clear(m, PG_REFERENCED);
1117
1118                 /*
1119                  * Only if an object is currently being used, do we use the
1120                  * page activation count stats.
1121                  */
1122                 if (actcount && (object->ref_count != 0)) {
1123                         vm_page_requeue(m);
1124                 } else {
1125                         m->act_count -= min(m->act_count, ACT_DECLINE);
1126                         if (vm_pageout_algorithm ||
1127                             object->ref_count == 0 ||
1128                             m->act_count == 0) {
1129                                 page_shortage--;
1130                                 if (object->ref_count == 0) {
1131                                         pmap_remove_all(m);
1132                                         if (m->dirty == 0)
1133                                                 vm_page_cache(m);
1134                                         else
1135                                                 vm_page_deactivate(m);
1136                                 } else {
1137                                         vm_page_deactivate(m);
1138                                 }
1139                         } else {
1140                                 vm_page_requeue(m);
1141                         }
1142                 }
1143                 VM_OBJECT_UNLOCK(object);
1144                 m = next;
1145         }
1146         vm_page_unlock_queues();
1147 #if !defined(NO_SWAPPING)
1148         /*
1149          * Idle process swapout -- run once per second.
1150          */
1151         if (vm_swap_idle_enabled) {
1152                 static long lsec;
1153                 if (time_second != lsec) {
1154                         vm_req_vmdaemon(VM_SWAP_IDLE);
1155                         lsec = time_second;
1156                 }
1157         }
1158 #endif
1159                 
1160         /*
1161          * If we didn't get enough free pages, and we have skipped a vnode
1162          * in a writeable object, wakeup the sync daemon.  And kick swapout
1163          * if we did not get enough free pages.
1164          */
1165         if (vm_paging_target() > 0) {
1166                 if (vnodes_skipped && vm_page_count_min())
1167                         (void) speedup_syncer();
1168 #if !defined(NO_SWAPPING)
1169                 if (vm_swap_enabled && vm_page_count_target())
1170                         vm_req_vmdaemon(VM_SWAP_NORMAL);
1171 #endif
1172         }
1173
1174         /*
1175          * If we are critically low on one of RAM or swap and low on
1176          * the other, kill the largest process.  However, we avoid
1177          * doing this on the first pass in order to give ourselves a
1178          * chance to flush out dirty vnode-backed pages and to allow
1179          * active pages to be moved to the inactive queue and reclaimed.
1180          */
1181         if (pass != 0 &&
1182             ((swap_pager_avail < 64 && vm_page_count_min()) ||
1183              (swap_pager_full && vm_paging_target() > 0)))
1184                 vm_pageout_oom(VM_OOM_MEM);
1185 }
1186
1187
1188 void
1189 vm_pageout_oom(int shortage)
1190 {
1191         struct proc *p, *bigproc;
1192         vm_offset_t size, bigsize;
1193         struct thread *td;
1194         struct vmspace *vm;
1195
1196         /*
1197          * We keep the process bigproc locked once we find it to keep anyone
1198          * from messing with it; however, there is a possibility of
1199          * deadlock if process B is bigproc and one of it's child processes
1200          * attempts to propagate a signal to B while we are waiting for A's
1201          * lock while walking this list.  To avoid this, we don't block on
1202          * the process lock but just skip a process if it is already locked.
1203          */
1204         bigproc = NULL;
1205         bigsize = 0;
1206         sx_slock(&allproc_lock);
1207         FOREACH_PROC_IN_SYSTEM(p) {
1208                 int breakout;
1209
1210                 if (PROC_TRYLOCK(p) == 0)
1211                         continue;
1212                 /*
1213                  * If this is a system, protected or killed process, skip it.
1214                  */
1215                 if ((p->p_flag & (P_INEXEC | P_PROTECTED | P_SYSTEM)) ||
1216                     (p->p_pid == 1) || P_KILLED(p) ||
1217                     ((p->p_pid < 48) && (swap_pager_avail != 0))) {
1218                         PROC_UNLOCK(p);
1219                         continue;
1220                 }
1221                 /*
1222                  * If the process is in a non-running type state,
1223                  * don't touch it.  Check all the threads individually.
1224                  */
1225                 breakout = 0;
1226                 FOREACH_THREAD_IN_PROC(p, td) {
1227                         thread_lock(td);
1228                         if (!TD_ON_RUNQ(td) &&
1229                             !TD_IS_RUNNING(td) &&
1230                             !TD_IS_SLEEPING(td)) {
1231                                 thread_unlock(td);
1232                                 breakout = 1;
1233                                 break;
1234                         }
1235                         thread_unlock(td);
1236                 }
1237                 if (breakout) {
1238                         PROC_UNLOCK(p);
1239                         continue;
1240                 }
1241                 /*
1242                  * get the process size
1243                  */
1244                 vm = vmspace_acquire_ref(p);
1245                 if (vm == NULL) {
1246                         PROC_UNLOCK(p);
1247                         continue;
1248                 }
1249                 if (!vm_map_trylock_read(&vm->vm_map)) {
1250                         vmspace_free(vm);
1251                         PROC_UNLOCK(p);
1252                         continue;
1253                 }
1254                 size = vmspace_swap_count(vm);
1255                 vm_map_unlock_read(&vm->vm_map);
1256                 if (shortage == VM_OOM_MEM)
1257                         size += vmspace_resident_count(vm);
1258                 vmspace_free(vm);
1259                 /*
1260                  * if the this process is bigger than the biggest one
1261                  * remember it.
1262                  */
1263                 if (size > bigsize) {
1264                         if (bigproc != NULL)
1265                                 PROC_UNLOCK(bigproc);
1266                         bigproc = p;
1267                         bigsize = size;
1268                 } else
1269                         PROC_UNLOCK(p);
1270         }
1271         sx_sunlock(&allproc_lock);
1272         if (bigproc != NULL) {
1273                 killproc(bigproc, "out of swap space");
1274                 sched_nice(bigproc, PRIO_MIN);
1275                 PROC_UNLOCK(bigproc);
1276                 wakeup(&cnt.v_free_count);
1277         }
1278 }
1279
1280 /*
1281  * This routine tries to maintain the pseudo LRU active queue,
1282  * so that during long periods of time where there is no paging,
1283  * that some statistic accumulation still occurs.  This code
1284  * helps the situation where paging just starts to occur.
1285  */
1286 static void
1287 vm_pageout_page_stats()
1288 {
1289         vm_object_t object;
1290         vm_page_t m,next;
1291         int pcount,tpcount;             /* Number of pages to check */
1292         static int fullintervalcount = 0;
1293         int page_shortage;
1294
1295         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1296         page_shortage = 
1297             (cnt.v_inactive_target + cnt.v_cache_max + cnt.v_free_min) -
1298             (cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count);
1299
1300         if (page_shortage <= 0)
1301                 return;
1302
1303         pcount = cnt.v_active_count;
1304         fullintervalcount += vm_pageout_stats_interval;
1305         if (fullintervalcount < vm_pageout_full_stats_interval) {
1306                 tpcount = (int64_t)vm_pageout_stats_max * cnt.v_active_count /
1307                     cnt.v_page_count;
1308                 if (pcount > tpcount)
1309                         pcount = tpcount;
1310         } else {
1311                 fullintervalcount = 0;
1312         }
1313
1314         m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1315         while ((m != NULL) && (pcount-- > 0)) {
1316                 int actcount;
1317
1318                 KASSERT(VM_PAGE_INQUEUE2(m, PQ_ACTIVE),
1319                     ("vm_pageout_page_stats: page %p isn't active", m));
1320
1321                 next = TAILQ_NEXT(m, pageq);
1322                 object = m->object;
1323
1324                 if ((m->flags & PG_MARKER) != 0) {
1325                         m = next;
1326                         continue;
1327                 }
1328                 if (!VM_OBJECT_TRYLOCK(object) &&
1329                     !vm_pageout_fallback_object_lock(m, &next)) {
1330                         VM_OBJECT_UNLOCK(object);
1331                         m = next;
1332                         continue;
1333                 }
1334
1335                 /*
1336                  * Don't deactivate pages that are busy.
1337                  */
1338                 if ((m->busy != 0) ||
1339                     (m->oflags & VPO_BUSY) ||
1340                     (m->hold_count != 0)) {
1341                         VM_OBJECT_UNLOCK(object);
1342                         vm_page_requeue(m);
1343                         m = next;
1344                         continue;
1345                 }
1346
1347                 actcount = 0;
1348                 if (m->flags & PG_REFERENCED) {
1349                         vm_page_flag_clear(m, PG_REFERENCED);
1350                         actcount += 1;
1351                 }
1352
1353                 actcount += pmap_ts_referenced(m);
1354                 if (actcount) {
1355                         m->act_count += ACT_ADVANCE + actcount;
1356                         if (m->act_count > ACT_MAX)
1357                                 m->act_count = ACT_MAX;
1358                         vm_page_requeue(m);
1359                 } else {
1360                         if (m->act_count == 0) {
1361                                 /*
1362                                  * We turn off page access, so that we have
1363                                  * more accurate RSS stats.  We don't do this
1364                                  * in the normal page deactivation when the
1365                                  * system is loaded VM wise, because the
1366                                  * cost of the large number of page protect
1367                                  * operations would be higher than the value
1368                                  * of doing the operation.
1369                                  */
1370                                 pmap_remove_all(m);
1371                                 vm_page_deactivate(m);
1372                         } else {
1373                                 m->act_count -= min(m->act_count, ACT_DECLINE);
1374                                 vm_page_requeue(m);
1375                         }
1376                 }
1377                 VM_OBJECT_UNLOCK(object);
1378                 m = next;
1379         }
1380 }
1381
1382 /*
1383  *      vm_pageout is the high level pageout daemon.
1384  */
1385 static void
1386 vm_pageout()
1387 {
1388         int error, pass;
1389
1390         /*
1391          * Initialize some paging parameters.
1392          */
1393         cnt.v_interrupt_free_min = 2;
1394         if (cnt.v_page_count < 2000)
1395                 vm_pageout_page_count = 8;
1396
1397         /*
1398          * v_free_reserved needs to include enough for the largest
1399          * swap pager structures plus enough for any pv_entry structs
1400          * when paging. 
1401          */
1402         if (cnt.v_page_count > 1024)
1403                 cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
1404         else
1405                 cnt.v_free_min = 4;
1406         cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1407             cnt.v_interrupt_free_min;
1408         cnt.v_free_reserved = vm_pageout_page_count +
1409             cnt.v_pageout_free_min + (cnt.v_page_count / 768);
1410         cnt.v_free_severe = cnt.v_free_min / 2;
1411         cnt.v_free_min += cnt.v_free_reserved;
1412         cnt.v_free_severe += cnt.v_free_reserved;
1413
1414         /*
1415          * v_free_target and v_cache_min control pageout hysteresis.  Note
1416          * that these are more a measure of the VM cache queue hysteresis
1417          * then the VM free queue.  Specifically, v_free_target is the
1418          * high water mark (free+cache pages).
1419          *
1420          * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1421          * low water mark, while v_free_min is the stop.  v_cache_min must
1422          * be big enough to handle memory needs while the pageout daemon
1423          * is signalled and run to free more pages.
1424          */
1425         if (cnt.v_free_count > 6144)
1426                 cnt.v_free_target = 4 * cnt.v_free_min + cnt.v_free_reserved;
1427         else
1428                 cnt.v_free_target = 2 * cnt.v_free_min + cnt.v_free_reserved;
1429
1430         if (cnt.v_free_count > 2048) {
1431                 cnt.v_cache_min = cnt.v_free_target;
1432                 cnt.v_cache_max = 2 * cnt.v_cache_min;
1433                 cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
1434         } else {
1435                 cnt.v_cache_min = 0;
1436                 cnt.v_cache_max = 0;
1437                 cnt.v_inactive_target = cnt.v_free_count / 4;
1438         }
1439         if (cnt.v_inactive_target > cnt.v_free_count / 3)
1440                 cnt.v_inactive_target = cnt.v_free_count / 3;
1441
1442         /* XXX does not really belong here */
1443         if (vm_page_max_wired == 0)
1444                 vm_page_max_wired = cnt.v_free_count / 3;
1445
1446         if (vm_pageout_stats_max == 0)
1447                 vm_pageout_stats_max = cnt.v_free_target;
1448
1449         /*
1450          * Set interval in seconds for stats scan.
1451          */
1452         if (vm_pageout_stats_interval == 0)
1453                 vm_pageout_stats_interval = 5;
1454         if (vm_pageout_full_stats_interval == 0)
1455                 vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1456
1457         swap_pager_swap_init();
1458         pass = 0;
1459         /*
1460          * The pageout daemon is never done, so loop forever.
1461          */
1462         while (TRUE) {
1463                 /*
1464                  * If we have enough free memory, wakeup waiters.  Do
1465                  * not clear vm_pages_needed until we reach our target,
1466                  * otherwise we may be woken up over and over again and
1467                  * waste a lot of cpu.
1468                  */
1469                 mtx_lock(&vm_page_queue_free_mtx);
1470                 if (vm_pages_needed && !vm_page_count_min()) {
1471                         if (!vm_paging_needed())
1472                                 vm_pages_needed = 0;
1473                         wakeup(&cnt.v_free_count);
1474                 }
1475                 if (vm_pages_needed) {
1476                         /*
1477                          * Still not done, take a second pass without waiting
1478                          * (unlimited dirty cleaning), otherwise sleep a bit
1479                          * and try again.
1480                          */
1481                         ++pass;
1482                         if (pass > 1)
1483                                 msleep(&vm_pages_needed,
1484                                     &vm_page_queue_free_mtx, PVM, "psleep",
1485                                     hz / 2);
1486                 } else {
1487                         /*
1488                          * Good enough, sleep & handle stats.  Prime the pass
1489                          * for the next run.
1490                          */
1491                         if (pass > 1)
1492                                 pass = 1;
1493                         else
1494                                 pass = 0;
1495                         error = msleep(&vm_pages_needed,
1496                             &vm_page_queue_free_mtx, PVM, "psleep",
1497                             vm_pageout_stats_interval * hz);
1498                         if (error && !vm_pages_needed) {
1499                                 mtx_unlock(&vm_page_queue_free_mtx);
1500                                 pass = 0;
1501                                 vm_page_lock_queues();
1502                                 vm_pageout_page_stats();
1503                                 vm_page_unlock_queues();
1504                                 continue;
1505                         }
1506                 }
1507                 if (vm_pages_needed)
1508                         cnt.v_pdwakeups++;
1509                 mtx_unlock(&vm_page_queue_free_mtx);
1510                 vm_pageout_scan(pass);
1511         }
1512 }
1513
1514 /*
1515  * Unless the free page queue lock is held by the caller, this function
1516  * should be regarded as advisory.  Specifically, the caller should
1517  * not msleep() on &cnt.v_free_count following this function unless
1518  * the free page queue lock is held until the msleep() is performed.
1519  */
1520 void
1521 pagedaemon_wakeup()
1522 {
1523
1524         if (!vm_pages_needed && curthread->td_proc != pageproc) {
1525                 vm_pages_needed = 1;
1526                 wakeup(&vm_pages_needed);
1527         }
1528 }
1529
1530 #if !defined(NO_SWAPPING)
1531 static void
1532 vm_req_vmdaemon(int req)
1533 {
1534         static int lastrun = 0;
1535
1536         mtx_lock(&vm_daemon_mtx);
1537         vm_pageout_req_swapout |= req;
1538         if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1539                 wakeup(&vm_daemon_needed);
1540                 lastrun = ticks;
1541         }
1542         mtx_unlock(&vm_daemon_mtx);
1543 }
1544
1545 static void
1546 vm_daemon()
1547 {
1548         struct rlimit rsslim;
1549         struct proc *p;
1550         struct thread *td;
1551         struct vmspace *vm;
1552         int breakout, swapout_flags;
1553
1554         while (TRUE) {
1555                 mtx_lock(&vm_daemon_mtx);
1556                 msleep(&vm_daemon_needed, &vm_daemon_mtx, PPAUSE, "psleep", 0);
1557                 swapout_flags = vm_pageout_req_swapout;
1558                 vm_pageout_req_swapout = 0;
1559                 mtx_unlock(&vm_daemon_mtx);
1560                 if (swapout_flags)
1561                         swapout_procs(swapout_flags);
1562
1563                 /*
1564                  * scan the processes for exceeding their rlimits or if
1565                  * process is swapped out -- deactivate pages
1566                  */
1567                 sx_slock(&allproc_lock);
1568                 FOREACH_PROC_IN_SYSTEM(p) {
1569                         vm_pindex_t limit, size;
1570
1571                         /*
1572                          * if this is a system process or if we have already
1573                          * looked at this process, skip it.
1574                          */
1575                         PROC_LOCK(p);
1576                         if (p->p_flag & (P_INEXEC | P_SYSTEM | P_WEXIT)) {
1577                                 PROC_UNLOCK(p);
1578                                 continue;
1579                         }
1580                         /*
1581                          * if the process is in a non-running type state,
1582                          * don't touch it.
1583                          */
1584                         breakout = 0;
1585                         FOREACH_THREAD_IN_PROC(p, td) {
1586                                 thread_lock(td);
1587                                 if (!TD_ON_RUNQ(td) &&
1588                                     !TD_IS_RUNNING(td) &&
1589                                     !TD_IS_SLEEPING(td)) {
1590                                         thread_unlock(td);
1591                                         breakout = 1;
1592                                         break;
1593                                 }
1594                                 thread_unlock(td);
1595                         }
1596                         if (breakout) {
1597                                 PROC_UNLOCK(p);
1598                                 continue;
1599                         }
1600                         /*
1601                          * get a limit
1602                          */
1603                         lim_rlimit(p, RLIMIT_RSS, &rsslim);
1604                         limit = OFF_TO_IDX(
1605                             qmin(rsslim.rlim_cur, rsslim.rlim_max));
1606
1607                         /*
1608                          * let processes that are swapped out really be
1609                          * swapped out set the limit to nothing (will force a
1610                          * swap-out.)
1611                          */
1612                         if ((p->p_flag & P_INMEM) == 0)
1613                                 limit = 0;      /* XXX */
1614                         vm = vmspace_acquire_ref(p);
1615                         PROC_UNLOCK(p);
1616                         if (vm == NULL)
1617                                 continue;
1618
1619                         size = vmspace_resident_count(vm);
1620                         if (limit >= 0 && size >= limit) {
1621                                 vm_pageout_map_deactivate_pages(
1622                                     &vm->vm_map, limit);
1623                         }
1624                         vmspace_free(vm);
1625                 }
1626                 sx_sunlock(&allproc_lock);
1627         }
1628 }
1629 #endif                  /* !defined(NO_SWAPPING) */