]> CyberLeo.Net >> Repos - FreeBSD/releng/8.2.git/blob - sys/vm/vm_phys.c
Guess when all the bits will be in place for announcing 8.2-RELEASE.
[FreeBSD/releng/8.2.git] / sys / vm / vm_phys.c
1 /*-
2  * Copyright (c) 2002-2006 Rice University
3  * Copyright (c) 2007 Alan L. Cox <alc@cs.rice.edu>
4  * All rights reserved.
5  *
6  * This software was developed for the FreeBSD Project by Alan L. Cox,
7  * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21  * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT
22  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
23  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
24  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
25  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
26  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
28  * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34
35 #include "opt_ddb.h"
36
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/lock.h>
40 #include <sys/kernel.h>
41 #include <sys/malloc.h>
42 #include <sys/mutex.h>
43 #include <sys/queue.h>
44 #include <sys/sbuf.h>
45 #include <sys/sysctl.h>
46 #include <sys/vmmeter.h>
47 #include <sys/vnode.h>
48
49 #include <ddb/ddb.h>
50
51 #include <vm/vm.h>
52 #include <vm/vm_param.h>
53 #include <vm/vm_kern.h>
54 #include <vm/vm_object.h>
55 #include <vm/vm_page.h>
56 #include <vm/vm_phys.h>
57 #include <vm/vm_reserv.h>
58
59 struct vm_freelist {
60         struct pglist pl;
61         int lcnt;
62 };
63
64 struct vm_phys_seg {
65         vm_paddr_t      start;
66         vm_paddr_t      end;
67         vm_page_t       first_page;
68         struct vm_freelist (*free_queues)[VM_NFREEPOOL][VM_NFREEORDER];
69 };
70
71 static struct vm_phys_seg vm_phys_segs[VM_PHYSSEG_MAX];
72
73 static int vm_phys_nsegs;
74
75 static struct vm_freelist
76     vm_phys_free_queues[VM_NFREELIST][VM_NFREEPOOL][VM_NFREEORDER];
77
78 static int vm_nfreelists = VM_FREELIST_DEFAULT + 1;
79
80 static int cnt_prezero;
81 SYSCTL_INT(_vm_stats_misc, OID_AUTO, cnt_prezero, CTLFLAG_RD,
82     &cnt_prezero, 0, "The number of physical pages prezeroed at idle time");
83
84 static int sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS);
85 SYSCTL_OID(_vm, OID_AUTO, phys_free, CTLTYPE_STRING | CTLFLAG_RD,
86     NULL, 0, sysctl_vm_phys_free, "A", "Phys Free Info");
87
88 static int sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS);
89 SYSCTL_OID(_vm, OID_AUTO, phys_segs, CTLTYPE_STRING | CTLFLAG_RD,
90     NULL, 0, sysctl_vm_phys_segs, "A", "Phys Seg Info");
91
92 static void vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind);
93 static int vm_phys_paddr_to_segind(vm_paddr_t pa);
94 static void vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl,
95     int order);
96
97 /*
98  * Outputs the state of the physical memory allocator, specifically,
99  * the amount of physical memory in each free list.
100  */
101 static int
102 sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS)
103 {
104         struct sbuf sbuf;
105         struct vm_freelist *fl;
106         char *cbuf;
107         const int cbufsize = vm_nfreelists*(VM_NFREEORDER + 1)*81;
108         int error, flind, oind, pind;
109
110         cbuf = malloc(cbufsize, M_TEMP, M_WAITOK | M_ZERO);
111         sbuf_new(&sbuf, cbuf, cbufsize, SBUF_FIXEDLEN);
112         for (flind = 0; flind < vm_nfreelists; flind++) {
113                 sbuf_printf(&sbuf, "\nFREE LIST %d:\n"
114                     "\n  ORDER (SIZE)  |  NUMBER"
115                     "\n              ", flind);
116                 for (pind = 0; pind < VM_NFREEPOOL; pind++)
117                         sbuf_printf(&sbuf, "  |  POOL %d", pind);
118                 sbuf_printf(&sbuf, "\n--            ");
119                 for (pind = 0; pind < VM_NFREEPOOL; pind++)
120                         sbuf_printf(&sbuf, "-- --      ");
121                 sbuf_printf(&sbuf, "--\n");
122                 for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
123                         sbuf_printf(&sbuf, "  %2d (%6dK)", oind,
124                             1 << (PAGE_SHIFT - 10 + oind));
125                         for (pind = 0; pind < VM_NFREEPOOL; pind++) {
126                                 fl = vm_phys_free_queues[flind][pind];
127                                 sbuf_printf(&sbuf, "  |  %6d", fl[oind].lcnt);
128                         }
129                         sbuf_printf(&sbuf, "\n");
130                 }
131         }
132         sbuf_finish(&sbuf);
133         error = SYSCTL_OUT(req, sbuf_data(&sbuf), sbuf_len(&sbuf));
134         sbuf_delete(&sbuf);
135         free(cbuf, M_TEMP);
136         return (error);
137 }
138
139 /*
140  * Outputs the set of physical memory segments.
141  */
142 static int
143 sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS)
144 {
145         struct sbuf sbuf;
146         struct vm_phys_seg *seg;
147         char *cbuf;
148         const int cbufsize = VM_PHYSSEG_MAX*(VM_NFREEORDER + 1)*81;
149         int error, segind;
150
151         cbuf = malloc(cbufsize, M_TEMP, M_WAITOK | M_ZERO);
152         sbuf_new(&sbuf, cbuf, cbufsize, SBUF_FIXEDLEN);
153         for (segind = 0; segind < vm_phys_nsegs; segind++) {
154                 sbuf_printf(&sbuf, "\nSEGMENT %d:\n\n", segind);
155                 seg = &vm_phys_segs[segind];
156                 sbuf_printf(&sbuf, "start:     %#jx\n",
157                     (uintmax_t)seg->start);
158                 sbuf_printf(&sbuf, "end:       %#jx\n",
159                     (uintmax_t)seg->end);
160                 sbuf_printf(&sbuf, "free list: %p\n", seg->free_queues);
161         }
162         sbuf_finish(&sbuf);
163         error = SYSCTL_OUT(req, sbuf_data(&sbuf), sbuf_len(&sbuf));
164         sbuf_delete(&sbuf);
165         free(cbuf, M_TEMP);
166         return (error);
167 }
168
169 /*
170  * Create a physical memory segment.
171  */
172 static void
173 vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind)
174 {
175         struct vm_phys_seg *seg;
176 #ifdef VM_PHYSSEG_SPARSE
177         long pages;
178         int segind;
179
180         pages = 0;
181         for (segind = 0; segind < vm_phys_nsegs; segind++) {
182                 seg = &vm_phys_segs[segind];
183                 pages += atop(seg->end - seg->start);
184         }
185 #endif
186         KASSERT(vm_phys_nsegs < VM_PHYSSEG_MAX,
187             ("vm_phys_create_seg: increase VM_PHYSSEG_MAX"));
188         seg = &vm_phys_segs[vm_phys_nsegs++];
189         seg->start = start;
190         seg->end = end;
191 #ifdef VM_PHYSSEG_SPARSE
192         seg->first_page = &vm_page_array[pages];
193 #else
194         seg->first_page = PHYS_TO_VM_PAGE(start);
195 #endif
196         seg->free_queues = &vm_phys_free_queues[flind];
197 }
198
199 /*
200  * Initialize the physical memory allocator.
201  */
202 void
203 vm_phys_init(void)
204 {
205         struct vm_freelist *fl;
206         int flind, i, oind, pind;
207
208         for (i = 0; phys_avail[i + 1] != 0; i += 2) {
209 #ifdef  VM_FREELIST_ISADMA
210                 if (phys_avail[i] < 16777216) {
211                         if (phys_avail[i + 1] > 16777216) {
212                                 vm_phys_create_seg(phys_avail[i], 16777216,
213                                     VM_FREELIST_ISADMA);
214                                 vm_phys_create_seg(16777216, phys_avail[i + 1],
215                                     VM_FREELIST_DEFAULT);
216                         } else {
217                                 vm_phys_create_seg(phys_avail[i],
218                                     phys_avail[i + 1], VM_FREELIST_ISADMA);
219                         }
220                         if (VM_FREELIST_ISADMA >= vm_nfreelists)
221                                 vm_nfreelists = VM_FREELIST_ISADMA + 1;
222                 } else
223 #endif
224 #ifdef  VM_FREELIST_HIGHMEM
225                 if (phys_avail[i + 1] > VM_HIGHMEM_ADDRESS) {
226                         if (phys_avail[i] < VM_HIGHMEM_ADDRESS) {
227                                 vm_phys_create_seg(phys_avail[i],
228                                     VM_HIGHMEM_ADDRESS, VM_FREELIST_DEFAULT);
229                                 vm_phys_create_seg(VM_HIGHMEM_ADDRESS,
230                                     phys_avail[i + 1], VM_FREELIST_HIGHMEM);
231                         } else {
232                                 vm_phys_create_seg(phys_avail[i],
233                                     phys_avail[i + 1], VM_FREELIST_HIGHMEM);
234                         }
235                         if (VM_FREELIST_HIGHMEM >= vm_nfreelists)
236                                 vm_nfreelists = VM_FREELIST_HIGHMEM + 1;
237                 } else
238 #endif
239                 vm_phys_create_seg(phys_avail[i], phys_avail[i + 1],
240                     VM_FREELIST_DEFAULT);
241         }
242         for (flind = 0; flind < vm_nfreelists; flind++) {
243                 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
244                         fl = vm_phys_free_queues[flind][pind];
245                         for (oind = 0; oind < VM_NFREEORDER; oind++)
246                                 TAILQ_INIT(&fl[oind].pl);
247                 }
248         }
249 }
250
251 /*
252  * Split a contiguous, power of two-sized set of physical pages.
253  */
254 static __inline void
255 vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl, int order)
256 {
257         vm_page_t m_buddy;
258
259         while (oind > order) {
260                 oind--;
261                 m_buddy = &m[1 << oind];
262                 KASSERT(m_buddy->order == VM_NFREEORDER,
263                     ("vm_phys_split_pages: page %p has unexpected order %d",
264                     m_buddy, m_buddy->order));
265                 m_buddy->order = oind;
266                 TAILQ_INSERT_HEAD(&fl[oind].pl, m_buddy, pageq);
267                 fl[oind].lcnt++;
268         }
269 }
270
271 /*
272  * Initialize a physical page and add it to the free lists.
273  */
274 void
275 vm_phys_add_page(vm_paddr_t pa)
276 {
277         vm_page_t m;
278
279         cnt.v_page_count++;
280         m = vm_phys_paddr_to_vm_page(pa);
281         m->phys_addr = pa;
282         m->segind = vm_phys_paddr_to_segind(pa);
283         m->flags = PG_FREE;
284         KASSERT(m->order == VM_NFREEORDER,
285             ("vm_phys_add_page: page %p has unexpected order %d",
286             m, m->order));
287         m->pool = VM_FREEPOOL_DEFAULT;
288         pmap_page_init(m);
289         mtx_lock(&vm_page_queue_free_mtx);
290         cnt.v_free_count++;
291         vm_phys_free_pages(m, 0);
292         mtx_unlock(&vm_page_queue_free_mtx);
293 }
294
295 /*
296  * Allocate a contiguous, power of two-sized set of physical pages
297  * from the free lists.
298  *
299  * The free page queues must be locked.
300  */
301 vm_page_t
302 vm_phys_alloc_pages(int pool, int order)
303 {
304         vm_page_t m;
305         int flind;
306
307         for (flind = 0; flind < vm_nfreelists; flind++) {
308                 m = vm_phys_alloc_freelist_pages(flind, pool, order);
309                 if (m != NULL)
310                         return (m);
311         }
312         return (NULL);
313 }
314
315 /*
316  * Find and dequeue a free page on the given free list, with the 
317  * specified pool and order
318  */
319 vm_page_t
320 vm_phys_alloc_freelist_pages(int flind, int pool, int order)
321 {       
322         struct vm_freelist *fl;
323         struct vm_freelist *alt;
324         int oind, pind;
325         vm_page_t m;
326
327         KASSERT(flind < VM_NFREELIST,
328             ("vm_phys_alloc_freelist_pages: freelist %d is out of range", flind));
329         KASSERT(pool < VM_NFREEPOOL,
330             ("vm_phys_alloc_freelist_pages: pool %d is out of range", pool));
331         KASSERT(order < VM_NFREEORDER,
332             ("vm_phys_alloc_freelist_pages: order %d is out of range", order));
333         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
334         fl = vm_phys_free_queues[flind][pool];
335         for (oind = order; oind < VM_NFREEORDER; oind++) {
336                 m = TAILQ_FIRST(&fl[oind].pl);
337                 if (m != NULL) {
338                         TAILQ_REMOVE(&fl[oind].pl, m, pageq);
339                         fl[oind].lcnt--;
340                         m->order = VM_NFREEORDER;
341                         vm_phys_split_pages(m, oind, fl, order);
342                         return (m);
343                 }
344         }
345
346         /*
347          * The given pool was empty.  Find the largest
348          * contiguous, power-of-two-sized set of pages in any
349          * pool.  Transfer these pages to the given pool, and
350          * use them to satisfy the allocation.
351          */
352         for (oind = VM_NFREEORDER - 1; oind >= order; oind--) {
353                 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
354                         alt = vm_phys_free_queues[flind][pind];
355                         m = TAILQ_FIRST(&alt[oind].pl);
356                         if (m != NULL) {
357                                 TAILQ_REMOVE(&alt[oind].pl, m, pageq);
358                                 alt[oind].lcnt--;
359                                 m->order = VM_NFREEORDER;
360                                 vm_phys_set_pool(pool, m, oind);
361                                 vm_phys_split_pages(m, oind, fl, order);
362                                 return (m);
363                         }
364                 }
365         }
366         return (NULL);
367 }
368
369 /*
370  * Allocate physical memory from phys_avail[].
371  */
372 vm_paddr_t
373 vm_phys_bootstrap_alloc(vm_size_t size, unsigned long alignment)
374 {
375         vm_paddr_t pa;
376         int i;
377
378         size = round_page(size);
379         for (i = 0; phys_avail[i + 1] != 0; i += 2) {
380                 if (phys_avail[i + 1] - phys_avail[i] < size)
381                         continue;
382                 pa = phys_avail[i];
383                 phys_avail[i] += size;
384                 return (pa);
385         }
386         panic("vm_phys_bootstrap_alloc");
387 }
388
389 /*
390  * Find the vm_page corresponding to the given physical address.
391  */
392 vm_page_t
393 vm_phys_paddr_to_vm_page(vm_paddr_t pa)
394 {
395         struct vm_phys_seg *seg;
396         int segind;
397
398         for (segind = 0; segind < vm_phys_nsegs; segind++) {
399                 seg = &vm_phys_segs[segind];
400                 if (pa >= seg->start && pa < seg->end)
401                         return (&seg->first_page[atop(pa - seg->start)]);
402         }
403         return (NULL);
404 }
405
406 /*
407  * Find the segment containing the given physical address.
408  */
409 static int
410 vm_phys_paddr_to_segind(vm_paddr_t pa)
411 {
412         struct vm_phys_seg *seg;
413         int segind;
414
415         for (segind = 0; segind < vm_phys_nsegs; segind++) {
416                 seg = &vm_phys_segs[segind];
417                 if (pa >= seg->start && pa < seg->end)
418                         return (segind);
419         }
420         panic("vm_phys_paddr_to_segind: paddr %#jx is not in any segment" ,
421             (uintmax_t)pa);
422 }
423
424 /*
425  * Free a contiguous, power of two-sized set of physical pages.
426  *
427  * The free page queues must be locked.
428  */
429 void
430 vm_phys_free_pages(vm_page_t m, int order)
431 {
432         struct vm_freelist *fl;
433         struct vm_phys_seg *seg;
434         vm_paddr_t pa, pa_buddy;
435         vm_page_t m_buddy;
436
437         KASSERT(m->order == VM_NFREEORDER,
438             ("vm_phys_free_pages: page %p has unexpected order %d",
439             m, m->order));
440         KASSERT(m->pool < VM_NFREEPOOL,
441             ("vm_phys_free_pages: page %p has unexpected pool %d",
442             m, m->pool));
443         KASSERT(order < VM_NFREEORDER,
444             ("vm_phys_free_pages: order %d is out of range", order));
445         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
446         pa = VM_PAGE_TO_PHYS(m);
447         seg = &vm_phys_segs[m->segind];
448         while (order < VM_NFREEORDER - 1) {
449                 pa_buddy = pa ^ (1 << (PAGE_SHIFT + order));
450                 if (pa_buddy < seg->start ||
451                     pa_buddy >= seg->end)
452                         break;
453                 m_buddy = &seg->first_page[atop(pa_buddy - seg->start)];
454                 if (m_buddy->order != order)
455                         break;
456                 fl = (*seg->free_queues)[m_buddy->pool];
457                 TAILQ_REMOVE(&fl[m_buddy->order].pl, m_buddy, pageq);
458                 fl[m_buddy->order].lcnt--;
459                 m_buddy->order = VM_NFREEORDER;
460                 if (m_buddy->pool != m->pool)
461                         vm_phys_set_pool(m->pool, m_buddy, order);
462                 order++;
463                 pa &= ~((1 << (PAGE_SHIFT + order)) - 1);
464                 m = &seg->first_page[atop(pa - seg->start)];
465         }
466         m->order = order;
467         fl = (*seg->free_queues)[m->pool];
468         TAILQ_INSERT_TAIL(&fl[order].pl, m, pageq);
469         fl[order].lcnt++;
470 }
471
472 /*
473  * Set the pool for a contiguous, power of two-sized set of physical pages. 
474  */
475 void
476 vm_phys_set_pool(int pool, vm_page_t m, int order)
477 {
478         vm_page_t m_tmp;
479
480         for (m_tmp = m; m_tmp < &m[1 << order]; m_tmp++)
481                 m_tmp->pool = pool;
482 }
483
484 /*
485  * Search for the given physical page "m" in the free lists.  If the search
486  * succeeds, remove "m" from the free lists and return TRUE.  Otherwise, return
487  * FALSE, indicating that "m" is not in the free lists.
488  *
489  * The free page queues must be locked.
490  */
491 boolean_t
492 vm_phys_unfree_page(vm_page_t m)
493 {
494         struct vm_freelist *fl;
495         struct vm_phys_seg *seg;
496         vm_paddr_t pa, pa_half;
497         vm_page_t m_set, m_tmp;
498         int order;
499
500         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
501
502         /*
503          * First, find the contiguous, power of two-sized set of free
504          * physical pages containing the given physical page "m" and
505          * assign it to "m_set".
506          */
507         seg = &vm_phys_segs[m->segind];
508         for (m_set = m, order = 0; m_set->order == VM_NFREEORDER &&
509             order < VM_NFREEORDER - 1; ) {
510                 order++;
511                 pa = m->phys_addr & (~(vm_paddr_t)0 << (PAGE_SHIFT + order));
512                 if (pa >= seg->start)
513                         m_set = &seg->first_page[atop(pa - seg->start)];
514                 else
515                         return (FALSE);
516         }
517         if (m_set->order < order)
518                 return (FALSE);
519         if (m_set->order == VM_NFREEORDER)
520                 return (FALSE);
521         KASSERT(m_set->order < VM_NFREEORDER,
522             ("vm_phys_unfree_page: page %p has unexpected order %d",
523             m_set, m_set->order));
524
525         /*
526          * Next, remove "m_set" from the free lists.  Finally, extract
527          * "m" from "m_set" using an iterative algorithm: While "m_set"
528          * is larger than a page, shrink "m_set" by returning the half
529          * of "m_set" that does not contain "m" to the free lists.
530          */
531         fl = (*seg->free_queues)[m_set->pool];
532         order = m_set->order;
533         TAILQ_REMOVE(&fl[order].pl, m_set, pageq);
534         fl[order].lcnt--;
535         m_set->order = VM_NFREEORDER;
536         while (order > 0) {
537                 order--;
538                 pa_half = m_set->phys_addr ^ (1 << (PAGE_SHIFT + order));
539                 if (m->phys_addr < pa_half)
540                         m_tmp = &seg->first_page[atop(pa_half - seg->start)];
541                 else {
542                         m_tmp = m_set;
543                         m_set = &seg->first_page[atop(pa_half - seg->start)];
544                 }
545                 m_tmp->order = order;
546                 TAILQ_INSERT_HEAD(&fl[order].pl, m_tmp, pageq);
547                 fl[order].lcnt++;
548         }
549         KASSERT(m_set == m, ("vm_phys_unfree_page: fatal inconsistency"));
550         return (TRUE);
551 }
552
553 /*
554  * Try to zero one physical page.  Used by an idle priority thread.
555  */
556 boolean_t
557 vm_phys_zero_pages_idle(void)
558 {
559         static struct vm_freelist *fl = vm_phys_free_queues[0][0];
560         static int flind, oind, pind;
561         vm_page_t m, m_tmp;
562
563         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
564         for (;;) {
565                 TAILQ_FOREACH_REVERSE(m, &fl[oind].pl, pglist, pageq) {
566                         for (m_tmp = m; m_tmp < &m[1 << oind]; m_tmp++) {
567                                 if ((m_tmp->flags & (PG_CACHED | PG_ZERO)) == 0) {
568                                         vm_phys_unfree_page(m_tmp);
569                                         cnt.v_free_count--;
570                                         mtx_unlock(&vm_page_queue_free_mtx);
571                                         pmap_zero_page_idle(m_tmp);
572                                         m_tmp->flags |= PG_ZERO;
573                                         mtx_lock(&vm_page_queue_free_mtx);
574                                         cnt.v_free_count++;
575                                         vm_phys_free_pages(m_tmp, 0);
576                                         vm_page_zero_count++;
577                                         cnt_prezero++;
578                                         return (TRUE);
579                                 }
580                         }
581                 }
582                 oind++;
583                 if (oind == VM_NFREEORDER) {
584                         oind = 0;
585                         pind++;
586                         if (pind == VM_NFREEPOOL) {
587                                 pind = 0;
588                                 flind++;
589                                 if (flind == vm_nfreelists)
590                                         flind = 0;
591                         }
592                         fl = vm_phys_free_queues[flind][pind];
593                 }
594         }
595 }
596
597 /*
598  * Allocate a contiguous set of physical pages of the given size
599  * "npages" from the free lists.  All of the physical pages must be at
600  * or above the given physical address "low" and below the given
601  * physical address "high".  The given value "alignment" determines the
602  * alignment of the first physical page in the set.  If the given value
603  * "boundary" is non-zero, then the set of physical pages cannot cross
604  * any physical address boundary that is a multiple of that value.  Both
605  * "alignment" and "boundary" must be a power of two.
606  */
607 vm_page_t
608 vm_phys_alloc_contig(unsigned long npages, vm_paddr_t low, vm_paddr_t high,
609     unsigned long alignment, unsigned long boundary)
610 {
611         struct vm_freelist *fl;
612         struct vm_phys_seg *seg;
613         struct vnode *vp;
614         vm_paddr_t pa, pa_last, size;
615         vm_page_t deferred_vdrop_list, m, m_ret;
616         int flind, i, oind, order, pind;
617
618         size = npages << PAGE_SHIFT;
619         KASSERT(size != 0,
620             ("vm_phys_alloc_contig: size must not be 0"));
621         KASSERT((alignment & (alignment - 1)) == 0,
622             ("vm_phys_alloc_contig: alignment must be a power of 2"));
623         KASSERT((boundary & (boundary - 1)) == 0,
624             ("vm_phys_alloc_contig: boundary must be a power of 2"));
625         deferred_vdrop_list = NULL;
626         /* Compute the queue that is the best fit for npages. */
627         for (order = 0; (1 << order) < npages; order++);
628         mtx_lock(&vm_page_queue_free_mtx);
629 #if VM_NRESERVLEVEL > 0
630 retry:
631 #endif
632         for (flind = 0; flind < vm_nfreelists; flind++) {
633                 for (oind = min(order, VM_NFREEORDER - 1); oind < VM_NFREEORDER; oind++) {
634                         for (pind = 0; pind < VM_NFREEPOOL; pind++) {
635                                 fl = vm_phys_free_queues[flind][pind];
636                                 TAILQ_FOREACH(m_ret, &fl[oind].pl, pageq) {
637                                         /*
638                                          * A free list may contain physical pages
639                                          * from one or more segments.
640                                          */
641                                         seg = &vm_phys_segs[m_ret->segind];
642                                         if (seg->start > high ||
643                                             low >= seg->end)
644                                                 continue;
645
646                                         /*
647                                          * Is the size of this allocation request
648                                          * larger than the largest block size?
649                                          */
650                                         if (order >= VM_NFREEORDER) {
651                                                 /*
652                                                  * Determine if a sufficient number
653                                                  * of subsequent blocks to satisfy
654                                                  * the allocation request are free.
655                                                  */
656                                                 pa = VM_PAGE_TO_PHYS(m_ret);
657                                                 pa_last = pa + size;
658                                                 for (;;) {
659                                                         pa += 1 << (PAGE_SHIFT + VM_NFREEORDER - 1);
660                                                         if (pa >= pa_last)
661                                                                 break;
662                                                         if (pa < seg->start ||
663                                                             pa >= seg->end)
664                                                                 break;
665                                                         m = &seg->first_page[atop(pa - seg->start)];
666                                                         if (m->order != VM_NFREEORDER - 1)
667                                                                 break;
668                                                 }
669                                                 /* If not, continue to the next block. */
670                                                 if (pa < pa_last)
671                                                         continue;
672                                         }
673
674                                         /*
675                                          * Determine if the blocks are within the given range,
676                                          * satisfy the given alignment, and do not cross the
677                                          * given boundary.
678                                          */
679                                         pa = VM_PAGE_TO_PHYS(m_ret);
680                                         if (pa >= low &&
681                                             pa + size <= high &&
682                                             (pa & (alignment - 1)) == 0 &&
683                                             ((pa ^ (pa + size - 1)) & ~(boundary - 1)) == 0)
684                                                 goto done;
685                                 }
686                         }
687                 }
688         }
689 #if VM_NRESERVLEVEL > 0
690         if (vm_reserv_reclaim_contig(size, low, high, alignment, boundary))
691                 goto retry;
692 #endif
693         mtx_unlock(&vm_page_queue_free_mtx);
694         return (NULL);
695 done:
696         for (m = m_ret; m < &m_ret[npages]; m = &m[1 << oind]) {
697                 fl = (*seg->free_queues)[m->pool];
698                 TAILQ_REMOVE(&fl[m->order].pl, m, pageq);
699                 fl[m->order].lcnt--;
700                 m->order = VM_NFREEORDER;
701         }
702         if (m_ret->pool != VM_FREEPOOL_DEFAULT)
703                 vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m_ret, oind);
704         fl = (*seg->free_queues)[m_ret->pool];
705         vm_phys_split_pages(m_ret, oind, fl, order);
706         for (i = 0; i < npages; i++) {
707                 m = &m_ret[i];
708                 vp = vm_page_alloc_init(m);
709                 if (vp != NULL) {
710                         /*
711                          * Enqueue the vnode for deferred vdrop().
712                          *
713                          * Unmanaged pages don't use "pageq", so it
714                          * can be safely abused to construct a short-
715                          * lived queue of vnodes.
716                          */
717                         m->pageq.tqe_prev = (void *)vp;
718                         m->pageq.tqe_next = deferred_vdrop_list;
719                         deferred_vdrop_list = m;
720                 }
721         }
722         for (; i < roundup2(npages, 1 << imin(oind, order)); i++) {
723                 m = &m_ret[i];
724                 KASSERT(m->order == VM_NFREEORDER,
725                     ("vm_phys_alloc_contig: page %p has unexpected order %d",
726                     m, m->order));
727                 vm_phys_free_pages(m, 0);
728         }
729         mtx_unlock(&vm_page_queue_free_mtx);
730         while (deferred_vdrop_list != NULL) {
731                 vdrop((struct vnode *)deferred_vdrop_list->pageq.tqe_prev);
732                 deferred_vdrop_list = deferred_vdrop_list->pageq.tqe_next;
733         }
734         return (m_ret);
735 }
736
737 #ifdef DDB
738 /*
739  * Show the number of physical pages in each of the free lists.
740  */
741 DB_SHOW_COMMAND(freepages, db_show_freepages)
742 {
743         struct vm_freelist *fl;
744         int flind, oind, pind;
745
746         for (flind = 0; flind < vm_nfreelists; flind++) {
747                 db_printf("FREE LIST %d:\n"
748                     "\n  ORDER (SIZE)  |  NUMBER"
749                     "\n              ", flind);
750                 for (pind = 0; pind < VM_NFREEPOOL; pind++)
751                         db_printf("  |  POOL %d", pind);
752                 db_printf("\n--            ");
753                 for (pind = 0; pind < VM_NFREEPOOL; pind++)
754                         db_printf("-- --      ");
755                 db_printf("--\n");
756                 for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
757                         db_printf("  %2.2d (%6.6dK)", oind,
758                             1 << (PAGE_SHIFT - 10 + oind));
759                         for (pind = 0; pind < VM_NFREEPOOL; pind++) {
760                                 fl = vm_phys_free_queues[flind][pind];
761                                 db_printf("  |  %6.6d", fl[oind].lcnt);
762                         }
763                         db_printf("\n");
764                 }
765                 db_printf("\n");
766         }
767 }
768 #endif