]> CyberLeo.Net >> Repos - FreeBSD/releng/9.1.git/blob - contrib/llvm/tools/clang/lib/AST/Type.cpp
Copy stable/9 to releng/9.1 as part of the 9.1-RELEASE release process.
[FreeBSD/releng/9.1.git] / contrib / llvm / tools / clang / lib / AST / Type.cpp
1 //===--- Type.cpp - Type representation and manipulation ------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file implements type-related functionality.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/CharUnits.h"
16 #include "clang/AST/Type.h"
17 #include "clang/AST/DeclCXX.h"
18 #include "clang/AST/DeclObjC.h"
19 #include "clang/AST/DeclTemplate.h"
20 #include "clang/AST/Expr.h"
21 #include "clang/AST/PrettyPrinter.h"
22 #include "clang/AST/TypeVisitor.h"
23 #include "clang/Basic/Specifiers.h"
24 #include "llvm/ADT/APSInt.h"
25 #include "llvm/ADT/StringExtras.h"
26 #include "llvm/Support/raw_ostream.h"
27 #include <algorithm>
28 using namespace clang;
29
30 bool Qualifiers::isStrictSupersetOf(Qualifiers Other) const {
31   return (*this != Other) &&
32     // CVR qualifiers superset
33     (((Mask & CVRMask) | (Other.Mask & CVRMask)) == (Mask & CVRMask)) &&
34     // ObjC GC qualifiers superset
35     ((getObjCGCAttr() == Other.getObjCGCAttr()) ||
36      (hasObjCGCAttr() && !Other.hasObjCGCAttr())) &&
37     // Address space superset.
38     ((getAddressSpace() == Other.getAddressSpace()) ||
39      (hasAddressSpace()&& !Other.hasAddressSpace())) &&
40     // Lifetime qualifier superset.
41     ((getObjCLifetime() == Other.getObjCLifetime()) ||
42      (hasObjCLifetime() && !Other.hasObjCLifetime()));
43 }
44
45 const IdentifierInfo* QualType::getBaseTypeIdentifier() const {
46   const Type* ty = getTypePtr();
47   NamedDecl *ND = NULL;
48   if (ty->isPointerType() || ty->isReferenceType())
49     return ty->getPointeeType().getBaseTypeIdentifier();
50   else if (ty->isRecordType())
51     ND = ty->getAs<RecordType>()->getDecl();
52   else if (ty->isEnumeralType())
53     ND = ty->getAs<EnumType>()->getDecl();
54   else if (ty->getTypeClass() == Type::Typedef)
55     ND = ty->getAs<TypedefType>()->getDecl();
56   else if (ty->isArrayType())
57     return ty->castAsArrayTypeUnsafe()->
58         getElementType().getBaseTypeIdentifier();
59
60   if (ND)
61     return ND->getIdentifier();
62   return NULL;
63 }
64
65 bool QualType::isConstant(QualType T, ASTContext &Ctx) {
66   if (T.isConstQualified())
67     return true;
68
69   if (const ArrayType *AT = Ctx.getAsArrayType(T))
70     return AT->getElementType().isConstant(Ctx);
71
72   return false;
73 }
74
75 unsigned ConstantArrayType::getNumAddressingBits(ASTContext &Context,
76                                                  QualType ElementType,
77                                                const llvm::APInt &NumElements) {
78   llvm::APSInt SizeExtended(NumElements, true);
79   unsigned SizeTypeBits = Context.getTypeSize(Context.getSizeType());
80   SizeExtended = SizeExtended.extend(std::max(SizeTypeBits,
81                                               SizeExtended.getBitWidth()) * 2);
82
83   uint64_t ElementSize
84     = Context.getTypeSizeInChars(ElementType).getQuantity();
85   llvm::APSInt TotalSize(llvm::APInt(SizeExtended.getBitWidth(), ElementSize));
86   TotalSize *= SizeExtended;  
87   
88   return TotalSize.getActiveBits();
89 }
90
91 unsigned ConstantArrayType::getMaxSizeBits(ASTContext &Context) {
92   unsigned Bits = Context.getTypeSize(Context.getSizeType());
93   
94   // GCC appears to only allow 63 bits worth of address space when compiling
95   // for 64-bit, so we do the same.
96   if (Bits == 64)
97     --Bits;
98   
99   return Bits;
100 }
101
102 DependentSizedArrayType::DependentSizedArrayType(const ASTContext &Context, 
103                                                  QualType et, QualType can,
104                                                  Expr *e, ArraySizeModifier sm,
105                                                  unsigned tq,
106                                                  SourceRange brackets)
107     : ArrayType(DependentSizedArray, et, can, sm, tq, 
108                 (et->containsUnexpandedParameterPack() ||
109                  (e && e->containsUnexpandedParameterPack()))),
110       Context(Context), SizeExpr((Stmt*) e), Brackets(brackets) 
111 {
112 }
113
114 void DependentSizedArrayType::Profile(llvm::FoldingSetNodeID &ID,
115                                       const ASTContext &Context,
116                                       QualType ET,
117                                       ArraySizeModifier SizeMod,
118                                       unsigned TypeQuals,
119                                       Expr *E) {
120   ID.AddPointer(ET.getAsOpaquePtr());
121   ID.AddInteger(SizeMod);
122   ID.AddInteger(TypeQuals);
123   E->Profile(ID, Context, true);
124 }
125
126 DependentSizedExtVectorType::DependentSizedExtVectorType(const
127                                                          ASTContext &Context,
128                                                          QualType ElementType,
129                                                          QualType can, 
130                                                          Expr *SizeExpr, 
131                                                          SourceLocation loc)
132     : Type(DependentSizedExtVector, can, /*Dependent=*/true,
133            /*InstantiationDependent=*/true,
134            ElementType->isVariablyModifiedType(), 
135            (ElementType->containsUnexpandedParameterPack() ||
136             (SizeExpr && SizeExpr->containsUnexpandedParameterPack()))),
137       Context(Context), SizeExpr(SizeExpr), ElementType(ElementType),
138       loc(loc) 
139 {
140 }
141
142 void
143 DependentSizedExtVectorType::Profile(llvm::FoldingSetNodeID &ID,
144                                      const ASTContext &Context,
145                                      QualType ElementType, Expr *SizeExpr) {
146   ID.AddPointer(ElementType.getAsOpaquePtr());
147   SizeExpr->Profile(ID, Context, true);
148 }
149
150 VectorType::VectorType(QualType vecType, unsigned nElements, QualType canonType,
151                        VectorKind vecKind)
152   : Type(Vector, canonType, vecType->isDependentType(),
153          vecType->isInstantiationDependentType(),
154          vecType->isVariablyModifiedType(),
155          vecType->containsUnexpandedParameterPack()),
156     ElementType(vecType) 
157 {
158   VectorTypeBits.VecKind = vecKind;
159   VectorTypeBits.NumElements = nElements;
160 }
161
162 VectorType::VectorType(TypeClass tc, QualType vecType, unsigned nElements,
163                        QualType canonType, VectorKind vecKind)
164   : Type(tc, canonType, vecType->isDependentType(),
165          vecType->isInstantiationDependentType(),
166          vecType->isVariablyModifiedType(),
167          vecType->containsUnexpandedParameterPack()), 
168     ElementType(vecType) 
169 {
170   VectorTypeBits.VecKind = vecKind;
171   VectorTypeBits.NumElements = nElements;
172 }
173
174 /// getArrayElementTypeNoTypeQual - If this is an array type, return the
175 /// element type of the array, potentially with type qualifiers missing.
176 /// This method should never be used when type qualifiers are meaningful.
177 const Type *Type::getArrayElementTypeNoTypeQual() const {
178   // If this is directly an array type, return it.
179   if (const ArrayType *ATy = dyn_cast<ArrayType>(this))
180     return ATy->getElementType().getTypePtr();
181
182   // If the canonical form of this type isn't the right kind, reject it.
183   if (!isa<ArrayType>(CanonicalType))
184     return 0;
185
186   // If this is a typedef for an array type, strip the typedef off without
187   // losing all typedef information.
188   return cast<ArrayType>(getUnqualifiedDesugaredType())
189     ->getElementType().getTypePtr();
190 }
191
192 /// getDesugaredType - Return the specified type with any "sugar" removed from
193 /// the type.  This takes off typedefs, typeof's etc.  If the outer level of
194 /// the type is already concrete, it returns it unmodified.  This is similar
195 /// to getting the canonical type, but it doesn't remove *all* typedefs.  For
196 /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
197 /// concrete.
198 QualType QualType::getDesugaredType(QualType T, const ASTContext &Context) {
199   SplitQualType split = getSplitDesugaredType(T);
200   return Context.getQualifiedType(split.Ty, split.Quals);
201 }
202
203 QualType QualType::getSingleStepDesugaredTypeImpl(QualType type,
204                                                   const ASTContext &Context) {
205   SplitQualType split = type.split();
206   QualType desugar = split.Ty->getLocallyUnqualifiedSingleStepDesugaredType();
207   return Context.getQualifiedType(desugar, split.Quals);
208 }
209
210 QualType Type::getLocallyUnqualifiedSingleStepDesugaredType() const {
211   switch (getTypeClass()) {
212 #define ABSTRACT_TYPE(Class, Parent)
213 #define TYPE(Class, Parent) \
214   case Type::Class: { \
215     const Class##Type *ty = cast<Class##Type>(this); \
216     if (!ty->isSugared()) return QualType(ty, 0); \
217     return ty->desugar(); \
218   }
219 #include "clang/AST/TypeNodes.def"
220   }
221   llvm_unreachable("bad type kind!");
222 }
223
224 SplitQualType QualType::getSplitDesugaredType(QualType T) {
225   QualifierCollector Qs;
226
227   QualType Cur = T;
228   while (true) {
229     const Type *CurTy = Qs.strip(Cur);
230     switch (CurTy->getTypeClass()) {
231 #define ABSTRACT_TYPE(Class, Parent)
232 #define TYPE(Class, Parent) \
233     case Type::Class: { \
234       const Class##Type *Ty = cast<Class##Type>(CurTy); \
235       if (!Ty->isSugared()) \
236         return SplitQualType(Ty, Qs); \
237       Cur = Ty->desugar(); \
238       break; \
239     }
240 #include "clang/AST/TypeNodes.def"
241     }
242   }
243 }
244
245 SplitQualType QualType::getSplitUnqualifiedTypeImpl(QualType type) {
246   SplitQualType split = type.split();
247
248   // All the qualifiers we've seen so far.
249   Qualifiers quals = split.Quals;
250
251   // The last type node we saw with any nodes inside it.
252   const Type *lastTypeWithQuals = split.Ty;
253
254   while (true) {
255     QualType next;
256
257     // Do a single-step desugar, aborting the loop if the type isn't
258     // sugared.
259     switch (split.Ty->getTypeClass()) {
260 #define ABSTRACT_TYPE(Class, Parent)
261 #define TYPE(Class, Parent) \
262     case Type::Class: { \
263       const Class##Type *ty = cast<Class##Type>(split.Ty); \
264       if (!ty->isSugared()) goto done; \
265       next = ty->desugar(); \
266       break; \
267     }
268 #include "clang/AST/TypeNodes.def"
269     }
270
271     // Otherwise, split the underlying type.  If that yields qualifiers,
272     // update the information.
273     split = next.split();
274     if (!split.Quals.empty()) {
275       lastTypeWithQuals = split.Ty;
276       quals.addConsistentQualifiers(split.Quals);
277     }
278   }
279
280  done:
281   return SplitQualType(lastTypeWithQuals, quals);
282 }
283
284 QualType QualType::IgnoreParens(QualType T) {
285   // FIXME: this seems inherently un-qualifiers-safe.
286   while (const ParenType *PT = T->getAs<ParenType>())
287     T = PT->getInnerType();
288   return T;
289 }
290
291 /// getUnqualifiedDesugaredType - Pull any qualifiers and syntactic
292 /// sugar off the given type.  This should produce an object of the
293 /// same dynamic type as the canonical type.
294 const Type *Type::getUnqualifiedDesugaredType() const {
295   const Type *Cur = this;
296
297   while (true) {
298     switch (Cur->getTypeClass()) {
299 #define ABSTRACT_TYPE(Class, Parent)
300 #define TYPE(Class, Parent) \
301     case Class: { \
302       const Class##Type *Ty = cast<Class##Type>(Cur); \
303       if (!Ty->isSugared()) return Cur; \
304       Cur = Ty->desugar().getTypePtr(); \
305       break; \
306     }
307 #include "clang/AST/TypeNodes.def"
308     }
309   }
310 }
311
312 bool Type::isDerivedType() const {
313   switch (CanonicalType->getTypeClass()) {
314   case Pointer:
315   case VariableArray:
316   case ConstantArray:
317   case IncompleteArray:
318   case FunctionProto:
319   case FunctionNoProto:
320   case LValueReference:
321   case RValueReference:
322   case Record:
323     return true;
324   default:
325     return false;
326   }
327 }
328 bool Type::isClassType() const {
329   if (const RecordType *RT = getAs<RecordType>())
330     return RT->getDecl()->isClass();
331   return false;
332 }
333 bool Type::isStructureType() const {
334   if (const RecordType *RT = getAs<RecordType>())
335     return RT->getDecl()->isStruct();
336   return false;
337 }
338 bool Type::isStructureOrClassType() const {
339   if (const RecordType *RT = getAs<RecordType>())
340     return RT->getDecl()->isStruct() || RT->getDecl()->isClass();
341   return false;
342 }
343 bool Type::isVoidPointerType() const {
344   if (const PointerType *PT = getAs<PointerType>())
345     return PT->getPointeeType()->isVoidType();
346   return false;
347 }
348
349 bool Type::isUnionType() const {
350   if (const RecordType *RT = getAs<RecordType>())
351     return RT->getDecl()->isUnion();
352   return false;
353 }
354
355 bool Type::isComplexType() const {
356   if (const ComplexType *CT = dyn_cast<ComplexType>(CanonicalType))
357     return CT->getElementType()->isFloatingType();
358   return false;
359 }
360
361 bool Type::isComplexIntegerType() const {
362   // Check for GCC complex integer extension.
363   return getAsComplexIntegerType();
364 }
365
366 const ComplexType *Type::getAsComplexIntegerType() const {
367   if (const ComplexType *Complex = getAs<ComplexType>())
368     if (Complex->getElementType()->isIntegerType())
369       return Complex;
370   return 0;
371 }
372
373 QualType Type::getPointeeType() const {
374   if (const PointerType *PT = getAs<PointerType>())
375     return PT->getPointeeType();
376   if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
377     return OPT->getPointeeType();
378   if (const BlockPointerType *BPT = getAs<BlockPointerType>())
379     return BPT->getPointeeType();
380   if (const ReferenceType *RT = getAs<ReferenceType>())
381     return RT->getPointeeType();
382   return QualType();
383 }
384
385 const RecordType *Type::getAsStructureType() const {
386   // If this is directly a structure type, return it.
387   if (const RecordType *RT = dyn_cast<RecordType>(this)) {
388     if (RT->getDecl()->isStruct())
389       return RT;
390   }
391
392   // If the canonical form of this type isn't the right kind, reject it.
393   if (const RecordType *RT = dyn_cast<RecordType>(CanonicalType)) {
394     if (!RT->getDecl()->isStruct())
395       return 0;
396
397     // If this is a typedef for a structure type, strip the typedef off without
398     // losing all typedef information.
399     return cast<RecordType>(getUnqualifiedDesugaredType());
400   }
401   return 0;
402 }
403
404 const RecordType *Type::getAsUnionType() const {
405   // If this is directly a union type, return it.
406   if (const RecordType *RT = dyn_cast<RecordType>(this)) {
407     if (RT->getDecl()->isUnion())
408       return RT;
409   }
410
411   // If the canonical form of this type isn't the right kind, reject it.
412   if (const RecordType *RT = dyn_cast<RecordType>(CanonicalType)) {
413     if (!RT->getDecl()->isUnion())
414       return 0;
415
416     // If this is a typedef for a union type, strip the typedef off without
417     // losing all typedef information.
418     return cast<RecordType>(getUnqualifiedDesugaredType());
419   }
420
421   return 0;
422 }
423
424 ObjCObjectType::ObjCObjectType(QualType Canonical, QualType Base,
425                                ObjCProtocolDecl * const *Protocols,
426                                unsigned NumProtocols)
427   : Type(ObjCObject, Canonical, false, false, false, false),
428     BaseType(Base) 
429 {
430   ObjCObjectTypeBits.NumProtocols = NumProtocols;
431   assert(getNumProtocols() == NumProtocols &&
432          "bitfield overflow in protocol count");
433   if (NumProtocols)
434     memcpy(getProtocolStorage(), Protocols,
435            NumProtocols * sizeof(ObjCProtocolDecl*));
436 }
437
438 const ObjCObjectType *Type::getAsObjCQualifiedInterfaceType() const {
439   // There is no sugar for ObjCObjectType's, just return the canonical
440   // type pointer if it is the right class.  There is no typedef information to
441   // return and these cannot be Address-space qualified.
442   if (const ObjCObjectType *T = getAs<ObjCObjectType>())
443     if (T->getNumProtocols() && T->getInterface())
444       return T;
445   return 0;
446 }
447
448 bool Type::isObjCQualifiedInterfaceType() const {
449   return getAsObjCQualifiedInterfaceType() != 0;
450 }
451
452 const ObjCObjectPointerType *Type::getAsObjCQualifiedIdType() const {
453   // There is no sugar for ObjCQualifiedIdType's, just return the canonical
454   // type pointer if it is the right class.
455   if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>()) {
456     if (OPT->isObjCQualifiedIdType())
457       return OPT;
458   }
459   return 0;
460 }
461
462 const ObjCObjectPointerType *Type::getAsObjCQualifiedClassType() const {
463   // There is no sugar for ObjCQualifiedClassType's, just return the canonical
464   // type pointer if it is the right class.
465   if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>()) {
466     if (OPT->isObjCQualifiedClassType())
467       return OPT;
468   }
469   return 0;
470 }
471
472 const ObjCObjectPointerType *Type::getAsObjCInterfacePointerType() const {
473   if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>()) {
474     if (OPT->getInterfaceType())
475       return OPT;
476   }
477   return 0;
478 }
479
480 const CXXRecordDecl *Type::getCXXRecordDeclForPointerType() const {
481   if (const PointerType *PT = getAs<PointerType>())
482     if (const RecordType *RT = PT->getPointeeType()->getAs<RecordType>())
483       return dyn_cast<CXXRecordDecl>(RT->getDecl());
484   return 0;
485 }
486
487 CXXRecordDecl *Type::getAsCXXRecordDecl() const {
488   if (const RecordType *RT = getAs<RecordType>())
489     return dyn_cast<CXXRecordDecl>(RT->getDecl());
490   else if (const InjectedClassNameType *Injected
491                                   = getAs<InjectedClassNameType>())
492     return Injected->getDecl();
493   
494   return 0;
495 }
496
497 namespace {
498   class GetContainedAutoVisitor :
499     public TypeVisitor<GetContainedAutoVisitor, AutoType*> {
500   public:
501     using TypeVisitor<GetContainedAutoVisitor, AutoType*>::Visit;
502     AutoType *Visit(QualType T) {
503       if (T.isNull())
504         return 0;
505       return Visit(T.getTypePtr());
506     }
507
508     // The 'auto' type itself.
509     AutoType *VisitAutoType(const AutoType *AT) {
510       return const_cast<AutoType*>(AT);
511     }
512
513     // Only these types can contain the desired 'auto' type.
514     AutoType *VisitPointerType(const PointerType *T) {
515       return Visit(T->getPointeeType());
516     }
517     AutoType *VisitBlockPointerType(const BlockPointerType *T) {
518       return Visit(T->getPointeeType());
519     }
520     AutoType *VisitReferenceType(const ReferenceType *T) {
521       return Visit(T->getPointeeTypeAsWritten());
522     }
523     AutoType *VisitMemberPointerType(const MemberPointerType *T) {
524       return Visit(T->getPointeeType());
525     }
526     AutoType *VisitArrayType(const ArrayType *T) {
527       return Visit(T->getElementType());
528     }
529     AutoType *VisitDependentSizedExtVectorType(
530       const DependentSizedExtVectorType *T) {
531       return Visit(T->getElementType());
532     }
533     AutoType *VisitVectorType(const VectorType *T) {
534       return Visit(T->getElementType());
535     }
536     AutoType *VisitFunctionType(const FunctionType *T) {
537       return Visit(T->getResultType());
538     }
539     AutoType *VisitParenType(const ParenType *T) {
540       return Visit(T->getInnerType());
541     }
542     AutoType *VisitAttributedType(const AttributedType *T) {
543       return Visit(T->getModifiedType());
544     }
545   };
546 }
547
548 AutoType *Type::getContainedAutoType() const {
549   return GetContainedAutoVisitor().Visit(this);
550 }
551
552 bool Type::hasIntegerRepresentation() const {
553   if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
554     return VT->getElementType()->isIntegerType();
555   else
556     return isIntegerType();
557 }
558
559 /// \brief Determine whether this type is an integral type.
560 ///
561 /// This routine determines whether the given type is an integral type per 
562 /// C++ [basic.fundamental]p7. Although the C standard does not define the
563 /// term "integral type", it has a similar term "integer type", and in C++
564 /// the two terms are equivalent. However, C's "integer type" includes 
565 /// enumeration types, while C++'s "integer type" does not. The \c ASTContext
566 /// parameter is used to determine whether we should be following the C or
567 /// C++ rules when determining whether this type is an integral/integer type.
568 ///
569 /// For cases where C permits "an integer type" and C++ permits "an integral
570 /// type", use this routine.
571 ///
572 /// For cases where C permits "an integer type" and C++ permits "an integral
573 /// or enumeration type", use \c isIntegralOrEnumerationType() instead. 
574 ///
575 /// \param Ctx The context in which this type occurs.
576 ///
577 /// \returns true if the type is considered an integral type, false otherwise.
578 bool Type::isIntegralType(ASTContext &Ctx) const {
579   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
580     return BT->getKind() >= BuiltinType::Bool &&
581     BT->getKind() <= BuiltinType::Int128;
582   
583   if (!Ctx.getLangOpts().CPlusPlus)
584     if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
585       return ET->getDecl()->isComplete(); // Complete enum types are integral in C.
586   
587   return false;
588 }
589
590
591 bool Type::isIntegralOrUnscopedEnumerationType() const {
592   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
593     return BT->getKind() >= BuiltinType::Bool &&
594            BT->getKind() <= BuiltinType::Int128;
595
596   // Check for a complete enum type; incomplete enum types are not properly an
597   // enumeration type in the sense required here.
598   // C++0x: However, if the underlying type of the enum is fixed, it is
599   // considered complete.
600   if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
601     return ET->getDecl()->isComplete() && !ET->getDecl()->isScoped();
602
603   return false;
604 }
605
606
607
608 bool Type::isCharType() const {
609   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
610     return BT->getKind() == BuiltinType::Char_U ||
611            BT->getKind() == BuiltinType::UChar ||
612            BT->getKind() == BuiltinType::Char_S ||
613            BT->getKind() == BuiltinType::SChar;
614   return false;
615 }
616
617 bool Type::isWideCharType() const {
618   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
619     return BT->getKind() == BuiltinType::WChar_S ||
620            BT->getKind() == BuiltinType::WChar_U;
621   return false;
622 }
623
624 bool Type::isChar16Type() const {
625   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
626     return BT->getKind() == BuiltinType::Char16;
627   return false;
628 }
629
630 bool Type::isChar32Type() const {
631   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
632     return BT->getKind() == BuiltinType::Char32;
633   return false;
634 }
635
636 /// \brief Determine whether this type is any of the built-in character
637 /// types.
638 bool Type::isAnyCharacterType() const {
639   const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType);
640   if (BT == 0) return false;
641   switch (BT->getKind()) {
642   default: return false;
643   case BuiltinType::Char_U:
644   case BuiltinType::UChar:
645   case BuiltinType::WChar_U:
646   case BuiltinType::Char16:
647   case BuiltinType::Char32:
648   case BuiltinType::Char_S:
649   case BuiltinType::SChar:
650   case BuiltinType::WChar_S:
651     return true;
652   }
653 }
654
655 /// isSignedIntegerType - Return true if this is an integer type that is
656 /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
657 /// an enum decl which has a signed representation
658 bool Type::isSignedIntegerType() const {
659   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
660     return BT->getKind() >= BuiltinType::Char_S &&
661            BT->getKind() <= BuiltinType::Int128;
662   }
663
664   if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
665     // Incomplete enum types are not treated as integer types.
666     // FIXME: In C++, enum types are never integer types.
667     if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped())
668       return ET->getDecl()->getIntegerType()->isSignedIntegerType();
669   }
670
671   return false;
672 }
673
674 bool Type::isSignedIntegerOrEnumerationType() const {
675   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
676     return BT->getKind() >= BuiltinType::Char_S &&
677     BT->getKind() <= BuiltinType::Int128;
678   }
679   
680   if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
681     if (ET->getDecl()->isComplete())
682       return ET->getDecl()->getIntegerType()->isSignedIntegerType();
683   }
684   
685   return false;
686 }
687
688 bool Type::hasSignedIntegerRepresentation() const {
689   if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
690     return VT->getElementType()->isSignedIntegerType();
691   else
692     return isSignedIntegerType();
693 }
694
695 /// isUnsignedIntegerType - Return true if this is an integer type that is
696 /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool], an enum
697 /// decl which has an unsigned representation
698 bool Type::isUnsignedIntegerType() const {
699   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
700     return BT->getKind() >= BuiltinType::Bool &&
701            BT->getKind() <= BuiltinType::UInt128;
702   }
703
704   if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
705     // Incomplete enum types are not treated as integer types.
706     // FIXME: In C++, enum types are never integer types.
707     if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped())
708       return ET->getDecl()->getIntegerType()->isUnsignedIntegerType();
709   }
710
711   return false;
712 }
713
714 bool Type::isUnsignedIntegerOrEnumerationType() const {
715   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
716     return BT->getKind() >= BuiltinType::Bool &&
717     BT->getKind() <= BuiltinType::UInt128;
718   }
719   
720   if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
721     if (ET->getDecl()->isComplete())
722       return ET->getDecl()->getIntegerType()->isUnsignedIntegerType();
723   }
724   
725   return false;
726 }
727
728 bool Type::hasUnsignedIntegerRepresentation() const {
729   if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
730     return VT->getElementType()->isUnsignedIntegerType();
731   else
732     return isUnsignedIntegerType();
733 }
734
735 bool Type::isFloatingType() const {
736   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
737     return BT->getKind() >= BuiltinType::Half &&
738            BT->getKind() <= BuiltinType::LongDouble;
739   if (const ComplexType *CT = dyn_cast<ComplexType>(CanonicalType))
740     return CT->getElementType()->isFloatingType();
741   return false;
742 }
743
744 bool Type::hasFloatingRepresentation() const {
745   if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
746     return VT->getElementType()->isFloatingType();
747   else
748     return isFloatingType();
749 }
750
751 bool Type::isRealFloatingType() const {
752   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
753     return BT->isFloatingPoint();
754   return false;
755 }
756
757 bool Type::isRealType() const {
758   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
759     return BT->getKind() >= BuiltinType::Bool &&
760            BT->getKind() <= BuiltinType::LongDouble;
761   if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
762       return ET->getDecl()->isComplete() && !ET->getDecl()->isScoped();
763   return false;
764 }
765
766 bool Type::isArithmeticType() const {
767   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
768     return BT->getKind() >= BuiltinType::Bool &&
769            BT->getKind() <= BuiltinType::LongDouble;
770   if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
771     // GCC allows forward declaration of enum types (forbid by C99 6.7.2.3p2).
772     // If a body isn't seen by the time we get here, return false.
773     //
774     // C++0x: Enumerations are not arithmetic types. For now, just return
775     // false for scoped enumerations since that will disable any
776     // unwanted implicit conversions.
777     return !ET->getDecl()->isScoped() && ET->getDecl()->isComplete();
778   return isa<ComplexType>(CanonicalType);
779 }
780
781 Type::ScalarTypeKind Type::getScalarTypeKind() const {
782   assert(isScalarType());
783
784   const Type *T = CanonicalType.getTypePtr();
785   if (const BuiltinType *BT = dyn_cast<BuiltinType>(T)) {
786     if (BT->getKind() == BuiltinType::Bool) return STK_Bool;
787     if (BT->getKind() == BuiltinType::NullPtr) return STK_CPointer;
788     if (BT->isInteger()) return STK_Integral;
789     if (BT->isFloatingPoint()) return STK_Floating;
790     llvm_unreachable("unknown scalar builtin type");
791   } else if (isa<PointerType>(T)) {
792     return STK_CPointer;
793   } else if (isa<BlockPointerType>(T)) {
794     return STK_BlockPointer;
795   } else if (isa<ObjCObjectPointerType>(T)) {
796     return STK_ObjCObjectPointer;
797   } else if (isa<MemberPointerType>(T)) {
798     return STK_MemberPointer;
799   } else if (isa<EnumType>(T)) {
800     assert(cast<EnumType>(T)->getDecl()->isComplete());
801     return STK_Integral;
802   } else if (const ComplexType *CT = dyn_cast<ComplexType>(T)) {
803     if (CT->getElementType()->isRealFloatingType())
804       return STK_FloatingComplex;
805     return STK_IntegralComplex;
806   }
807
808   llvm_unreachable("unknown scalar type");
809 }
810
811 /// \brief Determines whether the type is a C++ aggregate type or C
812 /// aggregate or union type.
813 ///
814 /// An aggregate type is an array or a class type (struct, union, or
815 /// class) that has no user-declared constructors, no private or
816 /// protected non-static data members, no base classes, and no virtual
817 /// functions (C++ [dcl.init.aggr]p1). The notion of an aggregate type
818 /// subsumes the notion of C aggregates (C99 6.2.5p21) because it also
819 /// includes union types.
820 bool Type::isAggregateType() const {
821   if (const RecordType *Record = dyn_cast<RecordType>(CanonicalType)) {
822     if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(Record->getDecl()))
823       return ClassDecl->isAggregate();
824
825     return true;
826   }
827
828   return isa<ArrayType>(CanonicalType);
829 }
830
831 /// isConstantSizeType - Return true if this is not a variable sized type,
832 /// according to the rules of C99 6.7.5p3.  It is not legal to call this on
833 /// incomplete types or dependent types.
834 bool Type::isConstantSizeType() const {
835   assert(!isIncompleteType() && "This doesn't make sense for incomplete types");
836   assert(!isDependentType() && "This doesn't make sense for dependent types");
837   // The VAT must have a size, as it is known to be complete.
838   return !isa<VariableArrayType>(CanonicalType);
839 }
840
841 /// isIncompleteType - Return true if this is an incomplete type (C99 6.2.5p1)
842 /// - a type that can describe objects, but which lacks information needed to
843 /// determine its size.
844 bool Type::isIncompleteType(NamedDecl **Def) const {
845   if (Def)
846     *Def = 0;
847   
848   switch (CanonicalType->getTypeClass()) {
849   default: return false;
850   case Builtin:
851     // Void is the only incomplete builtin type.  Per C99 6.2.5p19, it can never
852     // be completed.
853     return isVoidType();
854   case Enum: {
855     EnumDecl *EnumD = cast<EnumType>(CanonicalType)->getDecl();
856     if (Def)
857       *Def = EnumD;
858     
859     // An enumeration with fixed underlying type is complete (C++0x 7.2p3).
860     if (EnumD->isFixed())
861       return false;
862     
863     return !EnumD->isCompleteDefinition();
864   }
865   case Record: {
866     // A tagged type (struct/union/enum/class) is incomplete if the decl is a
867     // forward declaration, but not a full definition (C99 6.2.5p22).
868     RecordDecl *Rec = cast<RecordType>(CanonicalType)->getDecl();
869     if (Def)
870       *Def = Rec;
871     return !Rec->isCompleteDefinition();
872   }
873   case ConstantArray:
874     // An array is incomplete if its element type is incomplete
875     // (C++ [dcl.array]p1).
876     // We don't handle variable arrays (they're not allowed in C++) or
877     // dependent-sized arrays (dependent types are never treated as incomplete).
878     return cast<ArrayType>(CanonicalType)->getElementType()
879              ->isIncompleteType(Def);
880   case IncompleteArray:
881     // An array of unknown size is an incomplete type (C99 6.2.5p22).
882     return true;
883   case ObjCObject:
884     return cast<ObjCObjectType>(CanonicalType)->getBaseType()
885              ->isIncompleteType(Def);
886   case ObjCInterface: {
887     // ObjC interfaces are incomplete if they are @class, not @interface.
888     ObjCInterfaceDecl *Interface
889       = cast<ObjCInterfaceType>(CanonicalType)->getDecl();
890     if (Def)
891       *Def = Interface;
892     return !Interface->hasDefinition();
893   }
894   }
895 }
896
897 bool QualType::isPODType(ASTContext &Context) const {
898   // The compiler shouldn't query this for incomplete types, but the user might.
899   // We return false for that case. Except for incomplete arrays of PODs, which
900   // are PODs according to the standard.
901   if (isNull())
902     return 0;
903   
904   if ((*this)->isIncompleteArrayType())
905     return Context.getBaseElementType(*this).isPODType(Context);
906     
907   if ((*this)->isIncompleteType())
908     return false;
909
910   if (Context.getLangOpts().ObjCAutoRefCount) {
911     switch (getObjCLifetime()) {
912     case Qualifiers::OCL_ExplicitNone:
913       return true;
914       
915     case Qualifiers::OCL_Strong:
916     case Qualifiers::OCL_Weak:
917     case Qualifiers::OCL_Autoreleasing:
918       return false;
919
920     case Qualifiers::OCL_None:
921       break;
922     }        
923   }
924   
925   QualType CanonicalType = getTypePtr()->CanonicalType;
926   switch (CanonicalType->getTypeClass()) {
927     // Everything not explicitly mentioned is not POD.
928   default: return false;
929   case Type::VariableArray:
930   case Type::ConstantArray:
931     // IncompleteArray is handled above.
932     return Context.getBaseElementType(*this).isPODType(Context);
933         
934   case Type::ObjCObjectPointer:
935   case Type::BlockPointer:
936   case Type::Builtin:
937   case Type::Complex:
938   case Type::Pointer:
939   case Type::MemberPointer:
940   case Type::Vector:
941   case Type::ExtVector:
942     return true;
943
944   case Type::Enum:
945     return true;
946
947   case Type::Record:
948     if (CXXRecordDecl *ClassDecl
949           = dyn_cast<CXXRecordDecl>(cast<RecordType>(CanonicalType)->getDecl()))
950       return ClassDecl->isPOD();
951
952     // C struct/union is POD.
953     return true;
954   }
955 }
956
957 bool QualType::isTrivialType(ASTContext &Context) const {
958   // The compiler shouldn't query this for incomplete types, but the user might.
959   // We return false for that case. Except for incomplete arrays of PODs, which
960   // are PODs according to the standard.
961   if (isNull())
962     return 0;
963   
964   if ((*this)->isArrayType())
965     return Context.getBaseElementType(*this).isTrivialType(Context);
966   
967   // Return false for incomplete types after skipping any incomplete array
968   // types which are expressly allowed by the standard and thus our API.
969   if ((*this)->isIncompleteType())
970     return false;
971   
972   if (Context.getLangOpts().ObjCAutoRefCount) {
973     switch (getObjCLifetime()) {
974     case Qualifiers::OCL_ExplicitNone:
975       return true;
976       
977     case Qualifiers::OCL_Strong:
978     case Qualifiers::OCL_Weak:
979     case Qualifiers::OCL_Autoreleasing:
980       return false;
981       
982     case Qualifiers::OCL_None:
983       if ((*this)->isObjCLifetimeType())
984         return false;
985       break;
986     }        
987   }
988   
989   QualType CanonicalType = getTypePtr()->CanonicalType;
990   if (CanonicalType->isDependentType())
991     return false;
992   
993   // C++0x [basic.types]p9:
994   //   Scalar types, trivial class types, arrays of such types, and
995   //   cv-qualified versions of these types are collectively called trivial
996   //   types.
997   
998   // As an extension, Clang treats vector types as Scalar types.
999   if (CanonicalType->isScalarType() || CanonicalType->isVectorType())
1000     return true;
1001   if (const RecordType *RT = CanonicalType->getAs<RecordType>()) {
1002     if (const CXXRecordDecl *ClassDecl =
1003         dyn_cast<CXXRecordDecl>(RT->getDecl())) {
1004       // C++0x [class]p5:
1005       //   A trivial class is a class that has a trivial default constructor
1006       if (!ClassDecl->hasTrivialDefaultConstructor()) return false;
1007       //   and is trivially copyable.
1008       if (!ClassDecl->isTriviallyCopyable()) return false;
1009     }
1010     
1011     return true;
1012   }
1013   
1014   // No other types can match.
1015   return false;
1016 }
1017
1018 bool QualType::isTriviallyCopyableType(ASTContext &Context) const {
1019   if ((*this)->isArrayType())
1020     return Context.getBaseElementType(*this).isTrivialType(Context);
1021
1022   if (Context.getLangOpts().ObjCAutoRefCount) {
1023     switch (getObjCLifetime()) {
1024     case Qualifiers::OCL_ExplicitNone:
1025       return true;
1026       
1027     case Qualifiers::OCL_Strong:
1028     case Qualifiers::OCL_Weak:
1029     case Qualifiers::OCL_Autoreleasing:
1030       return false;
1031       
1032     case Qualifiers::OCL_None:
1033       if ((*this)->isObjCLifetimeType())
1034         return false;
1035       break;
1036     }        
1037   }
1038
1039   // C++0x [basic.types]p9
1040   //   Scalar types, trivially copyable class types, arrays of such types, and
1041   //   cv-qualified versions of these types are collectively called trivial
1042   //   types.
1043
1044   QualType CanonicalType = getCanonicalType();
1045   if (CanonicalType->isDependentType())
1046     return false;
1047
1048   // Return false for incomplete types after skipping any incomplete array types
1049   // which are expressly allowed by the standard and thus our API.
1050   if (CanonicalType->isIncompleteType())
1051     return false;
1052  
1053   // As an extension, Clang treats vector types as Scalar types.
1054   if (CanonicalType->isScalarType() || CanonicalType->isVectorType())
1055     return true;
1056
1057   if (const RecordType *RT = CanonicalType->getAs<RecordType>()) {
1058     if (const CXXRecordDecl *ClassDecl =
1059           dyn_cast<CXXRecordDecl>(RT->getDecl())) {
1060       if (!ClassDecl->isTriviallyCopyable()) return false;
1061     }
1062
1063     return true;
1064   }
1065
1066   // No other types can match.
1067   return false;
1068 }
1069
1070
1071
1072 bool Type::isLiteralType() const {
1073   if (isDependentType())
1074     return false;
1075
1076   // C++0x [basic.types]p10:
1077   //   A type is a literal type if it is:
1078   //   [...]
1079   //   -- an array of literal type.
1080   // Extension: variable arrays cannot be literal types, since they're
1081   // runtime-sized.
1082   if (isVariableArrayType())
1083     return false;
1084   const Type *BaseTy = getBaseElementTypeUnsafe();
1085   assert(BaseTy && "NULL element type");
1086
1087   // Return false for incomplete types after skipping any incomplete array
1088   // types; those are expressly allowed by the standard and thus our API.
1089   if (BaseTy->isIncompleteType())
1090     return false;
1091
1092   // C++0x [basic.types]p10:
1093   //   A type is a literal type if it is:
1094   //    -- a scalar type; or
1095   // As an extension, Clang treats vector types and complex types as
1096   // literal types.
1097   if (BaseTy->isScalarType() || BaseTy->isVectorType() ||
1098       BaseTy->isAnyComplexType())
1099     return true;
1100   //    -- a reference type; or
1101   if (BaseTy->isReferenceType())
1102     return true;
1103   //    -- a class type that has all of the following properties:
1104   if (const RecordType *RT = BaseTy->getAs<RecordType>()) {
1105     //    -- a trivial destructor,
1106     //    -- every constructor call and full-expression in the
1107     //       brace-or-equal-initializers for non-static data members (if any)
1108     //       is a constant expression,
1109     //    -- it is an aggregate type or has at least one constexpr
1110     //       constructor or constructor template that is not a copy or move
1111     //       constructor, and
1112     //    -- all non-static data members and base classes of literal types
1113     //
1114     // We resolve DR1361 by ignoring the second bullet.
1115     if (const CXXRecordDecl *ClassDecl =
1116         dyn_cast<CXXRecordDecl>(RT->getDecl()))
1117       return ClassDecl->isLiteral();
1118
1119     return true;
1120   }
1121
1122   return false;
1123 }
1124
1125 bool Type::isStandardLayoutType() const {
1126   if (isDependentType())
1127     return false;
1128
1129   // C++0x [basic.types]p9:
1130   //   Scalar types, standard-layout class types, arrays of such types, and
1131   //   cv-qualified versions of these types are collectively called
1132   //   standard-layout types.
1133   const Type *BaseTy = getBaseElementTypeUnsafe();
1134   assert(BaseTy && "NULL element type");
1135
1136   // Return false for incomplete types after skipping any incomplete array
1137   // types which are expressly allowed by the standard and thus our API.
1138   if (BaseTy->isIncompleteType())
1139     return false;
1140
1141   // As an extension, Clang treats vector types as Scalar types.
1142   if (BaseTy->isScalarType() || BaseTy->isVectorType()) return true;
1143   if (const RecordType *RT = BaseTy->getAs<RecordType>()) {
1144     if (const CXXRecordDecl *ClassDecl =
1145         dyn_cast<CXXRecordDecl>(RT->getDecl()))
1146       if (!ClassDecl->isStandardLayout())
1147         return false;
1148
1149     // Default to 'true' for non-C++ class types.
1150     // FIXME: This is a bit dubious, but plain C structs should trivially meet
1151     // all the requirements of standard layout classes.
1152     return true;
1153   }
1154
1155   // No other types can match.
1156   return false;
1157 }
1158
1159 // This is effectively the intersection of isTrivialType and
1160 // isStandardLayoutType. We implement it directly to avoid redundant
1161 // conversions from a type to a CXXRecordDecl.
1162 bool QualType::isCXX11PODType(ASTContext &Context) const {
1163   const Type *ty = getTypePtr();
1164   if (ty->isDependentType())
1165     return false;
1166
1167   if (Context.getLangOpts().ObjCAutoRefCount) {
1168     switch (getObjCLifetime()) {
1169     case Qualifiers::OCL_ExplicitNone:
1170       return true;
1171       
1172     case Qualifiers::OCL_Strong:
1173     case Qualifiers::OCL_Weak:
1174     case Qualifiers::OCL_Autoreleasing:
1175       return false;
1176
1177     case Qualifiers::OCL_None:
1178       if (ty->isObjCLifetimeType())
1179         return false;
1180       break;
1181     }        
1182   }
1183
1184   // C++11 [basic.types]p9:
1185   //   Scalar types, POD classes, arrays of such types, and cv-qualified
1186   //   versions of these types are collectively called trivial types.
1187   const Type *BaseTy = ty->getBaseElementTypeUnsafe();
1188   assert(BaseTy && "NULL element type");
1189
1190   // Return false for incomplete types after skipping any incomplete array
1191   // types which are expressly allowed by the standard and thus our API.
1192   if (BaseTy->isIncompleteType())
1193     return false;
1194
1195   // As an extension, Clang treats vector types as Scalar types.
1196   if (BaseTy->isScalarType() || BaseTy->isVectorType()) return true;
1197   if (const RecordType *RT = BaseTy->getAs<RecordType>()) {
1198     if (const CXXRecordDecl *ClassDecl =
1199         dyn_cast<CXXRecordDecl>(RT->getDecl())) {
1200       // C++11 [class]p10:
1201       //   A POD struct is a non-union class that is both a trivial class [...]
1202       if (!ClassDecl->isTrivial()) return false;
1203
1204       // C++11 [class]p10:
1205       //   A POD struct is a non-union class that is both a trivial class and
1206       //   a standard-layout class [...]
1207       if (!ClassDecl->isStandardLayout()) return false;
1208
1209       // C++11 [class]p10:
1210       //   A POD struct is a non-union class that is both a trivial class and
1211       //   a standard-layout class, and has no non-static data members of type
1212       //   non-POD struct, non-POD union (or array of such types). [...]
1213       //
1214       // We don't directly query the recursive aspect as the requiremets for
1215       // both standard-layout classes and trivial classes apply recursively
1216       // already.
1217     }
1218
1219     return true;
1220   }
1221
1222   // No other types can match.
1223   return false;
1224 }
1225
1226 bool Type::isPromotableIntegerType() const {
1227   if (const BuiltinType *BT = getAs<BuiltinType>())
1228     switch (BT->getKind()) {
1229     case BuiltinType::Bool:
1230     case BuiltinType::Char_S:
1231     case BuiltinType::Char_U:
1232     case BuiltinType::SChar:
1233     case BuiltinType::UChar:
1234     case BuiltinType::Short:
1235     case BuiltinType::UShort:
1236     case BuiltinType::WChar_S:
1237     case BuiltinType::WChar_U:
1238     case BuiltinType::Char16:
1239     case BuiltinType::Char32:
1240       return true;
1241     default:
1242       return false;
1243     }
1244
1245   // Enumerated types are promotable to their compatible integer types
1246   // (C99 6.3.1.1) a.k.a. its underlying type (C++ [conv.prom]p2).
1247   if (const EnumType *ET = getAs<EnumType>()){
1248     if (this->isDependentType() || ET->getDecl()->getPromotionType().isNull()
1249         || ET->getDecl()->isScoped())
1250       return false;
1251     
1252     return true;
1253   }
1254   
1255   return false;
1256 }
1257
1258 bool Type::isSpecifierType() const {
1259   // Note that this intentionally does not use the canonical type.
1260   switch (getTypeClass()) {
1261   case Builtin:
1262   case Record:
1263   case Enum:
1264   case Typedef:
1265   case Complex:
1266   case TypeOfExpr:
1267   case TypeOf:
1268   case TemplateTypeParm:
1269   case SubstTemplateTypeParm:
1270   case TemplateSpecialization:
1271   case Elaborated:
1272   case DependentName:
1273   case DependentTemplateSpecialization:
1274   case ObjCInterface:
1275   case ObjCObject:
1276   case ObjCObjectPointer: // FIXME: object pointers aren't really specifiers
1277     return true;
1278   default:
1279     return false;
1280   }
1281 }
1282
1283 ElaboratedTypeKeyword
1284 TypeWithKeyword::getKeywordForTypeSpec(unsigned TypeSpec) {
1285   switch (TypeSpec) {
1286   default: return ETK_None;
1287   case TST_typename: return ETK_Typename;
1288   case TST_class: return ETK_Class;
1289   case TST_struct: return ETK_Struct;
1290   case TST_union: return ETK_Union;
1291   case TST_enum: return ETK_Enum;
1292   }
1293 }
1294
1295 TagTypeKind
1296 TypeWithKeyword::getTagTypeKindForTypeSpec(unsigned TypeSpec) {
1297   switch(TypeSpec) {
1298   case TST_class: return TTK_Class;
1299   case TST_struct: return TTK_Struct;
1300   case TST_union: return TTK_Union;
1301   case TST_enum: return TTK_Enum;
1302   }
1303   
1304   llvm_unreachable("Type specifier is not a tag type kind.");
1305 }
1306
1307 ElaboratedTypeKeyword
1308 TypeWithKeyword::getKeywordForTagTypeKind(TagTypeKind Kind) {
1309   switch (Kind) {
1310   case TTK_Class: return ETK_Class;
1311   case TTK_Struct: return ETK_Struct;
1312   case TTK_Union: return ETK_Union;
1313   case TTK_Enum: return ETK_Enum;
1314   }
1315   llvm_unreachable("Unknown tag type kind.");
1316 }
1317
1318 TagTypeKind
1319 TypeWithKeyword::getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword) {
1320   switch (Keyword) {
1321   case ETK_Class: return TTK_Class;
1322   case ETK_Struct: return TTK_Struct;
1323   case ETK_Union: return TTK_Union;
1324   case ETK_Enum: return TTK_Enum;
1325   case ETK_None: // Fall through.
1326   case ETK_Typename:
1327     llvm_unreachable("Elaborated type keyword is not a tag type kind.");
1328   }
1329   llvm_unreachable("Unknown elaborated type keyword.");
1330 }
1331
1332 bool
1333 TypeWithKeyword::KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword) {
1334   switch (Keyword) {
1335   case ETK_None:
1336   case ETK_Typename:
1337     return false;
1338   case ETK_Class:
1339   case ETK_Struct:
1340   case ETK_Union:
1341   case ETK_Enum:
1342     return true;
1343   }
1344   llvm_unreachable("Unknown elaborated type keyword.");
1345 }
1346
1347 const char*
1348 TypeWithKeyword::getKeywordName(ElaboratedTypeKeyword Keyword) {
1349   switch (Keyword) {
1350   case ETK_None: return "";
1351   case ETK_Typename: return "typename";
1352   case ETK_Class:  return "class";
1353   case ETK_Struct: return "struct";
1354   case ETK_Union:  return "union";
1355   case ETK_Enum:   return "enum";
1356   }
1357
1358   llvm_unreachable("Unknown elaborated type keyword.");
1359 }
1360
1361 DependentTemplateSpecializationType::DependentTemplateSpecializationType(
1362                          ElaboratedTypeKeyword Keyword,
1363                          NestedNameSpecifier *NNS, const IdentifierInfo *Name,
1364                          unsigned NumArgs, const TemplateArgument *Args,
1365                          QualType Canon)
1366   : TypeWithKeyword(Keyword, DependentTemplateSpecialization, Canon, true, true,
1367                     /*VariablyModified=*/false,
1368                     NNS && NNS->containsUnexpandedParameterPack()),
1369     NNS(NNS), Name(Name), NumArgs(NumArgs) {
1370   assert((!NNS || NNS->isDependent()) &&
1371          "DependentTemplateSpecializatonType requires dependent qualifier");
1372   for (unsigned I = 0; I != NumArgs; ++I) {
1373     if (Args[I].containsUnexpandedParameterPack())
1374       setContainsUnexpandedParameterPack();
1375
1376     new (&getArgBuffer()[I]) TemplateArgument(Args[I]);
1377   }
1378 }
1379
1380 void
1381 DependentTemplateSpecializationType::Profile(llvm::FoldingSetNodeID &ID,
1382                                              const ASTContext &Context,
1383                                              ElaboratedTypeKeyword Keyword,
1384                                              NestedNameSpecifier *Qualifier,
1385                                              const IdentifierInfo *Name,
1386                                              unsigned NumArgs,
1387                                              const TemplateArgument *Args) {
1388   ID.AddInteger(Keyword);
1389   ID.AddPointer(Qualifier);
1390   ID.AddPointer(Name);
1391   for (unsigned Idx = 0; Idx < NumArgs; ++Idx)
1392     Args[Idx].Profile(ID, Context);
1393 }
1394
1395 bool Type::isElaboratedTypeSpecifier() const {
1396   ElaboratedTypeKeyword Keyword;
1397   if (const ElaboratedType *Elab = dyn_cast<ElaboratedType>(this))
1398     Keyword = Elab->getKeyword();
1399   else if (const DependentNameType *DepName = dyn_cast<DependentNameType>(this))
1400     Keyword = DepName->getKeyword();
1401   else if (const DependentTemplateSpecializationType *DepTST =
1402              dyn_cast<DependentTemplateSpecializationType>(this))
1403     Keyword = DepTST->getKeyword();
1404   else
1405     return false;
1406
1407   return TypeWithKeyword::KeywordIsTagTypeKind(Keyword);
1408 }
1409
1410 const char *Type::getTypeClassName() const {
1411   switch (TypeBits.TC) {
1412 #define ABSTRACT_TYPE(Derived, Base)
1413 #define TYPE(Derived, Base) case Derived: return #Derived;
1414 #include "clang/AST/TypeNodes.def"
1415   }
1416   
1417   llvm_unreachable("Invalid type class.");
1418 }
1419
1420 const char *BuiltinType::getName(const PrintingPolicy &Policy) const {
1421   switch (getKind()) {
1422   case Void:              return "void";
1423   case Bool:              return Policy.Bool ? "bool" : "_Bool";
1424   case Char_S:            return "char";
1425   case Char_U:            return "char";
1426   case SChar:             return "signed char";
1427   case Short:             return "short";
1428   case Int:               return "int";
1429   case Long:              return "long";
1430   case LongLong:          return "long long";
1431   case Int128:            return "__int128";
1432   case UChar:             return "unsigned char";
1433   case UShort:            return "unsigned short";
1434   case UInt:              return "unsigned int";
1435   case ULong:             return "unsigned long";
1436   case ULongLong:         return "unsigned long long";
1437   case UInt128:           return "unsigned __int128";
1438   case Half:              return "half";
1439   case Float:             return "float";
1440   case Double:            return "double";
1441   case LongDouble:        return "long double";
1442   case WChar_S:
1443   case WChar_U:           return "wchar_t";
1444   case Char16:            return "char16_t";
1445   case Char32:            return "char32_t";
1446   case NullPtr:           return "nullptr_t";
1447   case Overload:          return "<overloaded function type>";
1448   case BoundMember:       return "<bound member function type>";
1449   case PseudoObject:      return "<pseudo-object type>";
1450   case Dependent:         return "<dependent type>";
1451   case UnknownAny:        return "<unknown type>";
1452   case ARCUnbridgedCast:  return "<ARC unbridged cast type>";
1453   case ObjCId:            return "id";
1454   case ObjCClass:         return "Class";
1455   case ObjCSel:           return "SEL";
1456   }
1457   
1458   llvm_unreachable("Invalid builtin type.");
1459 }
1460
1461 QualType QualType::getNonLValueExprType(ASTContext &Context) const {
1462   if (const ReferenceType *RefType = getTypePtr()->getAs<ReferenceType>())
1463     return RefType->getPointeeType();
1464   
1465   // C++0x [basic.lval]:
1466   //   Class prvalues can have cv-qualified types; non-class prvalues always 
1467   //   have cv-unqualified types.
1468   //
1469   // See also C99 6.3.2.1p2.
1470   if (!Context.getLangOpts().CPlusPlus ||
1471       (!getTypePtr()->isDependentType() && !getTypePtr()->isRecordType()))
1472     return getUnqualifiedType();
1473   
1474   return *this;
1475 }
1476
1477 StringRef FunctionType::getNameForCallConv(CallingConv CC) {
1478   switch (CC) {
1479   case CC_Default: 
1480     llvm_unreachable("no name for default cc");
1481
1482   case CC_C: return "cdecl";
1483   case CC_X86StdCall: return "stdcall";
1484   case CC_X86FastCall: return "fastcall";
1485   case CC_X86ThisCall: return "thiscall";
1486   case CC_X86Pascal: return "pascal";
1487   case CC_AAPCS: return "aapcs";
1488   case CC_AAPCS_VFP: return "aapcs-vfp";
1489   }
1490
1491   llvm_unreachable("Invalid calling convention.");
1492 }
1493
1494 FunctionProtoType::FunctionProtoType(QualType result, const QualType *args,
1495                                      unsigned numArgs, QualType canonical,
1496                                      const ExtProtoInfo &epi)
1497   : FunctionType(FunctionProto, result, epi.TypeQuals, epi.RefQualifier,
1498                  canonical,
1499                  result->isDependentType(),
1500                  result->isInstantiationDependentType(),
1501                  result->isVariablyModifiedType(),
1502                  result->containsUnexpandedParameterPack(),
1503                  epi.ExtInfo),
1504     NumArgs(numArgs), NumExceptions(epi.NumExceptions),
1505     ExceptionSpecType(epi.ExceptionSpecType),
1506     HasAnyConsumedArgs(epi.ConsumedArguments != 0),
1507     Variadic(epi.Variadic), HasTrailingReturn(epi.HasTrailingReturn)
1508 {
1509   // Fill in the trailing argument array.
1510   QualType *argSlot = reinterpret_cast<QualType*>(this+1);
1511   for (unsigned i = 0; i != numArgs; ++i) {
1512     if (args[i]->isDependentType())
1513       setDependent();
1514     else if (args[i]->isInstantiationDependentType())
1515       setInstantiationDependent();
1516     
1517     if (args[i]->containsUnexpandedParameterPack())
1518       setContainsUnexpandedParameterPack();
1519
1520     argSlot[i] = args[i];
1521   }
1522
1523   if (getExceptionSpecType() == EST_Dynamic) {
1524     // Fill in the exception array.
1525     QualType *exnSlot = argSlot + numArgs;
1526     for (unsigned i = 0, e = epi.NumExceptions; i != e; ++i) {
1527       if (epi.Exceptions[i]->isDependentType())
1528         setDependent();
1529       else if (epi.Exceptions[i]->isInstantiationDependentType())
1530         setInstantiationDependent();
1531       
1532       if (epi.Exceptions[i]->containsUnexpandedParameterPack())
1533         setContainsUnexpandedParameterPack();
1534
1535       exnSlot[i] = epi.Exceptions[i];
1536     }
1537   } else if (getExceptionSpecType() == EST_ComputedNoexcept) {
1538     // Store the noexcept expression and context.
1539     Expr **noexSlot = reinterpret_cast<Expr**>(argSlot + numArgs);
1540     *noexSlot = epi.NoexceptExpr;
1541     
1542     if (epi.NoexceptExpr) {
1543       if (epi.NoexceptExpr->isValueDependent() 
1544           || epi.NoexceptExpr->isTypeDependent())
1545         setDependent();
1546       else if (epi.NoexceptExpr->isInstantiationDependent())
1547         setInstantiationDependent();
1548     }
1549   } else if (getExceptionSpecType() == EST_Uninstantiated) {
1550     // Store the function decl from which we will resolve our
1551     // exception specification.
1552     FunctionDecl **slot = reinterpret_cast<FunctionDecl**>(argSlot + numArgs);
1553     slot[0] = epi.ExceptionSpecDecl;
1554     slot[1] = epi.ExceptionSpecTemplate;
1555     // This exception specification doesn't make the type dependent, because
1556     // it's not instantiated as part of instantiating the type.
1557   }
1558
1559   if (epi.ConsumedArguments) {
1560     bool *consumedArgs = const_cast<bool*>(getConsumedArgsBuffer());
1561     for (unsigned i = 0; i != numArgs; ++i)
1562       consumedArgs[i] = epi.ConsumedArguments[i];
1563   }
1564 }
1565
1566 FunctionProtoType::NoexceptResult
1567 FunctionProtoType::getNoexceptSpec(ASTContext &ctx) const {
1568   ExceptionSpecificationType est = getExceptionSpecType();
1569   if (est == EST_BasicNoexcept)
1570     return NR_Nothrow;
1571
1572   if (est != EST_ComputedNoexcept)
1573     return NR_NoNoexcept;
1574
1575   Expr *noexceptExpr = getNoexceptExpr();
1576   if (!noexceptExpr)
1577     return NR_BadNoexcept;
1578   if (noexceptExpr->isValueDependent())
1579     return NR_Dependent;
1580
1581   llvm::APSInt value;
1582   bool isICE = noexceptExpr->isIntegerConstantExpr(value, ctx, 0,
1583                                                    /*evaluated*/false);
1584   (void)isICE;
1585   assert(isICE && "AST should not contain bad noexcept expressions.");
1586
1587   return value.getBoolValue() ? NR_Nothrow : NR_Throw;
1588 }
1589
1590 bool FunctionProtoType::isTemplateVariadic() const {
1591   for (unsigned ArgIdx = getNumArgs(); ArgIdx; --ArgIdx)
1592     if (isa<PackExpansionType>(getArgType(ArgIdx - 1)))
1593       return true;
1594   
1595   return false;
1596 }
1597
1598 void FunctionProtoType::Profile(llvm::FoldingSetNodeID &ID, QualType Result,
1599                                 const QualType *ArgTys, unsigned NumArgs,
1600                                 const ExtProtoInfo &epi,
1601                                 const ASTContext &Context) {
1602
1603   // We have to be careful not to get ambiguous profile encodings.
1604   // Note that valid type pointers are never ambiguous with anything else.
1605   //
1606   // The encoding grammar begins:
1607   //      type type* bool int bool 
1608   // If that final bool is true, then there is a section for the EH spec:
1609   //      bool type*
1610   // This is followed by an optional "consumed argument" section of the
1611   // same length as the first type sequence:
1612   //      bool*
1613   // Finally, we have the ext info and trailing return type flag:
1614   //      int bool
1615   // 
1616   // There is no ambiguity between the consumed arguments and an empty EH
1617   // spec because of the leading 'bool' which unambiguously indicates
1618   // whether the following bool is the EH spec or part of the arguments.
1619
1620   ID.AddPointer(Result.getAsOpaquePtr());
1621   for (unsigned i = 0; i != NumArgs; ++i)
1622     ID.AddPointer(ArgTys[i].getAsOpaquePtr());
1623   // This method is relatively performance sensitive, so as a performance
1624   // shortcut, use one AddInteger call instead of four for the next four
1625   // fields.
1626   assert(!(unsigned(epi.Variadic) & ~1) &&
1627          !(unsigned(epi.TypeQuals) & ~255) &&
1628          !(unsigned(epi.RefQualifier) & ~3) &&
1629          !(unsigned(epi.ExceptionSpecType) & ~7) &&
1630          "Values larger than expected.");
1631   ID.AddInteger(unsigned(epi.Variadic) +
1632                 (epi.TypeQuals << 1) +
1633                 (epi.RefQualifier << 9) +
1634                 (epi.ExceptionSpecType << 11));
1635   if (epi.ExceptionSpecType == EST_Dynamic) {
1636     for (unsigned i = 0; i != epi.NumExceptions; ++i)
1637       ID.AddPointer(epi.Exceptions[i].getAsOpaquePtr());
1638   } else if (epi.ExceptionSpecType == EST_ComputedNoexcept && epi.NoexceptExpr){
1639     epi.NoexceptExpr->Profile(ID, Context, false);
1640   } else if (epi.ExceptionSpecType == EST_Uninstantiated) {
1641     ID.AddPointer(epi.ExceptionSpecDecl->getCanonicalDecl());
1642   }
1643   if (epi.ConsumedArguments) {
1644     for (unsigned i = 0; i != NumArgs; ++i)
1645       ID.AddBoolean(epi.ConsumedArguments[i]);
1646   }
1647   epi.ExtInfo.Profile(ID);
1648   ID.AddBoolean(epi.HasTrailingReturn);
1649 }
1650
1651 void FunctionProtoType::Profile(llvm::FoldingSetNodeID &ID,
1652                                 const ASTContext &Ctx) {
1653   Profile(ID, getResultType(), arg_type_begin(), NumArgs, getExtProtoInfo(),
1654           Ctx);
1655 }
1656
1657 QualType TypedefType::desugar() const {
1658   return getDecl()->getUnderlyingType();
1659 }
1660
1661 TypeOfExprType::TypeOfExprType(Expr *E, QualType can)
1662   : Type(TypeOfExpr, can, E->isTypeDependent(), 
1663          E->isInstantiationDependent(),
1664          E->getType()->isVariablyModifiedType(),
1665          E->containsUnexpandedParameterPack()), 
1666     TOExpr(E) {
1667 }
1668
1669 bool TypeOfExprType::isSugared() const {
1670   return !TOExpr->isTypeDependent();
1671 }
1672
1673 QualType TypeOfExprType::desugar() const {
1674   if (isSugared())
1675     return getUnderlyingExpr()->getType();
1676   
1677   return QualType(this, 0);
1678 }
1679
1680 void DependentTypeOfExprType::Profile(llvm::FoldingSetNodeID &ID,
1681                                       const ASTContext &Context, Expr *E) {
1682   E->Profile(ID, Context, true);
1683 }
1684
1685 DecltypeType::DecltypeType(Expr *E, QualType underlyingType, QualType can)
1686   // C++11 [temp.type]p2: "If an expression e involves a template parameter,
1687   // decltype(e) denotes a unique dependent type." Hence a decltype type is
1688   // type-dependent even if its expression is only instantiation-dependent.
1689   : Type(Decltype, can, E->isInstantiationDependent(),
1690          E->isInstantiationDependent(),
1691          E->getType()->isVariablyModifiedType(), 
1692          E->containsUnexpandedParameterPack()), 
1693     E(E),
1694   UnderlyingType(underlyingType) {
1695 }
1696
1697 bool DecltypeType::isSugared() const { return !E->isInstantiationDependent(); }
1698
1699 QualType DecltypeType::desugar() const {
1700   if (isSugared())
1701     return getUnderlyingType();
1702   
1703   return QualType(this, 0);
1704 }
1705
1706 DependentDecltypeType::DependentDecltypeType(const ASTContext &Context, Expr *E)
1707   : DecltypeType(E, Context.DependentTy), Context(Context) { }
1708
1709 void DependentDecltypeType::Profile(llvm::FoldingSetNodeID &ID,
1710                                     const ASTContext &Context, Expr *E) {
1711   E->Profile(ID, Context, true);
1712 }
1713
1714 TagType::TagType(TypeClass TC, const TagDecl *D, QualType can)
1715   : Type(TC, can, D->isDependentType(), 
1716          /*InstantiationDependent=*/D->isDependentType(),
1717          /*VariablyModified=*/false, 
1718          /*ContainsUnexpandedParameterPack=*/false),
1719     decl(const_cast<TagDecl*>(D)) {}
1720
1721 static TagDecl *getInterestingTagDecl(TagDecl *decl) {
1722   for (TagDecl::redecl_iterator I = decl->redecls_begin(),
1723                                 E = decl->redecls_end();
1724        I != E; ++I) {
1725     if (I->isCompleteDefinition() || I->isBeingDefined())
1726       return *I;
1727   }
1728   // If there's no definition (not even in progress), return what we have.
1729   return decl;
1730 }
1731
1732 UnaryTransformType::UnaryTransformType(QualType BaseType,
1733                                        QualType UnderlyingType,
1734                                        UTTKind UKind,
1735                                        QualType CanonicalType)
1736   : Type(UnaryTransform, CanonicalType, UnderlyingType->isDependentType(),
1737          UnderlyingType->isInstantiationDependentType(),
1738          UnderlyingType->isVariablyModifiedType(),
1739          BaseType->containsUnexpandedParameterPack())
1740   , BaseType(BaseType), UnderlyingType(UnderlyingType), UKind(UKind)
1741 {}
1742
1743 TagDecl *TagType::getDecl() const {
1744   return getInterestingTagDecl(decl);
1745 }
1746
1747 bool TagType::isBeingDefined() const {
1748   return getDecl()->isBeingDefined();
1749 }
1750
1751 CXXRecordDecl *InjectedClassNameType::getDecl() const {
1752   return cast<CXXRecordDecl>(getInterestingTagDecl(Decl));
1753 }
1754
1755 IdentifierInfo *TemplateTypeParmType::getIdentifier() const {
1756   return isCanonicalUnqualified() ? 0 : getDecl()->getIdentifier();
1757 }
1758
1759 SubstTemplateTypeParmPackType::
1760 SubstTemplateTypeParmPackType(const TemplateTypeParmType *Param, 
1761                               QualType Canon,
1762                               const TemplateArgument &ArgPack)
1763   : Type(SubstTemplateTypeParmPack, Canon, true, true, false, true), 
1764     Replaced(Param), 
1765     Arguments(ArgPack.pack_begin()), NumArguments(ArgPack.pack_size()) 
1766
1767 }
1768
1769 TemplateArgument SubstTemplateTypeParmPackType::getArgumentPack() const {
1770   return TemplateArgument(Arguments, NumArguments);
1771 }
1772
1773 void SubstTemplateTypeParmPackType::Profile(llvm::FoldingSetNodeID &ID) {
1774   Profile(ID, getReplacedParameter(), getArgumentPack());
1775 }
1776
1777 void SubstTemplateTypeParmPackType::Profile(llvm::FoldingSetNodeID &ID,
1778                                            const TemplateTypeParmType *Replaced,
1779                                             const TemplateArgument &ArgPack) {
1780   ID.AddPointer(Replaced);
1781   ID.AddInteger(ArgPack.pack_size());
1782   for (TemplateArgument::pack_iterator P = ArgPack.pack_begin(), 
1783                                     PEnd = ArgPack.pack_end();
1784        P != PEnd; ++P)
1785     ID.AddPointer(P->getAsType().getAsOpaquePtr());
1786 }
1787
1788 bool TemplateSpecializationType::
1789 anyDependentTemplateArguments(const TemplateArgumentListInfo &Args,
1790                               bool &InstantiationDependent) {
1791   return anyDependentTemplateArguments(Args.getArgumentArray(), Args.size(),
1792                                        InstantiationDependent);
1793 }
1794
1795 bool TemplateSpecializationType::
1796 anyDependentTemplateArguments(const TemplateArgumentLoc *Args, unsigned N,
1797                               bool &InstantiationDependent) {
1798   for (unsigned i = 0; i != N; ++i) {
1799     if (Args[i].getArgument().isDependent()) {
1800       InstantiationDependent = true;
1801       return true;
1802     }
1803     
1804     if (Args[i].getArgument().isInstantiationDependent())
1805       InstantiationDependent = true;
1806   }
1807   return false;
1808 }
1809
1810 bool TemplateSpecializationType::
1811 anyDependentTemplateArguments(const TemplateArgument *Args, unsigned N,
1812                               bool &InstantiationDependent) {
1813   for (unsigned i = 0; i != N; ++i) {
1814     if (Args[i].isDependent()) {
1815       InstantiationDependent = true;
1816       return true;
1817     }
1818     
1819     if (Args[i].isInstantiationDependent())
1820       InstantiationDependent = true;
1821   }
1822   return false;
1823 }
1824
1825 TemplateSpecializationType::
1826 TemplateSpecializationType(TemplateName T,
1827                            const TemplateArgument *Args, unsigned NumArgs,
1828                            QualType Canon, QualType AliasedType)
1829   : Type(TemplateSpecialization,
1830          Canon.isNull()? QualType(this, 0) : Canon,
1831          Canon.isNull()? T.isDependent() : Canon->isDependentType(),
1832          Canon.isNull()? T.isDependent() 
1833                        : Canon->isInstantiationDependentType(),
1834          false,
1835          Canon.isNull()? T.containsUnexpandedParameterPack()
1836                        : Canon->containsUnexpandedParameterPack()),
1837     Template(T), NumArgs(NumArgs), TypeAlias(!AliasedType.isNull()) {
1838   assert(!T.getAsDependentTemplateName() && 
1839          "Use DependentTemplateSpecializationType for dependent template-name");
1840   assert((T.getKind() == TemplateName::Template ||
1841           T.getKind() == TemplateName::SubstTemplateTemplateParm ||
1842           T.getKind() == TemplateName::SubstTemplateTemplateParmPack) &&
1843          "Unexpected template name for TemplateSpecializationType");
1844   bool InstantiationDependent;
1845   (void)InstantiationDependent;
1846   assert((!Canon.isNull() ||
1847           T.isDependent() || 
1848           anyDependentTemplateArguments(Args, NumArgs, 
1849                                         InstantiationDependent)) &&
1850          "No canonical type for non-dependent class template specialization");
1851
1852   TemplateArgument *TemplateArgs
1853     = reinterpret_cast<TemplateArgument *>(this + 1);
1854   for (unsigned Arg = 0; Arg < NumArgs; ++Arg) {
1855     // Update dependent and variably-modified bits.
1856     // If the canonical type exists and is non-dependent, the template
1857     // specialization type can be non-dependent even if one of the type
1858     // arguments is. Given:
1859     //   template<typename T> using U = int;
1860     // U<T> is always non-dependent, irrespective of the type T.
1861     if (Canon.isNull() && Args[Arg].isDependent())
1862       setDependent();
1863     else if (Args[Arg].isInstantiationDependent())
1864       setInstantiationDependent();
1865     
1866     if (Args[Arg].getKind() == TemplateArgument::Type &&
1867         Args[Arg].getAsType()->isVariablyModifiedType())
1868       setVariablyModified();
1869     if (Canon.isNull() && Args[Arg].containsUnexpandedParameterPack())
1870       setContainsUnexpandedParameterPack();
1871
1872     new (&TemplateArgs[Arg]) TemplateArgument(Args[Arg]);
1873   }
1874
1875   // Store the aliased type if this is a type alias template specialization.
1876   if (TypeAlias) {
1877     TemplateArgument *Begin = reinterpret_cast<TemplateArgument *>(this + 1);
1878     *reinterpret_cast<QualType*>(Begin + getNumArgs()) = AliasedType;
1879   }
1880 }
1881
1882 void
1883 TemplateSpecializationType::Profile(llvm::FoldingSetNodeID &ID,
1884                                     TemplateName T,
1885                                     const TemplateArgument *Args,
1886                                     unsigned NumArgs,
1887                                     const ASTContext &Context) {
1888   T.Profile(ID);
1889   for (unsigned Idx = 0; Idx < NumArgs; ++Idx)
1890     Args[Idx].Profile(ID, Context);
1891 }
1892
1893 QualType
1894 QualifierCollector::apply(const ASTContext &Context, QualType QT) const {
1895   if (!hasNonFastQualifiers())
1896     return QT.withFastQualifiers(getFastQualifiers());
1897
1898   return Context.getQualifiedType(QT, *this);
1899 }
1900
1901 QualType
1902 QualifierCollector::apply(const ASTContext &Context, const Type *T) const {
1903   if (!hasNonFastQualifiers())
1904     return QualType(T, getFastQualifiers());
1905
1906   return Context.getQualifiedType(T, *this);
1907 }
1908
1909 void ObjCObjectTypeImpl::Profile(llvm::FoldingSetNodeID &ID,
1910                                  QualType BaseType,
1911                                  ObjCProtocolDecl * const *Protocols,
1912                                  unsigned NumProtocols) {
1913   ID.AddPointer(BaseType.getAsOpaquePtr());
1914   for (unsigned i = 0; i != NumProtocols; i++)
1915     ID.AddPointer(Protocols[i]);
1916 }
1917
1918 void ObjCObjectTypeImpl::Profile(llvm::FoldingSetNodeID &ID) {
1919   Profile(ID, getBaseType(), qual_begin(), getNumProtocols());
1920 }
1921
1922 namespace {
1923
1924 /// \brief The cached properties of a type.
1925 class CachedProperties {
1926   NamedDecl::LinkageInfo LV;
1927   bool local;
1928   
1929 public:
1930   CachedProperties(NamedDecl::LinkageInfo LV, bool local)
1931     : LV(LV), local(local) {}
1932   
1933   Linkage getLinkage() const { return LV.linkage(); }
1934   Visibility getVisibility() const { return LV.visibility(); }
1935   bool isVisibilityExplicit() const { return LV.visibilityExplicit(); }
1936   bool hasLocalOrUnnamedType() const { return local; }
1937   
1938   friend CachedProperties merge(CachedProperties L, CachedProperties R) {
1939     NamedDecl::LinkageInfo MergedLV = L.LV;
1940     MergedLV.merge(R.LV);
1941     return CachedProperties(MergedLV,
1942                          L.hasLocalOrUnnamedType() | R.hasLocalOrUnnamedType());
1943   }
1944 };
1945 }
1946
1947 static CachedProperties computeCachedProperties(const Type *T);
1948
1949 namespace clang {
1950 /// The type-property cache.  This is templated so as to be
1951 /// instantiated at an internal type to prevent unnecessary symbol
1952 /// leakage.
1953 template <class Private> class TypePropertyCache {
1954 public:
1955   static CachedProperties get(QualType T) {
1956     return get(T.getTypePtr());
1957   }
1958
1959   static CachedProperties get(const Type *T) {
1960     ensure(T);
1961     NamedDecl::LinkageInfo LV(T->TypeBits.getLinkage(),
1962                               T->TypeBits.getVisibility(),
1963                               T->TypeBits.isVisibilityExplicit());
1964     return CachedProperties(LV, T->TypeBits.hasLocalOrUnnamedType());
1965   }
1966
1967   static void ensure(const Type *T) {
1968     // If the cache is valid, we're okay.
1969     if (T->TypeBits.isCacheValid()) return;
1970
1971     // If this type is non-canonical, ask its canonical type for the
1972     // relevant information.
1973     if (!T->isCanonicalUnqualified()) {
1974       const Type *CT = T->getCanonicalTypeInternal().getTypePtr();
1975       ensure(CT);
1976       T->TypeBits.CacheValidAndVisibility =
1977         CT->TypeBits.CacheValidAndVisibility;
1978       T->TypeBits.CachedExplicitVisibility =
1979         CT->TypeBits.CachedExplicitVisibility;
1980       T->TypeBits.CachedLinkage = CT->TypeBits.CachedLinkage;
1981       T->TypeBits.CachedLocalOrUnnamed = CT->TypeBits.CachedLocalOrUnnamed;
1982       return;
1983     }
1984
1985     // Compute the cached properties and then set the cache.
1986     CachedProperties Result = computeCachedProperties(T);
1987     T->TypeBits.CacheValidAndVisibility = Result.getVisibility() + 1U;
1988     T->TypeBits.CachedExplicitVisibility = Result.isVisibilityExplicit();
1989     assert(T->TypeBits.isCacheValid() &&
1990            T->TypeBits.getVisibility() == Result.getVisibility());
1991     T->TypeBits.CachedLinkage = Result.getLinkage();
1992     T->TypeBits.CachedLocalOrUnnamed = Result.hasLocalOrUnnamedType();
1993   }
1994 };
1995 }
1996
1997 // Instantiate the friend template at a private class.  In a
1998 // reasonable implementation, these symbols will be internal.
1999 // It is terrible that this is the best way to accomplish this.
2000 namespace { class Private {}; }
2001 typedef TypePropertyCache<Private> Cache;
2002
2003 static CachedProperties computeCachedProperties(const Type *T) {
2004   switch (T->getTypeClass()) {
2005 #define TYPE(Class,Base)
2006 #define NON_CANONICAL_TYPE(Class,Base) case Type::Class:
2007 #include "clang/AST/TypeNodes.def"
2008     llvm_unreachable("didn't expect a non-canonical type here");
2009
2010 #define TYPE(Class,Base)
2011 #define DEPENDENT_TYPE(Class,Base) case Type::Class:
2012 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class,Base) case Type::Class:
2013 #include "clang/AST/TypeNodes.def"
2014     // Treat instantiation-dependent types as external.
2015     assert(T->isInstantiationDependentType());
2016     return CachedProperties(NamedDecl::LinkageInfo(), false);
2017
2018   case Type::Builtin:
2019     // C++ [basic.link]p8:
2020     //   A type is said to have linkage if and only if:
2021     //     - it is a fundamental type (3.9.1); or
2022     return CachedProperties(NamedDecl::LinkageInfo(), false);
2023
2024   case Type::Record:
2025   case Type::Enum: {
2026     const TagDecl *Tag = cast<TagType>(T)->getDecl();
2027
2028     // C++ [basic.link]p8:
2029     //     - it is a class or enumeration type that is named (or has a name
2030     //       for linkage purposes (7.1.3)) and the name has linkage; or
2031     //     -  it is a specialization of a class template (14); or
2032     NamedDecl::LinkageInfo LV = Tag->getLinkageAndVisibility();
2033     bool IsLocalOrUnnamed =
2034       Tag->getDeclContext()->isFunctionOrMethod() ||
2035       (!Tag->getIdentifier() && !Tag->getTypedefNameForAnonDecl());
2036     return CachedProperties(LV, IsLocalOrUnnamed);
2037   }
2038
2039     // C++ [basic.link]p8:
2040     //   - it is a compound type (3.9.2) other than a class or enumeration, 
2041     //     compounded exclusively from types that have linkage; or
2042   case Type::Complex:
2043     return Cache::get(cast<ComplexType>(T)->getElementType());
2044   case Type::Pointer:
2045     return Cache::get(cast<PointerType>(T)->getPointeeType());
2046   case Type::BlockPointer:
2047     return Cache::get(cast<BlockPointerType>(T)->getPointeeType());
2048   case Type::LValueReference:
2049   case Type::RValueReference:
2050     return Cache::get(cast<ReferenceType>(T)->getPointeeType());
2051   case Type::MemberPointer: {
2052     const MemberPointerType *MPT = cast<MemberPointerType>(T);
2053     return merge(Cache::get(MPT->getClass()),
2054                  Cache::get(MPT->getPointeeType()));
2055   }
2056   case Type::ConstantArray:
2057   case Type::IncompleteArray:
2058   case Type::VariableArray:
2059     return Cache::get(cast<ArrayType>(T)->getElementType());
2060   case Type::Vector:
2061   case Type::ExtVector:
2062     return Cache::get(cast<VectorType>(T)->getElementType());
2063   case Type::FunctionNoProto:
2064     return Cache::get(cast<FunctionType>(T)->getResultType());
2065   case Type::FunctionProto: {
2066     const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
2067     CachedProperties result = Cache::get(FPT->getResultType());
2068     for (FunctionProtoType::arg_type_iterator ai = FPT->arg_type_begin(),
2069            ae = FPT->arg_type_end(); ai != ae; ++ai)
2070       result = merge(result, Cache::get(*ai));
2071     return result;
2072   }
2073   case Type::ObjCInterface: {
2074     NamedDecl::LinkageInfo LV =
2075       cast<ObjCInterfaceType>(T)->getDecl()->getLinkageAndVisibility();
2076     return CachedProperties(LV, false);
2077   }
2078   case Type::ObjCObject:
2079     return Cache::get(cast<ObjCObjectType>(T)->getBaseType());
2080   case Type::ObjCObjectPointer:
2081     return Cache::get(cast<ObjCObjectPointerType>(T)->getPointeeType());
2082   case Type::Atomic:
2083     return Cache::get(cast<AtomicType>(T)->getValueType());
2084   }
2085
2086   llvm_unreachable("unhandled type class");
2087 }
2088
2089 /// \brief Determine the linkage of this type.
2090 Linkage Type::getLinkage() const {
2091   Cache::ensure(this);
2092   return TypeBits.getLinkage();
2093 }
2094
2095 /// \brief Determine the linkage of this type.
2096 Visibility Type::getVisibility() const {
2097   Cache::ensure(this);
2098   return TypeBits.getVisibility();
2099 }
2100
2101 bool Type::isVisibilityExplicit() const {
2102   Cache::ensure(this);
2103   return TypeBits.isVisibilityExplicit();
2104 }
2105
2106 bool Type::hasUnnamedOrLocalType() const {
2107   Cache::ensure(this);
2108   return TypeBits.hasLocalOrUnnamedType();
2109 }
2110
2111 std::pair<Linkage,Visibility> Type::getLinkageAndVisibility() const {
2112   Cache::ensure(this);
2113   return std::make_pair(TypeBits.getLinkage(), TypeBits.getVisibility());
2114 }
2115
2116 void Type::ClearLinkageCache() {
2117   TypeBits.CacheValidAndVisibility = 0;
2118   if (QualType(this, 0) != CanonicalType)
2119     CanonicalType->TypeBits.CacheValidAndVisibility = 0;
2120 }
2121
2122 Qualifiers::ObjCLifetime Type::getObjCARCImplicitLifetime() const {
2123   if (isObjCARCImplicitlyUnretainedType())
2124     return Qualifiers::OCL_ExplicitNone;
2125   return Qualifiers::OCL_Strong;
2126 }
2127
2128 bool Type::isObjCARCImplicitlyUnretainedType() const {
2129   assert(isObjCLifetimeType() &&
2130          "cannot query implicit lifetime for non-inferrable type");
2131
2132   const Type *canon = getCanonicalTypeInternal().getTypePtr();
2133
2134   // Walk down to the base type.  We don't care about qualifiers for this.
2135   while (const ArrayType *array = dyn_cast<ArrayType>(canon))
2136     canon = array->getElementType().getTypePtr();
2137
2138   if (const ObjCObjectPointerType *opt
2139         = dyn_cast<ObjCObjectPointerType>(canon)) {
2140     // Class and Class<Protocol> don't require retension.
2141     if (opt->getObjectType()->isObjCClass())
2142       return true;
2143   }
2144
2145   return false;
2146 }
2147
2148 bool Type::isObjCNSObjectType() const {
2149   if (const TypedefType *typedefType = dyn_cast<TypedefType>(this))
2150     return typedefType->getDecl()->hasAttr<ObjCNSObjectAttr>();
2151   return false;
2152 }
2153 bool Type::isObjCRetainableType() const {
2154   return isObjCObjectPointerType() ||
2155          isBlockPointerType() ||
2156          isObjCNSObjectType();
2157 }
2158 bool Type::isObjCIndirectLifetimeType() const {
2159   if (isObjCLifetimeType())
2160     return true;
2161   if (const PointerType *OPT = getAs<PointerType>())
2162     return OPT->getPointeeType()->isObjCIndirectLifetimeType();
2163   if (const ReferenceType *Ref = getAs<ReferenceType>())
2164     return Ref->getPointeeType()->isObjCIndirectLifetimeType();
2165   if (const MemberPointerType *MemPtr = getAs<MemberPointerType>())
2166     return MemPtr->getPointeeType()->isObjCIndirectLifetimeType();
2167   return false;
2168 }
2169
2170 /// Returns true if objects of this type have lifetime semantics under
2171 /// ARC.
2172 bool Type::isObjCLifetimeType() const {
2173   const Type *type = this;
2174   while (const ArrayType *array = type->getAsArrayTypeUnsafe())
2175     type = array->getElementType().getTypePtr();
2176   return type->isObjCRetainableType();
2177 }
2178
2179 /// \brief Determine whether the given type T is a "bridgable" Objective-C type,
2180 /// which is either an Objective-C object pointer type or an 
2181 bool Type::isObjCARCBridgableType() const {
2182   return isObjCObjectPointerType() || isBlockPointerType();
2183 }
2184
2185 /// \brief Determine whether the given type T is a "bridgeable" C type.
2186 bool Type::isCARCBridgableType() const {
2187   const PointerType *Pointer = getAs<PointerType>();
2188   if (!Pointer)
2189     return false;
2190   
2191   QualType Pointee = Pointer->getPointeeType();
2192   return Pointee->isVoidType() || Pointee->isRecordType();
2193 }
2194
2195 bool Type::hasSizedVLAType() const {
2196   if (!isVariablyModifiedType()) return false;
2197
2198   if (const PointerType *ptr = getAs<PointerType>())
2199     return ptr->getPointeeType()->hasSizedVLAType();
2200   if (const ReferenceType *ref = getAs<ReferenceType>())
2201     return ref->getPointeeType()->hasSizedVLAType();
2202   if (const ArrayType *arr = getAsArrayTypeUnsafe()) {
2203     if (isa<VariableArrayType>(arr) && 
2204         cast<VariableArrayType>(arr)->getSizeExpr())
2205       return true;
2206
2207     return arr->getElementType()->hasSizedVLAType();
2208   }
2209
2210   return false;
2211 }
2212
2213 QualType::DestructionKind QualType::isDestructedTypeImpl(QualType type) {
2214   switch (type.getObjCLifetime()) {
2215   case Qualifiers::OCL_None:
2216   case Qualifiers::OCL_ExplicitNone:
2217   case Qualifiers::OCL_Autoreleasing:
2218     break;
2219
2220   case Qualifiers::OCL_Strong:
2221     return DK_objc_strong_lifetime;
2222   case Qualifiers::OCL_Weak:
2223     return DK_objc_weak_lifetime;
2224   }
2225
2226   /// Currently, the only destruction kind we recognize is C++ objects
2227   /// with non-trivial destructors.
2228   const CXXRecordDecl *record =
2229     type->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
2230   if (record && record->hasDefinition() && !record->hasTrivialDestructor())
2231     return DK_cxx_destructor;
2232
2233   return DK_none;
2234 }
2235
2236 bool QualType::hasTrivialAssignment(ASTContext &Context, bool Copying) const {
2237   switch (getObjCLifetime()) {
2238   case Qualifiers::OCL_None:
2239     break;
2240       
2241   case Qualifiers::OCL_ExplicitNone:
2242     return true;
2243       
2244   case Qualifiers::OCL_Autoreleasing:
2245   case Qualifiers::OCL_Strong:
2246   case Qualifiers::OCL_Weak:
2247     return !Context.getLangOpts().ObjCAutoRefCount;
2248   }
2249   
2250   if (const CXXRecordDecl *Record 
2251             = getTypePtr()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl())
2252     return Copying ? Record->hasTrivialCopyAssignment() :
2253                      Record->hasTrivialMoveAssignment();
2254   
2255   return true;
2256 }