]> CyberLeo.Net >> Repos - FreeBSD/releng/9.1.git/blob - sys/geom/raid/tr_raid1.c
MFC r240465:
[FreeBSD/releng/9.1.git] / sys / geom / raid / tr_raid1.c
1 /*-
2  * Copyright (c) 2010 Alexander Motin <mav@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29
30 #include <sys/param.h>
31 #include <sys/bio.h>
32 #include <sys/endian.h>
33 #include <sys/kernel.h>
34 #include <sys/kobj.h>
35 #include <sys/limits.h>
36 #include <sys/lock.h>
37 #include <sys/malloc.h>
38 #include <sys/mutex.h>
39 #include <sys/sysctl.h>
40 #include <sys/systm.h>
41 #include <geom/geom.h>
42 #include "geom/raid/g_raid.h"
43 #include "g_raid_tr_if.h"
44
45 SYSCTL_DECL(_kern_geom_raid_raid1);
46
47 #define RAID1_REBUILD_SLAB      (1 << 20) /* One transation in a rebuild */
48 static int g_raid1_rebuild_slab = RAID1_REBUILD_SLAB;
49 TUNABLE_INT("kern.geom.raid.raid1.rebuild_slab_size",
50     &g_raid1_rebuild_slab);
51 SYSCTL_UINT(_kern_geom_raid_raid1, OID_AUTO, rebuild_slab_size, CTLFLAG_RW,
52     &g_raid1_rebuild_slab, 0,
53     "Amount of the disk to rebuild each read/write cycle of the rebuild.");
54
55 #define RAID1_REBUILD_FAIR_IO 20 /* use 1/x of the available I/O */
56 static int g_raid1_rebuild_fair_io = RAID1_REBUILD_FAIR_IO;
57 TUNABLE_INT("kern.geom.raid.raid1.rebuild_fair_io",
58     &g_raid1_rebuild_fair_io);
59 SYSCTL_UINT(_kern_geom_raid_raid1, OID_AUTO, rebuild_fair_io, CTLFLAG_RW,
60     &g_raid1_rebuild_fair_io, 0,
61     "Fraction of the I/O bandwidth to use when disk busy for rebuild.");
62
63 #define RAID1_REBUILD_CLUSTER_IDLE 100
64 static int g_raid1_rebuild_cluster_idle = RAID1_REBUILD_CLUSTER_IDLE;
65 TUNABLE_INT("kern.geom.raid.raid1.rebuild_cluster_idle",
66     &g_raid1_rebuild_cluster_idle);
67 SYSCTL_UINT(_kern_geom_raid_raid1, OID_AUTO, rebuild_cluster_idle, CTLFLAG_RW,
68     &g_raid1_rebuild_cluster_idle, 0,
69     "Number of slabs to do each time we trigger a rebuild cycle");
70
71 #define RAID1_REBUILD_META_UPDATE 1024 /* update meta data every 1GB or so */
72 static int g_raid1_rebuild_meta_update = RAID1_REBUILD_META_UPDATE;
73 TUNABLE_INT("kern.geom.raid.raid1.rebuild_meta_update",
74     &g_raid1_rebuild_meta_update);
75 SYSCTL_UINT(_kern_geom_raid_raid1, OID_AUTO, rebuild_meta_update, CTLFLAG_RW,
76     &g_raid1_rebuild_meta_update, 0,
77     "When to update the meta data.");
78
79 static MALLOC_DEFINE(M_TR_RAID1, "tr_raid1_data", "GEOM_RAID RAID1 data");
80
81 #define TR_RAID1_NONE 0
82 #define TR_RAID1_REBUILD 1
83 #define TR_RAID1_RESYNC 2
84
85 #define TR_RAID1_F_DOING_SOME   0x1
86 #define TR_RAID1_F_LOCKED       0x2
87 #define TR_RAID1_F_ABORT        0x4
88
89 struct g_raid_tr_raid1_object {
90         struct g_raid_tr_object  trso_base;
91         int                      trso_starting;
92         int                      trso_stopping;
93         int                      trso_type;
94         int                      trso_recover_slabs; /* slabs before rest */
95         int                      trso_fair_io;
96         int                      trso_meta_update;
97         int                      trso_flags;
98         struct g_raid_subdisk   *trso_failed_sd; /* like per volume */
99         void                    *trso_buffer;    /* Buffer space */
100         struct bio               trso_bio;
101 };
102
103 static g_raid_tr_taste_t g_raid_tr_taste_raid1;
104 static g_raid_tr_event_t g_raid_tr_event_raid1;
105 static g_raid_tr_start_t g_raid_tr_start_raid1;
106 static g_raid_tr_stop_t g_raid_tr_stop_raid1;
107 static g_raid_tr_iostart_t g_raid_tr_iostart_raid1;
108 static g_raid_tr_iodone_t g_raid_tr_iodone_raid1;
109 static g_raid_tr_kerneldump_t g_raid_tr_kerneldump_raid1;
110 static g_raid_tr_locked_t g_raid_tr_locked_raid1;
111 static g_raid_tr_idle_t g_raid_tr_idle_raid1;
112 static g_raid_tr_free_t g_raid_tr_free_raid1;
113
114 static kobj_method_t g_raid_tr_raid1_methods[] = {
115         KOBJMETHOD(g_raid_tr_taste,     g_raid_tr_taste_raid1),
116         KOBJMETHOD(g_raid_tr_event,     g_raid_tr_event_raid1),
117         KOBJMETHOD(g_raid_tr_start,     g_raid_tr_start_raid1),
118         KOBJMETHOD(g_raid_tr_stop,      g_raid_tr_stop_raid1),
119         KOBJMETHOD(g_raid_tr_iostart,   g_raid_tr_iostart_raid1),
120         KOBJMETHOD(g_raid_tr_iodone,    g_raid_tr_iodone_raid1),
121         KOBJMETHOD(g_raid_tr_kerneldump, g_raid_tr_kerneldump_raid1),
122         KOBJMETHOD(g_raid_tr_locked,    g_raid_tr_locked_raid1),
123         KOBJMETHOD(g_raid_tr_idle,      g_raid_tr_idle_raid1),
124         KOBJMETHOD(g_raid_tr_free,      g_raid_tr_free_raid1),
125         { 0, 0 }
126 };
127
128 static struct g_raid_tr_class g_raid_tr_raid1_class = {
129         "RAID1",
130         g_raid_tr_raid1_methods,
131         sizeof(struct g_raid_tr_raid1_object),
132         .trc_enable = 1,
133         .trc_priority = 100
134 };
135
136 static void g_raid_tr_raid1_rebuild_abort(struct g_raid_tr_object *tr);
137 static void g_raid_tr_raid1_maybe_rebuild(struct g_raid_tr_object *tr,
138     struct g_raid_subdisk *sd);
139
140 static int
141 g_raid_tr_taste_raid1(struct g_raid_tr_object *tr, struct g_raid_volume *vol)
142 {
143         struct g_raid_tr_raid1_object *trs;
144
145         trs = (struct g_raid_tr_raid1_object *)tr;
146         if (tr->tro_volume->v_raid_level != G_RAID_VOLUME_RL_RAID1 ||
147             (tr->tro_volume->v_raid_level_qualifier != G_RAID_VOLUME_RLQ_R1SM &&
148              tr->tro_volume->v_raid_level_qualifier != G_RAID_VOLUME_RLQ_R1MM))
149                 return (G_RAID_TR_TASTE_FAIL);
150         trs->trso_starting = 1;
151         return (G_RAID_TR_TASTE_SUCCEED);
152 }
153
154 static int
155 g_raid_tr_update_state_raid1(struct g_raid_volume *vol,
156     struct g_raid_subdisk *sd)
157 {
158         struct g_raid_tr_raid1_object *trs;
159         struct g_raid_softc *sc;
160         struct g_raid_subdisk *tsd, *bestsd;
161         u_int s;
162         int i, na, ns;
163
164         sc = vol->v_softc;
165         trs = (struct g_raid_tr_raid1_object *)vol->v_tr;
166         if (trs->trso_stopping &&
167             (trs->trso_flags & TR_RAID1_F_DOING_SOME) == 0)
168                 s = G_RAID_VOLUME_S_STOPPED;
169         else if (trs->trso_starting)
170                 s = G_RAID_VOLUME_S_STARTING;
171         else {
172                 /* Make sure we have at least one ACTIVE disk. */
173                 na = g_raid_nsubdisks(vol, G_RAID_SUBDISK_S_ACTIVE);
174                 if (na == 0) {
175                         /*
176                          * Critical situation! We have no any active disk!
177                          * Choose the best disk we have to make it active.
178                          */
179                         bestsd = &vol->v_subdisks[0];
180                         for (i = 1; i < vol->v_disks_count; i++) {
181                                 tsd = &vol->v_subdisks[i];
182                                 if (tsd->sd_state > bestsd->sd_state)
183                                         bestsd = tsd;
184                                 else if (tsd->sd_state == bestsd->sd_state &&
185                                     (tsd->sd_state == G_RAID_SUBDISK_S_REBUILD ||
186                                      tsd->sd_state == G_RAID_SUBDISK_S_RESYNC) &&
187                                     tsd->sd_rebuild_pos > bestsd->sd_rebuild_pos)
188                                         bestsd = tsd;
189                         }
190                         if (bestsd->sd_state >= G_RAID_SUBDISK_S_UNINITIALIZED) {
191                                 /* We found reasonable candidate. */
192                                 G_RAID_DEBUG1(1, sc,
193                                     "Promote subdisk %s:%d from %s to ACTIVE.",
194                                     vol->v_name, bestsd->sd_pos,
195                                     g_raid_subdisk_state2str(bestsd->sd_state));
196                                 g_raid_change_subdisk_state(bestsd,
197                                     G_RAID_SUBDISK_S_ACTIVE);
198                                 g_raid_write_metadata(sc,
199                                     vol, bestsd, bestsd->sd_disk);
200                         }
201                 }
202                 na = g_raid_nsubdisks(vol, G_RAID_SUBDISK_S_ACTIVE);
203                 ns = g_raid_nsubdisks(vol, G_RAID_SUBDISK_S_STALE) +
204                      g_raid_nsubdisks(vol, G_RAID_SUBDISK_S_RESYNC);
205                 if (na == vol->v_disks_count)
206                         s = G_RAID_VOLUME_S_OPTIMAL;
207                 else if (na + ns == vol->v_disks_count)
208                         s = G_RAID_VOLUME_S_SUBOPTIMAL;
209                 else if (na > 0)
210                         s = G_RAID_VOLUME_S_DEGRADED;
211                 else
212                         s = G_RAID_VOLUME_S_BROKEN;
213                 g_raid_tr_raid1_maybe_rebuild(vol->v_tr, sd);
214         }
215         if (s != vol->v_state) {
216                 g_raid_event_send(vol, G_RAID_VOLUME_S_ALIVE(s) ?
217                     G_RAID_VOLUME_E_UP : G_RAID_VOLUME_E_DOWN,
218                     G_RAID_EVENT_VOLUME);
219                 g_raid_change_volume_state(vol, s);
220                 if (!trs->trso_starting && !trs->trso_stopping)
221                         g_raid_write_metadata(sc, vol, NULL, NULL);
222         }
223         return (0);
224 }
225
226 static void
227 g_raid_tr_raid1_fail_disk(struct g_raid_softc *sc, struct g_raid_subdisk *sd,
228     struct g_raid_disk *disk)
229 {
230         /*
231          * We don't fail the last disk in the pack, since it still has decent
232          * data on it and that's better than failing the disk if it is the root
233          * file system.
234          *
235          * XXX should this be controlled via a tunable?  It makes sense for
236          * the volume that has / on it.  I can't think of a case where we'd
237          * want the volume to go away on this kind of event.
238          */
239         if (g_raid_nsubdisks(sd->sd_volume, G_RAID_SUBDISK_S_ACTIVE) == 1 &&
240             g_raid_get_subdisk(sd->sd_volume, G_RAID_SUBDISK_S_ACTIVE) == sd)
241                 return;
242         g_raid_fail_disk(sc, sd, disk);
243 }
244
245 static void
246 g_raid_tr_raid1_rebuild_some(struct g_raid_tr_object *tr)
247 {
248         struct g_raid_tr_raid1_object *trs;
249         struct g_raid_subdisk *sd, *good_sd;
250         struct bio *bp;
251
252         trs = (struct g_raid_tr_raid1_object *)tr;
253         if (trs->trso_flags & TR_RAID1_F_DOING_SOME)
254                 return;
255         sd = trs->trso_failed_sd;
256         good_sd = g_raid_get_subdisk(sd->sd_volume, G_RAID_SUBDISK_S_ACTIVE);
257         if (good_sd == NULL) {
258                 g_raid_tr_raid1_rebuild_abort(tr);
259                 return;
260         }
261         bp = &trs->trso_bio;
262         memset(bp, 0, sizeof(*bp));
263         bp->bio_offset = sd->sd_rebuild_pos;
264         bp->bio_length = MIN(g_raid1_rebuild_slab,
265             sd->sd_size - sd->sd_rebuild_pos);
266         bp->bio_data = trs->trso_buffer;
267         bp->bio_cmd = BIO_READ;
268         bp->bio_cflags = G_RAID_BIO_FLAG_SYNC;
269         bp->bio_caller1 = good_sd;
270         trs->trso_flags |= TR_RAID1_F_DOING_SOME;
271         trs->trso_flags |= TR_RAID1_F_LOCKED;
272         g_raid_lock_range(sd->sd_volume,        /* Lock callback starts I/O */
273            bp->bio_offset, bp->bio_length, NULL, bp);
274 }
275
276 static void
277 g_raid_tr_raid1_rebuild_done(struct g_raid_tr_raid1_object *trs)
278 {
279         struct g_raid_volume *vol;
280         struct g_raid_subdisk *sd;
281
282         vol = trs->trso_base.tro_volume;
283         sd = trs->trso_failed_sd;
284         g_raid_write_metadata(vol->v_softc, vol, sd, sd->sd_disk);
285         free(trs->trso_buffer, M_TR_RAID1);
286         trs->trso_buffer = NULL;
287         trs->trso_flags &= ~TR_RAID1_F_DOING_SOME;
288         trs->trso_type = TR_RAID1_NONE;
289         trs->trso_recover_slabs = 0;
290         trs->trso_failed_sd = NULL;
291         g_raid_tr_update_state_raid1(vol, NULL);
292 }
293
294 static void
295 g_raid_tr_raid1_rebuild_finish(struct g_raid_tr_object *tr)
296 {
297         struct g_raid_tr_raid1_object *trs;
298         struct g_raid_subdisk *sd;
299
300         trs = (struct g_raid_tr_raid1_object *)tr;
301         sd = trs->trso_failed_sd;
302         G_RAID_DEBUG1(0, tr->tro_volume->v_softc,
303             "Subdisk %s:%d-%s rebuild completed.",
304             sd->sd_volume->v_name, sd->sd_pos,
305             sd->sd_disk ? g_raid_get_diskname(sd->sd_disk) : "[none]");
306         g_raid_change_subdisk_state(sd, G_RAID_SUBDISK_S_ACTIVE);
307         sd->sd_rebuild_pos = 0;
308         g_raid_tr_raid1_rebuild_done(trs);
309 }
310
311 static void
312 g_raid_tr_raid1_rebuild_abort(struct g_raid_tr_object *tr)
313 {
314         struct g_raid_tr_raid1_object *trs;
315         struct g_raid_subdisk *sd;
316         struct g_raid_volume *vol;
317         off_t len;
318
319         vol = tr->tro_volume;
320         trs = (struct g_raid_tr_raid1_object *)tr;
321         sd = trs->trso_failed_sd;
322         if (trs->trso_flags & TR_RAID1_F_DOING_SOME) {
323                 G_RAID_DEBUG1(1, vol->v_softc,
324                     "Subdisk %s:%d-%s rebuild is aborting.",
325                     sd->sd_volume->v_name, sd->sd_pos,
326                     sd->sd_disk ? g_raid_get_diskname(sd->sd_disk) : "[none]");
327                 trs->trso_flags |= TR_RAID1_F_ABORT;
328         } else {
329                 G_RAID_DEBUG1(0, vol->v_softc,
330                     "Subdisk %s:%d-%s rebuild aborted.",
331                     sd->sd_volume->v_name, sd->sd_pos,
332                     sd->sd_disk ? g_raid_get_diskname(sd->sd_disk) : "[none]");
333                 trs->trso_flags &= ~TR_RAID1_F_ABORT;
334                 if (trs->trso_flags & TR_RAID1_F_LOCKED) {
335                         trs->trso_flags &= ~TR_RAID1_F_LOCKED;
336                         len = MIN(g_raid1_rebuild_slab,
337                             sd->sd_size - sd->sd_rebuild_pos);
338                         g_raid_unlock_range(tr->tro_volume,
339                             sd->sd_rebuild_pos, len);
340                 }
341                 g_raid_tr_raid1_rebuild_done(trs);
342         }
343 }
344
345 static void
346 g_raid_tr_raid1_rebuild_start(struct g_raid_tr_object *tr)
347 {
348         struct g_raid_volume *vol;
349         struct g_raid_tr_raid1_object *trs;
350         struct g_raid_subdisk *sd, *fsd;
351
352         vol = tr->tro_volume;
353         trs = (struct g_raid_tr_raid1_object *)tr;
354         if (trs->trso_failed_sd) {
355                 G_RAID_DEBUG1(1, vol->v_softc,
356                     "Already rebuild in start rebuild. pos %jd\n",
357                     (intmax_t)trs->trso_failed_sd->sd_rebuild_pos);
358                 return;
359         }
360         sd = g_raid_get_subdisk(vol, G_RAID_SUBDISK_S_ACTIVE);
361         if (sd == NULL) {
362                 G_RAID_DEBUG1(1, vol->v_softc,
363                     "No active disk to rebuild.  night night.");
364                 return;
365         }
366         fsd = g_raid_get_subdisk(vol, G_RAID_SUBDISK_S_RESYNC);
367         if (fsd == NULL)
368                 fsd = g_raid_get_subdisk(vol, G_RAID_SUBDISK_S_REBUILD);
369         if (fsd == NULL) {
370                 fsd = g_raid_get_subdisk(vol, G_RAID_SUBDISK_S_STALE);
371                 if (fsd != NULL) {
372                         fsd->sd_rebuild_pos = 0;
373                         g_raid_change_subdisk_state(fsd,
374                             G_RAID_SUBDISK_S_RESYNC);
375                         g_raid_write_metadata(vol->v_softc, vol, fsd, NULL);
376                 } else {
377                         fsd = g_raid_get_subdisk(vol,
378                             G_RAID_SUBDISK_S_UNINITIALIZED);
379                         if (fsd == NULL)
380                                 fsd = g_raid_get_subdisk(vol,
381                                     G_RAID_SUBDISK_S_NEW);
382                         if (fsd != NULL) {
383                                 fsd->sd_rebuild_pos = 0;
384                                 g_raid_change_subdisk_state(fsd,
385                                     G_RAID_SUBDISK_S_REBUILD);
386                                 g_raid_write_metadata(vol->v_softc,
387                                     vol, fsd, NULL);
388                         }
389                 }
390         }
391         if (fsd == NULL) {
392                 G_RAID_DEBUG1(1, vol->v_softc,
393                     "No failed disk to rebuild.  night night.");
394                 return;
395         }
396         trs->trso_failed_sd = fsd;
397         G_RAID_DEBUG1(0, vol->v_softc,
398             "Subdisk %s:%d-%s rebuild start at %jd.",
399             fsd->sd_volume->v_name, fsd->sd_pos,
400             fsd->sd_disk ? g_raid_get_diskname(fsd->sd_disk) : "[none]",
401             trs->trso_failed_sd->sd_rebuild_pos);
402         trs->trso_type = TR_RAID1_REBUILD;
403         trs->trso_buffer = malloc(g_raid1_rebuild_slab, M_TR_RAID1, M_WAITOK);
404         trs->trso_meta_update = g_raid1_rebuild_meta_update;
405         g_raid_tr_raid1_rebuild_some(tr);
406 }
407
408
409 static void
410 g_raid_tr_raid1_maybe_rebuild(struct g_raid_tr_object *tr,
411     struct g_raid_subdisk *sd)
412 {
413         struct g_raid_volume *vol;
414         struct g_raid_tr_raid1_object *trs;
415         int na, nr;
416         
417         /*
418          * If we're stopping, don't do anything.  If we don't have at least one
419          * good disk and one bad disk, we don't do anything.  And if there's a
420          * 'good disk' stored in the trs, then we're in progress and we punt.
421          * If we make it past all these checks, we need to rebuild.
422          */
423         vol = tr->tro_volume;
424         trs = (struct g_raid_tr_raid1_object *)tr;
425         if (trs->trso_stopping)
426                 return;
427         na = g_raid_nsubdisks(vol, G_RAID_SUBDISK_S_ACTIVE);
428         nr = g_raid_nsubdisks(vol, G_RAID_SUBDISK_S_REBUILD) +
429             g_raid_nsubdisks(vol, G_RAID_SUBDISK_S_RESYNC);
430         switch(trs->trso_type) {
431         case TR_RAID1_NONE:
432                 if (na == 0)
433                         return;
434                 if (nr == 0) {
435                         nr = g_raid_nsubdisks(vol, G_RAID_SUBDISK_S_NEW) +
436                             g_raid_nsubdisks(vol, G_RAID_SUBDISK_S_STALE) +
437                             g_raid_nsubdisks(vol, G_RAID_SUBDISK_S_UNINITIALIZED);
438                         if (nr == 0)
439                                 return;
440                 }
441                 g_raid_tr_raid1_rebuild_start(tr);
442                 break;
443         case TR_RAID1_REBUILD:
444                 if (na == 0 || nr == 0 || trs->trso_failed_sd == sd)
445                         g_raid_tr_raid1_rebuild_abort(tr);
446                 break;
447         case TR_RAID1_RESYNC:
448                 break;
449         }
450 }
451
452 static int
453 g_raid_tr_event_raid1(struct g_raid_tr_object *tr,
454     struct g_raid_subdisk *sd, u_int event)
455 {
456
457         g_raid_tr_update_state_raid1(tr->tro_volume, sd);
458         return (0);
459 }
460
461 static int
462 g_raid_tr_start_raid1(struct g_raid_tr_object *tr)
463 {
464         struct g_raid_tr_raid1_object *trs;
465         struct g_raid_volume *vol;
466
467         trs = (struct g_raid_tr_raid1_object *)tr;
468         vol = tr->tro_volume;
469         trs->trso_starting = 0;
470         g_raid_tr_update_state_raid1(vol, NULL);
471         return (0);
472 }
473
474 static int
475 g_raid_tr_stop_raid1(struct g_raid_tr_object *tr)
476 {
477         struct g_raid_tr_raid1_object *trs;
478         struct g_raid_volume *vol;
479
480         trs = (struct g_raid_tr_raid1_object *)tr;
481         vol = tr->tro_volume;
482         trs->trso_starting = 0;
483         trs->trso_stopping = 1;
484         g_raid_tr_update_state_raid1(vol, NULL);
485         return (0);
486 }
487
488 /*
489  * Select the disk to read from.  Take into account: subdisk state, running
490  * error recovery, average disk load, head position and possible cache hits.
491  */
492 #define ABS(x)          (((x) >= 0) ? (x) : (-(x)))
493 static struct g_raid_subdisk *
494 g_raid_tr_raid1_select_read_disk(struct g_raid_volume *vol, struct bio *bp,
495     u_int mask)
496 {
497         struct g_raid_subdisk *sd, *best;
498         int i, prio, bestprio;
499
500         best = NULL;
501         bestprio = INT_MAX;
502         for (i = 0; i < vol->v_disks_count; i++) {
503                 sd = &vol->v_subdisks[i];
504                 if (sd->sd_state != G_RAID_SUBDISK_S_ACTIVE &&
505                     ((sd->sd_state != G_RAID_SUBDISK_S_REBUILD &&
506                       sd->sd_state != G_RAID_SUBDISK_S_RESYNC) ||
507                      bp->bio_offset + bp->bio_length > sd->sd_rebuild_pos))
508                         continue;
509                 if ((mask & (1 << i)) != 0)
510                         continue;
511                 prio = G_RAID_SUBDISK_LOAD(sd);
512                 prio += min(sd->sd_recovery, 255) << 22;
513                 prio += (G_RAID_SUBDISK_S_ACTIVE - sd->sd_state) << 16;
514                 /* If disk head is precisely in position - highly prefer it. */
515                 if (G_RAID_SUBDISK_POS(sd) == bp->bio_offset)
516                         prio -= 2 * G_RAID_SUBDISK_LOAD_SCALE;
517                 else
518                 /* If disk head is close to position - prefer it. */
519                 if (ABS(G_RAID_SUBDISK_POS(sd) - bp->bio_offset) <
520                     G_RAID_SUBDISK_TRACK_SIZE)
521                         prio -= 1 * G_RAID_SUBDISK_LOAD_SCALE;
522                 if (prio < bestprio) {
523                         best = sd;
524                         bestprio = prio;
525                 }
526         }
527         return (best);
528 }
529
530 static void
531 g_raid_tr_iostart_raid1_read(struct g_raid_tr_object *tr, struct bio *bp)
532 {
533         struct g_raid_subdisk *sd;
534         struct bio *cbp;
535
536         sd = g_raid_tr_raid1_select_read_disk(tr->tro_volume, bp, 0);
537         KASSERT(sd != NULL, ("No active disks in volume %s.",
538                 tr->tro_volume->v_name));
539
540         cbp = g_clone_bio(bp);
541         if (cbp == NULL) {
542                 g_raid_iodone(bp, ENOMEM);
543                 return;
544         }
545
546         g_raid_subdisk_iostart(sd, cbp);
547 }
548
549 static void
550 g_raid_tr_iostart_raid1_write(struct g_raid_tr_object *tr, struct bio *bp)
551 {
552         struct g_raid_volume *vol;
553         struct g_raid_subdisk *sd;
554         struct bio_queue_head queue;
555         struct bio *cbp;
556         int i;
557
558         vol = tr->tro_volume;
559
560         /*
561          * Allocate all bios before sending any request, so we can return
562          * ENOMEM in nice and clean way.
563          */
564         bioq_init(&queue);
565         for (i = 0; i < vol->v_disks_count; i++) {
566                 sd = &vol->v_subdisks[i];
567                 switch (sd->sd_state) {
568                 case G_RAID_SUBDISK_S_ACTIVE:
569                         break;
570                 case G_RAID_SUBDISK_S_REBUILD:
571                         /*
572                          * When rebuilding, only part of this subdisk is
573                          * writable, the rest will be written as part of the
574                          * that process.
575                          */
576                         if (bp->bio_offset >= sd->sd_rebuild_pos)
577                                 continue;
578                         break;
579                 case G_RAID_SUBDISK_S_STALE:
580                 case G_RAID_SUBDISK_S_RESYNC:
581                         /*
582                          * Resyncing still writes on the theory that the
583                          * resync'd disk is very close and writing it will
584                          * keep it that way better if we keep up while
585                          * resyncing.
586                          */
587                         break;
588                 default:
589                         continue;
590                 }
591                 cbp = g_clone_bio(bp);
592                 if (cbp == NULL)
593                         goto failure;
594                 cbp->bio_caller1 = sd;
595                 bioq_insert_tail(&queue, cbp);
596         }
597         for (cbp = bioq_first(&queue); cbp != NULL;
598             cbp = bioq_first(&queue)) {
599                 bioq_remove(&queue, cbp);
600                 sd = cbp->bio_caller1;
601                 cbp->bio_caller1 = NULL;
602                 g_raid_subdisk_iostart(sd, cbp);
603         }
604         return;
605 failure:
606         for (cbp = bioq_first(&queue); cbp != NULL;
607             cbp = bioq_first(&queue)) {
608                 bioq_remove(&queue, cbp);
609                 g_destroy_bio(cbp);
610         }
611         if (bp->bio_error == 0)
612                 bp->bio_error = ENOMEM;
613         g_raid_iodone(bp, bp->bio_error);
614 }
615
616 static void
617 g_raid_tr_iostart_raid1(struct g_raid_tr_object *tr, struct bio *bp)
618 {
619         struct g_raid_volume *vol;
620         struct g_raid_tr_raid1_object *trs;
621
622         vol = tr->tro_volume;
623         trs = (struct g_raid_tr_raid1_object *)tr;
624         if (vol->v_state != G_RAID_VOLUME_S_OPTIMAL &&
625             vol->v_state != G_RAID_VOLUME_S_SUBOPTIMAL &&
626             vol->v_state != G_RAID_VOLUME_S_DEGRADED) {
627                 g_raid_iodone(bp, EIO);
628                 return;
629         }
630         /*
631          * If we're rebuilding, squeeze in rebuild activity every so often,
632          * even when the disk is busy.  Be sure to only count real I/O
633          * to the disk.  All 'SPECIAL' I/O is traffic generated to the disk
634          * by this module.
635          */
636         if (trs->trso_failed_sd != NULL &&
637             !(bp->bio_cflags & G_RAID_BIO_FLAG_SPECIAL)) {
638                 /* Make this new or running now round short. */
639                 trs->trso_recover_slabs = 0;
640                 if (--trs->trso_fair_io <= 0) {
641                         trs->trso_fair_io = g_raid1_rebuild_fair_io;
642                         g_raid_tr_raid1_rebuild_some(tr);
643                 }
644         }
645         switch (bp->bio_cmd) {
646         case BIO_READ:
647                 g_raid_tr_iostart_raid1_read(tr, bp);
648                 break;
649         case BIO_WRITE:
650                 g_raid_tr_iostart_raid1_write(tr, bp);
651                 break;
652         case BIO_DELETE:
653                 g_raid_iodone(bp, EIO);
654                 break;
655         case BIO_FLUSH:
656                 g_raid_tr_flush_common(tr, bp);
657                 break;
658         default:
659                 KASSERT(1 == 0, ("Invalid command here: %u (volume=%s)",
660                     bp->bio_cmd, vol->v_name));
661                 break;
662         }
663 }
664
665 static void
666 g_raid_tr_iodone_raid1(struct g_raid_tr_object *tr,
667     struct g_raid_subdisk *sd, struct bio *bp)
668 {
669         struct bio *cbp;
670         struct g_raid_subdisk *nsd;
671         struct g_raid_volume *vol;
672         struct bio *pbp;
673         struct g_raid_tr_raid1_object *trs;
674         uintptr_t *mask;
675         int error, do_write;
676
677         trs = (struct g_raid_tr_raid1_object *)tr;
678         vol = tr->tro_volume;
679         if (bp->bio_cflags & G_RAID_BIO_FLAG_SYNC) {
680                 /*
681                  * This operation is part of a rebuild or resync operation.
682                  * See what work just got done, then schedule the next bit of
683                  * work, if any.  Rebuild/resync is done a little bit at a
684                  * time.  Either when a timeout happens, or after we get a
685                  * bunch of I/Os to the disk (to make sure an active system
686                  * will complete in a sane amount of time).
687                  *
688                  * We are setup to do differing amounts of work for each of
689                  * these cases.  so long as the slabs is smallish (less than
690                  * 50 or so, I'd guess, but that's just a WAG), we shouldn't
691                  * have any bio starvation issues.  For active disks, we do
692                  * 5MB of data, for inactive ones, we do 50MB.
693                  */
694                 if (trs->trso_type == TR_RAID1_REBUILD) {
695                         if (bp->bio_cmd == BIO_READ) {
696
697                                 /* Immediately abort rebuild, if requested. */
698                                 if (trs->trso_flags & TR_RAID1_F_ABORT) {
699                                         trs->trso_flags &= ~TR_RAID1_F_DOING_SOME;
700                                         g_raid_tr_raid1_rebuild_abort(tr);
701                                         return;
702                                 }
703
704                                 /* On read error, skip and cross fingers. */
705                                 if (bp->bio_error != 0) {
706                                         G_RAID_LOGREQ(0, bp,
707                                             "Read error during rebuild (%d), "
708                                             "possible data loss!",
709                                             bp->bio_error);
710                                         goto rebuild_round_done;
711                                 }
712
713                                 /*
714                                  * The read operation finished, queue the
715                                  * write and get out.
716                                  */
717                                 G_RAID_LOGREQ(4, bp, "rebuild read done. %d",
718                                     bp->bio_error);
719                                 bp->bio_cmd = BIO_WRITE;
720                                 bp->bio_cflags = G_RAID_BIO_FLAG_SYNC;
721                                 G_RAID_LOGREQ(4, bp, "Queueing rebuild write.");
722                                 g_raid_subdisk_iostart(trs->trso_failed_sd, bp);
723                         } else {
724                                 /*
725                                  * The write operation just finished.  Do
726                                  * another.  We keep cloning the master bio
727                                  * since it has the right buffers allocated to
728                                  * it.
729                                  */
730                                 G_RAID_LOGREQ(4, bp,
731                                     "rebuild write done. Error %d",
732                                     bp->bio_error);
733                                 nsd = trs->trso_failed_sd;
734                                 if (bp->bio_error != 0 ||
735                                     trs->trso_flags & TR_RAID1_F_ABORT) {
736                                         if ((trs->trso_flags &
737                                             TR_RAID1_F_ABORT) == 0) {
738                                                 g_raid_tr_raid1_fail_disk(sd->sd_softc,
739                                                     nsd, nsd->sd_disk);
740                                         }
741                                         trs->trso_flags &= ~TR_RAID1_F_DOING_SOME;
742                                         g_raid_tr_raid1_rebuild_abort(tr);
743                                         return;
744                                 }
745 rebuild_round_done:
746                                 nsd = trs->trso_failed_sd;
747                                 trs->trso_flags &= ~TR_RAID1_F_LOCKED;
748                                 g_raid_unlock_range(sd->sd_volume,
749                                     bp->bio_offset, bp->bio_length);
750                                 nsd->sd_rebuild_pos += bp->bio_length;
751                                 if (nsd->sd_rebuild_pos >= nsd->sd_size) {
752                                         g_raid_tr_raid1_rebuild_finish(tr);
753                                         return;
754                                 }
755
756                                 /* Abort rebuild if we are stopping */
757                                 if (trs->trso_stopping) {
758                                         trs->trso_flags &= ~TR_RAID1_F_DOING_SOME;
759                                         g_raid_tr_raid1_rebuild_abort(tr);
760                                         return;
761                                 }
762
763                                 if (--trs->trso_meta_update <= 0) {
764                                         g_raid_write_metadata(vol->v_softc,
765                                             vol, nsd, nsd->sd_disk);
766                                         trs->trso_meta_update =
767                                             g_raid1_rebuild_meta_update;
768                                 }
769                                 trs->trso_flags &= ~TR_RAID1_F_DOING_SOME;
770                                 if (--trs->trso_recover_slabs <= 0)
771                                         return;
772                                 g_raid_tr_raid1_rebuild_some(tr);
773                         }
774                 } else if (trs->trso_type == TR_RAID1_RESYNC) {
775                         /*
776                          * read good sd, read bad sd in parallel.  when both
777                          * done, compare the buffers.  write good to the bad
778                          * if different.  do the next bit of work.
779                          */
780                         panic("Somehow, we think we're doing a resync");
781                 }
782                 return;
783         }
784         pbp = bp->bio_parent;
785         pbp->bio_inbed++;
786         if (bp->bio_cmd == BIO_READ && bp->bio_error != 0) {
787                 /*
788                  * Read failed on first drive.  Retry the read error on
789                  * another disk drive, if available, before erroring out the
790                  * read.
791                  */
792                 sd->sd_disk->d_read_errs++;
793                 G_RAID_LOGREQ(0, bp,
794                     "Read error (%d), %d read errors total",
795                     bp->bio_error, sd->sd_disk->d_read_errs);
796
797                 /*
798                  * If there are too many read errors, we move to degraded.
799                  * XXX Do we want to FAIL the drive (eg, make the user redo
800                  * everything to get it back in sync), or just degrade the
801                  * drive, which kicks off a resync?
802                  */
803                 do_write = 1;
804                 if (sd->sd_disk->d_read_errs > g_raid_read_err_thresh) {
805                         g_raid_tr_raid1_fail_disk(sd->sd_softc, sd, sd->sd_disk);
806                         if (pbp->bio_children == 1)
807                                 do_write = 0;
808                 }
809
810                 /*
811                  * Find the other disk, and try to do the I/O to it.
812                  */
813                 mask = (uintptr_t *)(&pbp->bio_driver2);
814                 if (pbp->bio_children == 1) {
815                         /* Save original subdisk. */
816                         pbp->bio_driver1 = do_write ? sd : NULL;
817                         *mask = 0;
818                 }
819                 *mask |= 1 << sd->sd_pos;
820                 nsd = g_raid_tr_raid1_select_read_disk(vol, pbp, *mask);
821                 if (nsd != NULL && (cbp = g_clone_bio(pbp)) != NULL) {
822                         g_destroy_bio(bp);
823                         G_RAID_LOGREQ(2, cbp, "Retrying read from %d",
824                             nsd->sd_pos);
825                         if (pbp->bio_children == 2 && do_write) {
826                                 sd->sd_recovery++;
827                                 cbp->bio_caller1 = nsd;
828                                 pbp->bio_pflags = G_RAID_BIO_FLAG_LOCKED;
829                                 /* Lock callback starts I/O */
830                                 g_raid_lock_range(sd->sd_volume,
831                                     cbp->bio_offset, cbp->bio_length, pbp, cbp);
832                         } else {
833                                 g_raid_subdisk_iostart(nsd, cbp);
834                         }
835                         return;
836                 }
837                 /*
838                  * We can't retry.  Return the original error by falling
839                  * through.  This will happen when there's only one good disk.
840                  * We don't need to fail the raid, since its actual state is
841                  * based on the state of the subdisks.
842                  */
843                 G_RAID_LOGREQ(2, bp, "Couldn't retry read, failing it");
844         }
845         if (bp->bio_cmd == BIO_READ &&
846             bp->bio_error == 0 &&
847             pbp->bio_children > 1 &&
848             pbp->bio_driver1 != NULL) {
849                 /*
850                  * If it was a read, and bio_children is >1, then we just
851                  * recovered the data from the second drive.  We should try to
852                  * write that data to the first drive if sector remapping is
853                  * enabled.  A write should put the data in a new place on the
854                  * disk, remapping the bad sector.  Do we need to do that by
855                  * queueing a request to the main worker thread?  It doesn't
856                  * affect the return code of this current read, and can be
857                  * done at our liesure.  However, to make the code simpler, it
858                  * is done syncrhonously.
859                  */
860                 G_RAID_LOGREQ(3, bp, "Recovered data from other drive");
861                 cbp = g_clone_bio(pbp);
862                 if (cbp != NULL) {
863                         g_destroy_bio(bp);
864                         cbp->bio_cmd = BIO_WRITE;
865                         cbp->bio_cflags = G_RAID_BIO_FLAG_REMAP;
866                         G_RAID_LOGREQ(2, cbp,
867                             "Attempting bad sector remap on failing drive.");
868                         g_raid_subdisk_iostart(pbp->bio_driver1, cbp);
869                         return;
870                 }
871         }
872         if (pbp->bio_pflags & G_RAID_BIO_FLAG_LOCKED) {
873                 /*
874                  * We're done with a recovery, mark the range as unlocked.
875                  * For any write errors, we agressively fail the disk since
876                  * there was both a READ and a WRITE error at this location.
877                  * Both types of errors generally indicates the drive is on
878                  * the verge of total failure anyway.  Better to stop trusting
879                  * it now.  However, we need to reset error to 0 in that case
880                  * because we're not failing the original I/O which succeeded.
881                  */
882                 if (bp->bio_cmd == BIO_WRITE && bp->bio_error) {
883                         G_RAID_LOGREQ(0, bp, "Remap write failed: "
884                             "failing subdisk.");
885                         g_raid_tr_raid1_fail_disk(sd->sd_softc, sd, sd->sd_disk);
886                         bp->bio_error = 0;
887                 }
888                 if (pbp->bio_driver1 != NULL) {
889                         ((struct g_raid_subdisk *)pbp->bio_driver1)
890                             ->sd_recovery--;
891                 }
892                 G_RAID_LOGREQ(2, bp, "REMAP done %d.", bp->bio_error);
893                 g_raid_unlock_range(sd->sd_volume, bp->bio_offset,
894                     bp->bio_length);
895         }
896         if (pbp->bio_cmd != BIO_READ) {
897                 if (pbp->bio_inbed == 1 || pbp->bio_error != 0)
898                         pbp->bio_error = bp->bio_error;
899                 if (bp->bio_error != 0) {
900                         G_RAID_LOGREQ(0, bp, "Write failed: failing subdisk.");
901                         g_raid_tr_raid1_fail_disk(sd->sd_softc, sd, sd->sd_disk);
902                 }
903                 error = pbp->bio_error;
904         } else
905                 error = bp->bio_error;
906         g_destroy_bio(bp);
907         if (pbp->bio_children == pbp->bio_inbed) {
908                 pbp->bio_completed = pbp->bio_length;
909                 g_raid_iodone(pbp, error);
910         }
911 }
912
913 static int
914 g_raid_tr_kerneldump_raid1(struct g_raid_tr_object *tr,
915     void *virtual, vm_offset_t physical, off_t offset, size_t length)
916 {
917         struct g_raid_volume *vol;
918         struct g_raid_subdisk *sd;
919         int error, i, ok;
920
921         vol = tr->tro_volume;
922         error = 0;
923         ok = 0;
924         for (i = 0; i < vol->v_disks_count; i++) {
925                 sd = &vol->v_subdisks[i];
926                 switch (sd->sd_state) {
927                 case G_RAID_SUBDISK_S_ACTIVE:
928                         break;
929                 case G_RAID_SUBDISK_S_REBUILD:
930                         /*
931                          * When rebuilding, only part of this subdisk is
932                          * writable, the rest will be written as part of the
933                          * that process.
934                          */
935                         if (offset >= sd->sd_rebuild_pos)
936                                 continue;
937                         break;
938                 case G_RAID_SUBDISK_S_STALE:
939                 case G_RAID_SUBDISK_S_RESYNC:
940                         /*
941                          * Resyncing still writes on the theory that the
942                          * resync'd disk is very close and writing it will
943                          * keep it that way better if we keep up while
944                          * resyncing.
945                          */
946                         break;
947                 default:
948                         continue;
949                 }
950                 error = g_raid_subdisk_kerneldump(sd,
951                     virtual, physical, offset, length);
952                 if (error == 0)
953                         ok++;
954         }
955         return (ok > 0 ? 0 : error);
956 }
957
958 static int
959 g_raid_tr_locked_raid1(struct g_raid_tr_object *tr, void *argp)
960 {
961         struct bio *bp;
962         struct g_raid_subdisk *sd;
963
964         bp = (struct bio *)argp;
965         sd = (struct g_raid_subdisk *)bp->bio_caller1;
966         g_raid_subdisk_iostart(sd, bp);
967
968         return (0);
969 }
970
971 static int
972 g_raid_tr_idle_raid1(struct g_raid_tr_object *tr)
973 {
974         struct g_raid_tr_raid1_object *trs;
975
976         trs = (struct g_raid_tr_raid1_object *)tr;
977         trs->trso_fair_io = g_raid1_rebuild_fair_io;
978         trs->trso_recover_slabs = g_raid1_rebuild_cluster_idle;
979         if (trs->trso_type == TR_RAID1_REBUILD)
980                 g_raid_tr_raid1_rebuild_some(tr);
981         return (0);
982 }
983
984 static int
985 g_raid_tr_free_raid1(struct g_raid_tr_object *tr)
986 {
987         struct g_raid_tr_raid1_object *trs;
988
989         trs = (struct g_raid_tr_raid1_object *)tr;
990
991         if (trs->trso_buffer != NULL) {
992                 free(trs->trso_buffer, M_TR_RAID1);
993                 trs->trso_buffer = NULL;
994         }
995         return (0);
996 }
997
998 G_RAID_TR_DECLARE(raid1, "RAID1");