]> CyberLeo.Net >> Repos - FreeBSD/stable/10.git/blob - sys/cam/scsi/scsi_pass.c
MFC r317775:
[FreeBSD/stable/10.git] / sys / cam / scsi / scsi_pass.c
1 /*-
2  * Copyright (c) 1997, 1998, 2000 Justin T. Gibbs.
3  * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions, and the following disclaimer,
11  *    without modification, immediately at the beginning of the file.
12  * 2. The name of the author may not be used to endorse or promote products
13  *    derived from this software without specific prior written permission.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
19  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/kernel.h>
34 #include <sys/conf.h>
35 #include <sys/types.h>
36 #include <sys/bio.h>
37 #include <sys/bus.h>
38 #include <sys/devicestat.h>
39 #include <sys/errno.h>
40 #include <sys/fcntl.h>
41 #include <sys/malloc.h>
42 #include <sys/proc.h>
43 #include <sys/poll.h>
44 #include <sys/selinfo.h>
45 #include <sys/sdt.h>
46 #include <sys/taskqueue.h>
47 #include <vm/uma.h>
48 #include <vm/vm.h>
49 #include <vm/vm_extern.h>
50
51 #include <machine/bus.h>
52
53 #include <cam/cam.h>
54 #include <cam/cam_ccb.h>
55 #include <cam/cam_periph.h>
56 #include <cam/cam_queue.h>
57 #include <cam/cam_xpt.h>
58 #include <cam/cam_xpt_periph.h>
59 #include <cam/cam_debug.h>
60 #include <cam/cam_compat.h>
61 #include <cam/cam_xpt_periph.h>
62
63 #include <cam/scsi/scsi_all.h>
64 #include <cam/scsi/scsi_pass.h>
65
66 typedef enum {
67         PASS_FLAG_OPEN                  = 0x01,
68         PASS_FLAG_LOCKED                = 0x02,
69         PASS_FLAG_INVALID               = 0x04,
70         PASS_FLAG_INITIAL_PHYSPATH      = 0x08,
71         PASS_FLAG_ZONE_INPROG           = 0x10,
72         PASS_FLAG_ZONE_VALID            = 0x20,
73         PASS_FLAG_UNMAPPED_CAPABLE      = 0x40,
74         PASS_FLAG_ABANDONED_REF_SET     = 0x80
75 } pass_flags;
76
77 typedef enum {
78         PASS_STATE_NORMAL
79 } pass_state;
80
81 typedef enum {
82         PASS_CCB_BUFFER_IO,
83         PASS_CCB_QUEUED_IO
84 } pass_ccb_types;
85
86 #define ccb_type        ppriv_field0
87 #define ccb_ioreq       ppriv_ptr1
88
89 /*
90  * The maximum number of memory segments we preallocate.
91  */
92 #define PASS_MAX_SEGS   16
93
94 typedef enum {
95         PASS_IO_NONE            = 0x00,
96         PASS_IO_USER_SEG_MALLOC = 0x01,
97         PASS_IO_KERN_SEG_MALLOC = 0x02,
98         PASS_IO_ABANDONED       = 0x04
99 } pass_io_flags; 
100
101 struct pass_io_req {
102         union ccb                        ccb;
103         union ccb                       *alloced_ccb;
104         union ccb                       *user_ccb_ptr;
105         camq_entry                       user_periph_links;
106         ccb_ppriv_area                   user_periph_priv;
107         struct cam_periph_map_info       mapinfo;
108         pass_io_flags                    flags;
109         ccb_flags                        data_flags;
110         int                              num_user_segs;
111         bus_dma_segment_t                user_segs[PASS_MAX_SEGS];
112         int                              num_kern_segs;
113         bus_dma_segment_t                kern_segs[PASS_MAX_SEGS];
114         bus_dma_segment_t               *user_segptr;
115         bus_dma_segment_t               *kern_segptr;
116         int                              num_bufs;
117         uint32_t                         dirs[CAM_PERIPH_MAXMAPS];
118         uint32_t                         lengths[CAM_PERIPH_MAXMAPS];
119         uint8_t                         *user_bufs[CAM_PERIPH_MAXMAPS];
120         uint8_t                         *kern_bufs[CAM_PERIPH_MAXMAPS];
121         struct bintime                   start_time;
122         TAILQ_ENTRY(pass_io_req)         links;
123 };
124
125 struct pass_softc {
126         pass_state                state;
127         pass_flags                flags;
128         u_int8_t                  pd_type;
129         union ccb                 saved_ccb;
130         int                       open_count;
131         u_int                     maxio;
132         struct devstat           *device_stats;
133         struct cdev              *dev;
134         struct cdev              *alias_dev;
135         struct task               add_physpath_task;
136         struct task               shutdown_kqueue_task;
137         struct selinfo            read_select;
138         TAILQ_HEAD(, pass_io_req) incoming_queue;
139         TAILQ_HEAD(, pass_io_req) active_queue;
140         TAILQ_HEAD(, pass_io_req) abandoned_queue;
141         TAILQ_HEAD(, pass_io_req) done_queue;
142         struct cam_periph        *periph;
143         char                      zone_name[12];
144         char                      io_zone_name[12];
145         uma_zone_t                pass_zone;
146         uma_zone_t                pass_io_zone;
147         size_t                    io_zone_size;
148 };
149
150 static  d_open_t        passopen;
151 static  d_close_t       passclose;
152 static  d_ioctl_t       passioctl;
153 static  d_ioctl_t       passdoioctl;
154 static  d_poll_t        passpoll;
155 static  d_kqfilter_t    passkqfilter;
156 static  void            passreadfiltdetach(struct knote *kn);
157 static  int             passreadfilt(struct knote *kn, long hint);
158
159 static  periph_init_t   passinit;
160 static  periph_ctor_t   passregister;
161 static  periph_oninv_t  passoninvalidate;
162 static  periph_dtor_t   passcleanup;
163 static  periph_start_t  passstart;
164 static  void            pass_shutdown_kqueue(void *context, int pending);
165 static  void            pass_add_physpath(void *context, int pending);
166 static  void            passasync(void *callback_arg, u_int32_t code,
167                                   struct cam_path *path, void *arg);
168 static  void            passdone(struct cam_periph *periph, 
169                                  union ccb *done_ccb);
170 static  int             passcreatezone(struct cam_periph *periph);
171 static  void            passiocleanup(struct pass_softc *softc, 
172                                       struct pass_io_req *io_req);
173 static  int             passcopysglist(struct cam_periph *periph,
174                                        struct pass_io_req *io_req,
175                                        ccb_flags direction);
176 static  int             passmemsetup(struct cam_periph *periph,
177                                      struct pass_io_req *io_req);
178 static  int             passmemdone(struct cam_periph *periph,
179                                     struct pass_io_req *io_req);
180 static  int             passerror(union ccb *ccb, u_int32_t cam_flags, 
181                                   u_int32_t sense_flags);
182 static  int             passsendccb(struct cam_periph *periph, union ccb *ccb,
183                                     union ccb *inccb);
184
185 static struct periph_driver passdriver =
186 {
187         passinit, "pass",
188         TAILQ_HEAD_INITIALIZER(passdriver.units), /* generation */ 0
189 };
190
191 PERIPHDRIVER_DECLARE(pass, passdriver);
192
193 static struct cdevsw pass_cdevsw = {
194         .d_version =    D_VERSION,
195         .d_flags =      D_TRACKCLOSE,
196         .d_open =       passopen,
197         .d_close =      passclose,
198         .d_ioctl =      passioctl,
199         .d_poll =       passpoll,
200         .d_kqfilter =   passkqfilter,
201         .d_name =       "pass",
202 };
203
204 static struct filterops passread_filtops = {
205         .f_isfd =       1,
206         .f_detach =     passreadfiltdetach,
207         .f_event =      passreadfilt
208 };
209
210 static MALLOC_DEFINE(M_SCSIPASS, "scsi_pass", "scsi passthrough buffers");
211
212 static void
213 passinit(void)
214 {
215         cam_status status;
216
217         /*
218          * Install a global async callback.  This callback will
219          * receive async callbacks like "new device found".
220          */
221         status = xpt_register_async(AC_FOUND_DEVICE, passasync, NULL, NULL);
222
223         if (status != CAM_REQ_CMP) {
224                 printf("pass: Failed to attach master async callback "
225                        "due to status 0x%x!\n", status);
226         }
227
228 }
229
230 static void
231 passrejectios(struct cam_periph *periph)
232 {
233         struct pass_io_req *io_req, *io_req2;
234         struct pass_softc *softc;
235
236         softc = (struct pass_softc *)periph->softc;
237
238         /*
239          * The user can no longer get status for I/O on the done queue, so
240          * clean up all outstanding I/O on the done queue.
241          */
242         TAILQ_FOREACH_SAFE(io_req, &softc->done_queue, links, io_req2) {
243                 TAILQ_REMOVE(&softc->done_queue, io_req, links);
244                 passiocleanup(softc, io_req);
245                 uma_zfree(softc->pass_zone, io_req);
246         }
247
248         /*
249          * The underlying device is gone, so we can't issue these I/Os.
250          * The devfs node has been shut down, so we can't return status to
251          * the user.  Free any I/O left on the incoming queue.
252          */
253         TAILQ_FOREACH_SAFE(io_req, &softc->incoming_queue, links, io_req2) {
254                 TAILQ_REMOVE(&softc->incoming_queue, io_req, links);
255                 passiocleanup(softc, io_req);
256                 uma_zfree(softc->pass_zone, io_req);
257         }
258
259         /*
260          * Normally we would put I/Os on the abandoned queue and acquire a
261          * reference when we saw the final close.  But, the device went
262          * away and devfs may have moved everything off to deadfs by the
263          * time the I/O done callback is called; as a result, we won't see
264          * any more closes.  So, if we have any active I/Os, we need to put
265          * them on the abandoned queue.  When the abandoned queue is empty,
266          * we'll release the remaining reference (see below) to the peripheral.
267          */
268         TAILQ_FOREACH_SAFE(io_req, &softc->active_queue, links, io_req2) {
269                 TAILQ_REMOVE(&softc->active_queue, io_req, links);
270                 io_req->flags |= PASS_IO_ABANDONED;
271                 TAILQ_INSERT_TAIL(&softc->abandoned_queue, io_req, links);
272         }
273
274         /*
275          * If we put any I/O on the abandoned queue, acquire a reference.
276          */
277         if ((!TAILQ_EMPTY(&softc->abandoned_queue))
278          && ((softc->flags & PASS_FLAG_ABANDONED_REF_SET) == 0)) {
279                 cam_periph_doacquire(periph);
280                 softc->flags |= PASS_FLAG_ABANDONED_REF_SET;
281         }
282 }
283
284 static void
285 passdevgonecb(void *arg)
286 {
287         struct cam_periph *periph;
288         struct mtx *mtx;
289         struct pass_softc *softc;
290         int i;
291
292         periph = (struct cam_periph *)arg;
293         mtx = cam_periph_mtx(periph);
294         mtx_lock(mtx);
295
296         softc = (struct pass_softc *)periph->softc;
297         KASSERT(softc->open_count >= 0, ("Negative open count %d",
298                 softc->open_count));
299
300         /*
301          * When we get this callback, we will get no more close calls from
302          * devfs.  So if we have any dangling opens, we need to release the
303          * reference held for that particular context.
304          */
305         for (i = 0; i < softc->open_count; i++)
306                 cam_periph_release_locked(periph);
307
308         softc->open_count = 0;
309
310         /*
311          * Release the reference held for the device node, it is gone now.
312          * Accordingly, inform all queued I/Os of their fate.
313          */
314         cam_periph_release_locked(periph);
315         passrejectios(periph);
316
317         /*
318          * We reference the SIM lock directly here, instead of using
319          * cam_periph_unlock().  The reason is that the final call to
320          * cam_periph_release_locked() above could result in the periph
321          * getting freed.  If that is the case, dereferencing the periph
322          * with a cam_periph_unlock() call would cause a page fault.
323          */
324         mtx_unlock(mtx);
325
326         /*
327          * We have to remove our kqueue context from a thread because it
328          * may sleep.  It would be nice if we could get a callback from
329          * kqueue when it is done cleaning up resources.
330          */
331         taskqueue_enqueue(taskqueue_thread, &softc->shutdown_kqueue_task);
332 }
333
334 static void
335 passoninvalidate(struct cam_periph *periph)
336 {
337         struct pass_softc *softc;
338
339         softc = (struct pass_softc *)periph->softc;
340
341         /*
342          * De-register any async callbacks.
343          */
344         xpt_register_async(0, passasync, periph, periph->path);
345
346         softc->flags |= PASS_FLAG_INVALID;
347
348         /*
349          * Tell devfs this device has gone away, and ask for a callback
350          * when it has cleaned up its state.
351          */
352         destroy_dev_sched_cb(softc->dev, passdevgonecb, periph);
353 }
354
355 static void
356 passcleanup(struct cam_periph *periph)
357 {
358         struct pass_softc *softc;
359
360         softc = (struct pass_softc *)periph->softc;
361
362         cam_periph_assert(periph, MA_OWNED);
363         KASSERT(TAILQ_EMPTY(&softc->active_queue),
364                 ("%s called when there are commands on the active queue!\n",
365                 __func__));
366         KASSERT(TAILQ_EMPTY(&softc->abandoned_queue),
367                 ("%s called when there are commands on the abandoned queue!\n",
368                 __func__));
369         KASSERT(TAILQ_EMPTY(&softc->incoming_queue),
370                 ("%s called when there are commands on the incoming queue!\n",
371                 __func__));
372         KASSERT(TAILQ_EMPTY(&softc->done_queue),
373                 ("%s called when there are commands on the done queue!\n",
374                 __func__));
375
376         devstat_remove_entry(softc->device_stats);
377
378         cam_periph_unlock(periph);
379
380         /*
381          * We call taskqueue_drain() for the physpath task to make sure it
382          * is complete.  We drop the lock because this can potentially
383          * sleep.  XXX KDM that is bad.  Need a way to get a callback when
384          * a taskqueue is drained.
385          *
386          * Note that we don't drain the kqueue shutdown task queue.  This
387          * is because we hold a reference on the periph for kqueue, and
388          * release that reference from the kqueue shutdown task queue.  So
389          * we cannot come into this routine unless we've released that
390          * reference.  Also, because that could be the last reference, we
391          * could be called from the cam_periph_release() call in
392          * pass_shutdown_kqueue().  In that case, the taskqueue_drain()
393          * would deadlock.  It would be preferable if we had a way to
394          * get a callback when a taskqueue is done.
395          */
396         taskqueue_drain(taskqueue_thread, &softc->add_physpath_task);
397
398         cam_periph_lock(periph);
399
400         free(softc, M_DEVBUF);
401 }
402
403 static void
404 pass_shutdown_kqueue(void *context, int pending)
405 {
406         struct cam_periph *periph;
407         struct pass_softc *softc;
408
409         periph = context;
410         softc = periph->softc;
411
412         knlist_clear(&softc->read_select.si_note, /*is_locked*/ 0);
413         knlist_destroy(&softc->read_select.si_note);
414
415         /*
416          * Release the reference we held for kqueue.
417          */
418         cam_periph_release(periph);
419 }
420
421 static void
422 pass_add_physpath(void *context, int pending)
423 {
424         struct cam_periph *periph;
425         struct pass_softc *softc;
426         struct mtx *mtx;
427         char *physpath;
428
429         /*
430          * If we have one, create a devfs alias for our
431          * physical path.
432          */
433         periph = context;
434         softc = periph->softc;
435         physpath = malloc(MAXPATHLEN, M_DEVBUF, M_WAITOK);
436         mtx = cam_periph_mtx(periph);
437         mtx_lock(mtx);
438
439         if (periph->flags & CAM_PERIPH_INVALID)
440                 goto out;
441
442         if (xpt_getattr(physpath, MAXPATHLEN,
443                         "GEOM::physpath", periph->path) == 0
444          && strlen(physpath) != 0) {
445
446                 mtx_unlock(mtx);
447                 make_dev_physpath_alias(MAKEDEV_WAITOK, &softc->alias_dev,
448                                         softc->dev, softc->alias_dev, physpath);
449                 mtx_lock(mtx);
450         }
451
452 out:
453         /*
454          * Now that we've made our alias, we no longer have to have a
455          * reference to the device.
456          */
457         if ((softc->flags & PASS_FLAG_INITIAL_PHYSPATH) == 0)
458                 softc->flags |= PASS_FLAG_INITIAL_PHYSPATH;
459
460         /*
461          * We always acquire a reference to the periph before queueing this
462          * task queue function, so it won't go away before we run.
463          */
464         while (pending-- > 0)
465                 cam_periph_release_locked(periph);
466         mtx_unlock(mtx);
467
468         free(physpath, M_DEVBUF);
469 }
470
471 static void
472 passasync(void *callback_arg, u_int32_t code,
473           struct cam_path *path, void *arg)
474 {
475         struct cam_periph *periph;
476
477         periph = (struct cam_periph *)callback_arg;
478
479         switch (code) {
480         case AC_FOUND_DEVICE:
481         {
482                 struct ccb_getdev *cgd;
483                 cam_status status;
484  
485                 cgd = (struct ccb_getdev *)arg;
486                 if (cgd == NULL)
487                         break;
488
489                 /*
490                  * Allocate a peripheral instance for
491                  * this device and start the probe
492                  * process.
493                  */
494                 status = cam_periph_alloc(passregister, passoninvalidate,
495                                           passcleanup, passstart, "pass",
496                                           CAM_PERIPH_BIO, path,
497                                           passasync, AC_FOUND_DEVICE, cgd);
498
499                 if (status != CAM_REQ_CMP
500                  && status != CAM_REQ_INPROG) {
501                         const struct cam_status_entry *entry;
502
503                         entry = cam_fetch_status_entry(status);
504
505                         printf("passasync: Unable to attach new device "
506                                "due to status %#x: %s\n", status, entry ?
507                                entry->status_text : "Unknown");
508                 }
509
510                 break;
511         }
512         case AC_ADVINFO_CHANGED:
513         {
514                 uintptr_t buftype;
515
516                 buftype = (uintptr_t)arg;
517                 if (buftype == CDAI_TYPE_PHYS_PATH) {
518                         struct pass_softc *softc;
519                         cam_status status;
520
521                         softc = (struct pass_softc *)periph->softc;
522                         /*
523                          * Acquire a reference to the periph before we
524                          * start the taskqueue, so that we don't run into
525                          * a situation where the periph goes away before
526                          * the task queue has a chance to run.
527                          */
528                         status = cam_periph_acquire(periph);
529                         if (status != CAM_REQ_CMP)
530                                 break;
531
532                         taskqueue_enqueue(taskqueue_thread,
533                                           &softc->add_physpath_task);
534                 }
535                 break;
536         }
537         default:
538                 cam_periph_async(periph, code, path, arg);
539                 break;
540         }
541 }
542
543 static cam_status
544 passregister(struct cam_periph *periph, void *arg)
545 {
546         struct pass_softc *softc;
547         struct ccb_getdev *cgd;
548         struct ccb_pathinq cpi;
549         struct make_dev_args args;
550         int error, no_tags;
551
552         cgd = (struct ccb_getdev *)arg;
553         if (cgd == NULL) {
554                 printf("%s: no getdev CCB, can't register device\n", __func__);
555                 return(CAM_REQ_CMP_ERR);
556         }
557
558         softc = (struct pass_softc *)malloc(sizeof(*softc),
559                                             M_DEVBUF, M_NOWAIT);
560
561         if (softc == NULL) {
562                 printf("%s: Unable to probe new device. "
563                        "Unable to allocate softc\n", __func__);
564                 return(CAM_REQ_CMP_ERR);
565         }
566
567         bzero(softc, sizeof(*softc));
568         softc->state = PASS_STATE_NORMAL;
569         if (cgd->protocol == PROTO_SCSI || cgd->protocol == PROTO_ATAPI)
570                 softc->pd_type = SID_TYPE(&cgd->inq_data);
571         else if (cgd->protocol == PROTO_SATAPM)
572                 softc->pd_type = T_ENCLOSURE;
573         else
574                 softc->pd_type = T_DIRECT;
575
576         periph->softc = softc;
577         softc->periph = periph;
578         TAILQ_INIT(&softc->incoming_queue);
579         TAILQ_INIT(&softc->active_queue);
580         TAILQ_INIT(&softc->abandoned_queue);
581         TAILQ_INIT(&softc->done_queue);
582         snprintf(softc->zone_name, sizeof(softc->zone_name), "%s%d",
583                  periph->periph_name, periph->unit_number);
584         snprintf(softc->io_zone_name, sizeof(softc->io_zone_name), "%s%dIO",
585                  periph->periph_name, periph->unit_number);
586         softc->io_zone_size = MAXPHYS;
587         knlist_init_mtx(&softc->read_select.si_note, cam_periph_mtx(periph));
588
589         bzero(&cpi, sizeof(cpi));
590         xpt_setup_ccb(&cpi.ccb_h, periph->path, CAM_PRIORITY_NORMAL);
591         cpi.ccb_h.func_code = XPT_PATH_INQ;
592         xpt_action((union ccb *)&cpi);
593
594         if (cpi.maxio == 0)
595                 softc->maxio = DFLTPHYS;        /* traditional default */
596         else if (cpi.maxio > MAXPHYS)
597                 softc->maxio = MAXPHYS;         /* for safety */
598         else
599                 softc->maxio = cpi.maxio;       /* real value */
600
601         if (cpi.hba_misc & PIM_UNMAPPED)
602                 softc->flags |= PASS_FLAG_UNMAPPED_CAPABLE;
603
604         /*
605          * We pass in 0 for a blocksize, since we don't 
606          * know what the blocksize of this device is, if 
607          * it even has a blocksize.
608          */
609         cam_periph_unlock(periph);
610         no_tags = (cgd->inq_data.flags & SID_CmdQue) == 0;
611         softc->device_stats = devstat_new_entry("pass",
612                           periph->unit_number, 0,
613                           DEVSTAT_NO_BLOCKSIZE
614                           | (no_tags ? DEVSTAT_NO_ORDERED_TAGS : 0),
615                           softc->pd_type |
616                           XPORT_DEVSTAT_TYPE(cpi.transport) |
617                           DEVSTAT_TYPE_PASS,
618                           DEVSTAT_PRIORITY_PASS);
619
620         /*
621          * Initialize the taskqueue handler for shutting down kqueue.
622          */
623         TASK_INIT(&softc->shutdown_kqueue_task, /*priority*/ 0,
624                   pass_shutdown_kqueue, periph);
625
626         /*
627          * Acquire a reference to the periph that we can release once we've
628          * cleaned up the kqueue.
629          */
630         if (cam_periph_acquire(periph) != CAM_REQ_CMP) {
631                 xpt_print(periph->path, "%s: lost periph during "
632                           "registration!\n", __func__);
633                 cam_periph_lock(periph);
634                 return (CAM_REQ_CMP_ERR);
635         }
636
637         /*
638          * Acquire a reference to the periph before we create the devfs
639          * instance for it.  We'll release this reference once the devfs
640          * instance has been freed.
641          */
642         if (cam_periph_acquire(periph) != CAM_REQ_CMP) {
643                 xpt_print(periph->path, "%s: lost periph during "
644                           "registration!\n", __func__);
645                 cam_periph_lock(periph);
646                 return (CAM_REQ_CMP_ERR);
647         }
648
649         /* Register the device */
650         make_dev_args_init(&args);
651         args.mda_devsw = &pass_cdevsw;
652         args.mda_unit = periph->unit_number;
653         args.mda_uid = UID_ROOT;
654         args.mda_gid = GID_OPERATOR;
655         args.mda_mode = 0600;
656         args.mda_si_drv1 = periph;
657         error = make_dev_s(&args, &softc->dev, "%s%d", periph->periph_name,
658             periph->unit_number);
659         if (error != 0) {
660                 cam_periph_lock(periph);
661                 cam_periph_release_locked(periph);
662                 return (CAM_REQ_CMP_ERR);
663         }
664
665         /*
666          * Hold a reference to the periph before we create the physical
667          * path alias so it can't go away.
668          */
669         if (cam_periph_acquire(periph) != CAM_REQ_CMP) {
670                 xpt_print(periph->path, "%s: lost periph during "
671                           "registration!\n", __func__);
672                 cam_periph_lock(periph);
673                 return (CAM_REQ_CMP_ERR);
674         }
675
676         cam_periph_lock(periph);
677
678         TASK_INIT(&softc->add_physpath_task, /*priority*/0,
679                   pass_add_physpath, periph);
680
681         /*
682          * See if physical path information is already available.
683          */
684         taskqueue_enqueue(taskqueue_thread, &softc->add_physpath_task);
685
686         /*
687          * Add an async callback so that we get notified if
688          * this device goes away or its physical path
689          * (stored in the advanced info data of the EDT) has
690          * changed.
691          */
692         xpt_register_async(AC_LOST_DEVICE | AC_ADVINFO_CHANGED,
693                            passasync, periph, periph->path);
694
695         if (bootverbose)
696                 xpt_announce_periph(periph, NULL);
697
698         return(CAM_REQ_CMP);
699 }
700
701 static int
702 passopen(struct cdev *dev, int flags, int fmt, struct thread *td)
703 {
704         struct cam_periph *periph;
705         struct pass_softc *softc;
706         int error;
707
708         periph = (struct cam_periph *)dev->si_drv1;
709         if (cam_periph_acquire(periph) != CAM_REQ_CMP)
710                 return (ENXIO);
711
712         cam_periph_lock(periph);
713
714         softc = (struct pass_softc *)periph->softc;
715
716         if (softc->flags & PASS_FLAG_INVALID) {
717                 cam_periph_release_locked(periph);
718                 cam_periph_unlock(periph);
719                 return(ENXIO);
720         }
721
722         /*
723          * Don't allow access when we're running at a high securelevel.
724          */
725         error = securelevel_gt(td->td_ucred, 1);
726         if (error) {
727                 cam_periph_release_locked(periph);
728                 cam_periph_unlock(periph);
729                 return(error);
730         }
731
732         /*
733          * Only allow read-write access.
734          */
735         if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0)) {
736                 cam_periph_release_locked(periph);
737                 cam_periph_unlock(periph);
738                 return(EPERM);
739         }
740
741         /*
742          * We don't allow nonblocking access.
743          */
744         if ((flags & O_NONBLOCK) != 0) {
745                 xpt_print(periph->path, "can't do nonblocking access\n");
746                 cam_periph_release_locked(periph);
747                 cam_periph_unlock(periph);
748                 return(EINVAL);
749         }
750
751         softc->open_count++;
752
753         cam_periph_unlock(periph);
754
755         return (error);
756 }
757
758 static int
759 passclose(struct cdev *dev, int flag, int fmt, struct thread *td)
760 {
761         struct  cam_periph *periph;
762         struct  pass_softc *softc;
763         struct mtx *mtx;
764
765         periph = (struct cam_periph *)dev->si_drv1;
766         mtx = cam_periph_mtx(periph);
767         mtx_lock(mtx);
768
769         softc = periph->softc;
770         softc->open_count--;
771
772         if (softc->open_count == 0) {
773                 struct pass_io_req *io_req, *io_req2;
774                 int need_unlock;
775
776                 need_unlock = 0;
777
778                 TAILQ_FOREACH_SAFE(io_req, &softc->done_queue, links, io_req2) {
779                         TAILQ_REMOVE(&softc->done_queue, io_req, links);
780                         passiocleanup(softc, io_req);
781                         uma_zfree(softc->pass_zone, io_req);
782                 }
783
784                 TAILQ_FOREACH_SAFE(io_req, &softc->incoming_queue, links,
785                                    io_req2) {
786                         TAILQ_REMOVE(&softc->incoming_queue, io_req, links);
787                         passiocleanup(softc, io_req);
788                         uma_zfree(softc->pass_zone, io_req);
789                 }
790
791                 /*
792                  * If there are any active I/Os, we need to forcibly acquire a
793                  * reference to the peripheral so that we don't go away
794                  * before they complete.  We'll release the reference when
795                  * the abandoned queue is empty.
796                  */
797                 io_req = TAILQ_FIRST(&softc->active_queue);
798                 if ((io_req != NULL)
799                  && (softc->flags & PASS_FLAG_ABANDONED_REF_SET) == 0) {
800                         cam_periph_doacquire(periph);
801                         softc->flags |= PASS_FLAG_ABANDONED_REF_SET;
802                 }
803
804                 /*
805                  * Since the I/O in the active queue is not under our
806                  * control, just set a flag so that we can clean it up when
807                  * it completes and put it on the abandoned queue.  This
808                  * will prevent our sending spurious completions in the
809                  * event that the device is opened again before these I/Os
810                  * complete.
811                  */
812                 TAILQ_FOREACH_SAFE(io_req, &softc->active_queue, links,
813                                    io_req2) {
814                         TAILQ_REMOVE(&softc->active_queue, io_req, links);
815                         io_req->flags |= PASS_IO_ABANDONED;
816                         TAILQ_INSERT_TAIL(&softc->abandoned_queue, io_req,
817                                           links);
818                 }
819         }
820
821         cam_periph_release_locked(periph);
822
823         /*
824          * We reference the lock directly here, instead of using
825          * cam_periph_unlock().  The reason is that the call to
826          * cam_periph_release_locked() above could result in the periph
827          * getting freed.  If that is the case, dereferencing the periph
828          * with a cam_periph_unlock() call would cause a page fault.
829          *
830          * cam_periph_release() avoids this problem using the same method,
831          * but we're manually acquiring and dropping the lock here to
832          * protect the open count and avoid another lock acquisition and
833          * release.
834          */
835         mtx_unlock(mtx);
836
837         return (0);
838 }
839
840
841 static void
842 passstart(struct cam_periph *periph, union ccb *start_ccb)
843 {
844         struct pass_softc *softc;
845
846         softc = (struct pass_softc *)periph->softc;
847
848         switch (softc->state) {
849         case PASS_STATE_NORMAL: {
850                 struct pass_io_req *io_req;
851
852                 /*
853                  * Check for any queued I/O requests that require an
854                  * allocated slot.
855                  */
856                 io_req = TAILQ_FIRST(&softc->incoming_queue);
857                 if (io_req == NULL) {
858                         xpt_release_ccb(start_ccb);
859                         break;
860                 }
861                 TAILQ_REMOVE(&softc->incoming_queue, io_req, links);
862                 TAILQ_INSERT_TAIL(&softc->active_queue, io_req, links);
863                 /*
864                  * Merge the user's CCB into the allocated CCB.
865                  */
866                 xpt_merge_ccb(start_ccb, &io_req->ccb);
867                 start_ccb->ccb_h.ccb_type = PASS_CCB_QUEUED_IO;
868                 start_ccb->ccb_h.ccb_ioreq = io_req;
869                 start_ccb->ccb_h.cbfcnp = passdone;
870                 io_req->alloced_ccb = start_ccb;
871                 binuptime(&io_req->start_time);
872                 devstat_start_transaction(softc->device_stats,
873                                           &io_req->start_time);
874
875                 xpt_action(start_ccb);
876
877                 /*
878                  * If we have any more I/O waiting, schedule ourselves again.
879                  */
880                 if (!TAILQ_EMPTY(&softc->incoming_queue))
881                         xpt_schedule(periph, CAM_PRIORITY_NORMAL);
882                 break;
883         }
884         default:
885                 break;
886         }
887 }
888
889 static void
890 passdone(struct cam_periph *periph, union ccb *done_ccb)
891
892         struct pass_softc *softc;
893         struct ccb_scsiio *csio;
894
895         softc = (struct pass_softc *)periph->softc;
896
897         cam_periph_assert(periph, MA_OWNED);
898
899         csio = &done_ccb->csio;
900         switch (csio->ccb_h.ccb_type) {
901         case PASS_CCB_QUEUED_IO: {
902                 struct pass_io_req *io_req;
903
904                 io_req = done_ccb->ccb_h.ccb_ioreq;
905 #if 0
906                 xpt_print(periph->path, "%s: called for user CCB %p\n",
907                           __func__, io_req->user_ccb_ptr);
908 #endif
909                 if (((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP)
910                  && (done_ccb->ccb_h.flags & CAM_PASS_ERR_RECOVER)
911                  && ((io_req->flags & PASS_IO_ABANDONED) == 0)) {
912                         int error;
913
914                         error = passerror(done_ccb, CAM_RETRY_SELTO,
915                                           SF_RETRY_UA | SF_NO_PRINT);
916
917                         if (error == ERESTART) {
918                                 /*
919                                  * A retry was scheduled, so
920                                  * just return.
921                                  */
922                                 return;
923                         }
924                 }
925
926                 /*
927                  * Copy the allocated CCB contents back to the malloced CCB
928                  * so we can give status back to the user when he requests it.
929                  */
930                 bcopy(done_ccb, &io_req->ccb, sizeof(*done_ccb));
931
932                 /*
933                  * Log data/transaction completion with devstat(9).
934                  */
935                 switch (done_ccb->ccb_h.func_code) {
936                 case XPT_SCSI_IO:
937                         devstat_end_transaction(softc->device_stats,
938                             done_ccb->csio.dxfer_len - done_ccb->csio.resid,
939                             done_ccb->csio.tag_action & 0x3,
940                             ((done_ccb->ccb_h.flags & CAM_DIR_MASK) ==
941                             CAM_DIR_NONE) ? DEVSTAT_NO_DATA :
942                             (done_ccb->ccb_h.flags & CAM_DIR_OUT) ?
943                             DEVSTAT_WRITE : DEVSTAT_READ, NULL,
944                             &io_req->start_time);
945                         break;
946                 case XPT_ATA_IO:
947                         devstat_end_transaction(softc->device_stats,
948                             done_ccb->ataio.dxfer_len - done_ccb->ataio.resid,
949                             done_ccb->ataio.tag_action & 0x3,
950                             ((done_ccb->ccb_h.flags & CAM_DIR_MASK) ==
951                             CAM_DIR_NONE) ? DEVSTAT_NO_DATA : 
952                             (done_ccb->ccb_h.flags & CAM_DIR_OUT) ?
953                             DEVSTAT_WRITE : DEVSTAT_READ, NULL,
954                             &io_req->start_time);
955                         break;
956                 case XPT_SMP_IO:
957                         /*
958                          * XXX KDM this isn't quite right, but there isn't
959                          * currently an easy way to represent a bidirectional 
960                          * transfer in devstat.  The only way to do it
961                          * and have the byte counts come out right would
962                          * mean that we would have to record two
963                          * transactions, one for the request and one for the
964                          * response.  For now, so that we report something,
965                          * just treat the entire thing as a read.
966                          */
967                         devstat_end_transaction(softc->device_stats,
968                             done_ccb->smpio.smp_request_len +
969                             done_ccb->smpio.smp_response_len,
970                             DEVSTAT_TAG_SIMPLE, DEVSTAT_READ, NULL,
971                             &io_req->start_time);
972                         break;
973                 default:
974                         devstat_end_transaction(softc->device_stats, 0,
975                             DEVSTAT_TAG_NONE, DEVSTAT_NO_DATA, NULL,
976                             &io_req->start_time);
977                         break;
978                 }
979
980                 /*
981                  * In the normal case, take the completed I/O off of the
982                  * active queue and put it on the done queue.  Notitfy the
983                  * user that we have a completed I/O.
984                  */
985                 if ((io_req->flags & PASS_IO_ABANDONED) == 0) {
986                         TAILQ_REMOVE(&softc->active_queue, io_req, links);
987                         TAILQ_INSERT_TAIL(&softc->done_queue, io_req, links);
988                         selwakeuppri(&softc->read_select, PRIBIO);
989                         KNOTE_LOCKED(&softc->read_select.si_note, 0);
990                 } else {
991                         /*
992                          * In the case of an abandoned I/O (final close
993                          * without fetching the I/O), take it off of the
994                          * abandoned queue and free it.
995                          */
996                         TAILQ_REMOVE(&softc->abandoned_queue, io_req, links);
997                         passiocleanup(softc, io_req);
998                         uma_zfree(softc->pass_zone, io_req);
999
1000                         /*
1001                          * Release the done_ccb here, since we may wind up
1002                          * freeing the peripheral when we decrement the
1003                          * reference count below.
1004                          */
1005                         xpt_release_ccb(done_ccb);
1006
1007                         /*
1008                          * If the abandoned queue is empty, we can release
1009                          * our reference to the periph since we won't have
1010                          * any more completions coming.
1011                          */
1012                         if ((TAILQ_EMPTY(&softc->abandoned_queue))
1013                          && (softc->flags & PASS_FLAG_ABANDONED_REF_SET)) {
1014                                 softc->flags &= ~PASS_FLAG_ABANDONED_REF_SET;
1015                                 cam_periph_release_locked(periph);
1016                         }
1017
1018                         /*
1019                          * We have already released the CCB, so we can
1020                          * return.
1021                          */
1022                         return;
1023                 }
1024                 break;
1025         }
1026         }
1027         xpt_release_ccb(done_ccb);
1028 }
1029
1030 static int
1031 passcreatezone(struct cam_periph *periph)
1032 {
1033         struct pass_softc *softc;
1034         int error;
1035
1036         error = 0;
1037         softc = (struct pass_softc *)periph->softc;
1038
1039         cam_periph_assert(periph, MA_OWNED);
1040         KASSERT(((softc->flags & PASS_FLAG_ZONE_VALID) == 0), 
1041                 ("%s called when the pass(4) zone is valid!\n", __func__));
1042         KASSERT((softc->pass_zone == NULL), 
1043                 ("%s called when the pass(4) zone is allocated!\n", __func__));
1044
1045         if ((softc->flags & PASS_FLAG_ZONE_INPROG) == 0) {
1046
1047                 /*
1048                  * We're the first context through, so we need to create
1049                  * the pass(4) UMA zone for I/O requests.
1050                  */
1051                 softc->flags |= PASS_FLAG_ZONE_INPROG;
1052
1053                 /*
1054                  * uma_zcreate() does a blocking (M_WAITOK) allocation,
1055                  * so we cannot hold a mutex while we call it.
1056                  */
1057                 cam_periph_unlock(periph);
1058
1059                 softc->pass_zone = uma_zcreate(softc->zone_name,
1060                     sizeof(struct pass_io_req), NULL, NULL, NULL, NULL,
1061                     /*align*/ 0, /*flags*/ 0);
1062
1063                 softc->pass_io_zone = uma_zcreate(softc->io_zone_name,
1064                     softc->io_zone_size, NULL, NULL, NULL, NULL,
1065                     /*align*/ 0, /*flags*/ 0);
1066
1067                 cam_periph_lock(periph);
1068
1069                 if ((softc->pass_zone == NULL)
1070                  || (softc->pass_io_zone == NULL)) {
1071                         if (softc->pass_zone == NULL)
1072                                 xpt_print(periph->path, "unable to allocate "
1073                                     "IO Req UMA zone\n");
1074                         else
1075                                 xpt_print(periph->path, "unable to allocate "
1076                                     "IO UMA zone\n");
1077                         softc->flags &= ~PASS_FLAG_ZONE_INPROG;
1078                         goto bailout;
1079                 }
1080
1081                 /*
1082                  * Set the flags appropriately and notify any other waiters.
1083                  */
1084                 softc->flags &= PASS_FLAG_ZONE_INPROG;
1085                 softc->flags |= PASS_FLAG_ZONE_VALID;
1086                 wakeup(&softc->pass_zone);
1087         } else {
1088                 /*
1089                  * In this case, the UMA zone has not yet been created, but
1090                  * another context is in the process of creating it.  We
1091                  * need to sleep until the creation is either done or has
1092                  * failed.
1093                  */
1094                 while ((softc->flags & PASS_FLAG_ZONE_INPROG)
1095                     && ((softc->flags & PASS_FLAG_ZONE_VALID) == 0)) {
1096                         error = msleep(&softc->pass_zone,
1097                                        cam_periph_mtx(periph), PRIBIO,
1098                                        "paszon", 0);
1099                         if (error != 0)
1100                                 goto bailout;
1101                 }
1102                 /*
1103                  * If the zone creation failed, no luck for the user.
1104                  */
1105                 if ((softc->flags & PASS_FLAG_ZONE_VALID) == 0){
1106                         error = ENOMEM;
1107                         goto bailout;
1108                 }
1109         }
1110 bailout:
1111         return (error);
1112 }
1113
1114 static void
1115 passiocleanup(struct pass_softc *softc, struct pass_io_req *io_req)
1116 {
1117         union ccb *ccb;
1118         u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS];
1119         int i, numbufs;
1120
1121         ccb = &io_req->ccb;
1122
1123         switch (ccb->ccb_h.func_code) {
1124         case XPT_DEV_MATCH:
1125                 numbufs = min(io_req->num_bufs, 2);
1126
1127                 if (numbufs == 1) {
1128                         data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches;
1129                 } else {
1130                         data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns;
1131                         data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches;
1132                 }
1133                 break;
1134         case XPT_SCSI_IO:
1135         case XPT_CONT_TARGET_IO:
1136                 data_ptrs[0] = &ccb->csio.data_ptr;
1137                 numbufs = min(io_req->num_bufs, 1);
1138                 break;
1139         case XPT_ATA_IO:
1140                 data_ptrs[0] = &ccb->ataio.data_ptr;
1141                 numbufs = min(io_req->num_bufs, 1);
1142                 break;
1143         case XPT_SMP_IO:
1144                 numbufs = min(io_req->num_bufs, 2);
1145                 data_ptrs[0] = &ccb->smpio.smp_request;
1146                 data_ptrs[1] = &ccb->smpio.smp_response;
1147                 break;
1148         case XPT_DEV_ADVINFO:
1149                 numbufs = min(io_req->num_bufs, 1);
1150                 data_ptrs[0] = (uint8_t **)&ccb->cdai.buf;
1151                 break;
1152         default:
1153                 /* allow ourselves to be swapped once again */
1154                 return;
1155                 break; /* NOTREACHED */ 
1156         }
1157
1158         if (io_req->flags & PASS_IO_USER_SEG_MALLOC) {
1159                 free(io_req->user_segptr, M_SCSIPASS);
1160                 io_req->user_segptr = NULL;
1161         }
1162
1163         /*
1164          * We only want to free memory we malloced.
1165          */
1166         if (io_req->data_flags == CAM_DATA_VADDR) {
1167                 for (i = 0; i < io_req->num_bufs; i++) {
1168                         if (io_req->kern_bufs[i] == NULL)
1169                                 continue;
1170
1171                         free(io_req->kern_bufs[i], M_SCSIPASS);
1172                         io_req->kern_bufs[i] = NULL;
1173                 }
1174         } else if (io_req->data_flags == CAM_DATA_SG) {
1175                 for (i = 0; i < io_req->num_kern_segs; i++) {
1176                         if ((uint8_t *)(uintptr_t)
1177                             io_req->kern_segptr[i].ds_addr == NULL)
1178                                 continue;
1179
1180                         uma_zfree(softc->pass_io_zone, (uint8_t *)(uintptr_t)
1181                             io_req->kern_segptr[i].ds_addr);
1182                         io_req->kern_segptr[i].ds_addr = 0;
1183                 }
1184         }
1185
1186         if (io_req->flags & PASS_IO_KERN_SEG_MALLOC) {
1187                 free(io_req->kern_segptr, M_SCSIPASS);
1188                 io_req->kern_segptr = NULL;
1189         }
1190
1191         if (io_req->data_flags != CAM_DATA_PADDR) {
1192                 for (i = 0; i < numbufs; i++) {
1193                         /*
1194                          * Restore the user's buffer pointers to their
1195                          * previous values.
1196                          */
1197                         if (io_req->user_bufs[i] != NULL)
1198                                 *data_ptrs[i] = io_req->user_bufs[i];
1199                 }
1200         }
1201
1202 }
1203
1204 static int
1205 passcopysglist(struct cam_periph *periph, struct pass_io_req *io_req,
1206                ccb_flags direction)
1207 {
1208         bus_size_t kern_watermark, user_watermark, len_copied, len_to_copy;
1209         bus_dma_segment_t *user_sglist, *kern_sglist;
1210         int i, j, error;
1211
1212         error = 0;
1213         kern_watermark = 0;
1214         user_watermark = 0;
1215         len_to_copy = 0;
1216         len_copied = 0;
1217         user_sglist = io_req->user_segptr;
1218         kern_sglist = io_req->kern_segptr;
1219
1220         for (i = 0, j = 0; i < io_req->num_user_segs &&
1221              j < io_req->num_kern_segs;) {
1222                 uint8_t *user_ptr, *kern_ptr;
1223
1224                 len_to_copy = min(user_sglist[i].ds_len -user_watermark,
1225                     kern_sglist[j].ds_len - kern_watermark);
1226
1227                 user_ptr = (uint8_t *)(uintptr_t)user_sglist[i].ds_addr;
1228                 user_ptr = user_ptr + user_watermark;
1229                 kern_ptr = (uint8_t *)(uintptr_t)kern_sglist[j].ds_addr;
1230                 kern_ptr = kern_ptr + kern_watermark;
1231
1232                 user_watermark += len_to_copy;
1233                 kern_watermark += len_to_copy;
1234
1235                 if (!useracc(user_ptr, len_to_copy,
1236                     (direction == CAM_DIR_IN) ? VM_PROT_WRITE : VM_PROT_READ)) {
1237                         xpt_print(periph->path, "%s: unable to access user "
1238                                   "S/G list element %p len %zu\n", __func__,
1239                                   user_ptr, len_to_copy);
1240                         error = EFAULT;
1241                         goto bailout;
1242                 }
1243
1244                 if (direction == CAM_DIR_IN) {
1245                         error = copyout(kern_ptr, user_ptr, len_to_copy);
1246                         if (error != 0) {
1247                                 xpt_print(periph->path, "%s: copyout of %u "
1248                                           "bytes from %p to %p failed with "
1249                                           "error %d\n", __func__, len_to_copy,
1250                                           kern_ptr, user_ptr, error);
1251                                 goto bailout;
1252                         }
1253                 } else {
1254                         error = copyin(user_ptr, kern_ptr, len_to_copy);
1255                         if (error != 0) {
1256                                 xpt_print(periph->path, "%s: copyin of %u "
1257                                           "bytes from %p to %p failed with "
1258                                           "error %d\n", __func__, len_to_copy,
1259                                           user_ptr, kern_ptr, error);
1260                                 goto bailout;
1261                         }
1262                 }
1263
1264                 len_copied += len_to_copy;
1265
1266                 if (user_sglist[i].ds_len == user_watermark) {
1267                         i++;
1268                         user_watermark = 0;
1269                 }
1270
1271                 if (kern_sglist[j].ds_len == kern_watermark) {
1272                         j++;
1273                         kern_watermark = 0;
1274                 }
1275         }
1276
1277 bailout:
1278
1279         return (error);
1280 }
1281
1282 static int
1283 passmemsetup(struct cam_periph *periph, struct pass_io_req *io_req)
1284 {
1285         union ccb *ccb;
1286         struct pass_softc *softc;
1287         int numbufs, i;
1288         uint8_t **data_ptrs[CAM_PERIPH_MAXMAPS];
1289         uint32_t lengths[CAM_PERIPH_MAXMAPS];
1290         uint32_t dirs[CAM_PERIPH_MAXMAPS];
1291         uint32_t num_segs;
1292         uint16_t *seg_cnt_ptr;
1293         size_t maxmap;
1294         int error;
1295
1296         cam_periph_assert(periph, MA_NOTOWNED);
1297
1298         softc = periph->softc;
1299
1300         error = 0;
1301         ccb = &io_req->ccb;
1302         maxmap = 0;
1303         num_segs = 0;
1304         seg_cnt_ptr = NULL;
1305
1306         switch(ccb->ccb_h.func_code) {
1307         case XPT_DEV_MATCH:
1308                 if (ccb->cdm.match_buf_len == 0) {
1309                         printf("%s: invalid match buffer length 0\n", __func__);
1310                         return(EINVAL);
1311                 }
1312                 if (ccb->cdm.pattern_buf_len > 0) {
1313                         data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns;
1314                         lengths[0] = ccb->cdm.pattern_buf_len;
1315                         dirs[0] = CAM_DIR_OUT;
1316                         data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches;
1317                         lengths[1] = ccb->cdm.match_buf_len;
1318                         dirs[1] = CAM_DIR_IN;
1319                         numbufs = 2;
1320                 } else {
1321                         data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches;
1322                         lengths[0] = ccb->cdm.match_buf_len;
1323                         dirs[0] = CAM_DIR_IN;
1324                         numbufs = 1;
1325                 }
1326                 io_req->data_flags = CAM_DATA_VADDR;
1327                 break;
1328         case XPT_SCSI_IO:
1329         case XPT_CONT_TARGET_IO:
1330                 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
1331                         return(0);
1332
1333                 /*
1334                  * The user shouldn't be able to supply a bio.
1335                  */
1336                 if ((ccb->ccb_h.flags & CAM_DATA_MASK) == CAM_DATA_BIO)
1337                         return (EINVAL);
1338
1339                 io_req->data_flags = ccb->ccb_h.flags & CAM_DATA_MASK;
1340
1341                 data_ptrs[0] = &ccb->csio.data_ptr;
1342                 lengths[0] = ccb->csio.dxfer_len;
1343                 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
1344                 num_segs = ccb->csio.sglist_cnt;
1345                 seg_cnt_ptr = &ccb->csio.sglist_cnt;
1346                 numbufs = 1;
1347                 maxmap = softc->maxio;
1348                 break;
1349         case XPT_ATA_IO:
1350                 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
1351                         return(0);
1352
1353                 /*
1354                  * We only support a single virtual address for ATA I/O.
1355                  */
1356                 if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR)
1357                         return (EINVAL);
1358
1359                 io_req->data_flags = CAM_DATA_VADDR;
1360
1361                 data_ptrs[0] = &ccb->ataio.data_ptr;
1362                 lengths[0] = ccb->ataio.dxfer_len;
1363                 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
1364                 numbufs = 1;
1365                 maxmap = softc->maxio;
1366                 break;
1367         case XPT_SMP_IO:
1368                 io_req->data_flags = CAM_DATA_VADDR;
1369
1370                 data_ptrs[0] = &ccb->smpio.smp_request;
1371                 lengths[0] = ccb->smpio.smp_request_len;
1372                 dirs[0] = CAM_DIR_OUT;
1373                 data_ptrs[1] = &ccb->smpio.smp_response;
1374                 lengths[1] = ccb->smpio.smp_response_len;
1375                 dirs[1] = CAM_DIR_IN;
1376                 numbufs = 2;
1377                 maxmap = softc->maxio;
1378                 break;
1379         case XPT_DEV_ADVINFO:
1380                 if (ccb->cdai.bufsiz == 0)
1381                         return (0);
1382
1383                 io_req->data_flags = CAM_DATA_VADDR;
1384
1385                 data_ptrs[0] = (uint8_t **)&ccb->cdai.buf;
1386                 lengths[0] = ccb->cdai.bufsiz;
1387                 dirs[0] = CAM_DIR_IN;
1388                 numbufs = 1;
1389                 break;
1390         default:
1391                 return(EINVAL);
1392                 break; /* NOTREACHED */
1393         }
1394
1395         io_req->num_bufs = numbufs;
1396
1397         /*
1398          * If there is a maximum, check to make sure that the user's
1399          * request fits within the limit.  In general, we should only have
1400          * a maximum length for requests that go to hardware.  Otherwise it
1401          * is whatever we're able to malloc.
1402          */
1403         for (i = 0; i < numbufs; i++) {
1404                 io_req->user_bufs[i] = *data_ptrs[i];
1405                 io_req->dirs[i] = dirs[i];
1406                 io_req->lengths[i] = lengths[i];
1407
1408                 if (maxmap == 0)
1409                         continue;
1410
1411                 if (lengths[i] <= maxmap)
1412                         continue;
1413
1414                 xpt_print(periph->path, "%s: data length %u > max allowed %u "
1415                           "bytes\n", __func__, lengths[i], maxmap);
1416                 error = EINVAL;
1417                 goto bailout;
1418         }
1419
1420         switch (io_req->data_flags) {
1421         case CAM_DATA_VADDR:
1422                 /* Map or copy the buffer into kernel address space */
1423                 for (i = 0; i < numbufs; i++) {
1424                         uint8_t *tmp_buf;
1425
1426                         /*
1427                          * If for some reason no length is specified, we
1428                          * don't need to allocate anything.
1429                          */
1430                         if (io_req->lengths[i] == 0)
1431                                 continue;
1432
1433                         /*
1434                          * Make sure that the user's buffer is accessible
1435                          * to that process.
1436                          */
1437                         if (!useracc(io_req->user_bufs[i], io_req->lengths[i],
1438                             (io_req->dirs[i] == CAM_DIR_IN) ? VM_PROT_WRITE :
1439                              VM_PROT_READ)) {
1440                                 xpt_print(periph->path, "%s: user address %p "
1441                                     "length %u is not accessible\n", __func__,
1442                                     io_req->user_bufs[i], io_req->lengths[i]);
1443                                 error = EFAULT;
1444                                 goto bailout;
1445                         }
1446
1447                         tmp_buf = malloc(lengths[i], M_SCSIPASS,
1448                                          M_WAITOK | M_ZERO);
1449                         io_req->kern_bufs[i] = tmp_buf;
1450                         *data_ptrs[i] = tmp_buf;
1451
1452 #if 0
1453                         xpt_print(periph->path, "%s: malloced %p len %u, user "
1454                                   "buffer %p, operation: %s\n", __func__,
1455                                   tmp_buf, lengths[i], io_req->user_bufs[i],
1456                                   (dirs[i] == CAM_DIR_IN) ? "read" : "write");
1457 #endif
1458                         /*
1459                          * We only need to copy in if the user is writing.
1460                          */
1461                         if (dirs[i] != CAM_DIR_OUT)
1462                                 continue;
1463
1464                         error = copyin(io_req->user_bufs[i],
1465                                        io_req->kern_bufs[i], lengths[i]);
1466                         if (error != 0) {
1467                                 xpt_print(periph->path, "%s: copy of user "
1468                                           "buffer from %p to %p failed with "
1469                                           "error %d\n", __func__,
1470                                           io_req->user_bufs[i],
1471                                           io_req->kern_bufs[i], error);
1472                                 goto bailout;
1473                         }
1474                 }
1475                 break;
1476         case CAM_DATA_PADDR:
1477                 /* Pass down the pointer as-is */
1478                 break;
1479         case CAM_DATA_SG: {
1480                 size_t sg_length, size_to_go, alloc_size;
1481                 uint32_t num_segs_needed;
1482
1483                 /*
1484                  * Copy the user S/G list in, and then copy in the
1485                  * individual segments.
1486                  */
1487                 /*
1488                  * We shouldn't see this, but check just in case.
1489                  */
1490                 if (numbufs != 1) {
1491                         xpt_print(periph->path, "%s: cannot currently handle "
1492                                   "more than one S/G list per CCB\n", __func__);
1493                         error = EINVAL;
1494                         goto bailout;
1495                 }
1496
1497                 /*
1498                  * We have to have at least one segment.
1499                  */
1500                 if (num_segs == 0) {
1501                         xpt_print(periph->path, "%s: CAM_DATA_SG flag set, "
1502                                   "but sglist_cnt=0!\n", __func__);
1503                         error = EINVAL;
1504                         goto bailout;
1505                 }
1506
1507                 /*
1508                  * Make sure the user specified the total length and didn't
1509                  * just leave it to us to decode the S/G list.
1510                  */
1511                 if (lengths[0] == 0) {
1512                         xpt_print(periph->path, "%s: no dxfer_len specified, "
1513                                   "but CAM_DATA_SG flag is set!\n", __func__);
1514                         error = EINVAL;
1515                         goto bailout;
1516                 }
1517
1518                 /*
1519                  * We allocate buffers in io_zone_size increments for an
1520                  * S/G list.  This will generally be MAXPHYS.
1521                  */
1522                 if (lengths[0] <= softc->io_zone_size)
1523                         num_segs_needed = 1;
1524                 else {
1525                         num_segs_needed = lengths[0] / softc->io_zone_size;
1526                         if ((lengths[0] % softc->io_zone_size) != 0)
1527                                 num_segs_needed++;
1528                 }
1529
1530                 /* Figure out the size of the S/G list */
1531                 sg_length = num_segs * sizeof(bus_dma_segment_t);
1532                 io_req->num_user_segs = num_segs;
1533                 io_req->num_kern_segs = num_segs_needed;
1534
1535                 /* Save the user's S/G list pointer for later restoration */
1536                 io_req->user_bufs[0] = *data_ptrs[0];
1537
1538                 /*
1539                  * If we have enough segments allocated by default to handle
1540                  * the length of the user's S/G list,
1541                  */
1542                 if (num_segs > PASS_MAX_SEGS) {
1543                         io_req->user_segptr = malloc(sizeof(bus_dma_segment_t) *
1544                             num_segs, M_SCSIPASS, M_WAITOK | M_ZERO);
1545                         io_req->flags |= PASS_IO_USER_SEG_MALLOC;
1546                 } else
1547                         io_req->user_segptr = io_req->user_segs;
1548
1549                 if (!useracc(*data_ptrs[0], sg_length, VM_PROT_READ)) {
1550                         xpt_print(periph->path, "%s: unable to access user "
1551                                   "S/G list at %p\n", __func__, *data_ptrs[0]);
1552                         error = EFAULT;
1553                         goto bailout;
1554                 }
1555
1556                 error = copyin(*data_ptrs[0], io_req->user_segptr, sg_length);
1557                 if (error != 0) {
1558                         xpt_print(periph->path, "%s: copy of user S/G list "
1559                                   "from %p to %p failed with error %d\n",
1560                                   __func__, *data_ptrs[0], io_req->user_segptr,
1561                                   error);
1562                         goto bailout;
1563                 }
1564
1565                 if (num_segs_needed > PASS_MAX_SEGS) {
1566                         io_req->kern_segptr = malloc(sizeof(bus_dma_segment_t) *
1567                             num_segs_needed, M_SCSIPASS, M_WAITOK | M_ZERO);
1568                         io_req->flags |= PASS_IO_KERN_SEG_MALLOC;
1569                 } else {
1570                         io_req->kern_segptr = io_req->kern_segs;
1571                 }
1572
1573                 /*
1574                  * Allocate the kernel S/G list.
1575                  */
1576                 for (size_to_go = lengths[0], i = 0;
1577                      size_to_go > 0 && i < num_segs_needed;
1578                      i++, size_to_go -= alloc_size) {
1579                         uint8_t *kern_ptr;
1580
1581                         alloc_size = min(size_to_go, softc->io_zone_size);
1582                         kern_ptr = uma_zalloc(softc->pass_io_zone, M_WAITOK);
1583                         io_req->kern_segptr[i].ds_addr =
1584                             (bus_addr_t)(uintptr_t)kern_ptr;
1585                         io_req->kern_segptr[i].ds_len = alloc_size;
1586                 }
1587                 if (size_to_go > 0) {
1588                         printf("%s: size_to_go = %zu, software error!\n",
1589                                __func__, size_to_go);
1590                         error = EINVAL;
1591                         goto bailout;
1592                 }
1593
1594                 *data_ptrs[0] = (uint8_t *)io_req->kern_segptr;
1595                 *seg_cnt_ptr = io_req->num_kern_segs;
1596
1597                 /*
1598                  * We only need to copy data here if the user is writing.
1599                  */
1600                 if (dirs[0] == CAM_DIR_OUT)
1601                         error = passcopysglist(periph, io_req, dirs[0]);
1602                 break;
1603         }
1604         case CAM_DATA_SG_PADDR: {
1605                 size_t sg_length;
1606
1607                 /*
1608                  * We shouldn't see this, but check just in case.
1609                  */
1610                 if (numbufs != 1) {
1611                         printf("%s: cannot currently handle more than one "
1612                                "S/G list per CCB\n", __func__);
1613                         error = EINVAL;
1614                         goto bailout;
1615                 }
1616
1617                 /*
1618                  * We have to have at least one segment.
1619                  */
1620                 if (num_segs == 0) {
1621                         xpt_print(periph->path, "%s: CAM_DATA_SG_PADDR flag "
1622                                   "set, but sglist_cnt=0!\n", __func__);
1623                         error = EINVAL;
1624                         goto bailout;
1625                 }
1626
1627                 /*
1628                  * Make sure the user specified the total length and didn't
1629                  * just leave it to us to decode the S/G list.
1630                  */
1631                 if (lengths[0] == 0) {
1632                         xpt_print(periph->path, "%s: no dxfer_len specified, "
1633                                   "but CAM_DATA_SG flag is set!\n", __func__);
1634                         error = EINVAL;
1635                         goto bailout;
1636                 }
1637
1638                 /* Figure out the size of the S/G list */
1639                 sg_length = num_segs * sizeof(bus_dma_segment_t);
1640                 io_req->num_user_segs = num_segs;
1641                 io_req->num_kern_segs = io_req->num_user_segs;
1642
1643                 /* Save the user's S/G list pointer for later restoration */
1644                 io_req->user_bufs[0] = *data_ptrs[0];
1645
1646                 if (num_segs > PASS_MAX_SEGS) {
1647                         io_req->user_segptr = malloc(sizeof(bus_dma_segment_t) *
1648                             num_segs, M_SCSIPASS, M_WAITOK | M_ZERO);
1649                         io_req->flags |= PASS_IO_USER_SEG_MALLOC;
1650                 } else
1651                         io_req->user_segptr = io_req->user_segs;
1652
1653                 io_req->kern_segptr = io_req->user_segptr;
1654
1655                 error = copyin(*data_ptrs[0], io_req->user_segptr, sg_length);
1656                 if (error != 0) {
1657                         xpt_print(periph->path, "%s: copy of user S/G list "
1658                                   "from %p to %p failed with error %d\n",
1659                                   __func__, *data_ptrs[0], io_req->user_segptr,
1660                                   error);
1661                         goto bailout;
1662                 }
1663                 break;
1664         }
1665         default:
1666         case CAM_DATA_BIO:
1667                 /*
1668                  * A user shouldn't be attaching a bio to the CCB.  It
1669                  * isn't a user-accessible structure.
1670                  */
1671                 error = EINVAL;
1672                 break;
1673         }
1674
1675 bailout:
1676         if (error != 0)
1677                 passiocleanup(softc, io_req);
1678
1679         return (error);
1680 }
1681
1682 static int
1683 passmemdone(struct cam_periph *periph, struct pass_io_req *io_req)
1684 {
1685         struct pass_softc *softc;
1686         union ccb *ccb;
1687         int error;
1688         int i;
1689
1690         error = 0;
1691         softc = (struct pass_softc *)periph->softc;
1692         ccb = &io_req->ccb;
1693
1694         switch (io_req->data_flags) {
1695         case CAM_DATA_VADDR:
1696                 /*
1697                  * Copy back to the user buffer if this was a read.
1698                  */
1699                 for (i = 0; i < io_req->num_bufs; i++) {
1700                         if (io_req->dirs[i] != CAM_DIR_IN)
1701                                 continue;
1702
1703                         error = copyout(io_req->kern_bufs[i],
1704                             io_req->user_bufs[i], io_req->lengths[i]);
1705                         if (error != 0) {
1706                                 xpt_print(periph->path, "Unable to copy %u "
1707                                           "bytes from %p to user address %p\n",
1708                                           io_req->lengths[i],
1709                                           io_req->kern_bufs[i],
1710                                           io_req->user_bufs[i]);
1711                                 goto bailout;
1712                         }
1713
1714                 }
1715                 break;
1716         case CAM_DATA_PADDR:
1717                 /* Do nothing.  The pointer is a physical address already */
1718                 break;
1719         case CAM_DATA_SG:
1720                 /*
1721                  * Copy back to the user buffer if this was a read.
1722                  * Restore the user's S/G list buffer pointer.
1723                  */
1724                 if (io_req->dirs[0] == CAM_DIR_IN)
1725                         error = passcopysglist(periph, io_req, io_req->dirs[0]);
1726                 break;
1727         case CAM_DATA_SG_PADDR:
1728                 /*
1729                  * Restore the user's S/G list buffer pointer.  No need to
1730                  * copy.
1731                  */
1732                 break;
1733         default:
1734         case CAM_DATA_BIO:
1735                 error = EINVAL;
1736                 break;
1737         }
1738
1739 bailout:
1740         /*
1741          * Reset the user's pointers to their original values and free
1742          * allocated memory.
1743          */
1744         passiocleanup(softc, io_req);
1745
1746         return (error);
1747 }
1748
1749 static int
1750 passioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
1751 {
1752         int error;
1753
1754         if ((error = passdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) {
1755                 error = cam_compat_ioctl(dev, cmd, addr, flag, td, passdoioctl);
1756         }
1757         return (error);
1758 }
1759
1760 static int
1761 passdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
1762 {
1763         struct  cam_periph *periph;
1764         struct  pass_softc *softc;
1765         int     error;
1766         uint32_t priority;
1767
1768         periph = (struct cam_periph *)dev->si_drv1;
1769         cam_periph_lock(periph);
1770         softc = (struct pass_softc *)periph->softc;
1771
1772         error = 0;
1773
1774         switch (cmd) {
1775
1776         case CAMIOCOMMAND:
1777         {
1778                 union ccb *inccb;
1779                 union ccb *ccb;
1780                 int ccb_malloced;
1781
1782                 inccb = (union ccb *)addr;
1783
1784                 /*
1785                  * Some CCB types, like scan bus and scan lun can only go
1786                  * through the transport layer device.
1787                  */
1788                 if (inccb->ccb_h.func_code & XPT_FC_XPT_ONLY) {
1789                         xpt_print(periph->path, "CCB function code %#x is "
1790                             "restricted to the XPT device\n",
1791                             inccb->ccb_h.func_code);
1792                         error = ENODEV;
1793                         break;
1794                 }
1795
1796                 /* Compatibility for RL/priority-unaware code. */
1797                 priority = inccb->ccb_h.pinfo.priority;
1798                 if (priority <= CAM_PRIORITY_OOB)
1799                     priority += CAM_PRIORITY_OOB + 1;
1800
1801                 /*
1802                  * Non-immediate CCBs need a CCB from the per-device pool
1803                  * of CCBs, which is scheduled by the transport layer.
1804                  * Immediate CCBs and user-supplied CCBs should just be
1805                  * malloced.
1806                  */
1807                 if ((inccb->ccb_h.func_code & XPT_FC_QUEUED)
1808                  && ((inccb->ccb_h.func_code & XPT_FC_USER_CCB) == 0)) {
1809                         ccb = cam_periph_getccb(periph, priority);
1810                         ccb_malloced = 0;
1811                 } else {
1812                         ccb = xpt_alloc_ccb_nowait();
1813
1814                         if (ccb != NULL)
1815                                 xpt_setup_ccb(&ccb->ccb_h, periph->path,
1816                                               priority);
1817                         ccb_malloced = 1;
1818                 }
1819
1820                 if (ccb == NULL) {
1821                         xpt_print(periph->path, "unable to allocate CCB\n");
1822                         error = ENOMEM;
1823                         break;
1824                 }
1825
1826                 error = passsendccb(periph, ccb, inccb);
1827
1828                 if (ccb_malloced)
1829                         xpt_free_ccb(ccb);
1830                 else
1831                         xpt_release_ccb(ccb);
1832
1833                 break;
1834         }
1835         case CAMIOQUEUE:
1836         {
1837                 struct pass_io_req *io_req;
1838                 union ccb **user_ccb, *ccb;
1839                 xpt_opcode fc;
1840
1841                 if ((softc->flags & PASS_FLAG_ZONE_VALID) == 0) {
1842                         error = passcreatezone(periph);
1843                         if (error != 0)
1844                                 goto bailout;
1845                 }
1846
1847                 /*
1848                  * We're going to do a blocking allocation for this I/O
1849                  * request, so we have to drop the lock.
1850                  */
1851                 cam_periph_unlock(periph);
1852
1853                 io_req = uma_zalloc(softc->pass_zone, M_WAITOK | M_ZERO);
1854                 ccb = &io_req->ccb;
1855                 user_ccb = (union ccb **)addr;
1856
1857                 /*
1858                  * Unlike the CAMIOCOMMAND ioctl above, we only have a
1859                  * pointer to the user's CCB, so we have to copy the whole
1860                  * thing in to a buffer we have allocated (above) instead
1861                  * of allowing the ioctl code to malloc a buffer and copy
1862                  * it in.
1863                  *
1864                  * This is an advantage for this asynchronous interface,
1865                  * since we don't want the memory to get freed while the
1866                  * CCB is outstanding.
1867                  */
1868 #if 0
1869                 xpt_print(periph->path, "Copying user CCB %p to "
1870                           "kernel address %p\n", *user_ccb, ccb);
1871 #endif
1872                 error = copyin(*user_ccb, ccb, sizeof(*ccb));
1873                 if (error != 0) {
1874                         xpt_print(periph->path, "Copy of user CCB %p to "
1875                                   "kernel address %p failed with error %d\n",
1876                                   *user_ccb, ccb, error);
1877                         uma_zfree(softc->pass_zone, io_req);
1878                         cam_periph_lock(periph);
1879                         break;
1880                 }
1881
1882                 if (ccb->ccb_h.flags & CAM_CDB_POINTER) {
1883                         if (ccb->csio.cdb_len > IOCDBLEN) {
1884                                 error = EINVAL;
1885                                 break;
1886                         }
1887                         error = copyin(ccb->csio.cdb_io.cdb_ptr,
1888                             ccb->csio.cdb_io.cdb_bytes, ccb->csio.cdb_len);
1889                         if (error)
1890                                 break;
1891                         ccb->ccb_h.flags &= ~CAM_CDB_POINTER;
1892                 }
1893
1894                 /*
1895                  * Some CCB types, like scan bus and scan lun can only go
1896                  * through the transport layer device.
1897                  */
1898                 if (ccb->ccb_h.func_code & XPT_FC_XPT_ONLY) {
1899                         xpt_print(periph->path, "CCB function code %#x is "
1900                             "restricted to the XPT device\n",
1901                             ccb->ccb_h.func_code);
1902                         uma_zfree(softc->pass_zone, io_req);
1903                         cam_periph_lock(periph);
1904                         error = ENODEV;
1905                         break;
1906                 }
1907
1908                 /*
1909                  * Save the user's CCB pointer as well as his linked list
1910                  * pointers and peripheral private area so that we can
1911                  * restore these later.
1912                  */
1913                 io_req->user_ccb_ptr = *user_ccb;
1914                 io_req->user_periph_links = ccb->ccb_h.periph_links;
1915                 io_req->user_periph_priv = ccb->ccb_h.periph_priv;
1916
1917                 /*
1918                  * Now that we've saved the user's values, we can set our
1919                  * own peripheral private entry.
1920                  */
1921                 ccb->ccb_h.ccb_ioreq = io_req;
1922
1923                 /* Compatibility for RL/priority-unaware code. */
1924                 priority = ccb->ccb_h.pinfo.priority;
1925                 if (priority <= CAM_PRIORITY_OOB)
1926                     priority += CAM_PRIORITY_OOB + 1;
1927
1928                 /*
1929                  * Setup fields in the CCB like the path and the priority.
1930                  * The path in particular cannot be done in userland, since
1931                  * it is a pointer to a kernel data structure.
1932                  */
1933                 xpt_setup_ccb_flags(&ccb->ccb_h, periph->path, priority,
1934                                     ccb->ccb_h.flags);
1935
1936                 /*
1937                  * Setup our done routine.  There is no way for the user to
1938                  * have a valid pointer here.
1939                  */
1940                 ccb->ccb_h.cbfcnp = passdone;
1941
1942                 fc = ccb->ccb_h.func_code;
1943                 /*
1944                  * If this function code has memory that can be mapped in
1945                  * or out, we need to call passmemsetup().
1946                  */
1947                 if ((fc == XPT_SCSI_IO) || (fc == XPT_ATA_IO)
1948                  || (fc == XPT_SMP_IO) || (fc == XPT_DEV_MATCH)
1949                  || (fc == XPT_DEV_ADVINFO)) {
1950                         error = passmemsetup(periph, io_req);
1951                         if (error != 0) {
1952                                 uma_zfree(softc->pass_zone, io_req);
1953                                 cam_periph_lock(periph);
1954                                 break;
1955                         }
1956                 } else
1957                         io_req->mapinfo.num_bufs_used = 0;
1958
1959                 cam_periph_lock(periph);
1960
1961                 /*
1962                  * Everything goes on the incoming queue initially.
1963                  */
1964                 TAILQ_INSERT_TAIL(&softc->incoming_queue, io_req, links);
1965
1966                 /*
1967                  * If the CCB is queued, and is not a user CCB, then
1968                  * we need to allocate a slot for it.  Call xpt_schedule()
1969                  * so that our start routine will get called when a CCB is
1970                  * available.
1971                  */
1972                 if ((fc & XPT_FC_QUEUED)
1973                  && ((fc & XPT_FC_USER_CCB) == 0)) {
1974                         xpt_schedule(periph, priority);
1975                         break;
1976                 } 
1977
1978                 /*
1979                  * At this point, the CCB in question is either an
1980                  * immediate CCB (like XPT_DEV_ADVINFO) or it is a user CCB
1981                  * and therefore should be malloced, not allocated via a slot.
1982                  * Remove the CCB from the incoming queue and add it to the
1983                  * active queue.
1984                  */
1985                 TAILQ_REMOVE(&softc->incoming_queue, io_req, links);
1986                 TAILQ_INSERT_TAIL(&softc->active_queue, io_req, links);
1987
1988                 xpt_action(ccb);
1989
1990                 /*
1991                  * If this is not a queued CCB (i.e. it is an immediate CCB),
1992                  * then it is already done.  We need to put it on the done
1993                  * queue for the user to fetch.
1994                  */
1995                 if ((fc & XPT_FC_QUEUED) == 0) {
1996                         TAILQ_REMOVE(&softc->active_queue, io_req, links);
1997                         TAILQ_INSERT_TAIL(&softc->done_queue, io_req, links);
1998                 }
1999                 break;
2000         }
2001         case CAMIOGET:
2002         {
2003                 union ccb **user_ccb;
2004                 struct pass_io_req *io_req;
2005                 int old_error;
2006
2007                 user_ccb = (union ccb **)addr;
2008                 old_error = 0;
2009
2010                 io_req = TAILQ_FIRST(&softc->done_queue);
2011                 if (io_req == NULL) {
2012                         error = ENOENT;
2013                         break;
2014                 }
2015
2016                 /*
2017                  * Remove the I/O from the done queue.
2018                  */
2019                 TAILQ_REMOVE(&softc->done_queue, io_req, links);
2020
2021                 /*
2022                  * We have to drop the lock during the copyout because the
2023                  * copyout can result in VM faults that require sleeping.
2024                  */
2025                 cam_periph_unlock(periph);
2026
2027                 /*
2028                  * Do any needed copies (e.g. for reads) and revert the
2029                  * pointers in the CCB back to the user's pointers.
2030                  */
2031                 error = passmemdone(periph, io_req);
2032
2033                 old_error = error;
2034
2035                 io_req->ccb.ccb_h.periph_links = io_req->user_periph_links;
2036                 io_req->ccb.ccb_h.periph_priv = io_req->user_periph_priv;
2037
2038 #if 0
2039                 xpt_print(periph->path, "Copying to user CCB %p from "
2040                           "kernel address %p\n", *user_ccb, &io_req->ccb);
2041 #endif
2042
2043                 error = copyout(&io_req->ccb, *user_ccb, sizeof(union ccb));
2044                 if (error != 0) {
2045                         xpt_print(periph->path, "Copy to user CCB %p from "
2046                                   "kernel address %p failed with error %d\n",
2047                                   *user_ccb, &io_req->ccb, error);
2048                 }
2049
2050                 /*
2051                  * Prefer the first error we got back, and make sure we
2052                  * don't overwrite bad status with good.
2053                  */
2054                 if (old_error != 0)
2055                         error = old_error;
2056
2057                 cam_periph_lock(periph);
2058
2059                 /*
2060                  * At this point, if there was an error, we could potentially
2061                  * re-queue the I/O and try again.  But why?  The error
2062                  * would almost certainly happen again.  We might as well
2063                  * not leak memory.
2064                  */
2065                 uma_zfree(softc->pass_zone, io_req);
2066                 break;
2067         }
2068         default:
2069                 error = cam_periph_ioctl(periph, cmd, addr, passerror);
2070                 break;
2071         }
2072
2073 bailout:
2074         cam_periph_unlock(periph);
2075
2076         return(error);
2077 }
2078
2079 static int
2080 passpoll(struct cdev *dev, int poll_events, struct thread *td)
2081 {
2082         struct cam_periph *periph;
2083         struct pass_softc *softc;
2084         int revents;
2085
2086         periph = (struct cam_periph *)dev->si_drv1;
2087         softc = (struct pass_softc *)periph->softc;
2088
2089         revents = poll_events & (POLLOUT | POLLWRNORM);
2090         if ((poll_events & (POLLIN | POLLRDNORM)) != 0) {
2091                 cam_periph_lock(periph);
2092
2093                 if (!TAILQ_EMPTY(&softc->done_queue)) {
2094                         revents |= poll_events & (POLLIN | POLLRDNORM);
2095                 }
2096                 cam_periph_unlock(periph);
2097                 if (revents == 0)
2098                         selrecord(td, &softc->read_select);
2099         }
2100
2101         return (revents);
2102 }
2103
2104 static int
2105 passkqfilter(struct cdev *dev, struct knote *kn)
2106 {
2107         struct cam_periph *periph;
2108         struct pass_softc *softc;
2109
2110         periph = (struct cam_periph *)dev->si_drv1;
2111         softc = (struct pass_softc *)periph->softc;
2112
2113         kn->kn_hook = (caddr_t)periph;
2114         kn->kn_fop = &passread_filtops;
2115         knlist_add(&softc->read_select.si_note, kn, 0);
2116
2117         return (0);
2118 }
2119
2120 static void
2121 passreadfiltdetach(struct knote *kn)
2122 {
2123         struct cam_periph *periph;
2124         struct pass_softc *softc;
2125
2126         periph = (struct cam_periph *)kn->kn_hook;
2127         softc = (struct pass_softc *)periph->softc;
2128
2129         knlist_remove(&softc->read_select.si_note, kn, 0);
2130 }
2131
2132 static int
2133 passreadfilt(struct knote *kn, long hint)
2134 {
2135         struct cam_periph *periph;
2136         struct pass_softc *softc;
2137         int retval;
2138
2139         periph = (struct cam_periph *)kn->kn_hook;
2140         softc = (struct pass_softc *)periph->softc;
2141
2142         cam_periph_assert(periph, MA_OWNED);
2143
2144         if (TAILQ_EMPTY(&softc->done_queue))
2145                 retval = 0;
2146         else
2147                 retval = 1;
2148
2149         return (retval);
2150 }
2151
2152 /*
2153  * Generally, "ccb" should be the CCB supplied by the kernel.  "inccb"
2154  * should be the CCB that is copied in from the user.
2155  */
2156 static int
2157 passsendccb(struct cam_periph *periph, union ccb *ccb, union ccb *inccb)
2158 {
2159         struct pass_softc *softc;
2160         struct cam_periph_map_info mapinfo;
2161         uint8_t *cmd;
2162         xpt_opcode fc;
2163         int error;
2164
2165         softc = (struct pass_softc *)periph->softc;
2166
2167         /*
2168          * There are some fields in the CCB header that need to be
2169          * preserved, the rest we get from the user.
2170          */
2171         xpt_merge_ccb(ccb, inccb);
2172
2173         if (ccb->ccb_h.flags & CAM_CDB_POINTER) {
2174                 cmd = __builtin_alloca(ccb->csio.cdb_len);
2175                 error = copyin(ccb->csio.cdb_io.cdb_ptr, cmd, ccb->csio.cdb_len);
2176                 if (error)
2177                         return (error);
2178                 ccb->csio.cdb_io.cdb_ptr = cmd;
2179         }
2180
2181         /*
2182          */
2183         ccb->ccb_h.cbfcnp = passdone;
2184
2185         /*
2186          * Let cam_periph_mapmem do a sanity check on the data pointer format.
2187          * Even if no data transfer is needed, it's a cheap check and it
2188          * simplifies the code.
2189          */
2190         fc = ccb->ccb_h.func_code;
2191         if ((fc == XPT_SCSI_IO) || (fc == XPT_ATA_IO) || (fc == XPT_SMP_IO)
2192          || (fc == XPT_DEV_MATCH) || (fc == XPT_DEV_ADVINFO)) {
2193                 bzero(&mapinfo, sizeof(mapinfo));
2194
2195                 /*
2196                  * cam_periph_mapmem calls into proc and vm functions that can
2197                  * sleep as well as trigger I/O, so we can't hold the lock.
2198                  * Dropping it here is reasonably safe.
2199                  */
2200                 cam_periph_unlock(periph);
2201                 error = cam_periph_mapmem(ccb, &mapinfo, softc->maxio);
2202                 cam_periph_lock(periph);
2203
2204                 /*
2205                  * cam_periph_mapmem returned an error, we can't continue.
2206                  * Return the error to the user.
2207                  */
2208                 if (error)
2209                         return(error);
2210         } else
2211                 /* Ensure that the unmap call later on is a no-op. */
2212                 mapinfo.num_bufs_used = 0;
2213
2214         /*
2215          * If the user wants us to perform any error recovery, then honor
2216          * that request.  Otherwise, it's up to the user to perform any
2217          * error recovery.
2218          */
2219         cam_periph_runccb(ccb, (ccb->ccb_h.flags & CAM_PASS_ERR_RECOVER) ? 
2220             passerror : NULL, /* cam_flags */ CAM_RETRY_SELTO,
2221             /* sense_flags */ SF_RETRY_UA | SF_NO_PRINT,
2222             softc->device_stats);
2223
2224         cam_periph_unmapmem(ccb, &mapinfo);
2225
2226         ccb->ccb_h.cbfcnp = NULL;
2227         ccb->ccb_h.periph_priv = inccb->ccb_h.periph_priv;
2228         bcopy(ccb, inccb, sizeof(union ccb));
2229
2230         return(0);
2231 }
2232
2233 static int
2234 passerror(union ccb *ccb, u_int32_t cam_flags, u_int32_t sense_flags)
2235 {
2236         struct cam_periph *periph;
2237         struct pass_softc *softc;
2238
2239         periph = xpt_path_periph(ccb->ccb_h.path);
2240         softc = (struct pass_softc *)periph->softc;
2241         
2242         return(cam_periph_error(ccb, cam_flags, sense_flags, 
2243                                  &softc->saved_ccb));
2244 }