]> CyberLeo.Net >> Repos - FreeBSD/stable/10.git/blob - sys/cam/scsi/scsi_pass.c
MFC r291716, r291724, r291741, r291742
[FreeBSD/stable/10.git] / sys / cam / scsi / scsi_pass.c
1 /*-
2  * Copyright (c) 1997, 1998, 2000 Justin T. Gibbs.
3  * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions, and the following disclaimer,
11  *    without modification, immediately at the beginning of the file.
12  * 2. The name of the author may not be used to endorse or promote products
13  *    derived from this software without specific prior written permission.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
19  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30
31 #include "opt_kdtrace.h"
32
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/kernel.h>
36 #include <sys/conf.h>
37 #include <sys/types.h>
38 #include <sys/bio.h>
39 #include <sys/bus.h>
40 #include <sys/devicestat.h>
41 #include <sys/errno.h>
42 #include <sys/fcntl.h>
43 #include <sys/malloc.h>
44 #include <sys/proc.h>
45 #include <sys/poll.h>
46 #include <sys/selinfo.h>
47 #include <sys/sdt.h>
48 #include <sys/taskqueue.h>
49 #include <vm/uma.h>
50 #include <vm/vm.h>
51 #include <vm/vm_extern.h>
52
53 #include <machine/bus.h>
54
55 #include <cam/cam.h>
56 #include <cam/cam_ccb.h>
57 #include <cam/cam_periph.h>
58 #include <cam/cam_queue.h>
59 #include <cam/cam_xpt.h>
60 #include <cam/cam_xpt_periph.h>
61 #include <cam/cam_debug.h>
62 #include <cam/cam_compat.h>
63 #include <cam/cam_xpt_periph.h>
64
65 #include <cam/scsi/scsi_all.h>
66 #include <cam/scsi/scsi_pass.h>
67
68 typedef enum {
69         PASS_FLAG_OPEN                  = 0x01,
70         PASS_FLAG_LOCKED                = 0x02,
71         PASS_FLAG_INVALID               = 0x04,
72         PASS_FLAG_INITIAL_PHYSPATH      = 0x08,
73         PASS_FLAG_ZONE_INPROG           = 0x10,
74         PASS_FLAG_ZONE_VALID            = 0x20,
75         PASS_FLAG_UNMAPPED_CAPABLE      = 0x40,
76         PASS_FLAG_ABANDONED_REF_SET     = 0x80
77 } pass_flags;
78
79 typedef enum {
80         PASS_STATE_NORMAL
81 } pass_state;
82
83 typedef enum {
84         PASS_CCB_BUFFER_IO,
85         PASS_CCB_QUEUED_IO
86 } pass_ccb_types;
87
88 #define ccb_type        ppriv_field0
89 #define ccb_ioreq       ppriv_ptr1
90
91 /*
92  * The maximum number of memory segments we preallocate.
93  */
94 #define PASS_MAX_SEGS   16
95
96 typedef enum {
97         PASS_IO_NONE            = 0x00,
98         PASS_IO_USER_SEG_MALLOC = 0x01,
99         PASS_IO_KERN_SEG_MALLOC = 0x02,
100         PASS_IO_ABANDONED       = 0x04
101 } pass_io_flags; 
102
103 struct pass_io_req {
104         union ccb                        ccb;
105         union ccb                       *alloced_ccb;
106         union ccb                       *user_ccb_ptr;
107         camq_entry                       user_periph_links;
108         ccb_ppriv_area                   user_periph_priv;
109         struct cam_periph_map_info       mapinfo;
110         pass_io_flags                    flags;
111         ccb_flags                        data_flags;
112         int                              num_user_segs;
113         bus_dma_segment_t                user_segs[PASS_MAX_SEGS];
114         int                              num_kern_segs;
115         bus_dma_segment_t                kern_segs[PASS_MAX_SEGS];
116         bus_dma_segment_t               *user_segptr;
117         bus_dma_segment_t               *kern_segptr;
118         int                              num_bufs;
119         uint32_t                         dirs[CAM_PERIPH_MAXMAPS];
120         uint32_t                         lengths[CAM_PERIPH_MAXMAPS];
121         uint8_t                         *user_bufs[CAM_PERIPH_MAXMAPS];
122         uint8_t                         *kern_bufs[CAM_PERIPH_MAXMAPS];
123         struct bintime                   start_time;
124         TAILQ_ENTRY(pass_io_req)         links;
125 };
126
127 struct pass_softc {
128         pass_state                state;
129         pass_flags                flags;
130         u_int8_t                  pd_type;
131         union ccb                 saved_ccb;
132         int                       open_count;
133         u_int                     maxio;
134         struct devstat           *device_stats;
135         struct cdev              *dev;
136         struct cdev              *alias_dev;
137         struct task               add_physpath_task;
138         struct task               shutdown_kqueue_task;
139         struct selinfo            read_select;
140         TAILQ_HEAD(, pass_io_req) incoming_queue;
141         TAILQ_HEAD(, pass_io_req) active_queue;
142         TAILQ_HEAD(, pass_io_req) abandoned_queue;
143         TAILQ_HEAD(, pass_io_req) done_queue;
144         struct cam_periph        *periph;
145         char                      zone_name[12];
146         char                      io_zone_name[12];
147         uma_zone_t                pass_zone;
148         uma_zone_t                pass_io_zone;
149         size_t                    io_zone_size;
150 };
151
152 static  d_open_t        passopen;
153 static  d_close_t       passclose;
154 static  d_ioctl_t       passioctl;
155 static  d_ioctl_t       passdoioctl;
156 static  d_poll_t        passpoll;
157 static  d_kqfilter_t    passkqfilter;
158 static  void            passreadfiltdetach(struct knote *kn);
159 static  int             passreadfilt(struct knote *kn, long hint);
160
161 static  periph_init_t   passinit;
162 static  periph_ctor_t   passregister;
163 static  periph_oninv_t  passoninvalidate;
164 static  periph_dtor_t   passcleanup;
165 static  periph_start_t  passstart;
166 static  void            pass_shutdown_kqueue(void *context, int pending);
167 static  void            pass_add_physpath(void *context, int pending);
168 static  void            passasync(void *callback_arg, u_int32_t code,
169                                   struct cam_path *path, void *arg);
170 static  void            passdone(struct cam_periph *periph, 
171                                  union ccb *done_ccb);
172 static  int             passcreatezone(struct cam_periph *periph);
173 static  void            passiocleanup(struct pass_softc *softc, 
174                                       struct pass_io_req *io_req);
175 static  int             passcopysglist(struct cam_periph *periph,
176                                        struct pass_io_req *io_req,
177                                        ccb_flags direction);
178 static  int             passmemsetup(struct cam_periph *periph,
179                                      struct pass_io_req *io_req);
180 static  int             passmemdone(struct cam_periph *periph,
181                                     struct pass_io_req *io_req);
182 static  int             passerror(union ccb *ccb, u_int32_t cam_flags, 
183                                   u_int32_t sense_flags);
184 static  int             passsendccb(struct cam_periph *periph, union ccb *ccb,
185                                     union ccb *inccb);
186
187 static struct periph_driver passdriver =
188 {
189         passinit, "pass",
190         TAILQ_HEAD_INITIALIZER(passdriver.units), /* generation */ 0
191 };
192
193 PERIPHDRIVER_DECLARE(pass, passdriver);
194
195 static struct cdevsw pass_cdevsw = {
196         .d_version =    D_VERSION,
197         .d_flags =      D_TRACKCLOSE,
198         .d_open =       passopen,
199         .d_close =      passclose,
200         .d_ioctl =      passioctl,
201         .d_poll =       passpoll,
202         .d_kqfilter =   passkqfilter,
203         .d_name =       "pass",
204 };
205
206 static struct filterops passread_filtops = {
207         .f_isfd =       1,
208         .f_detach =     passreadfiltdetach,
209         .f_event =      passreadfilt
210 };
211
212 static MALLOC_DEFINE(M_SCSIPASS, "scsi_pass", "scsi passthrough buffers");
213
214 static void
215 passinit(void)
216 {
217         cam_status status;
218
219         /*
220          * Install a global async callback.  This callback will
221          * receive async callbacks like "new device found".
222          */
223         status = xpt_register_async(AC_FOUND_DEVICE, passasync, NULL, NULL);
224
225         if (status != CAM_REQ_CMP) {
226                 printf("pass: Failed to attach master async callback "
227                        "due to status 0x%x!\n", status);
228         }
229
230 }
231
232 static void
233 passrejectios(struct cam_periph *periph)
234 {
235         struct pass_io_req *io_req, *io_req2;
236         struct pass_softc *softc;
237
238         softc = (struct pass_softc *)periph->softc;
239
240         /*
241          * The user can no longer get status for I/O on the done queue, so
242          * clean up all outstanding I/O on the done queue.
243          */
244         TAILQ_FOREACH_SAFE(io_req, &softc->done_queue, links, io_req2) {
245                 TAILQ_REMOVE(&softc->done_queue, io_req, links);
246                 passiocleanup(softc, io_req);
247                 uma_zfree(softc->pass_zone, io_req);
248         }
249
250         /*
251          * The underlying device is gone, so we can't issue these I/Os.
252          * The devfs node has been shut down, so we can't return status to
253          * the user.  Free any I/O left on the incoming queue.
254          */
255         TAILQ_FOREACH_SAFE(io_req, &softc->incoming_queue, links, io_req2) {
256                 TAILQ_REMOVE(&softc->incoming_queue, io_req, links);
257                 passiocleanup(softc, io_req);
258                 uma_zfree(softc->pass_zone, io_req);
259         }
260
261         /*
262          * Normally we would put I/Os on the abandoned queue and acquire a
263          * reference when we saw the final close.  But, the device went
264          * away and devfs may have moved everything off to deadfs by the
265          * time the I/O done callback is called; as a result, we won't see
266          * any more closes.  So, if we have any active I/Os, we need to put
267          * them on the abandoned queue.  When the abandoned queue is empty,
268          * we'll release the remaining reference (see below) to the peripheral.
269          */
270         TAILQ_FOREACH_SAFE(io_req, &softc->active_queue, links, io_req2) {
271                 TAILQ_REMOVE(&softc->active_queue, io_req, links);
272                 io_req->flags |= PASS_IO_ABANDONED;
273                 TAILQ_INSERT_TAIL(&softc->abandoned_queue, io_req, links);
274         }
275
276         /*
277          * If we put any I/O on the abandoned queue, acquire a reference.
278          */
279         if ((!TAILQ_EMPTY(&softc->abandoned_queue))
280          && ((softc->flags & PASS_FLAG_ABANDONED_REF_SET) == 0)) {
281                 cam_periph_doacquire(periph);
282                 softc->flags |= PASS_FLAG_ABANDONED_REF_SET;
283         }
284 }
285
286 static void
287 passdevgonecb(void *arg)
288 {
289         struct cam_periph *periph;
290         struct mtx *mtx;
291         struct pass_softc *softc;
292         int i;
293
294         periph = (struct cam_periph *)arg;
295         mtx = cam_periph_mtx(periph);
296         mtx_lock(mtx);
297
298         softc = (struct pass_softc *)periph->softc;
299         KASSERT(softc->open_count >= 0, ("Negative open count %d",
300                 softc->open_count));
301
302         /*
303          * When we get this callback, we will get no more close calls from
304          * devfs.  So if we have any dangling opens, we need to release the
305          * reference held for that particular context.
306          */
307         for (i = 0; i < softc->open_count; i++)
308                 cam_periph_release_locked(periph);
309
310         softc->open_count = 0;
311
312         /*
313          * Release the reference held for the device node, it is gone now.
314          * Accordingly, inform all queued I/Os of their fate.
315          */
316         cam_periph_release_locked(periph);
317         passrejectios(periph);
318
319         /*
320          * We reference the SIM lock directly here, instead of using
321          * cam_periph_unlock().  The reason is that the final call to
322          * cam_periph_release_locked() above could result in the periph
323          * getting freed.  If that is the case, dereferencing the periph
324          * with a cam_periph_unlock() call would cause a page fault.
325          */
326         mtx_unlock(mtx);
327
328         /*
329          * We have to remove our kqueue context from a thread because it
330          * may sleep.  It would be nice if we could get a callback from
331          * kqueue when it is done cleaning up resources.
332          */
333         taskqueue_enqueue(taskqueue_thread, &softc->shutdown_kqueue_task);
334 }
335
336 static void
337 passoninvalidate(struct cam_periph *periph)
338 {
339         struct pass_softc *softc;
340
341         softc = (struct pass_softc *)periph->softc;
342
343         /*
344          * De-register any async callbacks.
345          */
346         xpt_register_async(0, passasync, periph, periph->path);
347
348         softc->flags |= PASS_FLAG_INVALID;
349
350         /*
351          * Tell devfs this device has gone away, and ask for a callback
352          * when it has cleaned up its state.
353          */
354         destroy_dev_sched_cb(softc->dev, passdevgonecb, periph);
355 }
356
357 static void
358 passcleanup(struct cam_periph *periph)
359 {
360         struct pass_softc *softc;
361
362         softc = (struct pass_softc *)periph->softc;
363
364         cam_periph_assert(periph, MA_OWNED);
365         KASSERT(TAILQ_EMPTY(&softc->active_queue),
366                 ("%s called when there are commands on the active queue!\n",
367                 __func__));
368         KASSERT(TAILQ_EMPTY(&softc->abandoned_queue),
369                 ("%s called when there are commands on the abandoned queue!\n",
370                 __func__));
371         KASSERT(TAILQ_EMPTY(&softc->incoming_queue),
372                 ("%s called when there are commands on the incoming queue!\n",
373                 __func__));
374         KASSERT(TAILQ_EMPTY(&softc->done_queue),
375                 ("%s called when there are commands on the done queue!\n",
376                 __func__));
377
378         devstat_remove_entry(softc->device_stats);
379
380         cam_periph_unlock(periph);
381
382         /*
383          * We call taskqueue_drain() for the physpath task to make sure it
384          * is complete.  We drop the lock because this can potentially
385          * sleep.  XXX KDM that is bad.  Need a way to get a callback when
386          * a taskqueue is drained.
387          *
388          * Note that we don't drain the kqueue shutdown task queue.  This
389          * is because we hold a reference on the periph for kqueue, and
390          * release that reference from the kqueue shutdown task queue.  So
391          * we cannot come into this routine unless we've released that
392          * reference.  Also, because that could be the last reference, we
393          * could be called from the cam_periph_release() call in
394          * pass_shutdown_kqueue().  In that case, the taskqueue_drain()
395          * would deadlock.  It would be preferable if we had a way to
396          * get a callback when a taskqueue is done.
397          */
398         taskqueue_drain(taskqueue_thread, &softc->add_physpath_task);
399
400         cam_periph_lock(periph);
401
402         free(softc, M_DEVBUF);
403 }
404
405 static void
406 pass_shutdown_kqueue(void *context, int pending)
407 {
408         struct cam_periph *periph;
409         struct pass_softc *softc;
410
411         periph = context;
412         softc = periph->softc;
413
414         knlist_clear(&softc->read_select.si_note, /*is_locked*/ 0);
415         knlist_destroy(&softc->read_select.si_note);
416
417         /*
418          * Release the reference we held for kqueue.
419          */
420         cam_periph_release(periph);
421 }
422
423 static void
424 pass_add_physpath(void *context, int pending)
425 {
426         struct cam_periph *periph;
427         struct pass_softc *softc;
428         struct mtx *mtx;
429         char *physpath;
430
431         /*
432          * If we have one, create a devfs alias for our
433          * physical path.
434          */
435         periph = context;
436         softc = periph->softc;
437         physpath = malloc(MAXPATHLEN, M_DEVBUF, M_WAITOK);
438         mtx = cam_periph_mtx(periph);
439         mtx_lock(mtx);
440
441         if (periph->flags & CAM_PERIPH_INVALID)
442                 goto out;
443
444         if (xpt_getattr(physpath, MAXPATHLEN,
445                         "GEOM::physpath", periph->path) == 0
446          && strlen(physpath) != 0) {
447
448                 mtx_unlock(mtx);
449                 make_dev_physpath_alias(MAKEDEV_WAITOK, &softc->alias_dev,
450                                         softc->dev, softc->alias_dev, physpath);
451                 mtx_lock(mtx);
452         }
453
454 out:
455         /*
456          * Now that we've made our alias, we no longer have to have a
457          * reference to the device.
458          */
459         if ((softc->flags & PASS_FLAG_INITIAL_PHYSPATH) == 0)
460                 softc->flags |= PASS_FLAG_INITIAL_PHYSPATH;
461
462         /*
463          * We always acquire a reference to the periph before queueing this
464          * task queue function, so it won't go away before we run.
465          */
466         while (pending-- > 0)
467                 cam_periph_release_locked(periph);
468         mtx_unlock(mtx);
469
470         free(physpath, M_DEVBUF);
471 }
472
473 static void
474 passasync(void *callback_arg, u_int32_t code,
475           struct cam_path *path, void *arg)
476 {
477         struct cam_periph *periph;
478
479         periph = (struct cam_periph *)callback_arg;
480
481         switch (code) {
482         case AC_FOUND_DEVICE:
483         {
484                 struct ccb_getdev *cgd;
485                 cam_status status;
486  
487                 cgd = (struct ccb_getdev *)arg;
488                 if (cgd == NULL)
489                         break;
490
491                 /*
492                  * Allocate a peripheral instance for
493                  * this device and start the probe
494                  * process.
495                  */
496                 status = cam_periph_alloc(passregister, passoninvalidate,
497                                           passcleanup, passstart, "pass",
498                                           CAM_PERIPH_BIO, path,
499                                           passasync, AC_FOUND_DEVICE, cgd);
500
501                 if (status != CAM_REQ_CMP
502                  && status != CAM_REQ_INPROG) {
503                         const struct cam_status_entry *entry;
504
505                         entry = cam_fetch_status_entry(status);
506
507                         printf("passasync: Unable to attach new device "
508                                "due to status %#x: %s\n", status, entry ?
509                                entry->status_text : "Unknown");
510                 }
511
512                 break;
513         }
514         case AC_ADVINFO_CHANGED:
515         {
516                 uintptr_t buftype;
517
518                 buftype = (uintptr_t)arg;
519                 if (buftype == CDAI_TYPE_PHYS_PATH) {
520                         struct pass_softc *softc;
521                         cam_status status;
522
523                         softc = (struct pass_softc *)periph->softc;
524                         /*
525                          * Acquire a reference to the periph before we
526                          * start the taskqueue, so that we don't run into
527                          * a situation where the periph goes away before
528                          * the task queue has a chance to run.
529                          */
530                         status = cam_periph_acquire(periph);
531                         if (status != CAM_REQ_CMP)
532                                 break;
533
534                         taskqueue_enqueue(taskqueue_thread,
535                                           &softc->add_physpath_task);
536                 }
537                 break;
538         }
539         default:
540                 cam_periph_async(periph, code, path, arg);
541                 break;
542         }
543 }
544
545 static cam_status
546 passregister(struct cam_periph *periph, void *arg)
547 {
548         struct pass_softc *softc;
549         struct ccb_getdev *cgd;
550         struct ccb_pathinq cpi;
551         int    no_tags;
552
553         cgd = (struct ccb_getdev *)arg;
554         if (cgd == NULL) {
555                 printf("%s: no getdev CCB, can't register device\n", __func__);
556                 return(CAM_REQ_CMP_ERR);
557         }
558
559         softc = (struct pass_softc *)malloc(sizeof(*softc),
560                                             M_DEVBUF, M_NOWAIT);
561
562         if (softc == NULL) {
563                 printf("%s: Unable to probe new device. "
564                        "Unable to allocate softc\n", __func__);
565                 return(CAM_REQ_CMP_ERR);
566         }
567
568         bzero(softc, sizeof(*softc));
569         softc->state = PASS_STATE_NORMAL;
570         if (cgd->protocol == PROTO_SCSI || cgd->protocol == PROTO_ATAPI)
571                 softc->pd_type = SID_TYPE(&cgd->inq_data);
572         else if (cgd->protocol == PROTO_SATAPM)
573                 softc->pd_type = T_ENCLOSURE;
574         else
575                 softc->pd_type = T_DIRECT;
576
577         periph->softc = softc;
578         softc->periph = periph;
579         TAILQ_INIT(&softc->incoming_queue);
580         TAILQ_INIT(&softc->active_queue);
581         TAILQ_INIT(&softc->abandoned_queue);
582         TAILQ_INIT(&softc->done_queue);
583         snprintf(softc->zone_name, sizeof(softc->zone_name), "%s%d",
584                  periph->periph_name, periph->unit_number);
585         snprintf(softc->io_zone_name, sizeof(softc->io_zone_name), "%s%dIO",
586                  periph->periph_name, periph->unit_number);
587         softc->io_zone_size = MAXPHYS;
588         knlist_init_mtx(&softc->read_select.si_note, cam_periph_mtx(periph));
589
590         bzero(&cpi, sizeof(cpi));
591         xpt_setup_ccb(&cpi.ccb_h, periph->path, CAM_PRIORITY_NORMAL);
592         cpi.ccb_h.func_code = XPT_PATH_INQ;
593         xpt_action((union ccb *)&cpi);
594
595         if (cpi.maxio == 0)
596                 softc->maxio = DFLTPHYS;        /* traditional default */
597         else if (cpi.maxio > MAXPHYS)
598                 softc->maxio = MAXPHYS;         /* for safety */
599         else
600                 softc->maxio = cpi.maxio;       /* real value */
601
602         if (cpi.hba_misc & PIM_UNMAPPED)
603                 softc->flags |= PASS_FLAG_UNMAPPED_CAPABLE;
604
605         /*
606          * We pass in 0 for a blocksize, since we don't 
607          * know what the blocksize of this device is, if 
608          * it even has a blocksize.
609          */
610         cam_periph_unlock(periph);
611         no_tags = (cgd->inq_data.flags & SID_CmdQue) == 0;
612         softc->device_stats = devstat_new_entry("pass",
613                           periph->unit_number, 0,
614                           DEVSTAT_NO_BLOCKSIZE
615                           | (no_tags ? DEVSTAT_NO_ORDERED_TAGS : 0),
616                           softc->pd_type |
617                           XPORT_DEVSTAT_TYPE(cpi.transport) |
618                           DEVSTAT_TYPE_PASS,
619                           DEVSTAT_PRIORITY_PASS);
620
621         /*
622          * Initialize the taskqueue handler for shutting down kqueue.
623          */
624         TASK_INIT(&softc->shutdown_kqueue_task, /*priority*/ 0,
625                   pass_shutdown_kqueue, periph);
626
627         /*
628          * Acquire a reference to the periph that we can release once we've
629          * cleaned up the kqueue.
630          */
631         if (cam_periph_acquire(periph) != CAM_REQ_CMP) {
632                 xpt_print(periph->path, "%s: lost periph during "
633                           "registration!\n", __func__);
634                 cam_periph_lock(periph);
635                 return (CAM_REQ_CMP_ERR);
636         }
637
638         /*
639          * Acquire a reference to the periph before we create the devfs
640          * instance for it.  We'll release this reference once the devfs
641          * instance has been freed.
642          */
643         if (cam_periph_acquire(periph) != CAM_REQ_CMP) {
644                 xpt_print(periph->path, "%s: lost periph during "
645                           "registration!\n", __func__);
646                 cam_periph_lock(periph);
647                 return (CAM_REQ_CMP_ERR);
648         }
649
650         /* Register the device */
651         softc->dev = make_dev(&pass_cdevsw, periph->unit_number,
652                               UID_ROOT, GID_OPERATOR, 0600, "%s%d",
653                               periph->periph_name, periph->unit_number);
654
655         /*
656          * Hold a reference to the periph before we create the physical
657          * path alias so it can't go away.
658          */
659         if (cam_periph_acquire(periph) != CAM_REQ_CMP) {
660                 xpt_print(periph->path, "%s: lost periph during "
661                           "registration!\n", __func__);
662                 cam_periph_lock(periph);
663                 return (CAM_REQ_CMP_ERR);
664         }
665
666         cam_periph_lock(periph);
667         softc->dev->si_drv1 = periph;
668
669         TASK_INIT(&softc->add_physpath_task, /*priority*/0,
670                   pass_add_physpath, periph);
671
672         /*
673          * See if physical path information is already available.
674          */
675         taskqueue_enqueue(taskqueue_thread, &softc->add_physpath_task);
676
677         /*
678          * Add an async callback so that we get notified if
679          * this device goes away or its physical path
680          * (stored in the advanced info data of the EDT) has
681          * changed.
682          */
683         xpt_register_async(AC_LOST_DEVICE | AC_ADVINFO_CHANGED,
684                            passasync, periph, periph->path);
685
686         if (bootverbose)
687                 xpt_announce_periph(periph, NULL);
688
689         return(CAM_REQ_CMP);
690 }
691
692 static int
693 passopen(struct cdev *dev, int flags, int fmt, struct thread *td)
694 {
695         struct cam_periph *periph;
696         struct pass_softc *softc;
697         int error;
698
699         periph = (struct cam_periph *)dev->si_drv1;
700         if (cam_periph_acquire(periph) != CAM_REQ_CMP)
701                 return (ENXIO);
702
703         cam_periph_lock(periph);
704
705         softc = (struct pass_softc *)periph->softc;
706
707         if (softc->flags & PASS_FLAG_INVALID) {
708                 cam_periph_release_locked(periph);
709                 cam_periph_unlock(periph);
710                 return(ENXIO);
711         }
712
713         /*
714          * Don't allow access when we're running at a high securelevel.
715          */
716         error = securelevel_gt(td->td_ucred, 1);
717         if (error) {
718                 cam_periph_release_locked(periph);
719                 cam_periph_unlock(periph);
720                 return(error);
721         }
722
723         /*
724          * Only allow read-write access.
725          */
726         if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0)) {
727                 cam_periph_release_locked(periph);
728                 cam_periph_unlock(periph);
729                 return(EPERM);
730         }
731
732         /*
733          * We don't allow nonblocking access.
734          */
735         if ((flags & O_NONBLOCK) != 0) {
736                 xpt_print(periph->path, "can't do nonblocking access\n");
737                 cam_periph_release_locked(periph);
738                 cam_periph_unlock(periph);
739                 return(EINVAL);
740         }
741
742         softc->open_count++;
743
744         cam_periph_unlock(periph);
745
746         return (error);
747 }
748
749 static int
750 passclose(struct cdev *dev, int flag, int fmt, struct thread *td)
751 {
752         struct  cam_periph *periph;
753         struct  pass_softc *softc;
754         struct mtx *mtx;
755
756         periph = (struct cam_periph *)dev->si_drv1;
757         if (periph == NULL)
758                 return (ENXIO); 
759         mtx = cam_periph_mtx(periph);
760         mtx_lock(mtx);
761
762         softc = periph->softc;
763         softc->open_count--;
764
765         if (softc->open_count == 0) {
766                 struct pass_io_req *io_req, *io_req2;
767                 int need_unlock;
768
769                 need_unlock = 0;
770
771                 TAILQ_FOREACH_SAFE(io_req, &softc->done_queue, links, io_req2) {
772                         TAILQ_REMOVE(&softc->done_queue, io_req, links);
773                         passiocleanup(softc, io_req);
774                         uma_zfree(softc->pass_zone, io_req);
775                 }
776
777                 TAILQ_FOREACH_SAFE(io_req, &softc->incoming_queue, links,
778                                    io_req2) {
779                         TAILQ_REMOVE(&softc->incoming_queue, io_req, links);
780                         passiocleanup(softc, io_req);
781                         uma_zfree(softc->pass_zone, io_req);
782                 }
783
784                 /*
785                  * If there are any active I/Os, we need to forcibly acquire a
786                  * reference to the peripheral so that we don't go away
787                  * before they complete.  We'll release the reference when
788                  * the abandoned queue is empty.
789                  */
790                 io_req = TAILQ_FIRST(&softc->active_queue);
791                 if ((io_req != NULL)
792                  && (softc->flags & PASS_FLAG_ABANDONED_REF_SET) == 0) {
793                         cam_periph_doacquire(periph);
794                         softc->flags |= PASS_FLAG_ABANDONED_REF_SET;
795                 }
796
797                 /*
798                  * Since the I/O in the active queue is not under our
799                  * control, just set a flag so that we can clean it up when
800                  * it completes and put it on the abandoned queue.  This
801                  * will prevent our sending spurious completions in the
802                  * event that the device is opened again before these I/Os
803                  * complete.
804                  */
805                 TAILQ_FOREACH_SAFE(io_req, &softc->active_queue, links,
806                                    io_req2) {
807                         TAILQ_REMOVE(&softc->active_queue, io_req, links);
808                         io_req->flags |= PASS_IO_ABANDONED;
809                         TAILQ_INSERT_TAIL(&softc->abandoned_queue, io_req,
810                                           links);
811                 }
812         }
813
814         cam_periph_release_locked(periph);
815
816         /*
817          * We reference the lock directly here, instead of using
818          * cam_periph_unlock().  The reason is that the call to
819          * cam_periph_release_locked() above could result in the periph
820          * getting freed.  If that is the case, dereferencing the periph
821          * with a cam_periph_unlock() call would cause a page fault.
822          *
823          * cam_periph_release() avoids this problem using the same method,
824          * but we're manually acquiring and dropping the lock here to
825          * protect the open count and avoid another lock acquisition and
826          * release.
827          */
828         mtx_unlock(mtx);
829
830         return (0);
831 }
832
833
834 static void
835 passstart(struct cam_periph *periph, union ccb *start_ccb)
836 {
837         struct pass_softc *softc;
838
839         softc = (struct pass_softc *)periph->softc;
840
841         switch (softc->state) {
842         case PASS_STATE_NORMAL: {
843                 struct pass_io_req *io_req;
844
845                 /*
846                  * Check for any queued I/O requests that require an
847                  * allocated slot.
848                  */
849                 io_req = TAILQ_FIRST(&softc->incoming_queue);
850                 if (io_req == NULL) {
851                         xpt_release_ccb(start_ccb);
852                         break;
853                 }
854                 TAILQ_REMOVE(&softc->incoming_queue, io_req, links);
855                 TAILQ_INSERT_TAIL(&softc->active_queue, io_req, links);
856                 /*
857                  * Merge the user's CCB into the allocated CCB.
858                  */
859                 xpt_merge_ccb(start_ccb, &io_req->ccb);
860                 start_ccb->ccb_h.ccb_type = PASS_CCB_QUEUED_IO;
861                 start_ccb->ccb_h.ccb_ioreq = io_req;
862                 start_ccb->ccb_h.cbfcnp = passdone;
863                 io_req->alloced_ccb = start_ccb;
864                 binuptime(&io_req->start_time);
865                 devstat_start_transaction(softc->device_stats,
866                                           &io_req->start_time);
867
868                 xpt_action(start_ccb);
869
870                 /*
871                  * If we have any more I/O waiting, schedule ourselves again.
872                  */
873                 if (!TAILQ_EMPTY(&softc->incoming_queue))
874                         xpt_schedule(periph, CAM_PRIORITY_NORMAL);
875                 break;
876         }
877         default:
878                 break;
879         }
880 }
881
882 static void
883 passdone(struct cam_periph *periph, union ccb *done_ccb)
884
885         struct pass_softc *softc;
886         struct ccb_scsiio *csio;
887
888         softc = (struct pass_softc *)periph->softc;
889
890         cam_periph_assert(periph, MA_OWNED);
891
892         csio = &done_ccb->csio;
893         switch (csio->ccb_h.ccb_type) {
894         case PASS_CCB_QUEUED_IO: {
895                 struct pass_io_req *io_req;
896
897                 io_req = done_ccb->ccb_h.ccb_ioreq;
898 #if 0
899                 xpt_print(periph->path, "%s: called for user CCB %p\n",
900                           __func__, io_req->user_ccb_ptr);
901 #endif
902                 if (((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP)
903                  && (done_ccb->ccb_h.flags & CAM_PASS_ERR_RECOVER)
904                  && ((io_req->flags & PASS_IO_ABANDONED) == 0)) {
905                         int error;
906
907                         error = passerror(done_ccb, CAM_RETRY_SELTO,
908                                           SF_RETRY_UA | SF_NO_PRINT);
909
910                         if (error == ERESTART) {
911                                 /*
912                                  * A retry was scheduled, so
913                                  * just return.
914                                  */
915                                 return;
916                         }
917                 }
918
919                 /*
920                  * Copy the allocated CCB contents back to the malloced CCB
921                  * so we can give status back to the user when he requests it.
922                  */
923                 bcopy(done_ccb, &io_req->ccb, sizeof(*done_ccb));
924
925                 /*
926                  * Log data/transaction completion with devstat(9).
927                  */
928                 switch (done_ccb->ccb_h.func_code) {
929                 case XPT_SCSI_IO:
930                         devstat_end_transaction(softc->device_stats,
931                             done_ccb->csio.dxfer_len - done_ccb->csio.resid,
932                             done_ccb->csio.tag_action & 0x3,
933                             ((done_ccb->ccb_h.flags & CAM_DIR_MASK) ==
934                             CAM_DIR_NONE) ? DEVSTAT_NO_DATA :
935                             (done_ccb->ccb_h.flags & CAM_DIR_OUT) ?
936                             DEVSTAT_WRITE : DEVSTAT_READ, NULL,
937                             &io_req->start_time);
938                         break;
939                 case XPT_ATA_IO:
940                         devstat_end_transaction(softc->device_stats,
941                             done_ccb->ataio.dxfer_len - done_ccb->ataio.resid,
942                             done_ccb->ataio.tag_action & 0x3,
943                             ((done_ccb->ccb_h.flags & CAM_DIR_MASK) ==
944                             CAM_DIR_NONE) ? DEVSTAT_NO_DATA : 
945                             (done_ccb->ccb_h.flags & CAM_DIR_OUT) ?
946                             DEVSTAT_WRITE : DEVSTAT_READ, NULL,
947                             &io_req->start_time);
948                         break;
949                 case XPT_SMP_IO:
950                         /*
951                          * XXX KDM this isn't quite right, but there isn't
952                          * currently an easy way to represent a bidirectional 
953                          * transfer in devstat.  The only way to do it
954                          * and have the byte counts come out right would
955                          * mean that we would have to record two
956                          * transactions, one for the request and one for the
957                          * response.  For now, so that we report something,
958                          * just treat the entire thing as a read.
959                          */
960                         devstat_end_transaction(softc->device_stats,
961                             done_ccb->smpio.smp_request_len +
962                             done_ccb->smpio.smp_response_len,
963                             DEVSTAT_TAG_SIMPLE, DEVSTAT_READ, NULL,
964                             &io_req->start_time);
965                         break;
966                 default:
967                         devstat_end_transaction(softc->device_stats, 0,
968                             DEVSTAT_TAG_NONE, DEVSTAT_NO_DATA, NULL,
969                             &io_req->start_time);
970                         break;
971                 }
972
973                 /*
974                  * In the normal case, take the completed I/O off of the
975                  * active queue and put it on the done queue.  Notitfy the
976                  * user that we have a completed I/O.
977                  */
978                 if ((io_req->flags & PASS_IO_ABANDONED) == 0) {
979                         TAILQ_REMOVE(&softc->active_queue, io_req, links);
980                         TAILQ_INSERT_TAIL(&softc->done_queue, io_req, links);
981                         selwakeuppri(&softc->read_select, PRIBIO);
982                         KNOTE_LOCKED(&softc->read_select.si_note, 0);
983                 } else {
984                         /*
985                          * In the case of an abandoned I/O (final close
986                          * without fetching the I/O), take it off of the
987                          * abandoned queue and free it.
988                          */
989                         TAILQ_REMOVE(&softc->abandoned_queue, io_req, links);
990                         passiocleanup(softc, io_req);
991                         uma_zfree(softc->pass_zone, io_req);
992
993                         /*
994                          * Release the done_ccb here, since we may wind up
995                          * freeing the peripheral when we decrement the
996                          * reference count below.
997                          */
998                         xpt_release_ccb(done_ccb);
999
1000                         /*
1001                          * If the abandoned queue is empty, we can release
1002                          * our reference to the periph since we won't have
1003                          * any more completions coming.
1004                          */
1005                         if ((TAILQ_EMPTY(&softc->abandoned_queue))
1006                          && (softc->flags & PASS_FLAG_ABANDONED_REF_SET)) {
1007                                 softc->flags &= ~PASS_FLAG_ABANDONED_REF_SET;
1008                                 cam_periph_release_locked(periph);
1009                         }
1010
1011                         /*
1012                          * We have already released the CCB, so we can
1013                          * return.
1014                          */
1015                         return;
1016                 }
1017                 break;
1018         }
1019         }
1020         xpt_release_ccb(done_ccb);
1021 }
1022
1023 static int
1024 passcreatezone(struct cam_periph *periph)
1025 {
1026         struct pass_softc *softc;
1027         int error;
1028
1029         error = 0;
1030         softc = (struct pass_softc *)periph->softc;
1031
1032         cam_periph_assert(periph, MA_OWNED);
1033         KASSERT(((softc->flags & PASS_FLAG_ZONE_VALID) == 0), 
1034                 ("%s called when the pass(4) zone is valid!\n", __func__));
1035         KASSERT((softc->pass_zone == NULL), 
1036                 ("%s called when the pass(4) zone is allocated!\n", __func__));
1037
1038         if ((softc->flags & PASS_FLAG_ZONE_INPROG) == 0) {
1039
1040                 /*
1041                  * We're the first context through, so we need to create
1042                  * the pass(4) UMA zone for I/O requests.
1043                  */
1044                 softc->flags |= PASS_FLAG_ZONE_INPROG;
1045
1046                 /*
1047                  * uma_zcreate() does a blocking (M_WAITOK) allocation,
1048                  * so we cannot hold a mutex while we call it.
1049                  */
1050                 cam_periph_unlock(periph);
1051
1052                 softc->pass_zone = uma_zcreate(softc->zone_name,
1053                     sizeof(struct pass_io_req), NULL, NULL, NULL, NULL,
1054                     /*align*/ 0, /*flags*/ 0);
1055
1056                 softc->pass_io_zone = uma_zcreate(softc->io_zone_name,
1057                     softc->io_zone_size, NULL, NULL, NULL, NULL,
1058                     /*align*/ 0, /*flags*/ 0);
1059
1060                 cam_periph_lock(periph);
1061
1062                 if ((softc->pass_zone == NULL)
1063                  || (softc->pass_io_zone == NULL)) {
1064                         if (softc->pass_zone == NULL)
1065                                 xpt_print(periph->path, "unable to allocate "
1066                                     "IO Req UMA zone\n");
1067                         else
1068                                 xpt_print(periph->path, "unable to allocate "
1069                                     "IO UMA zone\n");
1070                         softc->flags &= ~PASS_FLAG_ZONE_INPROG;
1071                         goto bailout;
1072                 }
1073
1074                 /*
1075                  * Set the flags appropriately and notify any other waiters.
1076                  */
1077                 softc->flags &= PASS_FLAG_ZONE_INPROG;
1078                 softc->flags |= PASS_FLAG_ZONE_VALID;
1079                 wakeup(&softc->pass_zone);
1080         } else {
1081                 /*
1082                  * In this case, the UMA zone has not yet been created, but
1083                  * another context is in the process of creating it.  We
1084                  * need to sleep until the creation is either done or has
1085                  * failed.
1086                  */
1087                 while ((softc->flags & PASS_FLAG_ZONE_INPROG)
1088                     && ((softc->flags & PASS_FLAG_ZONE_VALID) == 0)) {
1089                         error = msleep(&softc->pass_zone,
1090                                        cam_periph_mtx(periph), PRIBIO,
1091                                        "paszon", 0);
1092                         if (error != 0)
1093                                 goto bailout;
1094                 }
1095                 /*
1096                  * If the zone creation failed, no luck for the user.
1097                  */
1098                 if ((softc->flags & PASS_FLAG_ZONE_VALID) == 0){
1099                         error = ENOMEM;
1100                         goto bailout;
1101                 }
1102         }
1103 bailout:
1104         return (error);
1105 }
1106
1107 static void
1108 passiocleanup(struct pass_softc *softc, struct pass_io_req *io_req)
1109 {
1110         union ccb *ccb;
1111         u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS];
1112         int i, numbufs;
1113
1114         ccb = &io_req->ccb;
1115
1116         switch (ccb->ccb_h.func_code) {
1117         case XPT_DEV_MATCH:
1118                 numbufs = min(io_req->num_bufs, 2);
1119
1120                 if (numbufs == 1) {
1121                         data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches;
1122                 } else {
1123                         data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns;
1124                         data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches;
1125                 }
1126                 break;
1127         case XPT_SCSI_IO:
1128         case XPT_CONT_TARGET_IO:
1129                 data_ptrs[0] = &ccb->csio.data_ptr;
1130                 numbufs = min(io_req->num_bufs, 1);
1131                 break;
1132         case XPT_ATA_IO:
1133                 data_ptrs[0] = &ccb->ataio.data_ptr;
1134                 numbufs = min(io_req->num_bufs, 1);
1135                 break;
1136         case XPT_SMP_IO:
1137                 numbufs = min(io_req->num_bufs, 2);
1138                 data_ptrs[0] = &ccb->smpio.smp_request;
1139                 data_ptrs[1] = &ccb->smpio.smp_response;
1140                 break;
1141         case XPT_DEV_ADVINFO:
1142                 numbufs = min(io_req->num_bufs, 1);
1143                 data_ptrs[0] = (uint8_t **)&ccb->cdai.buf;
1144                 break;
1145         default:
1146                 /* allow ourselves to be swapped once again */
1147                 return;
1148                 break; /* NOTREACHED */ 
1149         }
1150
1151         if (io_req->flags & PASS_IO_USER_SEG_MALLOC) {
1152                 free(io_req->user_segptr, M_SCSIPASS);
1153                 io_req->user_segptr = NULL;
1154         }
1155
1156         /*
1157          * We only want to free memory we malloced.
1158          */
1159         if (io_req->data_flags == CAM_DATA_VADDR) {
1160                 for (i = 0; i < io_req->num_bufs; i++) {
1161                         if (io_req->kern_bufs[i] == NULL)
1162                                 continue;
1163
1164                         free(io_req->kern_bufs[i], M_SCSIPASS);
1165                         io_req->kern_bufs[i] = NULL;
1166                 }
1167         } else if (io_req->data_flags == CAM_DATA_SG) {
1168                 for (i = 0; i < io_req->num_kern_segs; i++) {
1169                         if ((uint8_t *)(uintptr_t)
1170                             io_req->kern_segptr[i].ds_addr == NULL)
1171                                 continue;
1172
1173                         uma_zfree(softc->pass_io_zone, (uint8_t *)(uintptr_t)
1174                             io_req->kern_segptr[i].ds_addr);
1175                         io_req->kern_segptr[i].ds_addr = 0;
1176                 }
1177         }
1178
1179         if (io_req->flags & PASS_IO_KERN_SEG_MALLOC) {
1180                 free(io_req->kern_segptr, M_SCSIPASS);
1181                 io_req->kern_segptr = NULL;
1182         }
1183
1184         if (io_req->data_flags != CAM_DATA_PADDR) {
1185                 for (i = 0; i < numbufs; i++) {
1186                         /*
1187                          * Restore the user's buffer pointers to their
1188                          * previous values.
1189                          */
1190                         if (io_req->user_bufs[i] != NULL)
1191                                 *data_ptrs[i] = io_req->user_bufs[i];
1192                 }
1193         }
1194
1195 }
1196
1197 static int
1198 passcopysglist(struct cam_periph *periph, struct pass_io_req *io_req,
1199                ccb_flags direction)
1200 {
1201         bus_size_t kern_watermark, user_watermark, len_copied, len_to_copy;
1202         bus_dma_segment_t *user_sglist, *kern_sglist;
1203         int i, j, error;
1204
1205         error = 0;
1206         kern_watermark = 0;
1207         user_watermark = 0;
1208         len_to_copy = 0;
1209         len_copied = 0;
1210         user_sglist = io_req->user_segptr;
1211         kern_sglist = io_req->kern_segptr;
1212
1213         for (i = 0, j = 0; i < io_req->num_user_segs &&
1214              j < io_req->num_kern_segs;) {
1215                 uint8_t *user_ptr, *kern_ptr;
1216
1217                 len_to_copy = min(user_sglist[i].ds_len -user_watermark,
1218                     kern_sglist[j].ds_len - kern_watermark);
1219
1220                 user_ptr = (uint8_t *)(uintptr_t)user_sglist[i].ds_addr;
1221                 user_ptr = user_ptr + user_watermark;
1222                 kern_ptr = (uint8_t *)(uintptr_t)kern_sglist[j].ds_addr;
1223                 kern_ptr = kern_ptr + kern_watermark;
1224
1225                 user_watermark += len_to_copy;
1226                 kern_watermark += len_to_copy;
1227
1228                 if (!useracc(user_ptr, len_to_copy,
1229                     (direction == CAM_DIR_IN) ? VM_PROT_WRITE : VM_PROT_READ)) {
1230                         xpt_print(periph->path, "%s: unable to access user "
1231                                   "S/G list element %p len %zu\n", __func__,
1232                                   user_ptr, len_to_copy);
1233                         error = EFAULT;
1234                         goto bailout;
1235                 }
1236
1237                 if (direction == CAM_DIR_IN) {
1238                         error = copyout(kern_ptr, user_ptr, len_to_copy);
1239                         if (error != 0) {
1240                                 xpt_print(periph->path, "%s: copyout of %u "
1241                                           "bytes from %p to %p failed with "
1242                                           "error %d\n", __func__, len_to_copy,
1243                                           kern_ptr, user_ptr, error);
1244                                 goto bailout;
1245                         }
1246                 } else {
1247                         error = copyin(user_ptr, kern_ptr, len_to_copy);
1248                         if (error != 0) {
1249                                 xpt_print(periph->path, "%s: copyin of %u "
1250                                           "bytes from %p to %p failed with "
1251                                           "error %d\n", __func__, len_to_copy,
1252                                           user_ptr, kern_ptr, error);
1253                                 goto bailout;
1254                         }
1255                 }
1256
1257                 len_copied += len_to_copy;
1258
1259                 if (user_sglist[i].ds_len == user_watermark) {
1260                         i++;
1261                         user_watermark = 0;
1262                 }
1263
1264                 if (kern_sglist[j].ds_len == kern_watermark) {
1265                         j++;
1266                         kern_watermark = 0;
1267                 }
1268         }
1269
1270 bailout:
1271
1272         return (error);
1273 }
1274
1275 static int
1276 passmemsetup(struct cam_periph *periph, struct pass_io_req *io_req)
1277 {
1278         union ccb *ccb;
1279         struct pass_softc *softc;
1280         int numbufs, i;
1281         uint8_t **data_ptrs[CAM_PERIPH_MAXMAPS];
1282         uint32_t lengths[CAM_PERIPH_MAXMAPS];
1283         uint32_t dirs[CAM_PERIPH_MAXMAPS];
1284         uint32_t num_segs;
1285         uint16_t *seg_cnt_ptr;
1286         size_t maxmap;
1287         int error;
1288
1289         cam_periph_assert(periph, MA_NOTOWNED);
1290
1291         softc = periph->softc;
1292
1293         error = 0;
1294         ccb = &io_req->ccb;
1295         maxmap = 0;
1296         num_segs = 0;
1297         seg_cnt_ptr = NULL;
1298
1299         switch(ccb->ccb_h.func_code) {
1300         case XPT_DEV_MATCH:
1301                 if (ccb->cdm.match_buf_len == 0) {
1302                         printf("%s: invalid match buffer length 0\n", __func__);
1303                         return(EINVAL);
1304                 }
1305                 if (ccb->cdm.pattern_buf_len > 0) {
1306                         data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns;
1307                         lengths[0] = ccb->cdm.pattern_buf_len;
1308                         dirs[0] = CAM_DIR_OUT;
1309                         data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches;
1310                         lengths[1] = ccb->cdm.match_buf_len;
1311                         dirs[1] = CAM_DIR_IN;
1312                         numbufs = 2;
1313                 } else {
1314                         data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches;
1315                         lengths[0] = ccb->cdm.match_buf_len;
1316                         dirs[0] = CAM_DIR_IN;
1317                         numbufs = 1;
1318                 }
1319                 io_req->data_flags = CAM_DATA_VADDR;
1320                 break;
1321         case XPT_SCSI_IO:
1322         case XPT_CONT_TARGET_IO:
1323                 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
1324                         return(0);
1325
1326                 /*
1327                  * The user shouldn't be able to supply a bio.
1328                  */
1329                 if ((ccb->ccb_h.flags & CAM_DATA_MASK) == CAM_DATA_BIO)
1330                         return (EINVAL);
1331
1332                 io_req->data_flags = ccb->ccb_h.flags & CAM_DATA_MASK;
1333
1334                 data_ptrs[0] = &ccb->csio.data_ptr;
1335                 lengths[0] = ccb->csio.dxfer_len;
1336                 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
1337                 num_segs = ccb->csio.sglist_cnt;
1338                 seg_cnt_ptr = &ccb->csio.sglist_cnt;
1339                 numbufs = 1;
1340                 maxmap = softc->maxio;
1341                 break;
1342         case XPT_ATA_IO:
1343                 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
1344                         return(0);
1345
1346                 /*
1347                  * We only support a single virtual address for ATA I/O.
1348                  */
1349                 if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR)
1350                         return (EINVAL);
1351
1352                 io_req->data_flags = CAM_DATA_VADDR;
1353
1354                 data_ptrs[0] = &ccb->ataio.data_ptr;
1355                 lengths[0] = ccb->ataio.dxfer_len;
1356                 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
1357                 numbufs = 1;
1358                 maxmap = softc->maxio;
1359                 break;
1360         case XPT_SMP_IO:
1361                 io_req->data_flags = CAM_DATA_VADDR;
1362
1363                 data_ptrs[0] = &ccb->smpio.smp_request;
1364                 lengths[0] = ccb->smpio.smp_request_len;
1365                 dirs[0] = CAM_DIR_OUT;
1366                 data_ptrs[1] = &ccb->smpio.smp_response;
1367                 lengths[1] = ccb->smpio.smp_response_len;
1368                 dirs[1] = CAM_DIR_IN;
1369                 numbufs = 2;
1370                 maxmap = softc->maxio;
1371                 break;
1372         case XPT_DEV_ADVINFO:
1373                 if (ccb->cdai.bufsiz == 0)
1374                         return (0);
1375
1376                 io_req->data_flags = CAM_DATA_VADDR;
1377
1378                 data_ptrs[0] = (uint8_t **)&ccb->cdai.buf;
1379                 lengths[0] = ccb->cdai.bufsiz;
1380                 dirs[0] = CAM_DIR_IN;
1381                 numbufs = 1;
1382                 break;
1383         default:
1384                 return(EINVAL);
1385                 break; /* NOTREACHED */
1386         }
1387
1388         io_req->num_bufs = numbufs;
1389
1390         /*
1391          * If there is a maximum, check to make sure that the user's
1392          * request fits within the limit.  In general, we should only have
1393          * a maximum length for requests that go to hardware.  Otherwise it
1394          * is whatever we're able to malloc.
1395          */
1396         for (i = 0; i < numbufs; i++) {
1397                 io_req->user_bufs[i] = *data_ptrs[i];
1398                 io_req->dirs[i] = dirs[i];
1399                 io_req->lengths[i] = lengths[i];
1400
1401                 if (maxmap == 0)
1402                         continue;
1403
1404                 if (lengths[i] <= maxmap)
1405                         continue;
1406
1407                 xpt_print(periph->path, "%s: data length %u > max allowed %u "
1408                           "bytes\n", __func__, lengths[i], maxmap);
1409                 error = EINVAL;
1410                 goto bailout;
1411         }
1412
1413         switch (io_req->data_flags) {
1414         case CAM_DATA_VADDR:
1415                 /* Map or copy the buffer into kernel address space */
1416                 for (i = 0; i < numbufs; i++) {
1417                         uint8_t *tmp_buf;
1418
1419                         /*
1420                          * If for some reason no length is specified, we
1421                          * don't need to allocate anything.
1422                          */
1423                         if (io_req->lengths[i] == 0)
1424                                 continue;
1425
1426                         /*
1427                          * Make sure that the user's buffer is accessible
1428                          * to that process.
1429                          */
1430                         if (!useracc(io_req->user_bufs[i], io_req->lengths[i],
1431                             (io_req->dirs[i] == CAM_DIR_IN) ? VM_PROT_WRITE :
1432                              VM_PROT_READ)) {
1433                                 xpt_print(periph->path, "%s: user address %p "
1434                                     "length %u is not accessible\n", __func__,
1435                                     io_req->user_bufs[i], io_req->lengths[i]);
1436                                 error = EFAULT;
1437                                 goto bailout;
1438                         }
1439
1440                         tmp_buf = malloc(lengths[i], M_SCSIPASS,
1441                                          M_WAITOK | M_ZERO);
1442                         io_req->kern_bufs[i] = tmp_buf;
1443                         *data_ptrs[i] = tmp_buf;
1444
1445 #if 0
1446                         xpt_print(periph->path, "%s: malloced %p len %u, user "
1447                                   "buffer %p, operation: %s\n", __func__,
1448                                   tmp_buf, lengths[i], io_req->user_bufs[i],
1449                                   (dirs[i] == CAM_DIR_IN) ? "read" : "write");
1450 #endif
1451                         /*
1452                          * We only need to copy in if the user is writing.
1453                          */
1454                         if (dirs[i] != CAM_DIR_OUT)
1455                                 continue;
1456
1457                         error = copyin(io_req->user_bufs[i],
1458                                        io_req->kern_bufs[i], lengths[i]);
1459                         if (error != 0) {
1460                                 xpt_print(periph->path, "%s: copy of user "
1461                                           "buffer from %p to %p failed with "
1462                                           "error %d\n", __func__,
1463                                           io_req->user_bufs[i],
1464                                           io_req->kern_bufs[i], error);
1465                                 goto bailout;
1466                         }
1467                 }
1468                 break;
1469         case CAM_DATA_PADDR:
1470                 /* Pass down the pointer as-is */
1471                 break;
1472         case CAM_DATA_SG: {
1473                 size_t sg_length, size_to_go, alloc_size;
1474                 uint32_t num_segs_needed;
1475
1476                 /*
1477                  * Copy the user S/G list in, and then copy in the
1478                  * individual segments.
1479                  */
1480                 /*
1481                  * We shouldn't see this, but check just in case.
1482                  */
1483                 if (numbufs != 1) {
1484                         xpt_print(periph->path, "%s: cannot currently handle "
1485                                   "more than one S/G list per CCB\n", __func__);
1486                         error = EINVAL;
1487                         goto bailout;
1488                 }
1489
1490                 /*
1491                  * We have to have at least one segment.
1492                  */
1493                 if (num_segs == 0) {
1494                         xpt_print(periph->path, "%s: CAM_DATA_SG flag set, "
1495                                   "but sglist_cnt=0!\n", __func__);
1496                         error = EINVAL;
1497                         goto bailout;
1498                 }
1499
1500                 /*
1501                  * Make sure the user specified the total length and didn't
1502                  * just leave it to us to decode the S/G list.
1503                  */
1504                 if (lengths[0] == 0) {
1505                         xpt_print(periph->path, "%s: no dxfer_len specified, "
1506                                   "but CAM_DATA_SG flag is set!\n", __func__);
1507                         error = EINVAL;
1508                         goto bailout;
1509                 }
1510
1511                 /*
1512                  * We allocate buffers in io_zone_size increments for an
1513                  * S/G list.  This will generally be MAXPHYS.
1514                  */
1515                 if (lengths[0] <= softc->io_zone_size)
1516                         num_segs_needed = 1;
1517                 else {
1518                         num_segs_needed = lengths[0] / softc->io_zone_size;
1519                         if ((lengths[0] % softc->io_zone_size) != 0)
1520                                 num_segs_needed++;
1521                 }
1522
1523                 /* Figure out the size of the S/G list */
1524                 sg_length = num_segs * sizeof(bus_dma_segment_t);
1525                 io_req->num_user_segs = num_segs;
1526                 io_req->num_kern_segs = num_segs_needed;
1527
1528                 /* Save the user's S/G list pointer for later restoration */
1529                 io_req->user_bufs[0] = *data_ptrs[0];
1530
1531                 /*
1532                  * If we have enough segments allocated by default to handle
1533                  * the length of the user's S/G list,
1534                  */
1535                 if (num_segs > PASS_MAX_SEGS) {
1536                         io_req->user_segptr = malloc(sizeof(bus_dma_segment_t) *
1537                             num_segs, M_SCSIPASS, M_WAITOK | M_ZERO);
1538                         io_req->flags |= PASS_IO_USER_SEG_MALLOC;
1539                 } else
1540                         io_req->user_segptr = io_req->user_segs;
1541
1542                 if (!useracc(*data_ptrs[0], sg_length, VM_PROT_READ)) {
1543                         xpt_print(periph->path, "%s: unable to access user "
1544                                   "S/G list at %p\n", __func__, *data_ptrs[0]);
1545                         error = EFAULT;
1546                         goto bailout;
1547                 }
1548
1549                 error = copyin(*data_ptrs[0], io_req->user_segptr, sg_length);
1550                 if (error != 0) {
1551                         xpt_print(periph->path, "%s: copy of user S/G list "
1552                                   "from %p to %p failed with error %d\n",
1553                                   __func__, *data_ptrs[0], io_req->user_segptr,
1554                                   error);
1555                         goto bailout;
1556                 }
1557
1558                 if (num_segs_needed > PASS_MAX_SEGS) {
1559                         io_req->kern_segptr = malloc(sizeof(bus_dma_segment_t) *
1560                             num_segs_needed, M_SCSIPASS, M_WAITOK | M_ZERO);
1561                         io_req->flags |= PASS_IO_KERN_SEG_MALLOC;
1562                 } else {
1563                         io_req->kern_segptr = io_req->kern_segs;
1564                 }
1565
1566                 /*
1567                  * Allocate the kernel S/G list.
1568                  */
1569                 for (size_to_go = lengths[0], i = 0;
1570                      size_to_go > 0 && i < num_segs_needed;
1571                      i++, size_to_go -= alloc_size) {
1572                         uint8_t *kern_ptr;
1573
1574                         alloc_size = min(size_to_go, softc->io_zone_size);
1575                         kern_ptr = uma_zalloc(softc->pass_io_zone, M_WAITOK);
1576                         io_req->kern_segptr[i].ds_addr =
1577                             (bus_addr_t)(uintptr_t)kern_ptr;
1578                         io_req->kern_segptr[i].ds_len = alloc_size;
1579                 }
1580                 if (size_to_go > 0) {
1581                         printf("%s: size_to_go = %zu, software error!\n",
1582                                __func__, size_to_go);
1583                         error = EINVAL;
1584                         goto bailout;
1585                 }
1586
1587                 *data_ptrs[0] = (uint8_t *)io_req->kern_segptr;
1588                 *seg_cnt_ptr = io_req->num_kern_segs;
1589
1590                 /*
1591                  * We only need to copy data here if the user is writing.
1592                  */
1593                 if (dirs[0] == CAM_DIR_OUT)
1594                         error = passcopysglist(periph, io_req, dirs[0]);
1595                 break;
1596         }
1597         case CAM_DATA_SG_PADDR: {
1598                 size_t sg_length;
1599
1600                 /*
1601                  * We shouldn't see this, but check just in case.
1602                  */
1603                 if (numbufs != 1) {
1604                         printf("%s: cannot currently handle more than one "
1605                                "S/G list per CCB\n", __func__);
1606                         error = EINVAL;
1607                         goto bailout;
1608                 }
1609
1610                 /*
1611                  * We have to have at least one segment.
1612                  */
1613                 if (num_segs == 0) {
1614                         xpt_print(periph->path, "%s: CAM_DATA_SG_PADDR flag "
1615                                   "set, but sglist_cnt=0!\n", __func__);
1616                         error = EINVAL;
1617                         goto bailout;
1618                 }
1619
1620                 /*
1621                  * Make sure the user specified the total length and didn't
1622                  * just leave it to us to decode the S/G list.
1623                  */
1624                 if (lengths[0] == 0) {
1625                         xpt_print(periph->path, "%s: no dxfer_len specified, "
1626                                   "but CAM_DATA_SG flag is set!\n", __func__);
1627                         error = EINVAL;
1628                         goto bailout;
1629                 }
1630
1631                 /* Figure out the size of the S/G list */
1632                 sg_length = num_segs * sizeof(bus_dma_segment_t);
1633                 io_req->num_user_segs = num_segs;
1634                 io_req->num_kern_segs = io_req->num_user_segs;
1635
1636                 /* Save the user's S/G list pointer for later restoration */
1637                 io_req->user_bufs[0] = *data_ptrs[0];
1638
1639                 if (num_segs > PASS_MAX_SEGS) {
1640                         io_req->user_segptr = malloc(sizeof(bus_dma_segment_t) *
1641                             num_segs, M_SCSIPASS, M_WAITOK | M_ZERO);
1642                         io_req->flags |= PASS_IO_USER_SEG_MALLOC;
1643                 } else
1644                         io_req->user_segptr = io_req->user_segs;
1645
1646                 io_req->kern_segptr = io_req->user_segptr;
1647
1648                 error = copyin(*data_ptrs[0], io_req->user_segptr, sg_length);
1649                 if (error != 0) {
1650                         xpt_print(periph->path, "%s: copy of user S/G list "
1651                                   "from %p to %p failed with error %d\n",
1652                                   __func__, *data_ptrs[0], io_req->user_segptr,
1653                                   error);
1654                         goto bailout;
1655                 }
1656                 break;
1657         }
1658         default:
1659         case CAM_DATA_BIO:
1660                 /*
1661                  * A user shouldn't be attaching a bio to the CCB.  It
1662                  * isn't a user-accessible structure.
1663                  */
1664                 error = EINVAL;
1665                 break;
1666         }
1667
1668 bailout:
1669         if (error != 0)
1670                 passiocleanup(softc, io_req);
1671
1672         return (error);
1673 }
1674
1675 static int
1676 passmemdone(struct cam_periph *periph, struct pass_io_req *io_req)
1677 {
1678         struct pass_softc *softc;
1679         union ccb *ccb;
1680         int error;
1681         int i;
1682
1683         error = 0;
1684         softc = (struct pass_softc *)periph->softc;
1685         ccb = &io_req->ccb;
1686
1687         switch (io_req->data_flags) {
1688         case CAM_DATA_VADDR:
1689                 /*
1690                  * Copy back to the user buffer if this was a read.
1691                  */
1692                 for (i = 0; i < io_req->num_bufs; i++) {
1693                         if (io_req->dirs[i] != CAM_DIR_IN)
1694                                 continue;
1695
1696                         error = copyout(io_req->kern_bufs[i],
1697                             io_req->user_bufs[i], io_req->lengths[i]);
1698                         if (error != 0) {
1699                                 xpt_print(periph->path, "Unable to copy %u "
1700                                           "bytes from %p to user address %p\n",
1701                                           io_req->lengths[i],
1702                                           io_req->kern_bufs[i],
1703                                           io_req->user_bufs[i]);
1704                                 goto bailout;
1705                         }
1706
1707                 }
1708                 break;
1709         case CAM_DATA_PADDR:
1710                 /* Do nothing.  The pointer is a physical address already */
1711                 break;
1712         case CAM_DATA_SG:
1713                 /*
1714                  * Copy back to the user buffer if this was a read.
1715                  * Restore the user's S/G list buffer pointer.
1716                  */
1717                 if (io_req->dirs[0] == CAM_DIR_IN)
1718                         error = passcopysglist(periph, io_req, io_req->dirs[0]);
1719                 break;
1720         case CAM_DATA_SG_PADDR:
1721                 /*
1722                  * Restore the user's S/G list buffer pointer.  No need to
1723                  * copy.
1724                  */
1725                 break;
1726         default:
1727         case CAM_DATA_BIO:
1728                 error = EINVAL;
1729                 break;
1730         }
1731
1732 bailout:
1733         /*
1734          * Reset the user's pointers to their original values and free
1735          * allocated memory.
1736          */
1737         passiocleanup(softc, io_req);
1738
1739         return (error);
1740 }
1741
1742 static int
1743 passioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
1744 {
1745         int error;
1746
1747         if ((error = passdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) {
1748                 error = cam_compat_ioctl(dev, cmd, addr, flag, td, passdoioctl);
1749         }
1750         return (error);
1751 }
1752
1753 static int
1754 passdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
1755 {
1756         struct  cam_periph *periph;
1757         struct  pass_softc *softc;
1758         int     error;
1759         uint32_t priority;
1760
1761         periph = (struct cam_periph *)dev->si_drv1;
1762         if (periph == NULL)
1763                 return(ENXIO);
1764
1765         cam_periph_lock(periph);
1766         softc = (struct pass_softc *)periph->softc;
1767
1768         error = 0;
1769
1770         switch (cmd) {
1771
1772         case CAMIOCOMMAND:
1773         {
1774                 union ccb *inccb;
1775                 union ccb *ccb;
1776                 int ccb_malloced;
1777
1778                 inccb = (union ccb *)addr;
1779
1780                 /*
1781                  * Some CCB types, like scan bus and scan lun can only go
1782                  * through the transport layer device.
1783                  */
1784                 if (inccb->ccb_h.func_code & XPT_FC_XPT_ONLY) {
1785                         xpt_print(periph->path, "CCB function code %#x is "
1786                             "restricted to the XPT device\n",
1787                             inccb->ccb_h.func_code);
1788                         error = ENODEV;
1789                         break;
1790                 }
1791
1792                 /* Compatibility for RL/priority-unaware code. */
1793                 priority = inccb->ccb_h.pinfo.priority;
1794                 if (priority <= CAM_PRIORITY_OOB)
1795                     priority += CAM_PRIORITY_OOB + 1;
1796
1797                 /*
1798                  * Non-immediate CCBs need a CCB from the per-device pool
1799                  * of CCBs, which is scheduled by the transport layer.
1800                  * Immediate CCBs and user-supplied CCBs should just be
1801                  * malloced.
1802                  */
1803                 if ((inccb->ccb_h.func_code & XPT_FC_QUEUED)
1804                  && ((inccb->ccb_h.func_code & XPT_FC_USER_CCB) == 0)) {
1805                         ccb = cam_periph_getccb(periph, priority);
1806                         ccb_malloced = 0;
1807                 } else {
1808                         ccb = xpt_alloc_ccb_nowait();
1809
1810                         if (ccb != NULL)
1811                                 xpt_setup_ccb(&ccb->ccb_h, periph->path,
1812                                               priority);
1813                         ccb_malloced = 1;
1814                 }
1815
1816                 if (ccb == NULL) {
1817                         xpt_print(periph->path, "unable to allocate CCB\n");
1818                         error = ENOMEM;
1819                         break;
1820                 }
1821
1822                 error = passsendccb(periph, ccb, inccb);
1823
1824                 if (ccb_malloced)
1825                         xpt_free_ccb(ccb);
1826                 else
1827                         xpt_release_ccb(ccb);
1828
1829                 break;
1830         }
1831         case CAMIOQUEUE:
1832         {
1833                 struct pass_io_req *io_req;
1834                 union ccb **user_ccb, *ccb;
1835                 xpt_opcode fc;
1836
1837                 if ((softc->flags & PASS_FLAG_ZONE_VALID) == 0) {
1838                         error = passcreatezone(periph);
1839                         if (error != 0)
1840                                 goto bailout;
1841                 }
1842
1843                 /*
1844                  * We're going to do a blocking allocation for this I/O
1845                  * request, so we have to drop the lock.
1846                  */
1847                 cam_periph_unlock(periph);
1848
1849                 io_req = uma_zalloc(softc->pass_zone, M_WAITOK | M_ZERO);
1850                 ccb = &io_req->ccb;
1851                 user_ccb = (union ccb **)addr;
1852
1853                 /*
1854                  * Unlike the CAMIOCOMMAND ioctl above, we only have a
1855                  * pointer to the user's CCB, so we have to copy the whole
1856                  * thing in to a buffer we have allocated (above) instead
1857                  * of allowing the ioctl code to malloc a buffer and copy
1858                  * it in.
1859                  *
1860                  * This is an advantage for this asynchronous interface,
1861                  * since we don't want the memory to get freed while the
1862                  * CCB is outstanding.
1863                  */
1864 #if 0
1865                 xpt_print(periph->path, "Copying user CCB %p to "
1866                           "kernel address %p\n", *user_ccb, ccb);
1867 #endif
1868                 error = copyin(*user_ccb, ccb, sizeof(*ccb));
1869                 if (error != 0) {
1870                         xpt_print(periph->path, "Copy of user CCB %p to "
1871                                   "kernel address %p failed with error %d\n",
1872                                   *user_ccb, ccb, error);
1873                         uma_zfree(softc->pass_zone, io_req);
1874                         cam_periph_lock(periph);
1875                         break;
1876                 }
1877
1878                 /*
1879                  * Some CCB types, like scan bus and scan lun can only go
1880                  * through the transport layer device.
1881                  */
1882                 if (ccb->ccb_h.func_code & XPT_FC_XPT_ONLY) {
1883                         xpt_print(periph->path, "CCB function code %#x is "
1884                             "restricted to the XPT device\n",
1885                             ccb->ccb_h.func_code);
1886                         uma_zfree(softc->pass_zone, io_req);
1887                         cam_periph_lock(periph);
1888                         error = ENODEV;
1889                         break;
1890                 }
1891
1892                 /*
1893                  * Save the user's CCB pointer as well as his linked list
1894                  * pointers and peripheral private area so that we can
1895                  * restore these later.
1896                  */
1897                 io_req->user_ccb_ptr = *user_ccb;
1898                 io_req->user_periph_links = ccb->ccb_h.periph_links;
1899                 io_req->user_periph_priv = ccb->ccb_h.periph_priv;
1900
1901                 /*
1902                  * Now that we've saved the user's values, we can set our
1903                  * own peripheral private entry.
1904                  */
1905                 ccb->ccb_h.ccb_ioreq = io_req;
1906
1907                 /* Compatibility for RL/priority-unaware code. */
1908                 priority = ccb->ccb_h.pinfo.priority;
1909                 if (priority <= CAM_PRIORITY_OOB)
1910                     priority += CAM_PRIORITY_OOB + 1;
1911
1912                 /*
1913                  * Setup fields in the CCB like the path and the priority.
1914                  * The path in particular cannot be done in userland, since
1915                  * it is a pointer to a kernel data structure.
1916                  */
1917                 xpt_setup_ccb_flags(&ccb->ccb_h, periph->path, priority,
1918                                     ccb->ccb_h.flags);
1919
1920                 /*
1921                  * Setup our done routine.  There is no way for the user to
1922                  * have a valid pointer here.
1923                  */
1924                 ccb->ccb_h.cbfcnp = passdone;
1925
1926                 fc = ccb->ccb_h.func_code;
1927                 /*
1928                  * If this function code has memory that can be mapped in
1929                  * or out, we need to call passmemsetup().
1930                  */
1931                 if ((fc == XPT_SCSI_IO) || (fc == XPT_ATA_IO)
1932                  || (fc == XPT_SMP_IO) || (fc == XPT_DEV_MATCH)
1933                  || (fc == XPT_DEV_ADVINFO)) {
1934                         error = passmemsetup(periph, io_req);
1935                         if (error != 0) {
1936                                 uma_zfree(softc->pass_zone, io_req);
1937                                 cam_periph_lock(periph);
1938                                 break;
1939                         }
1940                 } else
1941                         io_req->mapinfo.num_bufs_used = 0;
1942
1943                 cam_periph_lock(periph);
1944
1945                 /*
1946                  * Everything goes on the incoming queue initially.
1947                  */
1948                 TAILQ_INSERT_TAIL(&softc->incoming_queue, io_req, links);
1949
1950                 /*
1951                  * If the CCB is queued, and is not a user CCB, then
1952                  * we need to allocate a slot for it.  Call xpt_schedule()
1953                  * so that our start routine will get called when a CCB is
1954                  * available.
1955                  */
1956                 if ((fc & XPT_FC_QUEUED)
1957                  && ((fc & XPT_FC_USER_CCB) == 0)) {
1958                         xpt_schedule(periph, priority);
1959                         break;
1960                 } 
1961
1962                 /*
1963                  * At this point, the CCB in question is either an
1964                  * immediate CCB (like XPT_DEV_ADVINFO) or it is a user CCB
1965                  * and therefore should be malloced, not allocated via a slot.
1966                  * Remove the CCB from the incoming queue and add it to the
1967                  * active queue.
1968                  */
1969                 TAILQ_REMOVE(&softc->incoming_queue, io_req, links);
1970                 TAILQ_INSERT_TAIL(&softc->active_queue, io_req, links);
1971
1972                 xpt_action(ccb);
1973
1974                 /*
1975                  * If this is not a queued CCB (i.e. it is an immediate CCB),
1976                  * then it is already done.  We need to put it on the done
1977                  * queue for the user to fetch.
1978                  */
1979                 if ((fc & XPT_FC_QUEUED) == 0) {
1980                         TAILQ_REMOVE(&softc->active_queue, io_req, links);
1981                         TAILQ_INSERT_TAIL(&softc->done_queue, io_req, links);
1982                 }
1983                 break;
1984         }
1985         case CAMIOGET:
1986         {
1987                 union ccb **user_ccb;
1988                 struct pass_io_req *io_req;
1989                 int old_error;
1990
1991                 user_ccb = (union ccb **)addr;
1992                 old_error = 0;
1993
1994                 io_req = TAILQ_FIRST(&softc->done_queue);
1995                 if (io_req == NULL) {
1996                         error = ENOENT;
1997                         break;
1998                 }
1999
2000                 /*
2001                  * Remove the I/O from the done queue.
2002                  */
2003                 TAILQ_REMOVE(&softc->done_queue, io_req, links);
2004
2005                 /*
2006                  * We have to drop the lock during the copyout because the
2007                  * copyout can result in VM faults that require sleeping.
2008                  */
2009                 cam_periph_unlock(periph);
2010
2011                 /*
2012                  * Do any needed copies (e.g. for reads) and revert the
2013                  * pointers in the CCB back to the user's pointers.
2014                  */
2015                 error = passmemdone(periph, io_req);
2016
2017                 old_error = error;
2018
2019                 io_req->ccb.ccb_h.periph_links = io_req->user_periph_links;
2020                 io_req->ccb.ccb_h.periph_priv = io_req->user_periph_priv;
2021
2022 #if 0
2023                 xpt_print(periph->path, "Copying to user CCB %p from "
2024                           "kernel address %p\n", *user_ccb, &io_req->ccb);
2025 #endif
2026
2027                 error = copyout(&io_req->ccb, *user_ccb, sizeof(union ccb));
2028                 if (error != 0) {
2029                         xpt_print(periph->path, "Copy to user CCB %p from "
2030                                   "kernel address %p failed with error %d\n",
2031                                   *user_ccb, &io_req->ccb, error);
2032                 }
2033
2034                 /*
2035                  * Prefer the first error we got back, and make sure we
2036                  * don't overwrite bad status with good.
2037                  */
2038                 if (old_error != 0)
2039                         error = old_error;
2040
2041                 cam_periph_lock(periph);
2042
2043                 /*
2044                  * At this point, if there was an error, we could potentially
2045                  * re-queue the I/O and try again.  But why?  The error
2046                  * would almost certainly happen again.  We might as well
2047                  * not leak memory.
2048                  */
2049                 uma_zfree(softc->pass_zone, io_req);
2050                 break;
2051         }
2052         default:
2053                 error = cam_periph_ioctl(periph, cmd, addr, passerror);
2054                 break;
2055         }
2056
2057 bailout:
2058         cam_periph_unlock(periph);
2059
2060         return(error);
2061 }
2062
2063 static int
2064 passpoll(struct cdev *dev, int poll_events, struct thread *td)
2065 {
2066         struct cam_periph *periph;
2067         struct pass_softc *softc;
2068         int revents;
2069
2070         periph = (struct cam_periph *)dev->si_drv1;
2071         if (periph == NULL)
2072                 return (ENXIO);
2073
2074         softc = (struct pass_softc *)periph->softc;
2075
2076         revents = poll_events & (POLLOUT | POLLWRNORM);
2077         if ((poll_events & (POLLIN | POLLRDNORM)) != 0) {
2078                 cam_periph_lock(periph);
2079
2080                 if (!TAILQ_EMPTY(&softc->done_queue)) {
2081                         revents |= poll_events & (POLLIN | POLLRDNORM);
2082                 }
2083                 cam_periph_unlock(periph);
2084                 if (revents == 0)
2085                         selrecord(td, &softc->read_select);
2086         }
2087
2088         return (revents);
2089 }
2090
2091 static int
2092 passkqfilter(struct cdev *dev, struct knote *kn)
2093 {
2094         struct cam_periph *periph;
2095         struct pass_softc *softc;
2096
2097         periph = (struct cam_periph *)dev->si_drv1;
2098         if (periph == NULL)
2099                 return (ENXIO);
2100
2101         softc = (struct pass_softc *)periph->softc;
2102
2103         kn->kn_hook = (caddr_t)periph;
2104         kn->kn_fop = &passread_filtops;
2105         knlist_add(&softc->read_select.si_note, kn, 0);
2106
2107         return (0);
2108 }
2109
2110 static void
2111 passreadfiltdetach(struct knote *kn)
2112 {
2113         struct cam_periph *periph;
2114         struct pass_softc *softc;
2115
2116         periph = (struct cam_periph *)kn->kn_hook;
2117         softc = (struct pass_softc *)periph->softc;
2118
2119         knlist_remove(&softc->read_select.si_note, kn, 0);
2120 }
2121
2122 static int
2123 passreadfilt(struct knote *kn, long hint)
2124 {
2125         struct cam_periph *periph;
2126         struct pass_softc *softc;
2127         int retval;
2128
2129         periph = (struct cam_periph *)kn->kn_hook;
2130         softc = (struct pass_softc *)periph->softc;
2131
2132         cam_periph_assert(periph, MA_OWNED);
2133
2134         if (TAILQ_EMPTY(&softc->done_queue))
2135                 retval = 0;
2136         else
2137                 retval = 1;
2138
2139         return (retval);
2140 }
2141
2142 /*
2143  * Generally, "ccb" should be the CCB supplied by the kernel.  "inccb"
2144  * should be the CCB that is copied in from the user.
2145  */
2146 static int
2147 passsendccb(struct cam_periph *periph, union ccb *ccb, union ccb *inccb)
2148 {
2149         struct pass_softc *softc;
2150         struct cam_periph_map_info mapinfo;
2151         xpt_opcode fc;
2152         int error;
2153
2154         softc = (struct pass_softc *)periph->softc;
2155
2156         /*
2157          * There are some fields in the CCB header that need to be
2158          * preserved, the rest we get from the user.
2159          */
2160         xpt_merge_ccb(ccb, inccb);
2161
2162         /*
2163          */
2164         ccb->ccb_h.cbfcnp = passdone;
2165
2166         /*
2167          * Let cam_periph_mapmem do a sanity check on the data pointer format.
2168          * Even if no data transfer is needed, it's a cheap check and it
2169          * simplifies the code.
2170          */
2171         fc = ccb->ccb_h.func_code;
2172         if ((fc == XPT_SCSI_IO) || (fc == XPT_ATA_IO) || (fc == XPT_SMP_IO)
2173          || (fc == XPT_DEV_MATCH) || (fc == XPT_DEV_ADVINFO)) {
2174                 bzero(&mapinfo, sizeof(mapinfo));
2175
2176                 /*
2177                  * cam_periph_mapmem calls into proc and vm functions that can
2178                  * sleep as well as trigger I/O, so we can't hold the lock.
2179                  * Dropping it here is reasonably safe.
2180                  */
2181                 cam_periph_unlock(periph);
2182                 error = cam_periph_mapmem(ccb, &mapinfo, softc->maxio);
2183                 cam_periph_lock(periph);
2184
2185                 /*
2186                  * cam_periph_mapmem returned an error, we can't continue.
2187                  * Return the error to the user.
2188                  */
2189                 if (error)
2190                         return(error);
2191         } else
2192                 /* Ensure that the unmap call later on is a no-op. */
2193                 mapinfo.num_bufs_used = 0;
2194
2195         /*
2196          * If the user wants us to perform any error recovery, then honor
2197          * that request.  Otherwise, it's up to the user to perform any
2198          * error recovery.
2199          */
2200         cam_periph_runccb(ccb, passerror, /* cam_flags */ CAM_RETRY_SELTO,
2201             /* sense_flags */ ((ccb->ccb_h.flags & CAM_PASS_ERR_RECOVER) ?
2202              SF_RETRY_UA : SF_NO_RECOVERY) | SF_NO_PRINT,
2203             softc->device_stats);
2204
2205         cam_periph_unmapmem(ccb, &mapinfo);
2206
2207         ccb->ccb_h.cbfcnp = NULL;
2208         ccb->ccb_h.periph_priv = inccb->ccb_h.periph_priv;
2209         bcopy(ccb, inccb, sizeof(union ccb));
2210
2211         return(0);
2212 }
2213
2214 static int
2215 passerror(union ccb *ccb, u_int32_t cam_flags, u_int32_t sense_flags)
2216 {
2217         struct cam_periph *periph;
2218         struct pass_softc *softc;
2219
2220         periph = xpt_path_periph(ccb->ccb_h.path);
2221         softc = (struct pass_softc *)periph->softc;
2222         
2223         return(cam_periph_error(ccb, cam_flags, sense_flags, 
2224                                  &softc->saved_ccb));
2225 }